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Abstract 
 

 In a Linux cluster, as in any multi-processor system, 
the inter-processor communication rate is the major 
limiting factor to its general usefulness.  This research is 
geared toward improving the communication 
performance by identifying where the inefficiencies lie 
and trying to understand their cause.  The NetPIPE 
utility is being used to compare the latency and 
throughput of all current message-passing libraries and 
the native software layers they run upon for a variety of 
hardware configurations. 
 
 
1. Introduction 
 
 Almost every modern parallel processing system is 
made of processors with decent performance coupled 
with a reasonable amount of local memory and access to 
local or global disk space.  The main limiting factor in 
most systems is the inter-processor communication rate.  
This limits the efficient use of the processing power 
available, and the ability of applications to scale to large 
numbers of processors. 
 PC/workstation clusters use processors of the same 
caliber as those in traditional massively parallel systems, 
but the communication rate between nodes is much 
lower.  Research is being done to improve the 
communication performance between machines using 
both commodity and proprietary network hardware.  
Work is also being done to overcome the limitations on 
the software side, allowing applications to take full 
advantage of the performance that the network offers. 
 Inefficiencies can occur at many levels between the 
application and hardware layers.  Up to 50% of the raw 
performance can be lost in the message-passing layer 
alone.  The operating system and driver often add to the 
message latency and decrease the maximum bandwidth 
by doing many memory-to-memory copies of the data as 
each message is packetized for transmission.  This extra 
data movement results in the saturation of the main 
memory bus, which typically occurs well before the PCI 
bus gets saturated. 

 The first step in improving the overall performance 
of the message-passing system is to identify where the 
performance is being lost [1,2] and determine why.  The 
research reported in this paper concentrates on evaluating 
the performance of the message-passing libraries on a 
variety of hardware configurations.  In order to do that, it 
was also necessary to measure the performance of the 
lower-level communication systems that each runs on.  
The goal of this work is to test a broad enough set of 
hardware configurations to provide the basis for good 
generalized conclusions to be drawn as to the 
effectiveness of each message-passing library.   
 
2. The testing methodology 
 
 The NetPIPE [3,4] utility performs simple ping-
pong tests, bouncing messages of increasing size 
between two processors.  Message sizes are chosen at 
regular intervals, and also with slight perturbations, to 
provide a complete test of the system.  Each data point 
involves many ping-pong tests to provide an accurate 
timing.  All latencies discussed in this paper are small 
message latencies representative of the round trip time 
divided by two for messages smaller than 64 bytes. 
 NetPIPE modules have been developed to directly 
test MPI [5-7], PVM [8,9], TCGMSG [10], TCP, GM, 
SHMEM, and LAPI (no VIA interface yet).  This allows 
for a direct comparison between the existing message-
passing libraries, and to the native communication layers 
they run upon.  These measurements are not affected by 
the choice of a compiler or compiler options. 
 NetPIPE measures the point-to-point communication 
performance between idle nodes.  This provides an upper 
bound to the performance that an application could 
achieve, since there is no measurement of the effect that 
a loaded CPU would have on the communication system.  
Several of the message-passing libraries tested allow 
message traffic to progress independent of the main 
application thread, and should therefore provide better 
performance for real applications.  Testing the 
performance within real applications would therefore be 
useful in determining the effect of these two factors 
beyond the information that NetPIPE provides. 



