

Protocol-Dependent Message-Passing Performance on Linux Clusters

Dave Turner and Xuehua Chen
Ames Laboratory – Iowa State University

327 Wilhelm Hall, Ames, Iowa, 50011
Email: turner@ameslab.gov

Abstract

 In a Linux cluster, as in any multi-processor system,
the inter-processor communication rate is the major
limiting factor to its general usefulness. This research is
geared toward improving the communication
performance by identifying where the inefficiencies lie
and trying to understand their cause. The NetPIPE
utility is being used to compare the latency and
throughput of all current message-passing libraries and
the native software layers they run upon for a variety of
hardware configurations.

1. Introduction

 Almost every modern parallel processing system is
made of processors with decent performance coupled
with a reasonable amount of local memory and access to
local or global disk space. The main limiting factor in
most systems is the inter-processor communication rate.
This limits the efficient use of the processing power
available, and the ability of applications to scale to large
numbers of processors.
 PC/workstation clusters use processors of the same
caliber as those in traditional massively parallel systems,
but the communication rate between nodes is much
lower. Research is being done to improve the
communication performance between machines using
both commodity and proprietary network hardware.
Work is also being done to overcome the limitations on
the software side, allowing applications to take full
advantage of the performance that the network offers.
 Inefficiencies can occur at many levels between the
application and hardware layers. Up to 50% of the raw
performance can be lost in the message-passing layer
alone. The operating system and driver often add to the
message latency and decrease the maximum bandwidth
by doing many memory-to-memory copies of the data as
each message is packetized for transmission. This extra
data movement results in the saturation of the main
memory bus, which typically occurs well before the PCI
bus gets saturated.

 The first step in improving the overall performance
of the message-passing system is to identify where the
performance is being lost [1,2] and determine why. The
research reported in this paper concentrates on evaluating
the performance of the message-passing libraries on a
variety of hardware configurations. In order to do that, it
was also necessary to measure the performance of the
lower-level communication systems that each runs on.
The goal of this work is to test a broad enough set of
hardware configurations to provide the basis for good
generalized conclusions to be drawn as to the
effectiveness of each message-passing library.

2. The testing methodology

 The NetPIPE [3,4] utility performs simple ping-
pong tests, bouncing messages of increasing size
between two processors. Message sizes are chosen at
regular intervals, and also with slight perturbations, to
provide a complete test of the system. Each data point
involves many ping-pong tests to provide an accurate
timing. All latencies discussed in this paper are small
message latencies representative of the round trip time
divided by two for messages smaller than 64 bytes.
 NetPIPE modules have been developed to directly
test MPI [5-7], PVM [8,9], TCGMSG [10], TCP, GM,
SHMEM, and LAPI (no VIA interface yet). This allows
for a direct comparison between the existing message-
passing libraries, and to the native communication layers
they run upon. These measurements are not affected by
the choice of a compiler or compiler options.
 NetPIPE measures the point-to-point communication
performance between idle nodes. This provides an upper
bound to the performance that an application could
achieve, since there is no measurement of the effect that
a loaded CPU would have on the communication system.
Several of the message-passing libraries tested allow
message traffic to progress independent of the main
application thread, and should therefore provide better
performance for real applications. Testing the
performance within real applications would therefore be
useful in determining the effect of these two factors
beyond the information that NetPIPE provides.

