
Linux SDK for UPnP Devices v1.4

Linux SDK for UPnP Devices v1.4

Contents

1 Introduction . 5
2 License . 6
3 About Callbacks . 7
4 The API . 8

4.1 Error codes . 8
4.1.1 UPNP E SUCCESS [0] . 9
4.1.2 UPNP E INVALID HANDLE [-100] . 9
4.1.3 UPNP E INVALID PARAM [-101] . 10
4.1.4 UPNP E OUTOF HANDLE [-102] . 10
4.1.5 UPNP E OUTOF MEMORY [-104] . 10
4.1.6 UPNP E INIT [-105] . 10
4.1.7 UPNP E INVALID DESC [-107] . 10
4.1.8 UPNP E INVALID URL [-108] . 11
4.1.9 UPNP E INVALID SERVICE [-111] . 11
4.1.10 UPNP E BAD RESPONSE [-113] . 11
4.1.11 UPNP E INVALID ACTION [-115] . 11
4.1.12 UPNP E FINISH [-116] . 11
4.1.13 UPNP E INIT FAILED [-117] . 12
4.1.14 UPNP E BAD HTTPMSG [-119] . 12
4.1.15 UPNP E ALREADY REGISTERED [-120] . 12
4.1.16 UPNP E NETWORK ERROR [-200] . 12
4.1.17 UPNP E SOCKET WRITE [-201] . 12
4.1.18 UPNP E SOCKET READ [-202] . 13
4.1.19 UPNP E SOCKET BIND [-203] . 13
4.1.20 UPNP E SOCKET CONNECT [-204] . 13
4.1.21 UPNP E OUTOF SOCKET [-205] . 13
4.1.22 UPNP E LISTEN [-206] . 13
4.1.23 UPNP E TIMEDOUT [-207] . 14
4.1.24 UPNP E SOCKET ERROR [-208] . 14
4.1.25 UPNP E CANCELED [-210] . 14
4.1.26 UPNP E SUBSCRIBE UNACCEPTED [-301] . 14
4.1.27 UPNP E UNSUBSCRIBE UNACCAPTED [-302] 14
4.1.28 UPNP E NOTIFY UNACCEPTED [-303] . 14
4.1.29 UPNP E INVALID ARGUMENT [-501] . 15
4.1.30 UPNP E FILE NOT FOUND [-502] . 15
4.1.31 UPNP E FILE READ ERROR [-503] . 15
4.1.32 UPNP E EXT NOT XML [-504] . 15
4.1.33 UPNP E NOT FOUND [-507] . 15
4.1.34 UPNP E INTERNAL ERROR [-911] . 15

4.2 Constants, Structures, and Types . 16
4.2.3 UPnP EventType — The reason code for an event callback. 17
4.2.5 Upnp SType — Represents the different types of searches that can be

performed using the SDK for UPnP Devices API. 22
4.2.6 Upnp DescType — Specifies the type of description in UpnpRegis-

terRootDevice2. 24
4.2.7 Upnp Action Request — Returned as part of a

UPNP CONTROL ACTION COMPLETE callback. 25
4.2.8 Upnp State Var Request — Represents the request for current value

of a state variable in a service state table. 28

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 2

Linux SDK for UPnP Devices v1.4

4.2.9 Upnp State Var Complete — Represents the reply for the current value
of a state variable in an asynchronous call. 30

4.2.10 Upnp Event — Returned along with a
UPNP EVENT RECEIVED callback. 31

4.2.11 Upnp Discovery — Returned in a UPNP DISCOVERY RESULT
callback. 32

4.2.12 Upnp Event Subscribe — Returned along with a
UPNP EVENT SUBSCRIBE COMPLETE or
UPNP EVENT UNSUBSCRIBE COMPLETE callback. 35

4.2.13 Upnp Subscription Request — Returned along with a
UPNP EVENT SUBSCRIPTION REQUEST callback. 37

4.2.14 UpnpVirtualDirCallbacks — The UpnpVirtualDirCallbacks struc-
ture contains the pointers to file-related callback functions a device ap-
plication can register to virtualize URLs. 38

4.3 Initialization and Registration . 41
4.4 Discovery . 51
4.5 Control . 52
4.6 Eventing . 61
4.7 Control Point HTTP API . 80
4.8 Web Server API . 92

5 Optional Tool APIs . 97

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 3

Linux SDK for UPnP Devices v1.4

Linux SDK for UPnP Devices Version 1.4

Copyright (C) 2000-2003 Intel Corporation ALL RIGHTS RESERVED

Revision 1.4.1 (Tue 04 Jul 2006 04:58:51 PM EEST)

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 4

1 Introduction

1

Introduction

This document gives a brief description of the Linux SDK for UPnP Devices API. Section 1 covers
the license under which the SDK is distributed. Section 2 talks about the callback functions used
in many parts of the API. Finally, section 3 details the structures and functions that comprise the
API.

The Linux SDK for UPnP Devices version 1.2 supports the following platforms:

• Linux* running on an Intel Architecture processor

• Linux running on an Intel StrongARM or XScale processor

* Other brands and names are the property of their respective owners.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 5

2 License

2

License

Copyright (c) 2000-2003 Intel Corporation All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Neither name of Intel Corporation nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR CON-
TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIA-
BILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 6

3 About Callbacks

3

About Callbacks

The Linux SDK for UPnP Devices contains functions that generate asynchronous callbacks.
To simplify the application callback functions, these callbacks are executed on a thread owned
by the SDK itself. The SDK executes the application’s callback function in a thread context so
the application can allocate memory and preserve the information it needs. The application can
also use standard thread synchronization methods to ensure data integrity. Due to the possibility
of deadlock, the application cannot call back into the SDK during these callbacks unless explic-
itly noted. There is no restriction in calling into the operating system or any other application
interfaces.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 7

4 The API

4

The API

Names

4.1 Error codes . 8

4.2 Constants, Structures, and Types . 16

4.3 Initialization and Registration . 41

4.4 Discovery . 51

4.5 Control . 52

4.6 Eventing . 61

4.7 Control Point HTTP API . 80

4.8 Web Server API . 92

4.1

Error codes

Names

4.1.1 UPNP E SUCCESS [0] . 9

4.1.2 UPNP E INVALID HANDLE [-100] . 9

4.1.3 UPNP E INVALID PARAM [-101] . 10

4.1.4 UPNP E OUTOF HANDLE [-102] . 10

4.1.5 UPNP E OUTOF MEMORY [-104] . 10

4.1.6 UPNP E INIT [-105] . 10

4.1.7 UPNP E INVALID DESC [-107] . 10

4.1.8 UPNP E INVALID URL [-108] . 11

4.1.9 UPNP E INVALID SERVICE [-111] . 11

4.1.10 UPNP E BAD RESPONSE [-113] . 11

4.1.11 UPNP E INVALID ACTION [-115] . 11

4.1.12 UPNP E FINISH [-116] . 11

4.1.13 UPNP E INIT FAILED [-117] . 12

4.1.14 UPNP E BAD HTTPMSG [-119] . 12

4.1.15 UPNP E ALREADY REGISTERED [-120] 12

4.1.16 UPNP E NETWORK ERROR [-200] . 12

4.1.17 UPNP E SOCKET WRITE [-201] . 12

4.1.18 UPNP E SOCKET READ [-202] . 13

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 8

4 The API

4.1.19 UPNP E SOCKET BIND [-203] . 13

4.1.20 UPNP E SOCKET CONNECT [-204] . 13

4.1.21 UPNP E OUTOF SOCKET [-205] . 13

4.1.22 UPNP E LISTEN [-206] . 13

4.1.23 UPNP E TIMEDOUT [-207] . 14

4.1.24 UPNP E SOCKET ERROR [-208] . 14

4.1.25 UPNP E CANCELED [-210] . 14

4.1.26 UPNP E SUBSCRIBE UNACCEPTED [-301] 14

4.1.27 UPNP E UNSUBSCRIBE UNACCAPTED [-302] 14

4.1.28 UPNP E NOTIFY UNACCEPTED [-303] 14

4.1.29 UPNP E INVALID ARGUMENT [-501] 15

4.1.30 UPNP E FILE NOT FOUND [-502] . 15

4.1.31 UPNP E FILE READ ERROR [-503] . 15

4.1.32 UPNP E EXT NOT XML [-504] . 15

4.1.33 UPNP E NOT FOUND [-507] . 15

4.1.34 UPNP E INTERNAL ERROR [-911] . 15

The functions in the SDK API can return a variety of error codes to describe problems encountered
during execution. This section lists the error codes and provides a brief description of what each
error code means. Refer to the documentation for each function for a description of what an error
code means in that context.

4.1.1

UPNP E SUCCESS [0]

UPNP E SUCCESS signifies that the operation completed successfully. For asynchronous functions,
this only means that the packet generated by the operation was successfully transmitted on the
network. The result of the entire operation comes as part of the callback for that operation.

4.1.2

UPNP E INVALID HANDLE [-100]

UPNP E INVALID HANDLE signifies that the handle passed to a function is not a recognized as a
valid handle.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 9

4 The API

4.1.3

UPNP E INVALID PARAM [-101]

UPNP E INVALID PARAM signifies that one or more of the parameters passed to the function is not
valid. Refer to the documentation for each function for more information on the valid ranges of
the parameters.

4.1.4

UPNP E OUTOF HANDLE [-102]

UPNP E OUTOF HANDLE signifies that the SDK does not have any more space for additional handles.
The SDK allocates space for only a few handles in order to conserve memory.

4.1.5

UPNP E OUTOF MEMORY [-104]

UPNP E OUTOF MEMORY signifies that not enough resources are currently available to complete the
operation. Most operations require some free memory in order to complete their work.

4.1.6

UPNP E INIT [-105]

UPNP E INIT signifies that the SDK has already been initialized. The SDK needs to be initialied
only once per process. Any additional initialization attempts simply return this error with no
other ill effects.

