
Description of Known Answer Tests and Monte Carlo Tests
for Advanced Encryption Standard (AES) Candidate Algorithm Submissions

Original: January 7, 1998
Update: January 13, 1998 (updated by adding Sections 3.3 and 3.4; modified chart in Sec. 5)
Update: February 17, 1998 (corrections in Sec.2.2, 2 para., 2 sentence, and Sec. 4.1, 2.b.iii tond nd

refer to 128-bit blocks)

Table of Contents

1. Overview . 1

2. Modes of Operation - Description . 2
2.1 Electronic Codebook (ECB) Mode . 2
2.2 Cipher Block Chaining (CBC) Mode . 3

3. Known Answer Tests (KATs) . 4
3.1 Variable Key Known Answer Tests . 4
3.2 Variable Text (Plaintext/Ciphertext) Known Answer Tests 5
3.3 Tables Known Answer Tests . 5
3.4 Intermediate Values Known Answer Tests . 6

4. Monte Carlo Tests (MCTs) . 6
4.1 ECB Encrypt MCT . 7
4.2 ECB Decrypt MCT . 8
4.3 CBC Encrypt MCT . 10
4.4 CBC Decrypt MCT . 12

5. Summary of Required Test Value Sets . 14

6. References . 14

* * *

1. Overview

Each submission package is required to include Known Answer Test (KAT) and Monte Carlo Test
(MCT) values, which can be used to determine the correctness of an implementation of the candidate
algorithm. Values shall be included (at a minimum) for each of the three minimum required key sizes:
128, 192, and 256 bits.

These KAT and MCT tests are based on tests specified in the draft NIST Special Publication 800-17,
Modes of Operation Validation System (MOVS): Requirements and Procedures [MOVS], which
describes tests for the DES and Skipjack algorithms (two examples of block cipher algorithms). Each

E C B E n c r y p t i o n E C B D e c r y p t i o n

P L A I N T E X T

C I P H E R T E X T

(D 1 , D 2 ,. . . , D 1 2 8)

(C 1 , C 2 , . . . , C 1 2 8)

E N C R Y P T

I N P U T B L O C K

O U T P U T B L O C K

(I1 , I2 , . . . , I128)

(O 1 , O 2 , . . . , O 1 2 8)

P L A I N T E X T

C I P H E R T E X T

(D 1 , D 2 ,. . . , D 1 2 8)

(C 1 , C 2 , . . . , C 1 2 8)

D E C R Y P T

I N P U T B L O C K

O U T P U T B L O C K

(I1 , I2 , . . . , I128)

(O 1 , O 2 , . . . , O 1 2 8)

2

Figure 1: Electronic Codebook (ECB) Mode

of the tests for which values are required in the submission packages is described below. In addition,
example files are included which specify the exact syntax and format which submitters are required
to use when submitting their KAT and MCT values.

2. Modes of Operation - Description

KAT values are required for operation of the AES candidate algorithms in the Electronic Codebook
(ECB) mode only (for all three required key sizes). MCT values are required for operation of the
AES candidate algorithms in the ECB and Cipher Block Chaining (CBC) modes of operation. These
modes are described briefly in the following two sections, which are based on information in
[MOVS].

2.1 Electronic Codebook (ECB) Mode

The Electronic Codebook (ECB) Mode is diagramed in Figure 1. In ECB encryption, a plaintext data
block (D1, D2, . . ., D128) is used directly as the input block (I1, I2, . . ., I128). The input block is
then processed through the algorithm in the encrypt state. The resulting output block (O1, O2, . .
., O128) is used directly as ciphertext (C1, C2, . . ., C128).

LEGEND: D = Data Block I = Input Block C = Cipher Block
IV= Initialization Vector = Exclusive-Or Operation

ENCRYPT

IV D

I

C

ENCRYPT

D

I

C

Time = 1 Time = 2 . . . Time = n

(NOTE: All variables are 128 bits in length.)Cipher Block Chaining (CBC)

ENCRYPT

D

I

C

DECRYPT

IV

D

I

C

DECRYPT

D

I

C

DECRYPT

D

I

C

D
E

C
R

Y
P

T
E

N
C

R
Y

P
T

3

Figure 2: Cipher Block Chaining (CBC) Mode

In ECB decryption, a ciphertext block (C1, C2, . . ., C128) is used directly as the input block (I1, I2,
. . ., I128). The input block is then processed through the algorithm in the decrypt state. The
resulting output block (O1, O2, . . ., O128) produces the plaintext (D1, D2, . . ., D128). The ECB
decryption process is the same as the ECB encryption process except that the decrypt state of the
algorithm is used rather that the encrypt state.