 Most of the graphs shown in this paper are from two
1.8 GHz Pentium 4 PCs with 768 MB of PC133 memory
and 32-bit 33 MHz PCI slots. These are taken as typical
PCs for building clusters, costing around $1000 each.
All tests were done back-to-back with no intervening
switch, except for the Giganet VIA tests. The machines
ran RedHat 7.2 with the Linux 2.4.7-10 kernel, except
for the M-VIA tests that needed the 2.4.2-2 kernel and
some tests with the older 2.2.19 kernel to determine the
difference in performance.
 Two dual-processor Compaq DS20 computers with
500 MHz Alpha 21264 processors were also used to
provide a basis for comparison with the PC results.
These machines have 64-bit 33 MHz PCI slots, offering
greater PCI performance than the 32-bit PCI bus of the
Pentium 4 PCs.
 Four sets of Gigabit Ethernet cards were tested. The
TrendNet TEG-PCITX copper GigE cards (32-bit
33 MHz, ns83820 driver) cost $55 each, representing the
new wave of low cost GigE NICs. The Netgear GA622
copper NICs cost $90 and are identical to the TrendNet
cards except that they can take advantage of the 64-bit
PCI bus. The older Netgear GA620 fiber GigE cards
(32/64-bit 33/66 MHz, AceNIC driver) cost more at
$220. The SysKonnect SK-9843 GigE cards (32/64-bit
33/66 MHz, sk98lin driver) are expensive at $565, but
have a very low latency and provide a high bandwidth
when jumbo frames of 9000 byte MTU size are enabled.
The performance of proprietary Myrinet and Giganet
network hardware was also tested.
 While all these Gigabit Ethernet cards were tested
on both the PCs and the Compaq DS20s, only a few
graphs are presented here. The Netgear GA620 cards on
the PCs represent mature hardware and drivers at a
modest price. The TrendNet cards on the PCs represent
the new low-cost generation of GigE cards. The
SysKonnect cards with jumbo frames enabled on the
64-bit PCI bus of the DS20s demonstrate what each
library can do in a faster environment.

3. The message -passing libraries

 The most recent versions of each message-passing
library were tested on the most current kernel
(RedHat 7.2 Linux 2.4.7-10) and driver supported. A
few omissions include CHIMP/MPI [11], which
apparently has not been supported since 1997, EMP [12],
a NIC-driven message-passing system, and
GPSHMEM [13], a general-purpose implementation of
the SHMEM library that allows one-sided
communications on clusters.

3.1. The MPICH library

 MPICH 1.2.3 [14,15] is a portable version of the
MPI standard freely distributed by Argonne National
Laboratory. It is also the base implementation for many
vendor and research libraries. MPICH-GM tests on
Myrinet NICs used a slightly older version 1.2.1..7 of
MPICH with GM 1.5, while MVICH 1.0 started with
MPICH 1.2.1 and used cLAN 2.0.1 VIA drivers.
 MPICH is a source code distribution, so it takes
some effort to configure and compile while many other
message-passing systems now come as easy-to-install
Linux RPMs. On Unix systems, MPICH runs on top of
its p4 library [16,17] implemented as a blocking channel
device. Progress on data transfers is only made during
MPI library calls.
 The primary optimization parameter is the
P4_SOCKBUFSIZE environment variable that is vital to
maximizing the performance. Other optimization
parameters include the –p4sctrl run-time flag and the
P4_WINSHIFT variable. The thresholds are not
designed to be user tunable, but can always be modified
in the source code. The rendezvous cutoff, where
MPICH changes to a handshake protocol, can be
increased this way by changing 128000 in
mpid/ch2/chinit.c and mpid/ch_p4/chcancel.c to the
desired value. The handshake requires the exchange of
small messages before data is sent, adding twice the
latency time to the transmission time. This can result in
a dip in performance for systems with large latencies.
For older versions of MPICH, you may need to use the
–use_rndv configuration flag in order to use the
rendezvous method for large messages.

3.2. The LAM/MPI library

 LAM/MPI 6.5.4-1 [18] (Local Area Multicomputer)
is a full MPI implementation freely available from
Indiana University. It is available as an easy-to-install
RPM for Linux, currently included in the RedHat
distribution.
 The lamd daemons allow LAM/MPI to operate in a
heterogeneous environment and provide advanced
monitoring and debugging features. The lamboot
command easily starts the daemons, and then codes are
run using the familiar mpirun command.
 Using the –O flag in homogeneous environments
greatly improves performance. The –lamd argument to
mpirun directs all messages through the daemons,
providing access to the monitoring and debugging
facilities, but greatly reducing the performance.