4.1.7

UPNP E INVALID DESC [-107]

UPNP E INVALID DESC signifies that the description document passed to UpnpRegisterRootDe-
vice or UpnpRegisterRootDevice2 is an invalid description document.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 10

4 The API

4.1.8

UPNP E INVALID URL [-108]

UPNP E INVALID URL signifies that a URL passed into the function is invalid. The actual cause is
function specific, but in general, the URL itself might be malformed (e.g. have invalid characters
in it) or the host might be unreachable.

4.1.9

UPNP E INVALID SERVICE [-111]

UPNP E INVALID SERVICE is returned only by UpnpNotify, UpnpNotifyExt, UpnpAccept-
Subscription, and UpnpAcceptSubscriptionExt to signify that the device ID/service ID pair
does not refer to a valid service.

4.1.10

UPNP E BAD RESPONSE [-113]

UPNP E BAD RESPONSE signifies that the response received from the remote side of a connection
is not correct for the protocol. This applies to the GENA, SOAP, and HTTP protocols.

4.1.11

UPNP E INVALID ACTION [-115]

UPNP E INVALID ACTION signifies that the SOAP action message is invalid. This can be because
the DOM document passed to the function was malformed or the action message is not correct
for the given action.

4.1.12

UPNP E FINISH [-116]

UPNP E FINISH signifies that UpnpInit has not been called, or that UpnpFinish has already been
called. None of the API functions operate until UpnpInit successfully completes.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 11

4 The API

4.1.13

UPNP E INIT FAILED [-117]

UPNP E INIT FAILED signifies that UpnpInit cannot complete. The typical reason is failure to
allocate sufficient resources.

4.1.14

UPNP E BAD HTTPMSG [-119]

UPNP E BAD HTTPMSG signifies that the HTTP message contains invalid message headers. The error
always refers to the HTTP message header received from the remote host. The main areas where
this occurs are in SOAP control messages (e.g. UpnpSendAction), GENA subscription message
(e.g. UpnpSubscribe), GENA event notifications (e.g. UpnpNotify), and HTTP transfers (e.g.
UpnpDownloadXmlDoc).

4.1.15

UPNP E ALREADY REGISTERED [-120]

UPNP E ALREADY REGISTERED signifies that a client or a device is already registered. The SDK
currently has a limit of one registered client and one registered device per process.

4.1.16

UPNP E NETWORK ERROR [-200]

UPNP E NETWORK ERROR signifies that a network error occurred. It is the generic error code for
network problems that are not covered under one of the more specific error codes. The typical
meaning is the SDK failed to read the local IP address or had problems configuring one of the
sockets.

4.1.17

UPNP E SOCKET WRITE [-201]

UPNP E SOCKET WRITE signifies an error writing to a socket. This occurs in any function that
makes network connections, such as discovery (e.g. UpnpSearchAsync or UpnpSendAdver-
tisement), control (e.g. UpnpSendAction), eventing (e.g. UpnpNotify), and HTTP functions
(e.g. UpnpDownloadXmlDoc).

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 12

4 The API

4.1.18

UPNP E SOCKET READ [-202]

UPNP E SOCKET READ signifies an error reading from a socket. This occurs in any function that
makes network connections, such as discovery (e.g. UpnpSearchAsync or UpnpSendAdver-
tisement), control (e.g. UpnpSendAction), eventing (e.g. UpnpNotify), and HTTP functions
(e.g. UpnpDownloadXmlDoc).

4.1.19

UPNP E SOCKET BIND [-203]

UPNP E SOCKET BIND signifies that the SDK had a problem binding a socket to a network inter-
face. This occurs in any function that makes network connections, such as discovery (e.g. Up-
npSearchAsync or UpnpSendAdvertisement), control (e.g. UpnpSendAction), eventing
(e.g. UpnpNotify), and HTTP functions (e.g. UpnpDownloadXmlDoc).

4.1.20

UPNP E SOCKET CONNECT [-204]

UPNP E SOCKET CONNECT signifies that the SDK had a problem connecting to a remote host.
This occurs in any function that makes network connections, such as discovery (e.g. Up-
npSearchAsync or UpnpSendAdvertisement), control (e.g. UpnpSendAction), eventing
(e.g. UpnpNotify), and HTTP functions (e.g. UpnpDownloadXmlDoc).

4.1.21

UPNP E OUTOF SOCKET [-205]

UPNP E OUTOF SOCKET signifies that the SDK cannot create any more sockets. This occurs in
any function that makes network connections, such as discovery (e.g. UpnpSearchAsync or
UpnpSendAdvertisement), control (e.g. UpnpSendAction), eventing (e.g. UpnpNotify),
and HTTP functions (e.g. UpnpDownloadXmlDoc).

4.1.22

UPNP E LISTEN [-206]

UPNP E LISTEN signifies that the SDK had a problem setting the socket to listen for incoming
connections. This error only happens during initialization (i.e. UpnpInit).

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 13

4 The API

4.1.23

UPNP E TIMEDOUT [-207]

UPNP E TIMEDOUT signifies that too much time elapsed before the required number of bytes were
sent or received over a socket. This error can be returned by any function that performs network
operations.

4.1.24

UPNP E SOCKET ERROR [-208]

UPNP E SOCKET ERROR is the generic socket error code for conditions not covered by other error
codes. This error can be returned by any function that performs network operations.

4.1.25

UPNP E CANCELED [-210]

UPNP E CANCELED signifies that the operation was canceled. This error can be returned by any
function that allows for external cancelation.

4.1.26

UPNP E SUBSCRIBE UNACCEPTED [-301]

UPNP E SUBSCRIBE UNACCEPTED signifies that a subscription request was rejected from the remote
side.

4.1.27

UPNP E UNSUBSCRIBE UNACCAPTED [-302]

UPNP E UNSUBSCRIBE UNACCEPTED signifies that an unsubscribe request was rejected from the re-
mote side.

4.1.28

UPNP E NOTIFY UNACCEPTED [-303]

UPNP E NOTIFY UNACCEPTED signifies that the remote host did not accept the notify sent from the
local device.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 14

4 The API

4.1.29

UPNP E INVALID ARGUMENT [-501]

UPNP E INVALID ARGUMENT signifies that one or more of the parameters passed to a function is
invalid. Refer to the individual function descriptions for the acceptable ranges for parameters.

4.1.30

UPNP E FILE NOT FOUND [-502]

UPNP E FILE NOT FOUND signifies that the filename passed to one of the device registration functions
was not found or was not accessible.

4.1.31

UPNP E FILE READ ERROR [-503]

UPNP E FILE READ ERROR signifies an error when reading a file.

4.1.32

UPNP E EXT NOT XML [-504]

UPNP E EXT NOT XML signifies that the file name of the description document passed to UpnpReg-
isterRootDevice2 does not end in ”.xml”.

4.1.33

UPNP E NOT FOUND [-507]

UPNP E NOT FOUND signifies that the response to a SOAP request did not contain the required XML
constructs.

4.1.34

UPNP E INTERNAL ERROR [-911]

UPNP E INTERNAL ERROR is the generic error code for internal conditions not covered by other error
codes.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 15

4 The API

4.2

Constants, Structures, and Types

Names

4.2.1 typedef int UpnpClient Handle Returned when a control point application
registers with UpnpRegisterClient. . . 17

4.2.2 typedef int UpnpDevice Handle Returned when a device application regis-
ters with UpnpRegisterRootDevice or
UpnpRegisterRootDevice2. 17

4.2.3 enum UPnP EventType The reason code for an event callback. 17

4.2.4 typedef char Upnp SID[44] The Upnp SID holds the subscription
identifier for a subscription between a
client and a device. 22

4.2.5 enum Upnp SType Represents the different types of searches
that can be performed using the SDK for
UPnP Devices API. 22

4.2.6 enum Upnp DescType Specifies the type of description in Upn-
pRegisterRootDevice2. 24

4.2.7 struct Upnp Action Request
Returned as part of a
UPNP CONTROL ACTION COMPLETE
callback. 25

4.2.8 struct Upnp State Var Request
Represents the request for current value of
a state variable in a service state table. 28

4.2.9 struct Upnp State Var Complete
Represents the reply for the current value
of a state variable in an asynchronous call.
. 30

4.2.10 struct Upnp Event Returned along with a
UPNP EVENT RECEIVED call-
back. 31

4.2.11 struct Upnp Discovery Returned in a
UPNP DISCOVERY RESULT
callback. 32

4.2.12 struct Upnp Event Subscribe
Returned along with a
UPNP EVENT SUBSCRIBE COMPLETE
or UPNP EVENT UNSUBSCRIBE COMPLETE
callback. 35

4.2.13 struct Upnp Subscription Request
Returned along with a
UPNP EVENT SUBSCRIPTION REQUEST
callback. 37

4.2.14 struct UpnpVirtualDirCallbacks

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 16

4 The API

The UpnpVirtualDirCallbacks struc-
ture contains the pointers to file-related
callback functions a device application can
register to virtualize URLs. 38

4.2.15 typedef int (*Upnp FunPtr) (IN Upnp EventType EventType,
IN void* Event, IN void* Cookie)

All callback functions share the same pro-
totype, documented below. 41

4.2.1

typedef int UpnpClient Handle

Returned when a control point application registers with UpnpRegisterClient.

Returned when a control point application registers with UpnpRegisterClient. Client handles
can only be used with functions that operate with a client handle.

4.2.2

typedef int UpnpDevice Handle

Returned when a device application registers with UpnpRegisterRootDevice or
UpnpRegisterRootDevice2.

Returned when a device application registers with UpnpRegisterRootDevice or UpnpReg-
isterRootDevice2. Device handles can only be used with functions that operate with a device
handle.

4.2.3

enum UPnP EventType

The reason code for an event callback.