The above processes for encryption and decryption in ECB mode are independent of key size.

2.2 Cipher Block Chaining (CBC) Mode

As diagramed in Figure 2, the Cipher Block Chaining (CBC) mode begins processing by dividing a
plaintext message into blocks. In CBC encryption, the first input block (I1, I2, . . ., I128) is formed
by exclusive-ORing the first plaintext data block (D1, D2, . . ., D128) with a 128-bit initialization
vector IV, i.e., (I1, I2, . . ., I128) = (IV1rD1, IV2rD2, . . ., IV128rD128). The input block is

4

processed through the algorithm in the encrypt state, and the resulting output block is used as the
ciphertext, i.e., (C1, C2, . . ., C128) = (O1, O2, . . ., O128). This first ciphertext block is then
exclusive-ORed with the second plaintext data block to produce the second input block, i.e., (I1, I2,
. . ., I128) = (C1rD1, C2rD2, . . ., C128rD128). Note that I and D now refer to the second block.
The second input block is processed through the algorithm in the encrypt state to produce the second
ciphertext block. This encryption process continues to "chain" successive cipher and plaintext blocks
together until the last plaintext block in the message is encrypted.

In CBC decryption, the first ciphertext block of an encrypted message is used as the input block and
is processed through the algorithm in the decrypt state, i.e., (I1, I2, . . ., I128) = (C1, C2, . . ., C128).
The resulting output block, which equals the original input block to the algorithm during encryption,
is exclusive-ORed with the IV (which must be the same as that used during encryption) to produce
the first plaintext block, i.e., (D1, D2, . . ., D128) = (O1rIV1, O2rIV2, . . ., O128rIV128). The
second ciphertext block is then used as the next input block and is processed through the algorithm
in the decrypt state. The resulting output block is exclusive-ORed with the first ciphertext block to
produce the second plaintext data block, i.e., (D1, D2, . . ., D128) = (O1rC1, O2rC2, . . .,
O128rC128). Note that again the D and O refer to the second block. The CBC decryption process
continues in this manner until the last complete ciphertext block has been decrypted. Ciphertext
representing a partial data block must be decrypted in a manner as specified for the application.

The above processes for encryption and decryption in CBC mode are independent of key size.

3. Known Answer Tests (KATs)

Known Answer Test values must be provided with submissions, which demonstrate operation of the
AES candidate algorithm in ECB mode, for each of the minimum required key values (128, 192, and
256 bits). There are two types of KATs that are required for all submissions: 1) Variable Key KAT,
and 2) Variable Text KAT. Section 3.3 describes a Tables KAT, which is required only for those
candidate algorithms which use tables.

3.1 Variable Key Known Answer Tests

The ECB mode of the algorithm shall be used for the variable key KAT, and the submitter shall use
the submitted algorithm to generate these test values as follows. The 128-bit plaintext shall always
be initialized to zero, for each encryption. Each key used to encrypt the zero plaintext block is
represented as a basis vector, consisting of a "1" in the i position and "0" in all of the other positions.th

The input block is processed through the algorithm in the encrypt state to produce ciphertext. Each
of the possible key basis vectors is tested in this manner, by shifting the “1" a single position at a time,
starting at the most significant (left-most) bit position of the key. This shall result in 128, 192, or 256
plaintext-ciphertext pairs - this number corresponds to the size of the key being tested. The resulting
128, 192, or 256, index-key-ciphertext triples shall be recorded by the submitter in the file
“ecb_vk.txt”.

5

The above shall be repeated for each of the three minimum key sizes (128, 192, and 256 bits).

See the example file “ecb_vk.txt” for the required formatting and syntax of submitted test values.