3.3. The MPI/Pro library

 MPI/Pro 1.6.3 [19] is a commercial version of the
full MPI standard available from MPI Software
Technology for around $100 per node with an 8 node
minimum. It is distributed as an easy-to-install RPM for
Linux that runs directly on TCP, and has interfaces for
VIA and GM. MPI/Pro uses a separate thread to actively
manage the progress of all messages.
 Increasing the –tcp_long or –via_long parameters
diminishes the effects from the extra handshaking at the
rendezvous threshold. The –tcp_buffers run-time
parameter did not help in the NetPIPE tests.

3.4. The MP_Lite library

 MP_Lite 2.3 [20] is a lightweight message-passing
library developed by the authors. It supports a restricted
set of the MPI commands, including blocking and
asynchronous send and receive functions, and many
common global operations. It does not support many of
the advanced capabilities of MPI such as the use of
communicators, derived data types, parallel I/O, and the
one-sided communications of MPI-2.
 MP_Lite is freely distributed by Ames Laboratory,
compiles in a few seconds, and works well for running
small MPI programs. It is being used as a research tool
for investigating methods to improve message-passing
performance. The results presented here are from the
SIGIO interrupt driven module that keeps data flowing
through the TCP buffers by trapping SIGIO interrupts
sent when data enters or leaves a TCP socket buffer.
Message progress is therefore maintained at all times.
 MP_Lite increases the TCP socket buffer sizes up to
the maximum level allowed. The only tuning available
is to increase the maximum socket buffer sizes allowed
by the system. For Linux, this can be done by assigning
values like net.core.rmem_max = 524288 and
net.core.wmem_max = 524288 in /etc/sysctl.conf.

3.5. The PVM library

 PVM 3.4.3 is the Parallel Virtual Machine message-
passing system developed at Oak Ridge National
Laboratory. It has a completely different syntax from
MPI as well as some different functionality.
 PVM now comes as an easy-to-install RPM for
Linux in the RedHat distribution. The pvm utility
provides an easy way to start the pvmd daemons, but is a
bit tricky if communicating on an interface other than the
primary one (xpvm was not tried, and may be easier to
use for this case).
 There are many optimizations to sift through, several
of which make a very large difference. The default

configuration will send all messages through the pvmd
daemons, which limits the performance greatly. All
applications should use the pvm_setopt() function to
choose direct communications when possible. Using
PvmDataInPlace in pvm_initsend() prevents copying of
the data before and after transmission.

3.6. The TCGMSG library

 TCGMSG 4.04 is the Theoretical Chemistry Group
Message-Passing Toolkit distributed by Pacific
Northwest National Laboratory with the Global Arrays
3.1.8 package. It has a very limited number of functions,
and is designed simply to provide an interface between
applications like the NWChem quantum chemistry code
and either TCP or an underlying message-passing library
like MPI. In TCGMSG, the SND function blocks until
the matching RCV has been completed.

4. Performance on Gigabit Ethernet

 These message-passing libraries run directly on top
of TCP sockets, so it is vital to understand the raw
performance and tuning characteristics of TCP across the
various hardware configurations. You cannot just slap in
a Gigabit Ethernet card and expect to achieve decent
performance like you can with more established Fast
Ethernet technology. The default OS tuning levels have
not kept pace with what is needed to communicate at
higher speeds.
 As an example, the performance of the TrendNet
GigE cards flattens out at 290 Mbps when the default
TCP socket buffer sizes are used. Increasing these to
512 kB eliminates the socket buffer size as a limiting
factor, doubling the raw throughput. Each node opens 2
socket buffers for each machine in a run, so 512 kB
socket buffer sizes should not place too high of a burden
on the memory in most moderately sized clusters.
 The heavy black lines at the top of figures 1 and 2
show that the raw TCP performance reaches a maximum
of 550 Mbps on both the Netgear GA620 fiber NICs and
the cheaper TrendNet cards. The latencies are poor
under the new Linux 2.4.x kernel, at 120 µs and 200 µs
respectively. Figure 3 shows that the 9000 Byte MTU
jumbo frames on the SysKonnect cards plus the 64-bit
PCI bus of the Compaq DS20s provides a raw TCP
performance up to 900 Mbps with a low 48 µs latency.
On the PCs, the 32-bit PCI bus limits the bandwidth of
these SysKonnect cards to a maximum of 710 Mbps.
 These TCP curves provide the maximum
performance that each message-passing library strives
for. Except where noted, the small-message latencies for
the message-passing libraries are pretty close to that of
raw TCP and therefore will not be dwelled upon.