Names

4.2.3.1 UPNP CONTROL ACTION REQUEST
Received by a device when a control point
issues a control request. 19

4.2.3.2 UPNP CONTROL ACTION COMPLETE

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 17

4 The API

A UpnpSendActionAsync call com-
pleted. 19

4.2.3.3 UPNP CONTROL GET VAR REQUEST
Received by a device when a query for a
single service variable arrives. 19

4.2.3.4 UPNP CONTROL GET VAR COMPLETE
A UpnpGetServiceVarStatus call
completed. 19

4.2.3.5 UPNP DISCOVERY ADVERTISEMENT ALIVE
Received by a control point when a new de-
vice or service is available. 19

4.2.3.6 UPNP DISCOVERY ADVERTISEMENT BYEBYE
Received by a control point when a device
or service shuts down. 20

4.2.3.7 UPNP DISCOVERY SEARCH RESULT
Received by a control point when a match-
ing device or service responds. 20

4.2.3.8 UPNP DISCOVERY SEARCH TIMEOUT
Received by a control point when the search
timeout expires. 20

4.2.3.9 UPNP EVENT SUBSCRIPTION REQUEST
Received by a device when a subscription
arrives. 20

4.2.3.10 UPNP EVENT RECEIVED
Received by a control point when an event
arrives. 21

4.2.3.11 UPNP EVENT RENEWAL COMPLETE
A UpnpRenewSubscriptionAsync
call completed. 21

4.2.3.12 UPNP EVENT SUBSCRIBE COMPLETE
A UpnpSubscribeAsync call com-
pleted. 21

4.2.3.13 UPNP EVENT UNSUBSCRIBE COMPLETE
A UpnpUnSubscribeAsync call com-
pleted. 21

4.2.3.14 UPNP EVENT AUTORENEWAL FAILED
The auto-renewal of a client subscription
failed. 22

4.2.3.15 UPNP EVENT SUBSCRIPTION EXPIRED
A client subscription has expired. 22

The Event parameter will be different depending on the reason for the callback. The descriptions
for each event type describe the contents of the Event parameter.

4.2.3.1

UPNP CONTROL ACTION REQUEST

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 18

4 The API

Received by a device when a control point issues a control request.

Received by a device when a control point issues a control request. The Event parameter contains
a pointer to a Upnp Action Request structure containing the action. The application stores
the results of the action in this structure.

4.2.3.2

UPNP CONTROL ACTION COMPLETE

A UpnpSendActionAsync call completed.

A UpnpSendActionAsync call completed. The Event parameter contains a pointer to a
Upnp Action Complete structure with the results of the action.

4.2.3.3

UPNP CONTROL GET VAR REQUEST

Received by a device when a query for a single service variable arrives.

Received by a device when a query for a single service variable arrives. The Event parameter
contains a pointer to a Upnp State Var Request structure containing the name of the variable
and value.

4.2.3.4

UPNP CONTROL GET VAR COMPLETE

A UpnpGetServiceVarStatus call completed.

A UpnpGetServiceVarStatus call completed. The Event parameter contains a pointer to a
Upnp State Var Complete structure containing the value for the variable.

4.2.3.5

UPNP DISCOVERY ADVERTISEMENT ALIVE

Received by a control point when a new device or service is available.

Received by a control point when a new device or service is available. The Event parameter
contains a pointer to a Upnp Discovery structure with the information about the device or
service.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 19

4 The API

4.2.3.6

UPNP DISCOVERY ADVERTISEMENT BYEBYE

Received by a control point when a device or service shuts down.

Received by a control point when a device or service shuts down. The Event parameter contains
a pointer to a Upnp Discovery structure containing the information about the device or service.

4.2.3.7

UPNP DISCOVERY SEARCH RESULT

Received by a control point when a matching device or service responds.

Received by a control point when a matching device or service responds. The Event parameter
contains a pointer to a Upnp Discovery structure containing the information about the reply
to the search request.

4.2.3.8

UPNP DISCOVERY SEARCH TIMEOUT

Received by a control point when the search timeout expires.

Received by a control point when the search timeout expires. The SDK generates no more callbacks
for this search after this event. The Event parameter is NULL.

4.2.3.9

UPNP EVENT SUBSCRIPTION REQUEST

Received by a device when a subscription arrives.

Received by a device when a subscription arrives. The Event parameter contains a pointer
to a Upnp Subscription Request structure. At this point, the subscription has already been
accepted. UpnpAcceptSubscription needs to be called to confirm the subscription and transmit
the initial state table. This can be done during this callback. The SDK generates no events for a
subscription unless the device application calls UpnpAcceptSubscription.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 20

4 The API

4.2.3.10

UPNP EVENT RECEIVED

Received by a control point when an event arrives.

Received by a control point when an event arrives. The Event parameter contains a Upnp Event
structure with the information about the event.

4.2.3.11

UPNP EVENT RENEWAL COMPLETE

A UpnpRenewSubscriptionAsync call completed.

A UpnpRenewSubscriptionAsync call completed. The status of the renewal is in the Event
parameter as a Upnp Event Subscription structure.

4.2.3.12

UPNP EVENT SUBSCRIBE COMPLETE

A UpnpSubscribeAsync call completed.

A UpnpSubscribeAsync call completed. The status of the subscription is in the Event param-
eter as a Upnp Event Subscription structure.

4.2.3.13

UPNP EVENT UNSUBSCRIBE COMPLETE

A UpnpUnSubscribeAsync call completed.

A UpnpUnSubscribeAsync call completed. The status of the subscription is in the Event
parameter as a Upnp Event Subscribe structure.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 21

4 The API

4.2.3.14

UPNP EVENT AUTORENEWAL FAILED

The auto-renewal of a client subscription failed.

The auto-renewal of a client subscription failed. The Event parameter is a
Upnp Event Subscribe structure with the error code set appropriately. The subscription is no
longer valid.

4.2.3.15

UPNP EVENT SUBSCRIPTION EXPIRED

A client subscription has expired.

A client subscription has expired. This will only occur if auto-renewal of subscriptions is disabled.
The Event parameter is a Upnp Event Subscribe structure. The subscription is no longer
valid.

4.2.4

typedef char Upnp SID[44]

The Upnp SID holds the subscription identifier for a subscription between a client and a device.

The Upnp SID holds the subscription identifier for a subscription between a client and a device.
The SID is a string representation of a globally unique id (GUID) and should not be modified.

4.2.5

enum Upnp SType

Represents the different types of searches that can be performed using the SDK for UPnP Devices
API.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 22

4 The API

Names

4.2.5.1 UPNP S ALL Search for all devices and services on the
network. 23

4.2.5.2 UPNP S ROOT Search for all root devices on the network.
. 23

4.2.5.3 UPNP S DEVICE Search for a particular device type or a
particular device instance. 23

4.2.5.4 UPNP S SERVICE Search for a particular service type, pos-
sibly on a particular device type or device
instance. 24

By specifying these different values to UpnpSearchAsync, the control point application can
control the scope of the search from all devices to specific devices or services.

4.2.5.1

UPNP S ALL

Search for all devices and services on the network.

Search for all devices and services on the network.

4.2.5.2

UPNP S ROOT

Search for all root devices on the network.

Search for all root devices on the network.

4.2.5.3

UPNP S DEVICE

Search for a particular device type or a particular device instance.

Search for a particular device type or a particular device instance.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 23

4 The API

4.2.5.4

UPNP S SERVICE

Search for a particular service type, possibly on a particular device type or device instance.

Search for a particular service type, possibly on a particular device type or device instance.

4.2.6

enum Upnp DescType

Specifies the type of description in UpnpRegisterRootDevice2.

Names

4.2.6.1 UPNPREG URL DESC
The description is the URL to the descrip-
tion document. 24

4.2.6.2 UPNPREG FILENAME DESC
The description is a file name on the lo-
cal file system containing the description
of the device. 25

4.2.6.3 UPNPREG BUF DESC
The description is a pointer to a charac-
ter array containing the XML description
document. 25

These values control how UpnpRegisterRootDevice2 interprets the description parameter.

4.2.6.1

UPNPREG URL DESC

The description is the URL to the description document.

The description is the URL to the description document.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 24

4 The API

4.2.6.2

UPNPREG FILENAME DESC

The description is a file name on the local file system containing the description of the device.

The description is a file name on the local file system containing the description of the device.

4.2.6.3

UPNPREG BUF DESC

The description is a pointer to a character array containing the XML description document.

The description is a pointer to a character array containing the XML description document.

4.2.7

struct Upnp Action Request

Returned as part of a UPNP CONTROL ACTION COMPLETE callback.

Members
4.2.7.1 int ErrCode The result of the operation. 26

4.2.7.2 int Socket The socket number of the connection to the
requestor. 26

4.2.7.3 char ErrStr [LINE SIZE] The error string in case of error. 26

4.2.7.4 char ActionName [NAME SIZE]
The Action Name. 26

4.2.7.5 char DevUDN [NAME SIZE]
The unique device ID. 27

4.2.7.6 char ServiceID [NAME SIZE]
The service ID. 27

4.2.7.7 IXML Document*
ActionRequest The DOM document describing the action.

. 27

4.2.7.8 IXML Document*
ActionResult The DOM document describing the result

of the action. 27

4.2.7.9 struct in addr

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 25

4 The API

CtrlPtIPAddr IP address of the control point requesting
this action. 27

4.2.7.10 IXML Document*
SoapHeader The DOM document containing the infor-

mation from the the SOAP header. 28

Returned as part of a UPNP CONTROL ACTION COMPLETE callback.

4.2.7.1

int ErrCode

The result of the operation.

The result of the operation.

4.2.7.2

int Socket

The socket number of the connection to the requestor.

The socket number of the connection to the requestor.

4.2.7.3

char ErrStr [LINE SIZE]

The error string in case of error.

The error string in case of error.

4.2.7.4

char ActionName [NAME SIZE]

The Action Name.

The Action Name.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 26

4 The API

4.2.7.5

char DevUDN [NAME SIZE]

The unique device ID.

The unique device ID.

4.2.7.6

char ServiceID [NAME SIZE]

The service ID.

The service ID.

4.2.7.7

IXML Document* ActionRequest

The DOM document describing the action.

The DOM document describing the action.

4.2.7.8

IXML Document* ActionResult

The DOM document describing the result of the action.

The DOM document describing the result of the action.

4.2.7.9

struct in addr CtrlPtIPAddr

IP address of the control point requesting this action.

IP address of the control point requesting this action.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 27

4 The API

4.2.7.10

IXML Document* SoapHeader

The DOM document containing the information from the the SOAP header.

The DOM document containing the information from the the SOAP header.

4.2.8

struct Upnp State Var Request

Represents the request for current value of a state variable in a service state table.