 Most of the graphs shown in this paper are from two 
1.8 GHz Pentium 4 PCs with 768 MB of PC133 memory 
and 32-bit 33 MHz PCI slots.  These are taken as typical 
PCs for building clusters, costing around $1000 each.  
All tests were done back-to-back with no intervening 
switch, except for the Giganet VIA tests.  The machines 
ran RedHat 7.2 with the Linux 2.4.7-10 kernel, except 
for the M-VIA tests that needed the 2.4.2-2 kernel and 
some tests with the older 2.2.19 kernel to determine the 
difference in performance. 
 Two dual-processor Compaq DS20 computers with 
500 MHz Alpha 21264 processors were also used to 
provide a basis for comparison with the PC results.  
These machines have 64-bit 33 MHz PCI slots, offering 
greater PCI performance than the 32-bit PCI bus of the 
Pentium 4 PCs.  
 Four sets of Gigabit Ethernet cards were tested.  The 
TrendNet TEG-PCITX copper GigE cards (32-bit 
33 MHz, ns83820 driver) cost $55 each, representing the 
new wave of low cost GigE NICs.  The Netgear GA622 
copper NICs cost $90 and are identical to the TrendNet 
cards except that they can take advantage of the 64-bit 
PCI bus.  The older Netgear GA620 fiber GigE cards 
(32/64-bit 33/66 MHz, AceNIC driver) cost more at 
$220.  The SysKonnect SK-9843 GigE cards (32/64-bit 
33/66 MHz, sk98lin driver) are expensive at $565, but 
have a very low latency and provide a high bandwidth 
when jumbo frames of 9000 byte MTU size are enabled.  
The performance of proprietary Myrinet and Giganet 
network hardware was also tested.  
 While all these Gigabit Ethernet cards were tested 
on both the PCs and the Compaq DS20s, only a few 
graphs are presented here.  The Netgear GA620 cards on 
the PCs represent mature hardware and drivers at a 
modest price.  The TrendNet cards on the PCs represent 
the new low-cost generation of GigE cards.  The 
SysKonnect cards with jumbo frames enabled on the 
64-bit PCI bus of the DS20s demonstrate what each 
library can do in a faster environment. 
 
3. The message -passing libraries 
 
 The most recent versions of each message-passing 
library were tested on the most current kernel 
(RedHat 7.2 Linux 2.4.7-10) and driver supported.  A 
few omissions include CHIMP/MPI [11], which 
apparently has not been supported since 1997, EMP [12], 
a NIC-driven message-passing system, and 
GPSHMEM [13], a general-purpose implementation of 
the SHMEM library that allows one-sided 
communications on clusters. 
 

3.1. The MPICH library 
 
 MPICH 1.2.3 [14,15] is a portable version of the 
MPI standard freely distributed by Argonne National 
Laboratory.  It is also the base implementation for many 
vendor and research libraries.  MPICH-GM tests on 
Myrinet NICs used a slightly older version 1.2.1..7 of 
MPICH with GM 1.5, while MVICH 1.0 started with 
MPICH 1.2.1 and used cLAN 2.0.1 VIA drivers.   
 MPICH is a source code distribution, so it takes 
some effort to configure and compile while many other 
message-passing systems now come as easy-to-install 
Linux RPMs.  On Unix systems, MPICH runs on top of 
its p4 library [16,17] implemented as a blocking channel 
device.  Progress on data transfers is only made during 
MPI library calls.   
 The primary optimization parameter is the 
P4_SOCKBUFSIZE environment variable that is vital to 
maximizing the performance.  Other optimization 
parameters include the –p4sctrl run-time flag and the 
P4_WINSHIFT variable.  The thresholds are not 
designed to be user tunable, but can always be modified 
in the source code.  The rendezvous cutoff, where 
MPICH changes to a handshake protocol, can be 
increased this way by changing 128000 in 
mpid/ch2/chinit.c and mpid/ch_p4/chcancel.c to the 
desired value.  The handshake requires the exchange of 
small messages before data is sent, adding twice the 
latency time to the transmission time.  This can result in 
a dip in performance for systems with large latencies.  
For older versions of MPICH, you may need to use the   
–use_rndv configuration flag in order to use the 
rendezvous method for large messages. 
 
3.2. The LAM/MPI library 
 
 LAM/MPI 6.5.4-1 [18] (Local Area Multicomputer) 
is a full MPI implementation freely available from 
Indiana University.  It is available as an easy-to-install 
RPM for Linux, currently included in the RedHat 
distribution.   
 The lamd  daemons allow LAM/MPI to operate in a 
heterogeneous environment and provide advanced 
monitoring and debugging features.  The lamboot 
command easily starts the daemons, and then codes are 
run using the familiar mpirun command. 
 Using the –O flag in homogeneous environments 
greatly improves performance.  The –lamd  argument to 
mpirun directs all messages through the daemons, 
providing access to the monitoring and debugging 
facilities, but greatly reducing the performance. 
 