4.1. MPICH performance

 Increasing P4_SOCKBUFSIZE from its
default 32 kB up to 256 kB is vital. This raised
the maximum throughput from 75 Mbps up to
400 Mbps for a 5-fold increase in performance.
The –p4sctrl and P4_WINSHIFT parameters did
not help in these tests.
 Once P4_SOCKBUFSIZE is optimized,
MPICH performs respectably on all the Gigabit
Ethernet cards. Figures 1-3 show that MPICH
does suffer a 25% - 30% loss in each case for
large messages transfers. The most noticeable
feature is the sharp dip at 128 kB in figure 1
where MPICH starts using a large-message
rendezvous mode that requires a handshake
before data is sent. This is not a user tunable
parameter, but it is possible to change it in the
source code.

4.2. LAM/MPI performance

 On the Netgear GigE cards, LAM/MPI tops
out at 350 Mbps when no optimizations are
used. For homogeneous systems, using -O
brings the performance nearly to raw TCP
levels. The convenience of running with the
lamd daemons comes at a large price, cutting
the performance down to 260 Mbps and
doubling the latency to 245 µs.
 Figure 1 shows that the only real deficiency
is from a slight dip in performance at the
rendezvous threshold, which is apparently not
user-tunable. On the 64-bit PCI bus and jumbo
frames of the SysKonnect cards on the DS20s,
figure 3 shows that LAM/MPI loses about 25%
of the performance that TCP offers for large
messages. Figure 2 shows even more severe
problems on the cheaper TrendNet cards, where
LAM/MPI and many of the other message-
passing libraries suffer from a 50% loss in
performance.

4.3. MPI/Pro performance

 MPI/Pro comes out of the box fairly well
tuned. Increasing the –tcp_long parameter from

0

100

200

300

400

500

600

1 100 10,000 1,000,000
Message size in Bytes

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

MPICH

MP_Lite
raw TCP

PVM

LAM/MPI
MPI/Pro

TCGMSG

 Figure 1. The message-passing performance across the
 Netgear GA620 fiber Gigabit Ethernet cards between PCs.
 The MP_Lite and TCGMSG curves were left off since they
 fell nearly on top of the TCP curve and had no interesting
 features.

0

100

200

300

400

500

600

1 100 10,000 1,000,000
Message size in Bytes

T
h

ro
u

g
h

p
u

t i
n

 M
b

p
s

MPICH

MP_Lite

raw TCP

PVM

LAM/MPI

MPI/Pro
TCGMSG

 Figure 2. The message-passing performance across the
 TrendNet TEG-PCITX copper Gigabit Ethernet cards
 between two PCs.

the default 32 kB to 128 kB removes much of a dip in
performance at the rendezvous threshold.
 With the –tcp_long parameter optimized, figure 1
shows that MPI/Pro performs exceedingly well on the
Netgear cards, getting to within 5% of the raw TCP
results. However, MPI/Pro also has severe problems

with the cheaper TrendNet cards, flattening out at
250 Mbps. MPI/Pro performs very well on the
SysKonnect cards between PCs. Support for the Alpha
Linux environment has just recently become available,
but not in time to fully test the performance and include
the results in this paper.

4.4. MP_Lite performance

 Figures 1-3 show that MP_Lite matches the
raw TCP performance to within a few percent
on all GigE cards (the MP_Lite curve was left
off figure 1 because it laid almost on top of the
raw TCP curve). The only tuning needed was to
increase the maximum socket buffer sizes on
the system. Preliminary results on an
MPICH-MP_Lite implementation at the channel
interface layer show that this performance can
be passed along to the full MPI implementation
of MPICH.