Members
4.2.8.1 int ErrCode The result of the operation. 28

4.2.8.2 int Socket The socket number of the connection to the
requestor. 29

4.2.8.3 char ErrStr [LINE SIZE] The error string in case of error. 29

4.2.8.4 char DevUDN [NAME SIZE]
The unique device ID. 29

4.2.8.5 char ServiceID [NAME SIZE]
The service ID. 29

4.2.8.6 char StateVarName [NAME SIZE]
The name of the variable. 29

4.2.8.7 struct in addr
CtrlPtIPAddr IP address of sender requesting the state

variable. 30

4.2.8.8 DOMString CurrentVal The current value of the variable. 30

Represents the request for current value of a state variable in a service state table.

4.2.8.1

int ErrCode

The result of the operation.

The result of the operation.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 28

4 The API

4.2.8.2

int Socket

The socket number of the connection to the requestor.

The socket number of the connection to the requestor.

4.2.8.3

char ErrStr [LINE SIZE]

The error string in case of error.

The error string in case of error.

4.2.8.4

char DevUDN [NAME SIZE]

The unique device ID.

The unique device ID.

4.2.8.5

char ServiceID [NAME SIZE]

The service ID.

The service ID.

4.2.8.6

char StateVarName [NAME SIZE]

The name of the variable.

The name of the variable.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 29

4 The API

4.2.8.7

struct in addr CtrlPtIPAddr

IP address of sender requesting the state variable.

IP address of sender requesting the state variable.

4.2.8.8

DOMString CurrentVal

The current value of the variable.

The current value of the variable. This needs to be allocated by the caller. When finished with
it, the SDK frees this DOMString.

4.2.9

struct Upnp State Var Complete

Represents the reply for the current value of a state variable in an asynchronous call.

Members
4.2.9.1 int ErrCode The result of the operation. 30

4.2.9.2 char CtrlUrl [NAME SIZE] The control URL for the service. 31

4.2.9.3 char StateVarName [NAME SIZE]
The name of the variable. 31

4.2.9.4 DOMString CurrentVal The current value of the variable or error
string in case of error. 31

Represents the reply for the current value of a state variable in an asynchronous call.

4.2.9.1

int ErrCode

The result of the operation.

The result of the operation.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 30

4 The API

4.2.9.2

char CtrlUrl [NAME SIZE]

The control URL for the service.

The control URL for the service.

4.2.9.3

char StateVarName [NAME SIZE]

The name of the variable.

The name of the variable.

4.2.9.4

DOMString CurrentVal

The current value of the variable or error string in case of error.

The current value of the variable or error string in case of error.

4.2.10

struct Upnp Event

Returned along with a UPNP EVENT RECEIVED callback.

Members
4.2.10.1 Upnp SID Sid The subscription ID for this subscription.

. 32

4.2.10.2 int EventKey The event sequence number. 32

4.2.10.3 IXML Document*
ChangedVariables The DOM tree representing the changes

generating the event. 32

Returned along with a UPNP EVENT RECEIVED callback.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 31

4 The API

4.2.10.1

Upnp SID Sid

The subscription ID for this subscription.

The subscription ID for this subscription.

4.2.10.2

int EventKey

The event sequence number.

The event sequence number.

4.2.10.3

IXML Document* ChangedVariables

The DOM tree representing the changes generating the event.

The DOM tree representing the changes generating the event.

4.2.11

struct Upnp Discovery

Returned in a UPNP DISCOVERY RESULT callback.

Members

4.2.11.1 int ErrCode The result code of the Up-
npSearchAsync call. 33

4.2.11.2 int Expires The expiration time of the advertisement.
. 33

4.2.11.3 char DeviceId [LINE SIZE] The unique device identifier. 33

4.2.11.4 char DeviceType [LINE SIZE]
The device type. 34

4.2.11.5 char ServiceType [LINE SIZE]

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 32

4 The API

The service type. 34

4.2.11.6 char ServiceVer [LINE SIZE]
The service version. 34

4.2.11.7 char Location [LINE SIZE] The URL to the UPnP description docu-
ment for the device. 34

4.2.11.8 char Os [LINE SIZE] The operating system the device is run-
ning. 34

4.2.11.9 char Date [LINE SIZE] Date when the response was generated. . 35

4.2.11.10 char Ext [LINE SIZE] Confirmation that the MAN header was
understood by the device. 35

4.2.11.11 SOCKADDRIN*
DestAddr The host address of the device responding

to the search. 35

Returned in a UPNP DISCOVERY RESULT callback.

4.2.11.1

int ErrCode

The result code of the UpnpSearchAsync call.

The result code of the UpnpSearchAsync call.

4.2.11.2

int Expires

The expiration time of the advertisement.

The expiration time of the advertisement.

4.2.11.3

char DeviceId [LINE SIZE]

The unique device identifier.

The unique device identifier.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 33

4 The API

4.2.11.4

char DeviceType [LINE SIZE]

The device type.

The device type.

4.2.11.5

char ServiceType [LINE SIZE]

The service type.

The service type.

4.2.11.6

char ServiceVer [LINE SIZE]

The service version.

The service version.

4.2.11.7

char Location [LINE SIZE]

The URL to the UPnP description document for the device.

The URL to the UPnP description document for the device.

4.2.11.8

char Os [LINE SIZE]

The operating system the device is running.

The operating system the device is running.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 34

4 The API

4.2.11.9

char Date [LINE SIZE]

Date when the response was generated.

Date when the response was generated.

4.2.11.10

char Ext [LINE SIZE]

Confirmation that the MAN header was understood by the device.

Confirmation that the MAN header was understood by the device.

4.2.11.11

SOCKADDRIN* DestAddr

The host address of the device responding to the search.

The host address of the device responding to the search.

4.2.12

struct Upnp Event Subscribe

Returned along with a UPNP EVENT SUBSCRIBE COMPLETE or
UPNP EVENT UNSUBSCRIBE COMPLETE callback.

Members
4.2.12.1 Upnp SID Sid The SID for this subscription. 36

4.2.12.2 int ErrCode The result of the operation. 36

4.2.12.3 char PublisherUrl [NAME SIZE]
The event URL being subscribed to or re-
moved from. 36

4.2.12.4 int TimeOut The actual subscription time (for subscrip-
tions only). 36

Returned along with a UPNP EVENT SUBSCRIBE COMPLETE or
UPNP EVENT UNSUBSCRIBE COMPLETE callback.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 35

4 The API

4.2.12.1

Upnp SID Sid

The SID for this subscription.

The SID for this subscription. For subscriptions, this only contains a valid SID if the
Upnp EventSubscribe.result field contains a UPNP E SUCCESS result code. For unsubscrip-
tions, this contains the SID from which the subscription is being unsubscribed.

4.2.12.2

int ErrCode

The result of the operation.

The result of the operation.

4.2.12.3

char PublisherUrl [NAME SIZE]

The event URL being subscribed to or removed from.

The event URL being subscribed to or removed from.

4.2.12.4

int TimeOut

The actual subscription time (for subscriptions only).

The actual subscription time (for subscriptions only).

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 36

4 The API

4.2.13

struct Upnp Subscription Request

Returned along with a UPNP EVENT SUBSCRIPTION REQUEST callback.

Members
4.2.13.1 char* ServiceId The identifier for the service being sub-

scribed to. 37

4.2.13.2 char* UDN Universal device name. 37

4.2.13.3 Upnp SID Sid The assigned subscription ID for this sub-
scription. 37

Returned along with a UPNP EVENT SUBSCRIPTION REQUEST callback.

4.2.13.1

char* ServiceId

The identifier for the service being subscribed to.

The identifier for the service being subscribed to.

4.2.13.2

char* UDN

Universal device name.

Universal device name.

4.2.13.3

Upnp SID Sid

The assigned subscription ID for this subscription.

The assigned subscription ID for this subscription.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 37

4 The API

4.2.14

struct UpnpVirtualDirCallbacks

The UpnpVirtualDirCallbacks structure contains the pointers to file-related callback
functions a device application can register to virtualize URLs.

Members
4.2.14.1 int (*get info) (IN const char* filename,

OUT struct File Info* info)
Called by the web server to query informa-
tion on a file. 38

4.2.14.2 UpnpWebFileHandle
(*open) (IN const char* filename,

IN enum UpnpOpenFileMode Mode)
Called by the web server to open a file. . 39

4.2.14.3 int (*read) (IN UpnpWebFileHandle fileHnd, OUT char* buf,
IN size t buflen)

Called by the web server to perform a se-
quential read from an open file. 39

4.2.14.4 int (*write) (IN UpnpWebFileHandle fileHnd, IN char* buf,
IN size t buflen)

Called by the web server to perform a se-
quential write to an open file. 40

4.2.14.5 int (*seek) (IN UpnpWebFileHandle fileHnd, IN long offset,
IN int origin)

Called by the web server to move the file
pointer, or offset, into an open file. . . . 40

4.2.14.6 int (*close) (IN UpnpWebFileHandle fileHnd)
Called by the web server to close a file
opened via the open callback. 40

The UpnpVirtualDirCallbacks structure contains the pointers to file-related callback functions
a device application can register to virtualize URLs.

4.2.14.1

int (*get info) (IN const char* filename, OUT struct File Info* info)

Called by the web server to query information on a file.

Called by the web server to query information on a file. The callback should return 0 on success
or -1 on an error.

Parameters: filename The name of the file to query.
info Pointer to a structure to store the information on

the file.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 38

4 The API

4.2.14.2

UpnpWebFileHandle (*open) (IN const char* filename, IN enum Upn-

pOpenFileMode Mode)

Called by the web server to open a file.

Called by the web server to open a file. The callback should return a valid handle if the file can
be opened. Otherwise, it should return NULL to signify an error.

Parameters: filename The name of the file to open.
Mode The mode in which to open the file. Valid values

are UPNP READ or UPNP WRITE.

4.2.14.3

int (*read) (IN UpnpWebFileHandle fileHnd, OUT char* buf, IN size t

buflen)

Called by the web server to perform a sequential read from an open file.

Called by the web server to perform a sequential read from an open file. The callback should copy
buflen bytes from the file into the buffer.