3.3. The MPI/Pro library 
 
 MPI/Pro 1.6.3 [19] is a commercial version of the 
full MPI standard available from MPI Software 
Technology for around $100 per node with an 8 node 
minimum.  It is distributed as an easy-to-install RPM for 
Linux that runs directly on TCP, and has interfaces for 
VIA and GM.  MPI/Pro uses a separate thread to actively 
manage the progress of all messages.  
 Increasing the –tcp_long  or –via_long parameters 
diminishes the effects from the extra handshaking at the 
rendezvous threshold.  The –tcp_buffers run-time 
parameter did not help in the NetPIPE tests. 
 
3.4. The MP_Lite library 
 
 MP_Lite 2.3 [20] is a lightweight message-passing 
library developed by the authors.  It supports a restricted 
set of the MPI commands, including blocking and 
asynchronous send and receive functions, and many 
common global operations.  It does not support many of 
the advanced capabilities of MPI such as the use of 
communicators, derived data types, parallel I/O, and the 
one-sided communications of MPI-2. 
 MP_Lite is freely distributed by Ames Laboratory, 
compiles in a few seconds, and works well for running 
small MPI programs.  It is being used as a research tool 
for investigating methods to improve message-passing 
performance.  The results presented here are from the 
SIGIO interrupt driven module that keeps data flowing 
through the TCP buffers by trapping SIGIO interrupts 
sent when data enters or leaves a TCP socket buffer.  
Message progress is therefore maintained at all times. 
 MP_Lite increases the TCP socket buffer sizes up to 
the maximum level allowed.  The only tuning available 
is to increase the maximum socket buffer sizes allowed 
by the system.  For Linux, this can be done by assigning 
values like net.core.rmem_max = 524288 and 
net.core.wmem_max = 524288 in /etc/sysctl.conf. 
 
3.5. The PVM library 
 
 PVM 3.4.3 is the Parallel Virtual Machine message-
passing system developed at Oak Ridge National 
Laboratory.  It has a completely different syntax from 
MPI as well as some different functionality. 
 PVM now comes as an easy-to-install RPM for 
Linux in the RedHat distribution.  The pvm utility 
provides an easy way to start the pvmd daemons, but is a 
bit tricky if communicating on an interface other than the 
primary one (xpvm was not tried, and may be easier to 
use for this case). 
 There are many optimizations to sift through, several 
of which make a very large difference.  The default 

configuration will send all messages through the pvmd 
daemons, which limits the performance greatly.  All 
applications should use the pvm_setopt() function to 
choose direct communications when possible.  Using 
PvmDataInPlace in pvm_initsend() prevents copying of 
the data before and after transmission. 
 
3.6. The TCGMSG library 
 
 TCGMSG 4.04 is the Theoretical Chemistry Group 
Message-Passing Toolkit distributed by Pacific 
Northwest National Laboratory with the Global Arrays 
3.1.8 package.  It has a very limited number of functions, 
and is designed simply to provide an interface between 
applications like the NWChem quantum chemistry code 
and either TCP or an underlying message-passing library 
like MPI.  In TCGMSG, the SND function blocks until 
the matching RCV has been completed. 
 