To test the algorithm’s decrypt state, the ciphertext shall be input into the algorithm (in the decrypt
state) with the corresponding key value (basis vector), and the result must equal the zero plaintext
value.

3.2 Variable Text (Plaintext/Ciphertext) Known Answer Tests

The ECB mode of the algorithm shall be used for the variable text KAT, and the submitter shall use
the submitted algorithm to generate these test values as follows. The key shall be initialized to zero.
Each block of data input into the algorithm is represented as a 128-bit basis vector, consisting of a
"1" in the i position and "0" in all of the other positions. The input block is processed through theth

algorithm in the encrypt state to produce ciphertext. Each of the basis vectors is tested in this
manner, by shifting the “1" a single position at a time, starting at the most significant (left-most) bit
position. This shall result in 128 plaintext-ciphertext pairs. The 128 index-plaintext-ciphertext triples
shall be recorded by the submitter in the file “ecb_vt.txt”.

The above shall be repeated for each of the three minimum key sizes (128, 192, and 256 bits).

See the example file “ecb_vt.txt” for the required formatting and syntax of submitted test values.

To test the algorithm’s decrypt state, the ciphertext shall be input into the algorithm (in the decrypt
state) with the key initialized to zero, and the result must equal the corresponding plaintext value.

3.3 Tables Known Answer Tests (if applicable)

If tables are used as part of the candidate algorithm, then the submitter shall include KAT values that
collectively exercise every table entry (when operating the algorithm in the ECB mode). The values
shall consist of n key-plaintext-ciphertext triples, where the key and plaintext values are determined
by the submitter. These n triples test all tables by forcing every entry in all the tables to be used at
least once. The index-key-plaintext-ciphertext sets shall be recorded by the submitter in the file
“ecb_tbl.txt”. (E.g., There are 19 specific key-plaintext-ciphertext triples that can be used to
[collectively] test every entry in all eight of the Substitution Tables in DES.)

The above shall be repeated for each of the three minimum key sizes (128, 192, and 256 bits).

6

See the example file “ecb_tbl.txt” for the required formatting and syntax of submitted test
values. As indicated in the example file, the submitter shall also include a brief description of what
tables are being tested.

To test the algorithm’s decrypt state, the ciphertext shall be input into the algorithm (in the decrypt
state) with the corresponding key value, and the result must equal the corresponding plaintext value.

For those candidate algorithms which do not use tables, the tests and requirements specified in this
section do not apply.

3.4 Intermediate Values Known Answer Tests (if applicable)

In Section 2.B.3 of the Request for Candidate Algorithm Nominations for the AES, part a) iii.
specifies that additional known answer tests shall be included “if the candidate algorithm calculates
intermediate values (e.g., internal rounds) for an encryption or decryption operation”.

The file(s) containing values for the Intermediate Values KAT shall have filenames which are
appropriate, and shall contain a description of what is being tested. The file(s) shall also have a
format that is as similar to that of the example KAT files as possible; the exact information included
in the file(s) will likely depend on the algorithm, and therefore no example file is given for this KAT.

For those candidate algorithms which do not calculate intermediate values, the tests and requirements
specified in this section do not apply.

4. Monte Carlo Tests (MCTs)

Monte Carlo Test values must be provided with submissions, which demonstrate operation of the
AES candidate algorithm in both ECB and CBC modes, for each of the minimum required key values
(128, 192, and 256 bits), for both the encrypt and decrypt states. There are two types of MCTs, for
the encrypt and decrypt states. Both are described in the following sections.

Note that the initial plaintext and IV values used in the submitted file shall be determined by the
submitter. The values contained in the example file are only meant to demonstrate the proper syntax
and format for the submission - they are NOT required for use by the submitter in generating values.

Each Monte Carlo Test consists of four million cycles through the candidate algorithm
implementation. These cycles are divided into four hundred groups of 10,000 iterations each. Each
iteration consists of processing an input block through the candidate algorithm, resulting in an output
block. At the 10,000 cycle in an iteration, new values are assigned to the variables needed for theth

next iteration. The results of each 10,000 encryption or decryption cycle are recorded and includedth

by the submitter in the appropriate file.