4.5. PVM performance

 The default configuration for PVM sends
all messages through the pvmd daemons, which
limits performance to around 90 Mbps across
the Gigabit Ethernet cards. Bypassing the
daemons using the pvm_setopt() function to
choose direct communications produces a 4-fold
increase to a maximum of 330 Mbps. Using

0
100

200

300
400

500

600
700

800
900

1000

1 100 10,000 1,000,000
Message size in Bytes

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

MPICH

MP_Lite

raw TCP

PVM

LAM/MPI

TCGMSG

 Figure 3. The message-passing performance using a
 9000 Byte MTU size across SysKonnect SK-9843 Gigabit
 Ethernet cards between two Compaq DS20s.

pvm_initsend(PvmDataInPlace) prevents PVM from
copying the data before and after transmission, further
increasing the maximum transfer rate to 415 Mbps.
 With these optimizations, PVM provides
performance similar to MPICH, losing 25%-30% of what
TCP offers. However, figure 2 shows that PVM has
trouble with the TrendNet cards where it is limited to
only 190 Mbps. PVM does not take much advantage of
the greater bandwidth offered on the SysKonnect cards
on the Compaq DS20s, providing a maximum of only
500 Mbps compared to the 900 Mbps that raw TCP
offers.

4.6. TCGMSG performance

 Even though little development has been done on
TCGMSG since 1994, it passes on nearly all the
performance that TCP offers. The TCGMSG curve falls
to within a few percent of the raw TCP curve in figure 1,
and was therefore left off. This is not surprising since it
is only a thin layer on top of TCP. Curiously, it still
suffers on the TrendNet cards, where performance is
limited to 250 Mbps, and on the SysKonnect cards using
jumbo frames on the DS20s where the throughput tops
out at 500 Mbps.
 TCGMSG can also run on top of an MPI library.
NetPIPE measurements showed that there is no
performance lost by running TCGMSG-MPICH
compared to MPICH alone, though the fact that a
TCGMSG SND blocks until the matching RCV is
completed may affect real applications more.

5. Performance on Myrinet cards

 The proprietary Myrinet PCI64A-2 cards from
Myricom [21,22] have 66 MHz RISC processors that are
slower than the 133 MHz PCI64B and 200 MHz PCI64C
versions currently available. All are 64/32-bit
66/33 MHz cards starting at $1200 each with switches
running $500 per port.
 Myricom provides a native GM library and a full
MPI implementation through MPICH-GM. The system
can also be configured to run IP over GM directly.
MPI/Pro also has a Linux RPM that runs directly on GM.
 There are several tunable parameters that affect GM,
and therefore MPICH-GM. The --gm-recv flag sets the
mode to the default Polling, or to Blocking or Hybrid.
All produce approximately the same results, except that
the Blocking mode has a latency of 36 µs compared to
16 µs for the others. In general, the Hybrid mode should
be used as it provides the same results as the Polling
mode but should not burden the CPU as much. The
default Eager/Rendezvous threshold of 16 kB is already
optimal.
 Figure 4 shows that the raw GM performance
reaches a maximum of 800 Mbps with a 16 µs latency.
MPICH-GM and MPI/Pro-GM results are nearly
identical, losing only a few percent off the raw GM
performance in the intermediate range. The NetPIPE
TCP module was used to show that IP-GM has a latency
of 48 µs compared to 32-200 µs for TCP over the
Gigabit Ethernet cards, but otherwise offers similar
performance.

6. VIA hardware and software

 VIA is the Virtual Interface Architecture
[23,24], an API and software layer designed to
facilitate faster communication between
computers. Its goal is to provide a more
streamlined path between the application and
the network, allowing zero- or one-copy
transmissions that bypass the overhead of the
operating system.
 M-VIA 1.2b2 [25] is a modular VIA
package developed by researchers at Lawrence
Berkeley National Laboratory. This is a
software implementation of the VIA API that
runs on some Fast Ethernet and Gigabit
Ethernet devices on Linux systems, including
the sk98lin device driver for the SysKonnect
cards. This is a research project in progress
with only beta releases at this time.
 The Giganet CL1000 cards tested cost
around $650 each. These are hardware VIA
implementations, tested with the cLAN 2.0.1
device driver. The Giganet tests were
performed using an 8-port CL5000 switch,
costing around $500 per port.