4. Performance on Gigabit Ethernet 
 
 These message-passing libraries run directly on top 
of TCP sockets, so it is vital to understand the raw 
performance and tuning characteristics of TCP across the 
various hardware configurations.  You cannot just slap in 
a Gigabit Ethernet card and expect to achieve decent 
performance like you can with more established Fast 
Ethernet technology.  The default OS tuning levels have 
not kept pace with what is needed to communicate at 
higher speeds.   
 As an example, the performance of the TrendNet 
GigE cards flattens out at 290 Mbps when the default 
TCP socket buffer sizes are used.  Increasing these to 
512 kB eliminates the socket buffer size as a limiting 
factor, doubling the raw throughput.  Each node opens 2 
socket buffers for each machine in a run, so 512 kB 
socket buffer sizes should not place too high of a burden 
on the memory in most moderately sized clusters. 
 The heavy black lines at the top of figures 1 and 2 
show that the raw TCP performance reaches a maximum 
of 550 Mbps on both the Netgear GA620 fiber NICs and 
the cheaper TrendNet cards.  The latencies are poor 
under the new Linux 2.4.x kernel, at 120 µs and 200 µs 
respectively.  Figure 3 shows that the 9000 Byte MTU 
jumbo frames on the SysKonnect cards plus the 64-bit 
PCI bus of the Compaq DS20s provides a raw TCP 
performance up to 900 Mbps with a low 48 µs latency.  
On the PCs, the 32-bit PCI bus limits the bandwidth of 
these SysKonnect cards to a maximum of 710 Mbps. 
 These TCP curves provide the maximum 
performance that each message-passing library strives 
for.  Except where noted, the small-message latencies for 
the message-passing libraries are pretty close to that of 
raw TCP and therefore will not be dwelled upon. 



 
4.1. MPICH performance 
 
 Increasing P4_SOCKBUFSIZE from its 
default 32 kB up to 256 kB is vital.  This raised 
the maximum throughput from 75 Mbps up to 
400 Mbps for a 5-fold increase in performance.  
The –p4sctrl and P4_WINSHIFT parameters did 
not help in these tests. 
 Once P4_SOCKBUFSIZE  is optimized, 
MPICH performs respectably on all the Gigabit 
Ethernet cards.  Figures 1-3 show that MPICH 
does suffer a 25% - 30% loss in each case for 
large messages transfers.  The most noticeable 
feature is the sharp dip at 128 kB in figure 1 
where MPICH starts using a large-message 
rendezvous mode that requires a handshake 
before data is sent.  This is not a user tunable 
parameter, but it is possible to change it in the 
source code.  
 
4.2. LAM/MPI performance 
 
 On the Netgear GigE cards, LAM/MPI tops 
out at 350 Mbps when no optimizations are 
used.  For homogeneous systems, using -O 
brings the performance nearly to raw TCP 
levels.  The convenience of running with the 
lamd  daemons comes at a large price, cutting 
the performance down to 260 Mbps and 
doubling the latency to 245 µs. 
 Figure 1 shows that the only real deficiency 
is from a slight dip in performance at the 
rendezvous threshold, which is apparently not 
user-tunable.  On the 64-bit PCI bus and jumbo 
frames of the SysKonnect cards on the DS20s, 
figure 3 shows that LAM/MPI loses about 25% 
of the performance that TCP offers for large 
messages.  Figure 2 shows even more severe 
problems on the cheaper TrendNet cards, where 
LAM/MPI and many of the other message-
passing libraries suffer from a 50% loss in 
performance. 
 
4.3. MPI/Pro performance  
 
 MPI/Pro comes out of the box fairly well 
tuned.  Increasing the –tcp_long parameter from  
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 TrendNet  TEG-PCITX  copper  Gigabit  Ethernet   cards 
 between  two  PCs. 
 

the default 32 kB to 128 kB removes much of a dip in 
performance at the rendezvous threshold. 
 With the –tcp_long parameter optimized, figure 1 
shows that MPI/Pro performs exceedingly well on the 
Netgear cards, getting to within 5% of the raw TCP 
results.  However, MPI/Pro also has severe problems 

with the cheaper TrendNet cards, flattening out at 
250 Mbps.  MPI/Pro performs very well on the 
SysKonnect cards between PCs.  Support for the Alpha 
Linux environment has just recently become available, 
but not in time to fully test the performance and include 
the results in this paper. 



4.4. MP_Lite performance  
 
 Figures 1-3 show that MP_Lite matches the 
raw TCP performance to within a few percent 
on all GigE cards (the MP_Lite curve was left 
off figure 1 because it laid almost on top of the 
raw TCP curve).  The only tuning needed was to 
increase the maximum socket buffer sizes on 
the system.  Preliminary results on an 
MPICH-MP_Lite implementation at the channel 
interface layer show that this performance can 
be passed along to the full MPI implementation 
of MPICH. 
 
