
Programming	Language	
Extension	Protocol	for	

Speare	Code	Editor	

Copyright	(C)	2020	Sevenuc	Consulting	
Version	1.2	

Update:	Jan	30	2020	
	
	
	
Speare	(http://sevenuc.com/en/Speare.html)	is	an	ultra	lightweight	
code	editor	and	a	small	IDE	that	has	an	efficient	code	navigation	and	
call	routines	tracing	ability,	and	integrated	debugging	environment	
for	C,	C++,	Ruby,	mruby,	Lua,	Python,	PHP,	Perl	and	Tcl.	It	not	only	
has	very	concise	user	interface	but	also	has	a	very	flexible	
architecture	to	easily	extend	it	using	the	definitions	specified	in	this	
document.		Speare	code	editor	adopts	the	definitions	of	this	
document	to	describe	how	to	add	a	new	programming	language	code	
runner,	parser,	syntax	highlighting,	code	formatter	and	debugger	in	
it.	
	
This	document	specifies	the	general	interface,	data	format	and	
communication	protocol	of	an	IDE	(Integrated	Development	
Environment)	for	a	generic	programming	language	code	runner,	
parser,	syntax	highlighting,	code	formatter	and	debugger	originally	
(can	be	found	at	
http://sevenuc.com/download/language_extension_protocol.pdf).	
The	definitions	are	very	simple	but	very	efficient	and	have	broad	
applicability	and	Sevenuc	Consulting	reserves	all	rights	of	the	
definitions.	
	
Language	Parser	
	
#!/bin/bash	
#	full	path	of	the	language	parser		
path	=	/usr/local/xxx/bin/xxparser	
$path	$1	
	
The	above	is	a	sample	shell	script	that	accepts	a	file	path	as	input	
parameter	and	output	parsed	symbols	in	stdout.		

1.	The	output	format:	
	
Speare	code	editor	parse	the	output	line	by	line,	each	line	contains	
four	data	fields,	each	data	field	separated	by	a	character	'\t',	the	first	
field	is	the	symbol	definition,	and	then	symbol	class	(e.g.	header,	
module,	package,	library,	declare	etc),	and	then	the	full	path	of	the	
file	(optional)	and	end	with	line	number.	
	
e.g.	myfunction\tfunction\t/Users/henry/Desktop/uclib/list.c\t210	
	
2.	The	location	of	the	language	parsers:	
	
~/Library/Application	Scripts/com.sevenuc.SpeareHelper/parsers	
Speare	code	editor	call	the	parsers	in	the	above	directory	and	parsing	
anything	printed	in	stdout	to	fetch	symbol	definitions	in	source	code	
files.	
	
Syntax	Highlighting	
	
Speare	code	editor	use	the	extension	name	of	the	source	code	files	to	
determine	which	language	syntax	highlighting	definition	should	be	
called.		
	
1.	Configure	file	extension	name	
			Open	file	FileExtensions.plist	under	"Speare.app/Contents/Resources"	
and	then	add	a	text	block	to	configure	syntax	highlighting	for	the	new	
programming	language,	e.g:	
	
<key>MyLang</key>	
<array>	
<string>my</string>	
<string>myd</string>	
</array>	
	
2.	Create	syntax	highlighting	definitions	
			Assume	the	new	programming	language	named	MyLang	and	it	
source	code	file	has	.my	and	.myd	extension	file	names,	then	it	should	
has	a	correspond	syntax	definition	file	that	be	named	as	MyLang.plist	
and	be	correctly	put	in:	
	"~/Library/Application Scripts/com.sevenuc.SpeareHelper/languages”,	
details	of	such	type	of	file	please	refer	the	exists	files	under	

“/Applications/Speare.app/Contents/Resources/Languages”.	Of	course,	you	
can	copy	a	similar	language	definition	file	as	a	start.

Code	Formatter	
	
#!/bin/bash	
#	full	path	of	the	code	formatter		
path	=	/usr/local/xxx/bin/xxfmt	
$path	$1	$2	
	
The	above	is	a	sample	shell	script	that	accepts	two	input	parameters	
(a	file	path	and	a	“number	of	space	per	tab”)	and	print	formatted	
code	block	in	stdout.		
	