6.1. The VIA libraries

 MVICH 1.0 [26] is an MPICH 1.2.1 ADI2
implementation that runs on top of VIA. It has
been developed and tested on M-VIA supported
devices, plus ServerNet and Giganet hardware.
MP_Lite 2.3 also has a VIA module tested on
M-VIA and Giganet. MPI/Pro has a VIA
module tested on Giganet hardware.
 MVICH has many user-tunable parameters.
It is vital to configure MVICH using
–DVIADEV_RPUT_SUPPORT to get good
performance. Setting –via_long to 64 kB gets
rid of a dip due to the rendezvous threshold, but
increasing it higher caused the system to freeze
up. Increasing VIADEV_SPIN_COUNT to 1000
and raising the rendezvous threshold to 128 kB
helped the performance of MVICH in the
intermediate range. No benefit was seen from
the other optimization parameters.

0
100
200
300
400
500
600
700
800
900

1000

1 100 10,000 1,000,000
Message size in Bytes

T
h

ro
u

g
h

p
u

t i
n

 M
b

p
s

MPICH-GM

raw GM

MPI/Pro-GM
IP-GM

TCP - GE

 Figure 4. The message-passing performance across
 Myrinet PCI64A-2 cards between two PCs.

0
100
200
300
400
500
600
700
800
900

1000

1 100 10,000 1,000,000
Message size in Bytes

T
h

ro
u

g
h

p
u

t i
n

 M
b

p
s MVICH Giganet

MP_Lite Giganet

MP_Lite via_sk

MPI/Pro Giganet

MVICH via_sk

 Figure 5. The message - passing performance across
 Giganet CL1000 cards and using M-VIA across
 SysKonnect SK-9843 Gigabit Ethernet cards between PCs
 (MVICH is gray, MP_Lite has dots).

6.2. Performance on VIA hardware and M-VIA

 Figure 5 shows the performance comparison of all
these systems fully tuned. MPI/Pro, MVICH, and
MP_Lite all produce maximum communication rates
around 800 Mbps on the Giganet hardware. MVICH and

MP_Lite have latencies of 10 µs, while MPI/Pro has a
greater overhead at 42 µs.
 MVICH and MP_Lite/M-VIA using the via_sk98lin
device across the SysKonnect cards reached a maximum
of 425 Mbps with a 42 µs latency. The small dip at
16 kB is at the RDMA threshold. Unfortunately, this is
approximately the same performance that raw TCP offers
for this hardware configuration.

7. Discussion

 The NetPIPE results presented here show that most
message-passing libraries perform reasonably well under
the right conditions and when properly tuned. It should
be stressed that it does take some effort to measure and
tune the operating system and message-passing libraries
for optimal performance. The default parameters are
often not set appropriately for modern high-speed
hardware, but tuning a few simple parameters can
increase the communication performance by as much as
a factor of 5.
 Figure 1 shows that most message-passing libraries
can deliver performance close to raw TCP levels on the
more expensive Gigabit Ethernet cards. MPICH and
PVM currently suffer about a 25% loss in performance
for large messages. Similar results were gotten using the
SysKonnect cards with a 9000 Byte MTU on the PCs,
where MPICH and PVM still suffer 25-30% losses but
the other libraries delivered within 10% of the TCP
communication rate of 710 Mbps.
 MPICH uses the p4 library to interface with the TCP
layer on Unix systems. p4 receives all messages to a
buffer rather than directing them to the application
memory when a receive has been pre-posted. MPICH
therefore must use a memcpy to move all incoming data
out of the p4 buffer, causing the loss in performance for
large messages.
 The cheaper TrendNet cards gave most of the
libraries more of a problem. Only MP_Lite and MPICH
worked well, with many message-passing libraries
reaching only 250-300 Mbps. The raw TCP
measurements on these cards showed that they needed
larger socket buffer sizes in order to achieve peak
performance. MP_Lite and MPICH both have user-
tunable parameters for the socket buffer size, and
therefore appropriate tuning produces good performance.
 For those libraries where source code is provided, it
is possible to change the socket buffer sizes manually
and recompile the code. For TCGMSG, increasing
SR_SOCK_BUF_SIZE in sndrcvP.h from 32 kB to
256 kB brought the performance up to raw TCP levels.
The poor performance of the other message-passing
libraries on the TrendNet cards should likewise be
remedied by simply increasing the socket buffer sizes.
Unfortunately, this currently involves finding the
parameters in the code and recompiling.
 The Compaq DS20 tests using the Netgear GA622
copper cards, which are identical to the TrendNet cards
except for being able to take advantage of the 64-bit PCI
bus, showed poor performance even for raw TCP. Great
care must be taken in evaluating these new GigE cards.
Newer ns83820 drivers appearing in the 2.4.19-pre
kernels and the Netgear gam drivers both show improved