7

Initialize KEY , PT0 0

FOR i = 0 TO 399
 {

Record i, KEY , PTi 0

FOR j = 0 TO 9,999
 {

IB = PTj j

Perform algorithm in encrypt state, resulting in CTj

PT = CTj+1 j

 }
Record CTj

KEY = KEY r last n bits of CT, where n=128, 192, or 256 (depending on key size)i+1 i

PT = CT0 9999

 }

Figure 3: Monte Carlo Test - ECB Encryption

4.1 ECB Encrypt MCT

As summarized in Figure 3, the Monte Carlo Test for the ECB Encrypt state shall be performed as
follows:

1. The submitter shall initialize KEY and plaintext (PT) variables. The PT shall consist of 128
bits, while the KEY length shall be either 128, 192, or 256 bits.

2. The submitter shall perform the following for i = 0 through 399:
a. Record the current values of the outer loop number i, KEY , and PT .i 0

b. Perform the following for j=0 through 9999:
i. Set the input block IB equal to the value of PT , i.e., (IB1 , IB2 , . . ., IB128)j j j j j

= (PT1 , PT2 , . . ., PT128).j j j

ii. Process IB through the candidate algorithm in the encrypt state, resulting inj

ciphertext CT . j

iii. Prepare for loop j+1 by assigning PT with the current value of CT , i.e.,j+1 j

(PT1 , PT2 , . . ., PT128) = (CT1 , CT2 , . . ., CT128). j+1 j+1 j+1 j j j

c. Record CT .j

d. Assign a new value to KEY in preparation for the next outer loop. The new KEY
shall be calculated by exclusive-ORing the current KEY with the current CT. For
example if the size of KEY is 128 bits, this equates to (KEY1 , KEY2 , . . .i+1 i+1

KEY128) = (KEY1rCT1 , KEY2rCT2 , . . ., KEY128rCT128). i+1 i 9999 i 9999 i 9999

For cases when the size of KEY is 192 or 256 bits, CT shall be expanded in length to
192 or 256 bits (as appropriate) before the new KEY can be formed. This expansion
shall be accomplished by concatenating the 64 or 128 rightmost bits of the previous

8

Initialize KEY , CT0 0

FOR i = 0 TO 399
 {

Record i, KEY , CTi 0

FOR j = 0 TO 9,999
 {

IB = CTj j

Perform algorithm in decrypt state, resulting in PTj

CT = PTj+1 j

 }
Record PTj

KEY = KEY r last n bits of PT, where n=128, 192, or 256 (depending on key size)i+1 i

CT = PT0 9999

 }

Figure 4: Monte Carlo Test - ECB Decryption

CT (CT) with the 128 bits of the current CT (CT). This value shall then be9998 9999

exclusive-ORed with the current KEY to form the new KEY; e.g., if the size of KEY
is 192 bits, (KEY1 , KEY2 , . . ., KEY192) = (KEY1rCT65 ,i+1 i+1 i+1 i 9998

KEY2rCT66 , . . ., KEY64rCT128 , KEY65rCT1 , KEY66rCT2 , ...i 9998 i 9998 i 9999 i 9999

KEY192rCT128).i 9999

e. Assign a new value to PT in preparation of the next outer loop. PT shall be assigned0

the value of the current CT, i.e., (PT1 , PT2 , . . .,PT128) = (CT1 , CT2 , . .0 0 0 9999 9999

.,CT128). (Note that the new PT shall be denoted as PT to be used for the first9999 0

pass through the inner loop when j=0.)

NOTE: The recorded output for this test shall consist of 400 sets of (i, KEY, PT, CT).

4.2 ECB Decrypt MCT

As summarized in Figure 4, the Monte Carlo Test for the ECB Decrypt state shall be performed as
follows:

1. The submitter shall initialize KEY and ciphertext (CT) variables. The CT shall consist of 128
bits, while the KEY length shall be either 128, 192, or 256 bits.