4.5. PVM performance  
 
 The default configuration for PVM sends 
all messages through the pvmd daemons, which 
limits performance to around 90 Mbps across 
the Gigabit Ethernet cards.  Bypassing the 
daemons using the pvm_setopt() function to 
choose direct communications produces a 4-fold 
increase  to  a  maximum  of  330 Mbps.   Using  

0
100

200

300
400

500

600
700

800
900

1000

1 100 10,000 1,000,000
Message size in Bytes

T
h

ro
u

g
h

p
u

t 
in

 M
b

p
s

MPICH

MP_Lite

raw TCP

PVM

LAM/MPI

TCGMSG

 Figure 3.  The  message-passing  performance  using  a  
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 Ethernet cards between two Compaq DS20s. 
 

pvm_initsend(  PvmDataInPlace  ) prevents PVM from 
copying the data before and after transmission, further 
increasing the maximum transfer rate to 415 Mbps. 
 With these optimizations, PVM provides 
performance similar to MPICH, losing 25%-30% of what 
TCP offers.  However, figure 2 shows that PVM has 
trouble with the TrendNet cards where it is limited to 
only 190 Mbps.  PVM does not take much advantage of 
the greater bandwidth offered on the SysKonnect cards 
on the Compaq DS20s, providing a maximum of only 
500 Mbps compared to the 900 Mbps that raw TCP 
offers. 
 
4.6. TCGMSG performance 
 
 Even though little development has been done on 
TCGMSG since 1994, it passes on nearly all the 
performance that TCP offers.  The TCGMSG curve falls 
to within a few percent of the raw TCP curve in figure 1, 
and was therefore left off.  This is not surprising since it 
is only a thin layer on top of TCP.  Curiously, it still 
suffers on the TrendNet cards, where performance is 
limited to 250 Mbps, and on the SysKonnect cards using 
jumbo frames on the DS20s where the throughput tops 
out at 500 Mbps. 
 TCGMSG can also run on top of an MPI library.  
NetPIPE measurements showed that there is no 
performance lost by running TCGMSG-MPICH 
compared to MPICH alone, though the fact that a 
TCGMSG SND blocks until the matching RCV is 
completed may affect real applications more. 

5. Performance on Myrinet cards  
 
 The proprietary Myrinet PCI64A-2 cards from 
Myricom [21,22] have 66 MHz RISC processors that are 
slower than the 133 MHz PCI64B and 200 MHz PCI64C 
versions currently available.  All are 64/32-bit 
66/33 MHz cards starting at $1200 each with switches 
running $500 per port.   
 Myricom provides a native GM library and a full 
MPI implementation through MPICH-GM.  The system 
can also be configured to run IP over GM directly.  
MPI/Pro also has a Linux RPM that runs directly on GM. 
 There are several tunable parameters that affect GM, 
and therefore MPICH-GM.  The --gm-recv flag sets the 
mode to the default Polling, or to Blocking or Hybrid.  
All produce approximately the same results, except that 
the Blocking mode has a latency of 36 µs compared to 
16 µs for the others.  In general, the Hybrid mode should 
be used as it provides the same results as the Polling 
mode but should not burden the CPU as much.  The 
default Eager/Rendezvous threshold of 16 kB is already 
optimal. 
 Figure 4 shows that the raw GM performance 
reaches a maximum of 800 Mbps with a 16 µs latency.  
MPICH-GM and MPI/Pro-GM results are nearly 
identical, losing only a few percent off the raw GM 
performance in the intermediate range. The NetPIPE 
TCP module was used to show that IP-GM has a latency 
of 48 µs compared to 32-200 µs for TCP over the 
Gigabit Ethernet cards, but otherwise offers similar 
performance. 