performance and stability. More tuning of these drivers
is still needed, and is likely to reduce their need for large
socket buffers.
 The SysKonnect jumbo frames tests on the Compaq
DS20s illustrated in figure 3 show a great difference in
performance between the message-passing libraries.
Once again, the socket buffer size plays a major role in
the ultimate performance of each library. To
demonstrate this, the socket buffer size hardwired into
the TCGMSG source code was increased from 32 kB to
128 kB, resulting in the performance increasing from
500 Mbps to 900 Mbps, matching raw TCP. Similar
results may occur if the socket buffer sizes were
increased in the other libraries.
 Custom hardware, while expensive, does provide
better performance than Gigabit Ethernet. Figure 4
illustrates that Myrinet cards can provide both low
latency and high bandwidth, with a 16 µs latency and
800 Mbps maximum rate. MPICH-GM and MPI/Pro-
GM pass nearly all this performance on to the application
layer. IP over GM offers little more than TCP over
Gigabit Ethernet on these systems, but at a greater cost.
 VIA hardware such as the Giganet CL1000 cards
likewise provides impressive performance, but again at a
high price. MVICH, MPI/Pro and MP_Lite all deliver
around 800 Mbps to the application layer. MP_Lite and
MVICH provide applications with around 10 µs
latencies, while MPI/Pro is significantly higher at 42 µs.
 The M-VIA project is designed to provide greater
performance through bypassing the inefficiencies of the
operating system, allowing better performance on
existing Ethernet hardware. Unfortunately, these limited
tests on the SysKonnect cards between PCs show that
MVICH/M-VIA and MP_Lite/M-VIA provide about the
same performance as raw TCP. More tests are needed to
fully explore the capabilities of M-VIA.
 It should be remembered that all these NetPIPE tests
represent an upper bound for the ultimate performance.
The libraries are internally very different, and therefore
will react differently within real applications. A
message-passing library like MPI/Pro that has a message
progress thread, or MP_Lite that is SIGIO interrupt
driven, will keep data flowing more readily.

8. Conclusions

 Overall, the message-passing libraries pass on most
or all of the performance that the underlying
communication layer offers. Most of the deficiencies
could be easily corrected by simply increasing the socket
buffer sizes. This was not the case just a few years ago
when small-message latencies were 2-3 times the raw
TCP levels and up to 30-40% of the throughput could be
lost in the message-passing layer. This represents the

progress that the developers of each library have made in
optimizing their code, and also the fact that the
processing speed in computers has increased faster than
the networking capability.
 All graphs presented here were after optimization of
the available parameters. A graph of the performance
before optimization would show drastically different
results. It is vital to take the time to measure and
optimize the performance of the OS and message-passing
system when dealing with gigabit speed hardware.
 The developers of the message-passing libraries
need to update some of the default optimization
parameters to reflect today’s faster networks. They all
need to provide user-tunable parameters for the most
important optimizations, such as the socket buffer sizes
and the rendezvous threshold. If this is done, most
would be able to deliver a majority of the performance
that TCP offers

9. Acknowledgements

 The authors would like to thank Ricky Kendall,
Shoba Selvarajan, and Weiyi Chen for their contributions
to this project, and to MPI Software Technology for
providing evaluation copies of their MPI/Pro software.
This work is supported by the Applied Mathematical
Sciences Program of Ames Laboratory – U.S.
Department of Energy under contract number
W-7405-ENG-82.