2. The submitter shall perform the following for i=0 through 399:
a. Record the current values of the outer loop number i, KEY , and CT .i 0

b. Perform the following for j=0 through 9999:

9

 i. Set the input block IB equal to the value of CT , i.e., (IB1 , IB2 , . . ., IB128)j j j j j

= (CT1 , CT2 , . . ., CT128).j j j

 ii. Process IB through the candidate algorithm in the decrypt state, resulting inj

plaintext PT . j

iii. Prepare for loop j+1 by assigning CT with the current value of PT , i.e.,j+1 j

(CT1 , CT2 , . . ., CT128) = (PT1 , PT2 , . . ., PT128).j+1 j+1 j+1 j j j

c. Record PT .j

d. Assign a new value to the KEY in preparation for the next outer loop. The new KEY
shall be calculated by exclusive-ORing the current KEY with the current PT. For
example if the size of KEY is 128 bits, this equates to (KEY1 , KEY2 , . . .,i+1 i+1

KEY128) = (KEY1rPT1 , KEY2rPT2 , . . ., KEY128rPT128). i+1 i 9999 i 9999 i 9999

For cases when the size of KEY is 192 or 256 bits, PT shall be expanded in length to
192 or 256 bits (as appropriate) before the new KEY can be formed. This expansion
shall be accomplished by concatenating the 64 or 128 rightmost bits of the previous
PT (PT) with the 128 bits of the current PT (PT). This value shall then be9998 9999

exclusive-ORed with the current KEY to form the new KEY; e.g., if the size of KEY
is 192 bits, (KEY1 , KEY2 , . . ., KEY192) = (KEY1rPT65 ,i+1 i+1 i+1 i 9998

KEY2rPT66 , . . ., KEY64rPT128 , KEY65rPT1 , KEY66rPT2 , ...i 9998 i 9998 i 9999 i 9999

KEY192rPT128).i 9999

e. Assign a new value to CT in preparation of the next outer loop. CT shall be assigned0

the value of the current PT, i.e., (CT1 , CT2 , . . ., CT128) = (PT1 , PT2 , . . .,0 0 0 9999 9999

PT128). (Note that the new CT shall be denoted as CT to be used for the first9999 0

pass through the inner loop when j=0.)

NOTE: The recorded output for this test shall consist of 400 sets of (i, KEY, CT, PT).

10

Initialize KEY , IV, PT0 0

FOR i = 0 TO 399
 {

If (i==0) CV = IV0

Record i, KEY , CV , PTi 0 0

FOR j = 0 TO 9,999
 {

IB = PT r CVj j j

Perform algorithm in encrypt state, resulting in CTj

IF j=0
 PT = CVj+1 0

ELSE
 PT = CTj+1 j-1

CV = CTj+1 j

 }
Record CTj

KEY = KEY r last n bits of CT, where n=128, 192, or 256 (depending on key size)i+1 i

PT = CT0 9998

CV = CT0 9999

 }

Figure 5: Monte Carlo Test - CBC Encryption

4.3 CBC Encrypt MCT

As summarized in Figure 5, the Monte Carlo Test for the CBC Encrypt state shall be performed as
follows:

1. The submitter shall initialize the KEY, initialization vector (IV) and plaintext (PT) variables.
The PT and IV shall consist of 128 bits each, while the KEY length shall be either 128, 192,
or 256 bits..

2. The submitter shall perform the following for i = 0 through 399:
a. If i=0 (if this is the first time through this loop), set the chaining value CV equal to0

the IV.
b. Record the current values of the outer loop number i, KEY , CV and PT .i 0 0

c. Perform the following for j = 0 through 9999:
i. Set the input block IB equal to the value of PT exclusive-ORed with the CV ,j j j

i.e., (IB1 , IB2 , . . ., IB128) = (PT1rCV1 , PT2rCV2 , . . .,j j j j j j j

PT128rCV128).j j

ii. Process IB through the candidate algorithm in the encrypt state, resulting inj

CT . j

iii. Prepare for loop j+1 by doing the following:

11

- Assign CV with the current value of CT , i.e., (CV1 , CV2 , . . .,j+1 j j+1 j+1

CV128) = (CT1 , CT2 , . . ., CT128).j+1 j j j

- If the inner loop being processed is the first loop, i.e., j = 0, assign PT withj+1

the current value of CV , i.e., (PT1 , PT2 , . . ., PT128) = (CV1 , CV2 , . .0 1 1 1 0 0