6. VIA hardware and software  
 
 VIA is the Virtual Interface Architecture 
[23,24], an API and software layer designed to 
facilitate faster communication between 
computers.  Its goal is to provide a more 
streamlined path between the application and 
the network, allowing zero- or one-copy 
transmissions that bypass the overhead of the 
operating system. 
 M-VIA 1.2b2 [25] is a modular VIA 
package developed by researchers at Lawrence 
Berkeley National Laboratory.  This is a 
software implementation of the VIA API that 
runs on some Fast Ethernet and Gigabit 
Ethernet devices on Linux systems, including 
the sk98lin device driver for the SysKonnect 
cards.  This is a research project in progress 
with only beta releases at this time. 
 The Giganet CL1000 cards tested cost 
around $650 each.  These are hardware VIA 
implementations, tested with the cLAN 2.0.1 
device driver.  The Giganet tests were 
performed using an 8-port CL5000 switch, 
costing around $500 per port. 
 
6.1. The VIA libraries 
 
 MVICH 1.0 [26] is an MPICH 1.2.1 ADI2 
implementation that runs on top of VIA.  It has 
been developed and tested on M-VIA supported 
devices, plus ServerNet and Giganet hardware.  
MP_Lite 2.3 also has a VIA module tested on 
M-VIA and Giganet.  MPI/Pro has a VIA 
module tested on Giganet hardware. 
 MVICH has many user-tunable parameters.  
It is vital to configure MVICH using                  
–DVIADEV_RPUT_SUPPORT to get good 
performance.  Setting –via_long to 64 kB gets 
rid of a dip due to the rendezvous threshold, but 
increasing it higher caused the system to freeze 
up.  Increasing VIADEV_SPIN_COUNT to 1000 
and raising the rendezvous threshold to 128 kB 
helped the performance of MVICH in the 
intermediate range. No benefit was seen from 
the other optimization parameters. 
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6.2. Performance on VIA hardware and M-VIA 
 
 Figure 5 shows the performance comparison of all 
these systems fully tuned.  MPI/Pro, MVICH, and 
MP_Lite all produce maximum communication rates 
around 800 Mbps on the Giganet hardware.  MVICH and 

MP_Lite have latencies of 10 µs, while MPI/Pro has a 
greater overhead at 42 µs.   
 MVICH and MP_Lite/M-VIA using the via_sk98lin 
device across the SysKonnect cards reached a maximum 
of 425 Mbps with a 42 µs latency.  The small dip at 
16 kB is at the RDMA threshold.  Unfortunately, this is 
approximately the same performance that raw TCP offers 
for this hardware configuration. 



7. Discussion 
 
 The NetPIPE results presented here show that most 
message-passing libraries perform reasonably well under 
the right conditions and when properly tuned.  It should 
be stressed that it does take some effort to measure and 
tune the operating system and message-passing libraries 
for optimal performance.  The default parameters are 
often not set appropriately for modern high-speed 
hardware, but tuning a few simple parameters can 
increase the communication performance by as much as 
a factor of 5. 
 Figure 1 shows that most message-passing libraries 
can deliver performance close to raw TCP levels on the 
more expensive Gigabit Ethernet cards.  MPICH and 
PVM currently suffer about a 25% loss in performance 
for large messages.  Similar results were gotten using the 
SysKonnect cards with a 9000 Byte MTU on the PCs, 
where MPICH and PVM still suffer 25-30% losses but 
the other libraries delivered within 10% of the TCP 
communication rate of 710 Mbps.   
 MPICH uses the p4 library to interface with the TCP 
layer on Unix systems.  p4 receives all messages to a 
buffer rather than directing them to the application 
memory when a receive has been pre-posted.  MPICH 
therefore must use a memcpy to move all incoming data 
out of the p4 buffer, causing the loss in performance for 
large messages. 
 The cheaper TrendNet cards gave most of the 
libraries more of a problem.  Only MP_Lite and MPICH 
worked well, with many message-passing libraries 
reaching only 250-300 Mbps.  The raw TCP 
measurements on these cards showed that they needed 
larger socket buffer sizes in order to achieve peak 
performance.  MP_Lite and MPICH both have user-
tunable parameters for the socket buffer size, and 
therefore appropriate tuning produces good performance. 
 For those libraries where source code is provided, it 
is possible to change the socket buffer sizes manually 
and recompile the code.  For TCGMSG, increasing 
SR_SOCK_BUF_SIZE in sndrcvP.h from 32 kB to 
256 kB brought the performance up to raw TCP levels.  
The poor performance of the other message-passing 
libraries on the TrendNet cards should likewise be 
remedied by simply increasing the socket buffer sizes.  
Unfortunately, this currently involves finding the 
parameters in the code and recompiling. 
 The Compaq DS20 tests using the Netgear GA622 
copper cards, which are identical to the TrendNet cards 
except for being able to take advantage of the 64-bit PCI 
bus, showed poor performance even for raw TCP.  Great 
care must be taken in evaluating these new GigE cards.  
Newer ns83820 drivers appearing in the 2.4.19-pre 
kernels and the Netgear gam drivers both show improved 