Return Value: [int] An integer representing one of the following:

• 0: The file contains no more data (EOF).

• >0: A successful read of the number of bytes
in the return code.

• <0: An error occurred reading the file.
Parameters: fileHnd The handle of the file to read.

buf The buffer in which to place the data.
buflen The size of the buffer (i.e. the number of bytes

to read).

4.2.14.4

int (*write) (IN UpnpWebFileHandle fileHnd, IN char* buf, IN size t

buflen)

Called by the web server to perform a sequential write to an open file.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 39

4 The API

Called by the web server to perform a sequential write to an open file. The callback should write
buflen bytes into the file from the buffer. It should return the actual number of bytes written,
which might be less than buflen in the case of a write error.

Parameters: fileHnd The handle of the file to write.
buf The buffer with the bytes to write.
buflen The number of bytes to write.

4.2.14.5

int (*seek) (IN UpnpWebFileHandle fileHnd, IN long offset, IN int origin

)

Called by the web server to move the file pointer, or offset, into an open file.

Called by the web server to move the file pointer, or offset, into an open file. The origin parameter
determines where to start moving the file pointer. A value of SEEK CUR moves the file pointer
relative to where it is. The offset parameter can be either positive (move forward) or negative
(move backward). SEEK END moves relative to the end of the file. A positive offset extends the
file. A negative offset moves backward in the file. Finally, SEEK SET moves to an absolute position
in the file. In this case, offset must be positive. The callback should return 0 on a successful seek
or a non-zero value on an error.

Parameters: fileHnd The handle of the file to move the file pointer.
offset The number of bytes to move in the file. Posi-

tive values move foward and negative values move
backward. Note that this must be positive if the
origin is SEEK SET.

origin The position to move relative to. It can be
SEEK CUR to move relative to the current posi-
tion, SEEK END to move relative to the end of the
file, or SEEK SET to specify an absolute offset.

4.2.14.6

int (*close) (IN UpnpWebFileHandle fileHnd)

Called by the web server to close a file opened via the open callback.

Called by the web server to close a file opened via the open callback. It should return 0 on success,
or a non-zero value on an error.

Parameters: fileHnd The handle of the file to close.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 40

4 The API

4.2.15

typedef int (*Upnp FunPtr) (IN Upnp EventType EventType, IN void*

Event, IN void* Cookie)

All callback functions share the same prototype, documented below.

All callback functions share the same prototype, documented below. Note that any memory passed
to the callback function is valid only during the callback and should be copied if it needs to persist.
This callback function needs to be thread safe. The context of the callback is always on a valid
thread context and standard synchronization methods can be used. Note, however, because of
this the callback cannot call SDK functions unless explicitly noted.

int CallbackFxn(Upnp_EventType EventType, void* Event, void* Cookie);

where EventType is the event that triggered the callback, Event is a structure that denotes
event-specific information for that event, and Cookie is the user data passed when the callback
was registered.

See Upnp EventType for more information on the callback values and the associated Event
parameter.

The return value of the callback is currently ignored. It may be used in the future to commu-
nicate results back to the SDK.

4.3

Initialization and Registration

Names

4.3.1 EXPORT SPEC int
UpnpInit (IN const char* HostIP,

IN unsigned short DestPort)
Initializes the Linux SDK for UPnP De-
vices. 43

4.3.2 EXPORT SPEC int
UpnpFinish () Terminates the Linux SDK for UPnP De-

vices. 44

4.3.3 EXPORT SPEC unsigned short
UpnpGetServerPort (void)

If ’0’ is used as the port number in Up-
npInit, then this function can be used
to retrieve the actual port allocated to the
SDK. 44

4.3.4 EXPORT SPEC char*

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 41

4 The API

UpnpGetServerIpAddress (void)
If NULL is used as the IP address in Up-
npInit, then this function can be used
to retrieve the actual interface address on
which device is running. 44

4.3.5 EXPORT SPEC int
UpnpRegisterClient (IN Upnp FunPtr Callback,

IN const void* Cookie,
OUT UpnpClient Handle* Hnd)
UpnpRegisterClient registers a control
point application with the SDK. 45

4.3.6 EXPORT SPEC int
UpnpRegisterRootDevice (IN const char* DescUrl,

IN Upnp FunPtr Callback,
IN const void* Cookie,
OUT UpnpDevice Handle* Hnd)

UpnpRegisterRootDevice registers a
device application with the SDK. 45

4.3.7 EXPORT SPEC int
UpnpRegisterRootDevice2 (IN Upnp DescType

descriptionType,
IN const char* description,
IN size t bufferLen,
IN int config baseURL,
IN Upnp FunPtr Fun,
IN const void* Cookie,
OUT UpnpDevice Handle* Hnd)

UpnpRegisterRootDevice2 is similar
to UpnpRegisterRootDevice, except
that it also allows the description docu-
ment to be specified as a file or a memory
buffer. 47

4.3.8 EXPORT SPEC int
UpnpUnRegisterClient (IN UpnpClient Handle Hnd)

UpnpUnRegisterClient unregisters a
control point application, unsubscribing
all active subscriptions. 49

4.3.9 EXPORT SPEC int
UpnpUnRegisterRootDevice (IN UpnpDevice Handle)

Unregisters a root device registered with
UpnpRegisterRootDevice or Upn-
pRegisterRootDevice2. 50

4.3.10 EXPORT SPEC int
UpnpSetContentLength (IN UpnpClient Handle Hnd,

IN int contentLength)
OBSOLETE METHOD : use UpnpSet-
MaxContentLength instead. 50

4.3.11 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 42

4 The API

UpnpSetMaxContentLength (IN size t contentLength)
Sets the maximum content-length that the
SDK will process on an incoming SOAP
requests or responses. 50

4.3.1

EXPORT SPEC int UpnpInit (IN const char* HostIP, IN unsigned short

DestPort)

Initializes the Linux SDK for UPnP Devices.

Initializes the Linux SDK for UPnP Devices. This function must be called before any other API
function can be called. It should be called only once. Subsequent calls to this API return a
UPNP E INIT error code.

Optionally, the application can specify a host IP address (in the case of a multi-homed con-
figuration) and a port number to use for all UPnP operations. Since a port number can be used
only by one process, multiple processes using the SDK must specify different port numbers.

If unspecified, the SDK will use the first adapter’s IP address and an arbitrary port.

This call is synchronous.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to initialize the SDK.

• UPNP E INIT: The SDK is already initial-
ized.

• UPNP E INIT FAILED: The SDK initializa-
tion failed for an unknown reason.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E LISTEN: An error occurred listening
to a socket.

• UPNP E OUTOF SOCKET: An error ocurred
creating a socket.

• UPNP E INTERNAL ERROR: An internal error
ocurred.

Parameters: HostIP The host IP address to use, in string format, for
example ”192.168.0.1”, or NULL to use the first
adapter’s IP address.

DestPort The destination port number to use. 0 will pick
an arbitrary free port.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 43

4 The API

4.3.2

EXPORT SPEC int UpnpFinish ()

Terminates the Linux SDK for UPnP Devices.

Terminates the Linux SDK for UPnP Devices. This function must be the last API function called.
It should be called only once. Subsequent calls to this API return a UPNP E FINISH error code.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E FINISH: The SDK is already termi-
nated or it is not initialized.

4.3.3

EXPORT SPEC unsigned short UpnpGetServerPort (void)

If ’0’ is used as the port number in UpnpInit, then this function can be used to retrieve the
actual port allocated to the SDK.

If ’0’ is used as the port number in UpnpInit, then this function can be used to retrieve the
actual port allocated to the SDK. If UpnpInit has not succeeded then 0 is returned.

Return Value: [unsigned short] The port on which an internal server is
listening for UPnP related requests.

4.3.4

EXPORT SPEC char* UpnpGetServerIpAddress (void)

If NULL is used as the IP address in UpnpInit, then this function can be used to retrieve the
actual interface address on which device is running.

If NULL is used as the IP address in UpnpInit, then this function can be used to retrieve the
actual interface address on which device is running. If UpnpInit has not succeeded then NULL is
returned.

Return Value: [char*] The IP address on which an internal server is
listening for UPnP related requests.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 44

4 The API

4.3.5

EXPORT SPEC int UpnpRegisterClient (IN Upnp FunPtr Callback,

IN const void* Cookie, OUT

UpnpClient Handle* Hnd)

UpnpRegisterClient registers a control point application with the SDK.

UpnpRegisterClient registers a control point application with the SDK. A control point appli-
cation cannot make any other API calls until it registers using this function.

UpnpRegisterClient is a synchronous call and generates no callbacks. Callbacks can occur
as soon as this function returns.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E FINISH: The SDK is already termi-
nated or is not initialized.

• UPNP E INVALID PARAM: Either Callback or
Hnd is not a valid pointer.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to register this control point.

Parameters: Callback Pointer to a function for receiving asynchronous
events.

Cookie Pointer to user data returned with the callback
function when invoked.

Hnd Pointer to a variable to store the new control
point handle.

4.3.6

EXPORT SPEC int UpnpRegisterRootDevice (IN const char* Des-

cUrl, IN Upnp FunPtr

Callback, IN const void*
Cookie, OUT UpnpDe-

vice Handle* Hnd)

UpnpRegisterRootDevice registers a device application with the SDK.

UpnpRegisterRootDevice registers a device application with the SDK. A device application
cannot make any other API calls until it registers using this function. Device applications can

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 45

4 The API

also register as control points (see UpnpRegisterClient to get a control point handle to perform
control point functionality).

UpnpRegisterRootDevice is synchronous and does not generate any callbacks. Callbacks
can occur as soon as this function returns.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E FINISH: The SDK is already termi-
nated or is not initialized.

• UPNP E INVALID DESC: The description doc-
ument was not a valid device description.

• UPNP E INVALID URL: The URL for the de-
scription document is not valid.

• UPNP E INVALID PARAM: Either Callback or
Hnd is not a valid pointer or DescURL is
NULL.

• UPNP E NETWORK ERROR: A network error oc-
curred.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting the socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

• UPNP E OUTOF MEMORY: There are insuffi-
cient resources to register this root device.