10. References

[1] Hong Ong and Paul A. Farrell, “Performance Comparison

of LAM/MPI, MPICH, and MVICH on a Linux Cluster
connected by a Gigabit Ethernet Network,” Proceedings
of the 4th Annual Linux Showcase & Conference, Atlanta,
October 10-14, 2000.

[2] R. Dimitrov and A. Skjellum, “An Efficient MPI

Implementation for Virtual Interface (VI) Architecture-
Enabled Cluster Computing,” Proceedings of the Third
MPI Developer’s Conference, March 1999.

[3] NetPIPE: http://www.scl.ameslab.gov/netpipe/

[4] Quinn O. Snell, Armin R. Mikler, and John L. Gustafson,
“NetPIPE: A Network Protocol Independent Performance
Evaluator,” IASTED Conference Paper .

[5] The MPI standard: http://www.mpi-forum.org/

[6] MPI Forum. MPI: A message-passing interface standard.
International Journal of Supercomputer Applications,
8 (3/4) 165-416, 1994.

[7] Marc Snir, Steve Otto, Steven Huss-Lederman, David

Walker, and Jack Dongara, MPI: The Complete Standard,
MIT Press, Cambridge, Massachusetts, 1996.

[8] PVM: http://www.csm.ornl.gov/pvm/

[9] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderam, PVM:
Parallel Virtual Machine, MIT press, 1994.

[10] TCGMSG: http://www.emsl.pnl.gov:2080/docs/parasoft/

tcgmsg/tcgmsg.html

[11] CHIMP: ftp://ftp.epcc.ed.ac.uk/pub/chimp/release/

[12] P. Shivam, P. Wyckoff, D. Panda, “EMP: Zero-copy OS-
bypass NIC-driven Gigabit Ethernet Message Passing,”
Proceedings of SC2001, Denver, CO, November 2001.

[13] K. Parzyszek, J. Nieplocha and R.A. Kendall, “A
Generalized Portable SHMEM Library for High
Performance Computing,” Proceedings of the IASTED
Parallel and Distributed Computing and Systems 2000,
Las Vegas, Nevada, November 2000, (M. Guizani and
X. Shen, Eds.), pp. 401-406. IASTED, Calgary (2000).

[14] MPICH: http://www-unix.mcs.anl.gov/mpi/mpich/

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “High-

performance, portable implementation of the MPI
Message Passing Interface Standard,” Parallel Computing,
22(6):789-828, September 1996.

[16] p4: http://www.mcs.anl.gov/~lusk/p4/

[17] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk,

R. Overbeek, J. Patterson, and R. Stevens, Portable
Programs for Parallel Processors, published by Holt,
Rinehart & Winston, 1987.

[18] LAM/MPI: http://www.lam-mpi.org/

[19] MPI/Pro: http://www.mpi-softtech.com/

[20] MP_Lite: http://www.scl.ameslab.gov/Projects/MP_Lite/

[21] Myricom: http://www.myri.com/

[22] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,

J. Seizovic, and W.K. Su, “Myrinet: A Gigabit-per-second
Local Area Network,” IEEE Mirco, Vol. 15 No. 1,
pgs 29-36, February 1995.

[23] VI Developers Forum: http://www.vidf.org/

[24] Compaq, Intel, and Microsoft. Virtual Interface
Architecture Specification, Version 1.0. December 1997,
http://www.viarch.org/.

[25] M-VIA: http://www.nersc.gov/research/ftg/mvia/

[26] MVICH: http://www.nersc.gov/research/ftg/mvich/