performance and stability.  More tuning of these drivers 
is still needed, and is likely to reduce their need for large 
socket buffers.   
 The SysKonnect jumbo frames tests on the Compaq 
DS20s illustrated in figure 3 show a great difference in 
performance between the message-passing libraries.  
Once again, the socket buffer size plays a major role in 
the ultimate performance of each library.  To 
demonstrate this, the socket buffer size hardwired into 
the TCGMSG source code was increased from 32 kB to 
128 kB, resulting in the performance increasing from 
500 Mbps to 900 Mbps, matching raw TCP.  Similar 
results may occur if the socket buffer sizes were 
increased in the other libraries. 
 Custom hardware, while expensive, does provide 
better performance than Gigabit Ethernet.  Figure 4 
illustrates that Myrinet cards can provide both low 
latency and high bandwidth, with a 16 µs latency and 
800 Mbps maximum rate.  MPICH-GM and MPI/Pro-
GM pass nearly all this performance on to the application 
layer.  IP over GM offers little more than TCP over 
Gigabit Ethernet on these systems, but at a greater cost. 
 VIA hardware such as the Giganet CL1000 cards 
likewise provides impressive performance, but again at a 
high price.  MVICH, MPI/Pro and MP_Lite all deliver 
around 800 Mbps to the application layer.  MP_Lite and 
MVICH provide applications with around 10 µs 
latencies, while MPI/Pro is significantly higher at 42 µs.  
 The M-VIA project is designed to provide greater 
performance through bypassing the inefficiencies of the 
operating system, allowing better performance on 
existing Ethernet hardware.  Unfortunately, these limited 
tests on the SysKonnect cards between PCs show that 
MVICH/M-VIA and MP_Lite/M-VIA provide about the 
same performance as raw TCP.  More tests are needed to 
fully explore the capabilities of M-VIA. 
 It should be remembered that all these NetPIPE tests 
represent an upper bound for the ultimate performance.  
The libraries are internally very different, and therefore 
will react differently within real applications.  A 
message-passing library like MPI/Pro that has a message 
progress thread, or MP_Lite that is SIGIO interrupt 
driven, will keep data flowing more readily.   
 
8. Conclusions  
 
 Overall, the message-passing libraries pass on most 
or all of the performance that the underlying 
communication layer offers.  Most of the deficiencies 
could be easily corrected by simply increasing the socket 
buffer sizes.  This was not the case just a few years ago 
when small-message latencies were 2-3 times the raw 
TCP levels and up to 30-40% of the throughput could be 
lost in the message-passing layer.  This represents the 



progress that the developers of each library have made in 
optimizing their code, and also the fact that the 
processing speed in computers has increased faster than 
the networking capability.   
 All graphs presented here were after optimization of 
the available parameters.  A graph of the performance 
before optimization would show drastically different 
results.  It is vital to take the time to measure and 
optimize the performance of the OS and message-passing 
system when dealing with gigabit speed hardware.   
 The developers of the message-passing libraries 
need to update some of the default optimization 
parameters to reflect today’s faster networks.  They all 
need to provide user-tunable parameters for the most 
important optimizations, such as the socket buffer sizes 
and the rendezvous threshold.  If this is done, most 
would be able to deliver a majority of the performance 
that TCP offers  
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