Parameters: DescUrl Pointer to a string containing the description
URL for this root device instance.

Callback Pointer to the callback function for receiving
asynchronous events.

Cookie Pointer to user data returned with the callback
function when invoked.

Hnd Pointer to a variable to store the new device han-
dle.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 46

4 The API

4.3.7

EXPORT SPEC int UpnpRegisterRootDevice2 (IN Upnp DescType

descriptionType, IN

const char* description,
IN size t bufferLen, IN
int config baseURL,
IN Upnp FunPtr

Fun, IN const void*
Cookie, OUT Upn-

pDevice Handle* Hnd

)

UpnpRegisterRootDevice2 is similar to UpnpRegisterRootDevice, except that it also
allows the description document to be specified as a file or a memory buffer.

UpnpRegisterRootDevice2 is similar to UpnpRegisterRootDevice, except that it also al-
lows the description document to be specified as a file or a memory buffer. The description can
also be configured to have the correct IP and port address.

NOTE: For the configuration to be functional, the internal web server MUST be present.
In addition, the web server MUST be activated (using UpnpSetWebServerRootDir) before
calling this function. The only condition where the web server can be absent is if the description
document is specified as a URL and no configuration is required (i.e. config baseURL = 0.)

UpnpRegisterRootDevice2 is synchronous and does not generate any callbacks. Callbacks
can occur as soon as this function returns.

Examples of using different types of description documents:

1) Description specified as a URL:
descriptionType == UPNPREG_URL_DESC
description is the URL
bufferLen = 0 (ignored)

2) Description specified as a file:
descriptionType == UPNPREG_FILENAME_DESC
description is a filename
bufferLen = 0 (ignored)

3) Description specified as a memory buffer:
descriptionType == UPNPREG_BUF_DESC
description is pointer to a memory buffer
bufferLen == length of memory buffer

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 47

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E FINISH: The SDK is already termi-
nated or is not initialized.

• UPNP E INVALID DESC: The description doc-
ument is not a valid device description.

• UPNP E INVALID PARAM: Either Callback or
Hnd is not a valid pointer or DescURL is
NULL.

• UPNP E NETWORK ERROR: A network error oc-
curred.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting the socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

• UPNP E OUTOF MEMORY: There are insuffi-
cient resources to register this root device.

• UPNP E URL TOO BIG: Length of the URL is
bigger than the internal buffer.

• UPNP E FILE NOT FOUND: The description
file could not be found.

• UPNP E FILE READ ERROR: An error oc-
curred reading the description file.

• UPNP E INVALID URL: The URL to the de-
scription document is invalid.

• UPNP E EXT NOT XML: The URL to the de-
scription document or file should have a
.xml extension.

• UPNP E NO WEB SERVER: The internal web
server has been compiled out; the SDK can-
not configure itself from the description doc-
ument.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 48

4 The API

Parameters: descriptionType The type of the description document.
description Treated as a URL, file name or memory buffer

depending on description type.
bufferLen The length of memory buffer if passing a descrip-

tion in a buffer, otherwise it is ignored.
config baseURL If nonzero, URLBase of description document is

configured and the description is served using the
internal web server.

Fun Pointer to the callback function for receiving
asynchronous events.

Cookie Pointer to user data returned with the callback
function when invoked.

Hnd Pointer to a variable to store the new device han-
dle.

4.3.8

EXPORT SPEC int UpnpUnRegisterClient (IN UpnpClient Handle

Hnd)

UpnpUnRegisterClient unregisters a control point application, unsubscribing all active
subscriptions.

UpnpUnRegisterClient unregisters a control point application, unsubscribing all active sub-
scriptions. After this call, the UpnpClient Handle is no longer valid.

UpnpUnRegisterClient is a synchronous call and generates no callbacks. The SDK gener-
ates no more callbacks after this function returns.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

Parameters: Hnd The handle of the control point instance to un-
register.

4.3.9

EXPORT SPEC int UpnpUnRegisterRootDevice (IN UpnpDe-
vice Handle)

Unregisters a root device registered with UpnpRegisterRootDevice or
UpnpRegisterRootDevice2.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 49

4 The API

Unregisters a root device registered with UpnpRegisterRootDevice or UpnpRegisterRoot-
Device2. After this call, the UpnpDevice Handle is no longer valid. For all advertisements
that have not yet expired, the SDK sends a device unavailable message automatically.

UpnpUnRegisterRootDevice is a synchronous call and generates no callbacks. Once this
call returns, the SDK will no longer generate callbacks to the application.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

Parameters: UpnpDevice Handle The handle of the root device instance to unreg-
ister.

4.3.10

EXPORT SPEC int UpnpSetContentLength (IN UpnpClient Handle

Hnd, IN int contentLength

)

OBSOLETE METHOD : use UpnpSetMaxContentLength instead.

OBSOLETE METHOD : use UpnpSetMaxContentLength instead. Warning: the Handle
argument provided here is not used, so the effect of this function is global to the SDK (= same as
UpnpSetMaxContentLength).

4.3.11

EXPORT SPEC int UpnpSetMaxContentLength (IN size t con-
tentLength)

Sets the maximum content-length that the SDK will process on an incoming SOAP requests or
responses.

Sets the maximum content-length that the SDK will process on an incoming SOAP requests or
responses. This API allows devices that have memory constraints to exhibit consistent behaviour
if the size of the incoming SOAP message exceeds the memory that device can allocate. The
default maximum content-length is DEFAULT SOAP CONTENT LENGTH = 16K bytes.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 50

4 The API

Parameters: contentLength The maximum permissible content length for in-
coming SOAP actions, in bytes.

4.4

Discovery

Names
4.4.1 EXPORT SPEC int

UpnpSearchAsync (IN UpnpClient Handle Hnd, IN int Mx,
IN const char* Target,
IN const void* Cookie)
UpnpSearchAsync searches for devices
matching the given search target. 51

4.4.2 EXPORT SPEC int
UpnpSendAdvertisement (IN UpnpDevice Handle Hnd,

IN int Exp)
UpnpSendAdvertisement sends out
the discovery announcements for all de-
vices and services for a device. 52

4.4.1

EXPORT SPEC int UpnpSearchAsync (IN UpnpClient Handle Hnd, IN

int Mx, IN const char* Target,

IN const void* Cookie)

UpnpSearchAsync searches for devices matching the given search target.

UpnpSearchAsync searches for devices matching the given search target. The function returns
immediately and the SDK calls the default callback function, registered during the UpnpReg-
isterClient call, for each matching root device, device, or service. The application specifies the
search type by the Target parameter.

Note that there is no way for the SDK to distinguish which client instance issued a particular
search. Therefore, the client can get search callbacks that do not match the original criteria of the
search. Also, the application will receive multiple callbacks for each search.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID PARAM: Target is NULL.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 51

4 The API

Parameters: Hnd The handle of the client performing the search.
Mx The time, in seconds, to wait for responses. If

the time is greater than MAX SEARCH TIME then
the time is set to MAX SEARCH TIME. If the time
is less than MIN SEARCH TIME then the time is set
to MIN SEARCH TIME.

Target The search target as defined in the UPnP Device
Architecture v1.0 specification.

Cookie The user data to pass when the callback function
is invoked.

4.4.2

EXPORT SPEC int UpnpSendAdvertisement (IN UpnpDevice Handle

Hnd, IN int Exp)

UpnpSendAdvertisement sends out the discovery announcements for all devices and services
for a device.

UpnpSendAdvertisement sends out the discovery announcements for all devices and services
for a device. Each announcement is made with the same expiration time.

UpnpSendAdvertisement is a synchronous call.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

• UPNP E OUTOF MEMORY: There are insuffi-
cient resources to send future advertise-
ments.

Parameters: Hnd The device handle for which to send out the an-
nouncements.

Exp The expiration age, in seconds, of the announce-
ments.

4.5

Control

Names

4.5.1 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 52

4 The API

UpnpGetServiceVarStatus (IN UpnpClient Handle Hnd,
IN const char* ActionURL,
IN const char* VarName,
OUT DOMString* StVarVal)

UpnpGetServiceVarStatus queries the
state of a state variable of a service on an-
other device. 54

4.5.2 EXPORT SPEC int
UpnpGetServiceVarStatusAsync (IN UpnpClient Handle

Hnd, IN const char*
ActionURL,
IN const char* VarName,
IN Upnp FunPtr Fun,
IN const void* Cookie)

UpnpGetServiceVarStatusAsync
queries the state of a variable of a service,
generating a callback when the operation
is complete. 55

4.5.3 EXPORT SPEC int
UpnpSendAction (IN UpnpClient Handle Hnd,

IN const char* ActionURL,
IN const char* ServiceType,
IN const char* DevUDN,
IN IXML Document* Action,
OUT IXML Document** RespNode)

UpnpSendAction sends a message to
change a state variable in a service. 56

4.5.4 EXPORT SPEC int
UpnpSendActionEx (IN UpnpClient Handle Hnd,

IN const char* ActionURL,
IN const char* ServiceType,
IN const char* DevUDN,
IN IXML Document* Header,
IN IXML Document* Action,
OUT IXML Document** RespNode)
UpnpSendActionEx sends a message to
change a state variable in a service. 57

4.5.5 EXPORT SPEC int
UpnpSendActionAsync (IN UpnpClient Handle Hnd,

IN const char* ActionURL,
IN const char* ServiceType,
IN const char* DevUDN,
IN IXML Document* Action,
IN Upnp FunPtr Fun,
IN const void* Cookie)

UpnpSendActionAsync sends a mes-
sage to change a state variable in a service,
generating a callback when the operation is
complete. 58

4.5.6 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 53

4 The API

UpnpSendActionExAsync (IN UpnpClient Handle Hnd,
IN const char* ActionURL,
IN const char* ServiceType,
IN const char* DevUDN,
IN IXML Document* Header,
IN IXML Document* Action,
IN Upnp FunPtr Fun,
IN const void* Cookie)

UpnpSendActionExAsync sends a
message to change a state variable in a
service, generating a callback when the
operation is complete. 60

4.5.1

EXPORT SPEC int UpnpGetServiceVarStatus (IN Upn-

pClient Handle Hnd,

IN const char* Ac-
tionURL, IN const

char* VarName, OUT

DOMString* StVarVal

)

UpnpGetServiceVarStatus queries the state of a state variable of a service on another device.