1.	The	rule	of	code	formatter:	
	
Speare	code	editor	will	give	up	formatted	code	block	if	there's	
something	printed	in	stderr	or	nothing	printed	in	stdout	otherwise	
anything	printed	in	stdout	will	be	used	to	replace	the	selected	code	
block.	
	
2.	The	location	of	the	language	formatters:	
	
~/Library/Application	Scripts/com.sevenuc.SpeareHelper/	
formatters	
	
Speare	code	editor	call	the	formatters	in	the	above	directory,	follow	
the	above	rule	and	replace	the	current	selected	text	with	the	output	
of	a	formatter.	
	
Speare	Debugging	Protocol	
	
This	section	describes	how	to	implement	a	generic	debugger	to	
support	a	new	programming	language	debugging	in	Speare	code	
editor.		Generally,	a	language	debugger	acts	as	the	debug	server	and	
Speare	code	editor	as	the	client,	and	they	communicates	with	TCP	
socket	on	a	special	port	defined	in	the	Preferences	of	Speare	code	
editor.	Speare	code	editor	send	debugging	command	line	by	line	and	
then	the	debugger	parse	the	command	line	by	line.	Speare	code	
editor	parse	the	debugger’s	response	data	with	JSON	data	format,	if	
the	data	is	not	formatted	JSON	data,	it	will	be	directly	printed	in	the	
debug	output.	JSON	data	block	allows	containing	multiple	data	lines.		

	
To	prevent	common	data	output	mixed	with	JSON	data	block,	the	
JSON	data	block	should	be	quoted	with	“\r\n”,	i.e.	the	JSON	data	block	
must	starts	with	“\r\n”	and	ends	with	“\r\n”.		
	
1.	Initialize	debugging	session	
	
When	Speare	code	editor	successfully	connected	with	the	debugger,	
it	will	send	a	file	path	(full	path	of	the	current	selected	file)	as	the	
start	parameter	of	the	debugging	session,	after	5	seconds,	if	the	
connection	failed,	it	will	give	up	the	connection.	
	
The	command	is	the	path	of	the	init	file.	
	
2.	Disconnect	debugging	session	
	
exit|quit	
	
3.	Breakpoint	operations	
	
breakpoint	[add|remove|enable|disable]	file	line	
breakpoint	set	file	line	“condition”	
breakpoint	setf		“function	name”		
breakpoint	rmf		“function	name”		
	
Speare	code	editor	has	four	breakpoint	operation	commands,	each	
command	contains	different	data	fields,	each	data	field	separated	by	
a	character	'\t',	the	fist	command	has	four	data	fields,	and	the	second	
has	five	data	fields,	the	last	two	commands	add	or	remove	function	
breakpoint	and	send	manually	by	user	via	extra	command.	
	
	
4.	Debugging	step	commands	
	
step	[into|out|over|to]	
	
The	“step	over”	is	equals	to	“step	next”,	and	“step	to”	is	equals	to	
“continue”	in	common	debugging	words,	and	the	“step	to”	is	the	
command	that	tell	the	debugger	run	to	meet	a	breakpoint	or	an	
exception	occurred	or	the	program	meet	exit.	A	character	'\t'	used	to	
separate	the	“step”	and	the	second	word	instead	of	a	space.	
	

5.	Evaluate	expression	
	
eval	“expression”	
	
A	character	'\t'	used	to	separate	the	“eval”	and	the	expression,	and	
the	expression	is	a	quoted	string.	
	
6.	Extra	debug	command	
Right	click	in	the	stackview	(bottom	left	side)	of	Speare	code	editor	
and	then	input	any	extra	command	when	the	debugging	session	
paused.	Left	click	anywhere	outside	of	the	input	box	to	close	it	and	
the	command	will	be	directly	send	to	the	debugger.	
	
Note:	In	order	to	make	the	debugger	happy	and	can	easily	parse	extra	
commands,	the	command	format	have	the	same	format	as	the	
mentioned	previous	commands	will	more	better,	and	the	data	fields	
can	also	be	separated	by	a	character	‘\t’.	
	