., CV128). Otherwise, assign PT with the CT from the previous inner0 j+1

cycle, CT , i.e., (PT1 , PT2 , . . .,PT128) = (CT1 , CT2 , . . ., CT128j-1 j+1 j+1 j+1 j-1 j-1 j-

).1

d. Record CT .j

e. Assign a new value to KEY in preparation for the next outer loop. The new KEY
shall be calculated by exclusive-ORing the current KEY with the current CT. For
example if the size of KEY is 128 bits, this equates to (KEY1 , KEY2 , . . .,i+1 i+1

KEY128) = (KEY1rCT1 , KEY2rCT2 , . . ., KEY128rCT128). i+1 i 9999 i 9999 i 9999

For cases when the size of KEY is 192 or 256 bits, CT shall be expanded in length to
192 or 256 bits (as appropriate) before the new KEY can be formed. This expansion
shall be accomplished by concatenating the 64 or 128 rightmost bits of the previous
CT (CT) with the 128 bits of the current CT (CT). This value shall then be9998 9999

exclusive-ORed with the current KEY to form the new KEY; e.g. if the size of KEY
is 192 bits, (KEY1 , KEY2 , . . ., KEY192) = (KEY1rCT65 ,i+1 i+1 i+1 i 9998

KEY2rCT66 , . . ., KEY64rCT128 , KEY65rCT1 , KEY66rCT2 , . . .,i 9998 i 9998 i 9999 i 9999

KEY192rCT128).i 9999

f. Assign a new value to CV in preparation for the next outer loop. CV shall be0 0

assigned the value of the current CT, i.e., (CV1 , CV2 , . . ., CV128) = (CT1 ,0 0 0 9999

CT2 , . . ., CT128). (Note that the new CV shall be denoted as CV because this9999 9999 0

value is used for the first pass through the inner loop when j=0.)
g. Assign a new value to the PT in preparation of the next outer loop. PT shall be0

assigned the value of the CT from the previous cycle, i.e., (PT1 , PT2 , . . ., PT128)0 0 0

= (CT1 , CT2 , . . ., CT128). (Note that the new PT shall be denoted as PT9998 9998 9998 0

because this value is used for the first pass through the inner loop when j=0.)

NOTE: The output for this test shall consist of 400 sets of (i, KEY, IV, PT, CT). At the
beginning of each of the 400 loops for i, the chaining value CV shall be recorded in the IV0

position for the set (see the example file, “cbc_e_m.txt”). Essentially, the value of IVi

equals the final value of CV from loop i-1.0

12

Initialize KEY , IV , CT0 0 0

FOR i = 0 TO 399
 {

 If (i==0) CV = IV0 0

Record i, KEY , CV , CTi 0 0

FOR j = 0 TO 9,999
 {

IB = CTj j

Perform algorithm in decrypt state, resulting in OBj

PT = OB r CVj j j

CV = CTj+1 j

CT = PTj+1 j

 }
Record PTj

KEY = KEY r last n bits of PT, where n=128, 192, or 256 (depending on key size)i+1 i

CV = CT0 9999

CT = PT0 9999

 }

Figure 6: Monte Carlo Test - CBC Decryption

4.4 CBC Decrypt MCT

As summarized in Figure 6, the Monte Carlo Test for the CBC Decrypt state shall be performed as
follows.

1. The submitter shall initialize KEY, the initialization vector (IV) and ciphertext (CT) variables.
The CT and IV shall consist of 128 bits each while the KEY length shall be either 128, 192,
or 256 bits.