UpnpGetServiceVarStatus queries the state of a state variable of a service on another device.
This is a synchronous call. A positive return value indicates a SOAP error code, whereas a negative
return code indicates an SDK error code. Note that the use of this function is deprecated
by the UPnP Forum.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 54

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: ActionUrl is not a
valid URL.

• UPNP E INVALID DESC: The XML document
was not found or it does not contain a valid
XML description.

• UPNP E INVALID PARAM: StVarVal is not a
valid pointer or VarName or ActionUrl is
NULL.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

• UPNP SOAP E INVALID VAR: The given vari-
able is invalid according to the device.

Parameters: Hnd The handle of the control point.
ActionURL The URL of the service.
VarName The name of the variable to query.
StVarVal The pointer to store the value for VarName.

The SDK allocates this string and the caller needs
to free it using ixmlFreeDOMString.

4.5.2

EXPORT SPEC int UpnpGetServiceVarStatusAsync (IN Upn-
pClient Handle Hnd, IN const char* ActionURL, IN const char* VarName,
IN Upnp FunPtr Fun, IN const void* Cookie)

UpnpGetServiceVarStatusAsync queries the state of a variable of a service, generating a
callback when the operation is complete.

UpnpGetServiceVarStatusAsync queries the state of a variable of a service, generating a
callback when the operation is complete. Note that the use of this function is deprecated
by the UPnP Forum.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 55

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: The ActionUrl is
not a valid URL.

• UPNP E INVALID PARAM: VarName, Fun or
ActionUrl is not a valid pointer.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the control point.
ActionURL The URL of the service.
VarName The name of the variable to query.
Fun Pointer to a callback function to be invoked when

the operation is complete.
Cookie Pointer to user data to pass to the callback func-

tion when invoked.

4.5.3

EXPORT SPEC int UpnpSendAction (IN UpnpClient Handle Hnd, IN

const char* ActionURL, IN const

char* ServiceType, IN const char*

DevUDN, IN IXML Document*

Action, OUT IXML Document**

RespNode)

UpnpSendAction sends a message to change a state variable in a service.

UpnpSendAction sends a message to change a state variable in a service. This is a synchronous
call that does not return until the action is complete.

Note that a positive return value indicates a SOAP-protocol error code. In this case, the error
description can be retrieved from RespNode. A negative return value indicates an SDK error.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 56

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: ActionUrl is not a
valid URL.

• UPNP E INVALID ACTION: This action is not
valid.

• UPNP E INVALID DEVICE: DevUDN is not
a valid device.

• UPNP E INVALID PARAM: ServiceType, Ac-
tion, ActionUrl, or RespNode is not a
valid pointer.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the control point sending the ac-
tion.

ActionURL The action URL of the service.
ServiceType The type of the service.
DevUDN This parameter is ignored and must beNULL.
Action The DOM document for the action.
RespNode The DOM document for the response to the ac-

tion. The SDK allocates this document and the
caller needs to free it.

4.5.4

EXPORT SPEC int UpnpSendActionEx (IN UpnpClient Handle Hnd,

IN const char* ActionURL,

IN const char* ServiceType,

IN const char* DevUDN, IN

IXML Document* Header,

IN IXML Document* Action,

OUT IXML Document** Re-
spNode)

UpnpSendActionEx sends a message to change a state variable in a service.

UpnpSendActionEx sends a message to change a state variable in a service. This is a syn-
chronous call that does not return until the action is complete.

Note that a positive return value indicates a SOAP-protocol error code. In this case, the error
description can be retrieved from RespNode. A negative return value indicates an SDK error.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 57

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: ActionUrl is not a
valid URL.

• UPNP E INVALID ACTION: This action is not
valid.

• UPNP E INVALID DEVICE: DevUDN is not
a valid device.

• UPNP E INVALID PARAM: ServiceType, Ac-
tion, ActionUrl, or RespNode is not a
valid pointer.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the control point sending the ac-
tion.

ActionURL The action URL of the service.
ServiceType The type of the service.
DevUDN This parameter is ignored and must beNULL.
Header The DOM document for the SOAP header. This

may be NULL if the header is not required.
Action The DOM document for the action.
RespNode The DOM document for the response to the ac-

tion. The SDK allocates this document and the
caller needs to free it.

4.5.5

EXPORT SPEC int UpnpSendActionAsync (IN UpnpClient Handle

Hnd, IN const char*
ActionURL, IN const

char* ServiceType, IN

const char* DevUDN, IN

IXML Document* Action,
IN Upnp FunPtr Fun, IN

const void* Cookie)

UpnpSendActionAsync sends a message to change a state variable in a service, generating a
callback when the operation is complete.

UpnpSendActionAsync sends a message to change a state variable in a service, generating

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 58

4 The API

a callback when the operation is complete. See UpnpSendAction for comments on positive
return values. These positive return values are sent in the event struct associated with the
UPNP CONTROL ACTION COMPLETE event.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: ActionUrl is an in-
valid URL.

• UPNP E INVALID DEVICE: DevUDN is an
invalid device.

• UPNP E INVALID PARAM: Either Fun is not
a valid callback function or ServiceType,
Act, or ActionUrl is NULL.

• UPNP E INVALID ACTION: This action is not
valid.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the control point sending the ac-
tion.

ActionURL The action URL of the service.
ServiceType The type of the service.
DevUDN This parameter is ignored and must beNULL.
Action The DOM document for the action to perform on

this device.
Fun Pointer to a callback function to be invoked when

the operation completes.
Cookie Pointer to user data that to be passed to the call-

back when invoked.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 59

4 The API

4.5.6

EXPORT SPEC int UpnpSendActionExAsync (IN UpnpClient Handle

Hnd, IN const char*
ActionURL, IN const

char* ServiceType, IN

const char* DevUDN,

IN IXML Document*
Header, IN

IXML Document* Ac-
tion, IN Upnp FunPtr

Fun, IN const void*

Cookie)

UpnpSendActionExAsync sends a message to change a state variable in a service, generating
a callback when the operation is complete.

UpnpSendActionExAsync sends a message to change a state variable in a service, generat-
ing a callback when the operation is complete. See UpnpSendAction for comments on posi-
tive return values. These positive return values are sent in the event struct associated with the
UPNP CONTROL ACTION COMPLETE event.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: ActionUrl is an in-
valid URL.

• UPNP E INVALID DEVICE: DevUDN is an
invalid device.

• UPNP E INVALID PARAM: Either Fun is not
a valid callback function or ServiceType,
Act, or ActionUrl is NULL.

• UPNP E INVALID ACTION: This action is not
valid.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 60

4 The API

Parameters: Hnd The handle of the control point sending the ac-
tion.

ActionURL The action URL of the service.
ServiceType The type of the service.
DevUDN This parameter is ignored and must beNULL.
Header The DOM document for the SOAP header. This

may be NULL if the header is not required.
Action The DOM document for the action to perform on

this device.
Fun Pointer to a callback function to be invoked when

the operation completes.
Cookie Pointer to user data that to be passed to the call-

back when invoked.

4.6

Eventing

Names

4.6.1 EXPORT SPEC int
UpnpAcceptSubscription (IN UpnpDevice Handle Hnd,

IN const char* DevID,
IN const char* ServID,
IN const char** VarName,
IN const char** NewVal,
IN int cVariables,
IN Upnp SID SubsId)

UpnpAcceptSubscription accepts a
subscription request and sends out the
current state of the eventable variables for
a service. 64

4.6.2 EXPORT SPEC int
UpnpAcceptSubscriptionExt (IN UpnpDevice Handle Hnd,

IN const char* DevID,
IN const char* ServID,
IN IXML Document* PropSet,
IN Upnp SID SubsId)

UpnpAcceptSubscriptionExt is simi-
lar to UpnpAcceptSubscription except
that it takes a DOM document for the
variables to event rather than an array of
strings. 64

4.6.3 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 61

4 The API

UpnpNotify (IN UpnpDevice Handle, IN const char* DevID,
IN const char* ServID,
IN const char** VarName,
IN const char** NewVal, IN int cVariables)

UpnpNotify sends out an event change
notification to all control points subscribed
to a particular service. 65

4.6.4 EXPORT SPEC int
UpnpNotifyExt (IN UpnpDevice Handle,

IN const char* DevID,
IN const char* ServID,
IN IXML Document* PropSet)

UpnpNotifyExt is similar to UpnpNo-
tify except that it takes a DOM docu-
ment for the event rather than an array
of strings. 66

4.6.5 EXPORT SPEC int
UpnpRenewSubscription (IN UpnpClient Handle Hnd,

INOUT int* TimeOut,
IN Upnp SID SubsId)

UpnpRenewSubscription renews a
subscription that is about to expire. 67

4.6.6 EXPORT SPEC int
UpnpRenewSubscriptionAsync (IN UpnpClient Handle

Hnd, IN int TimeOut,
IN Upnp SID SubsId,
IN Upnp FunPtr Fun,
IN const void* Cookie)

UpnpRenewSubscriptionAsync re-
news a subscription that is about to
expire, generating a callback when the
operation is complete. 68

4.6.7 EXPORT SPEC int
UpnpSetMaxSubscriptions (IN UpnpDevice Handle Hnd,

IN int MaxSubscriptions)
UpnpSetMaxSubscriptions sets the
maximum number of subscriptions ac-
cepted per service. 71

4.6.8 EXPORT SPEC int
UpnpSetMaxSubscriptionTimeOut (IN UpnpDevice Handle

Hnd, IN int MaxSub-
scriptionTimeOut
)

UpnpSetMaxSubscriptionTimeOut
sets the maximum time-out accepted for a
subscription request or renewal. 71

4.6.9 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 62

4 The API

UpnpSubscribe (IN UpnpClient Handle Hnd,
IN const char* PublisherUrl,
INOUT int* TimeOut,
OUT Upnp SID SubsId)