JSON	Data	Block	
	
Debugger	send	response	to	Speare	code	editor	with	JSON	data	
format,	they	are:	
	
a.	Debugging	session	exit	
	'{"command":	"exit"}'	
	
b.	Debugging	session	paused	
'{"command":	"paused",	"file":	"%s",	"line":	%d}'	
	
c.	Stack	dump	
'{"command":	"stack",		“data”:	…	}'	
	
Debugger	sends	“stack”	command	to	tell	Speare	code	editor	
displaying	values	of	global	and	local	variable,	the	“data”	can	be	any	
structure	that	has	a	correct	JSON	format,	usually	it	is	a	structured	
tree	grouped	with	variable	name	and	their	values.	
	
d.	Expression	evaluate		
'{"command":	"expression",		"string":	“%s”,	"value":	“%s”	}'	
	

Watches:		“printed	value	of	variables”	or	“expression	evaluated	
values”,	all	of	them	send	by	one	command	on	IDE	side:			
	
eval	“variable	name	or	expression”	
	
In	many	debugger,	it	just	equals	to	command,		“print	variable”,	in	
fact,	print	variable	is	not	necessary	in	most	situation.	Speare	code	
editor	will	merge	the	response	data	into	the	stackview	(bottom	left	
side)	and	always	placed	on	the	top	of	the	stackview	if	it	has	a	correct	
JSON	format.	
	
Note:	In	the	respond	JSON	data	block,	“string”	is	the	raw	expression	
sent	from	IDE	side	and	the	“value”	is	the	evaluated	result.	
	
Syntax	Checking	and	Run	Editing	Code	Instantly	
	
Speare	code	editor	provides	a	common	interface	that	enables	end	
user	to	run	code	for	various	of	tasks	immediately,	usually	includes	
syntax	checking,	unit	test,	and	run	the	editing	code	instantly.	
	
The	location	of	the	code	runners:	
	
~/Library/Application	Scripts/com.sevenuc.SpeareHelper/	
commands	
	
End	user	can	put	different	of	shell	scripts	in	this	directory	to	instantly	
run	other	tasks,	such	as	automatic	compile,	building	and	packing,	or	
run	static	code	analysis	tool	(source	code	analyzer,	such	as	PC-Lint,	
clang-analyzer,	PHPLint	etc),	and	any	other	tasks.	Speare	code	editor	
determine	which	shell	script	should	be	called	by	the	extension	name	
of	the	source	code	files	(e.g.	c.sh:	*.c,	cc.sh:	*.cc,	*.cxx,	*.cpp,	*.c++,	
ruby.sh:	*.rb,	lua.sh:	*.lua,	python.sh:	*.py	etc).	One	shell	script	service	
for	one	programming	language.	Every	script	can	accept	two	input	
parameters,	the	full	path	of	the	current	selected	file	and	the	selected	
code	block,	and	the	last	parameter	is	optional	and	can	be	empty	
string.	
	
#!/bin/bash	
#	$1	is	the	path	of	the	current	selected	file	
#	$2	is	the	selected	code	block	(optional)	
ruby	$1	

The	above	is	a	sample	shell	script	that	accepts	a	file	as	input	
parameter	and	run	it,	if	there's	some	syntax	error,	the	error	message	
will	be	printed	in	the	debug	output.		Speare	code	editor	will	merge	
stderr	and	stdout	together	and	print	them	in	the	debug	output.	
	
File	Extension	Name	Association	
	
Speare	code	editor	will	try	to	connect	debugger	and	determine	which	
language	parser	and	code	formatter	should	be	called	by	the	extension	
name	of	the	source	code	files.	Open	the	“Preferences”	of	Speare	code	
editor	and	select	the	"Debug	Settings"	and	then	configure	the	
association	between	a	programming	language	and	its	source	code	file	
extension	names.		Each	extension	name	should	be	separated	by	a	
space.	
	
e.g:		a	sample	programming	language	named	Mylang,	and	file	
extension	name	of	its	source	code	file	are	my	and	myd	(without	dot).	
Speare	code	editor	make	a	lower	case	string	of	the	programming	
language	name	to	find	the	shell	scripts.	It	will	find	a	shell	script	
named	mylang.sh	and	call	it	to	parse	source	code	files	under:	
	
~/Library/Application	Scripts/com.sevenuc.SpeareHelper/parsers	
	
and	find	a	shell	script	named	mylang.sh	and	call	it	to	format	code	
block	under:	
	
~/Library/Application	Scripts/com.sevenuc.SpeareHelper/	
formatters	
	
	
	
	
	
	
	
	
	
	
	
	
	
©	2020	Sevenuc	Consulting	All	rights	reserved.	