2. The submitter shall perform the following for i=0 through 399:
a. If i=0 (if this is the first time through this loop), set the chaining value CV equal to0

the IV.
b. Record the current values of the outer loop number i, KEY , CV , and CT .i 0 0

c. Perform the following for j=0 through 9999:
i. Set the input block IB equal to the value of CT , i.e., (IB1 , IB2 , . . ., IB128)j j j j j

= (CT1 , CT2 , . . ., CT128).j j j

ii. Process the IB through the candidate algorithm in the decrypt state, resultingj

in an output block OB . j

iii. Form the plaintext PT by exclusive-ORing OB with the current CV , i.e.,j j j

(PT1 , PT2 , . . ., PT128) = (OB1rCV1, OB2rCV2 , . . ., OB128rCV128).j j j j j j j j j

iv. Prepare for the j+1 loop by doing the following:

13

- Assign CV with the value of the current CT , i.e., (CV1 , CV2 , . . .,j+1 j j+1 j+1

CV128) = (CT1 , CT2 , . . ., CT128);j+1 j j j

- Assign CT with the value of the current PT , i.e., (CT1 , CT2 , . . .,j+1 j j+1 j+1

CT128) = (PT1 , PT2 , . . .,PT128). j+1 j j j

d. Record PT .j
 e. Assign a new value to the KEY in preparation for the next outer loop. The new KEY

shall be calculated by exclusive-ORing the current KEY with the current PT. For
example if the size of KEY is 128 bits, this equates to (KEY1 , KEY2 , . . .,i+1 i+1

KEY128) = (KEY1rPT1 , KEY2rPT2 , . . ., KEY128rPT128). i+1 i 9999 i 9999 i 9999

For cases when the size of KEY is 192 or 256 bits, PT shall be expanded in length to
192 or 256 bits (as appropriate) before the new KEY can be formed. This expansion
shall be accomplished by concatenating the 64 or 128 rightmost bits of the previous
PT (PT) with the 128 bits of the current PT (PT). This value shall then be9998 9999

exclusive-ORed with the current KEY to form the new KEY; e.g., if the size of KEY
is 192 bits, (KEY1 , KEY2 , . . ., KEY192) = (KEY1rPT65 ,i+1 i+1 i+1 i 9998

KEY2rPT66 , . . ., KEY64rPT128 , KEY65rPT1 , KEY66rPT2 , . . .,i 9998 i 9998 i 9999 i 9999

KEY192rPT128).i 9999

f. Assign a new value to CV in preparation for the next outer loop. CV shall be0 0

assigned the value of the current CT, i.e., (CV1 , CV2 , . . ., CV128) = (CT1 ,0 0 0 9999

CT2 , . . ., CT128). (Note that the new CV shall be denoted as CV to be used9999 9999 0

for the first pass through the inner loop when j=0.)

g. Assign a new value to CT in preparation for the next outer loop. CT shall be0

assigned the value of the current PT, i.e., (CT1 , CT2 , . . ., CT128) = (PT1 ,0 0 0 9999

PT2 , . . ., PT128). (Note that the new CT shall be denoted as CT to be used9999 9999 0

for the first pass through the inner loop when j=0.)

NOTE: The output for this test shall consist of 400 sets of (i, KEY, IV, CT, PT). At the
beginning of each of the 400 loops for i, the chaining value CV shall be recorded in the IV0

position for the set (see the example file, “cbc_d_m.txt”). Essentially, the value of IVi

equals the final value of CV from the loop i-1.0

14

5. Summary of Required Test Value Sets

Note that there shall be a separate set of values within a particular file for each of the key sizes listed
below. “Filename” indicates the name of the file in which the submitted values shall be contained.
See the example files for the required formatting and syntax of submitted test values.

Known Answer Test values:

Filename Mode Test Key Sizes (bits)

ecb_vk.txt ECB Variable Key KAT 128, 192, 256

ecb_vt.txt ECB Variable Text KAT 128, 192, 256

ecb_tbl.txt
(if applicable)

ECB Tables KAT 128, 192, 256

? (possibly multiple ECB Intermediate Values 128, 192, 256
files) KAT

(if applicable)

Monte Carlo Test values:

Filename Mode Test Key Sizes (bits)

ecb_e_m.txt ECB Encrypt MCT 128, 192, 256

ecb_d_m.txt ECB Decrypt MCT 128, 192, 256

cbc_e_m.txt CBC Encrypt MCT 128, 192, 256

cbc_d_m.txt CBC Decrypt MCT 128, 192, 256

6. References

[MOVS] Draft NIST Special Publication 800-17, Modes of Operation Validation System
(MOVS): Requirements and Procedures, May 1996.