UpnpSubscribe registers a control point
to receive event notifications from another
device. 72

4.6.10 EXPORT SPEC int
UpnpSubscribeAsync (IN UpnpClient Handle Hnd,

IN const char* PublisherUrl,
IN int TimeOut,
IN Upnp FunPtr Fun,
IN const void* Cookie)

UpnpSubscribeAsync performs the
same operation as UpnpSubscribe, but
returns immediately and calls the regis-
tered callback function when the operation
is complete. 74

4.6.11 EXPORT SPEC int
UpnpUnSubscribe (IN UpnpClient Handle Hnd,

IN Upnp SID SubsId)
UpnpUnSubscribe removes the sub-
scription of a control point from a service
previously subscribed to using UpnpSub-
scribe or UpnpSubscribeAsync. 76

4.6.12 EXPORT SPEC int
UpnpUnSubscribeAsync (IN UpnpClient Handle Hnd,

IN Upnp SID SubsId,
IN Upnp FunPtr Fun,
IN const void* Cookie)

UpnpUnSubscribeAsync removes
a subscription of a control point from
a service previously subscribed to us-
ing UpnpSubscribe or UpnpSub-
scribeAsync, generating a callback
when the operation is complete. 77

4.6.1

EXPORT SPEC int UpnpAcceptSubscription (IN UpnpDevice Handle

Hnd, IN const char*

DevID, IN const char*

ServID, IN const char**
VarName, IN const

char** NewVal, IN int
cVariables, IN Upnp SID

SubsId)

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 63

4 The API

UpnpAcceptSubscription accepts a subscription request and sends out the current state of the
eventable variables for a service.

UpnpAcceptSubscription accepts a subscription request and sends out the current state of the
eventable variables for a service. The device application should call this function when it receives
a UPNP EVENT SUBSCRIPTION REQUEST callback. This function is synchronous and generates no
callbacks.

UpnpAcceptSubscription can be called during the execution of a callback function.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

• UPNP E INVALID SERVICE: The De-
vId/ServId pair refers to an invalid
service.

• UPNP E INVALID SID: The specified sub-
scription ID is not valid.

• UPNP E INVALID PARAM: Either VarName,
NewVal, DevID, or ServID is not a valid
pointer or cVariables is less than zero.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the device.
DevID The device ID of the subdevice of the service gen-

erating the event.
ServID The unique service identifier of the service gener-

ating the event.
VarName Pointer to an array of event variables.
NewVal Pointer to an array of values for the event vari-

ables.
cVariables The number of event variables in VarName.
SubsId The subscription ID of the newly registered con-

trol point.

4.6.2

EXPORT SPEC int UpnpAcceptSubscriptionExt (IN UpnpDe-
vice Handle Hnd, IN const char* DevID, IN const char* ServID, IN
IXML Document* PropSet, IN Upnp SID SubsId)

UpnpAcceptSubscriptionExt is similar to UpnpAcceptSubscription except that it takes a
DOM document for the variables to event rather than an array of strings.

UpnpAcceptSubscriptionExt is similar to UpnpAcceptSubscription except that it takes

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 64

4 The API

a DOM document for the variables to event rather than an array of strings. This function is
sychronous and generates no callbacks.

UpnpAcceptSubscriptionExt can be called during the execution of a callback function.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

• UPNP E INVALID SERVICE: The De-
vId/ServId pair refers to an invalid
service.

• UPNP E INVALID SID: The specified sub-
scription ID is not valid.

• UPNP E INVALID PARAM: Either VarName,
NewVal, DevID, ServID, or PropSet is
not a valid pointer.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the device.
DevID The device ID of the subdevice of the service gen-

erating the event.
ServID The unique service identifier of the service gener-

ating the event.
PropSet The DOM document for the property set. Prop-

erty set documents must conform tothe XML
schema defined in section 4.3 of theUniversal Plug
and Play Device Architecturespecification.

SubsId The subscription ID of the newly registered con-
trol point.

4.6.3

EXPORT SPEC int UpnpNotify (IN UpnpDevice Handle, IN const char*

DevID, IN const char* ServID, IN const

char** VarName, IN const char** New-

Val, IN int cVariables)

UpnpNotify sends out an event change notification to all control points subscribed to a
particular service.

UpnpNotify sends out an event change notification to all control points subscribed to a particular
service. This function is synchronous and generates no callbacks.

UpnpNotify may be called during a callback function to send out a notification.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 65

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

• UPNP E INVALID SERVICE: The De-
vId/ServId pair refers to an invalid
service.

• UPNP E INVALID PARAM: Either VarName,
NewVal, DevID, or ServID is not a valid
pointer or cVariables is less than zero.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: UpnpDevice Handle The handle to the device sending the event.
DevID The device ID of the subdevice of the service gen-

erating the event.
ServID The unique identifier of the service generating the

event.
VarName Pointer to an array of variables that have

changed.
NewVal Pointer to an array of new values for those vari-

ables.
cVariables The count of variables included in this notifica-

tion.

4.6.4

EXPORT SPEC int UpnpNotifyExt (IN UpnpDevice Handle, IN

const char* DevID, IN const

char* ServID, IN IXML Document*

PropSet)

UpnpNotifyExt is similar to UpnpNotify except that it takes a DOM document for the event
rather than an array of strings.

UpnpNotifyExt is similar to UpnpNotify except that it takes a DOM document for the event
rather than an array of strings. This function is synchronous and generates no callbacks.

UpnpNotifyExt may be called during a callback function to send out a notification.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 66

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

• UPNP E INVALID SERVICE: The De-
vId/ServId pair refers to an invalid
service.

• UPNP E INVALID PARAM: Either VarName,
NewVal, DevID, ServID, or PropSet is
not a valid pointer or cVariables is less
than zero.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: UpnpDevice Handle The handle to the device sending the event.
DevID The device ID of the subdevice of the service gen-

erating the event.
ServID The unique identifier of the service generating the

event.
PropSet The DOM document for the property set. Prop-

erty set documents must conform to the XML
schema defined in section 4.3 of the Universal
Plug and Play Device Architecture specification.

4.6.5

EXPORT SPEC int UpnpRenewSubscription (IN UpnpClient Handle

Hnd, INOUT int* Time-
Out, IN Upnp SID Sub-

sId)

UpnpRenewSubscription renews a subscription that is about to expire.

UpnpRenewSubscription renews a subscription that is about to expire. This function is syn-
chronous.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 67

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID PARAM: Timeout is not a
valid pointer.

• UPNP E INVALID SID: The SID being passed
to this function is not a valid subscription
ID.

• UPNP E NETWORK ERROR: A network error oc-
cured.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting to PublisherUrl.

• UPNP E OUTOF SOCKET: An error occurred
creating a socket.

• UPNP E BAD RESPONSE: An error occurred in
response from the publisher.

• UPNP E SUBSCRIBE UNACCEPTED: The pub-
lisher refused the subscription renew.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the control point that is renewing
the subscription.

TimeOut Pointer to a variable containing the requested
subscription time. Upon return, it contains the
actual renewal time.

SubsId The ID for the subscription to renew.

4.6.6

EXPORT SPEC int UpnpRenewSubscriptionAsync (IN Upn-
pClient Handle Hnd, IN int TimeOut, IN Upnp SID SubsId, IN
Upnp FunPtr Fun, IN const void* Cookie)

UpnpRenewSubscriptionAsync renews a subscription that is about to expire, generating a
callback when the operation is complete.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 68

4 The API

UpnpRenewSubscriptionAsync renews a subscription that is about to expire, generating a
callback when the operation is complete.

Note that many of the error codes for this function are returned in the
Upnp Event Subscribe structure. In those cases, the function returns UPNP E SUCCESS
and the appropriate error code will be in the Upnp Event Subscribe.ErrCode field in the
Event structure passed to the callback.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 69

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID SID: The SubsId is not a
valid subscription ID.

• UPNP E INVALID PARAM: Either Fun is not a
valid callback function pointer or Timeout
is less than zero but is not UPNP INFINITE.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

• UPNP E NETWORK ERROR: A network
error occured (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E SOCKET WRITE: An error or time-
out occurred writing to a socket (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SOCKET BIND: An error occurred
binding the socket (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E SOCKET CONNECT: An error occurred
connecting to PublisherUrl (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E OUTOF SOCKET: An error oc-
curred creating socket (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E BAD RESPONSE: An error occurred
in response from the publisher (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SUBSCRIBE UNACCEPTED:
The publisher refused the sub-
scription request (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 70

4 The API

Parameters: Hnd The handle of the control point that is renewing
the subscription.

TimeOut The requested subscription time. The actual
timeout value is returned when the callback func-
tion is called.

SubsId The ID for the subscription to renew.
Fun Pointer to a callback function to be invoked when

the renewal is complete.
Cookie Pointer to user data passed to the callback func-

tion when invoked.

4.6.7

EXPORT SPEC int UpnpSetMaxSubscriptions (IN UpnpDe-

vice Handle Hnd, IN

int MaxSubscriptions)

UpnpSetMaxSubscriptions sets the maximum number of subscriptions accepted per service.

UpnpSetMaxSubscriptions sets the maximum number of subscriptions accepted per service.
The default value accepts as many as system resources allow. If the number of current subscriptions
for a service is greater than the requested value, the SDK accepts no new subscriptions or renewals,
however, the SDK does not remove any current subscriptions.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

Parameters: Hnd The handle of the device for which the maximum
number of subscriptions is being set.

MaxSubscriptions The maximum number of subscriptions to be al-
lowed per service.

4.6.8

EXPORT SPEC int UpnpSetMaxSubscriptionTimeOut (IN UpnpDe-
vice Handle Hnd, IN int MaxSubscriptionTimeOut)

UpnpSetMaxSubscriptionTimeOut sets the maximum time-out accepted for a subscription
request or renewal.

UpnpSetMaxSubscriptionTimeOut sets the maximum time-out accepted for a subscription

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 71

4 The API

request or renewal. The default value accepts the time-out set by the control point. If a control
point requests a subscription time-out less than or equal to the maximum, the SDK grants the
value requested by the control point. If the time-out is greater, the SDK returns the maximum
value.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid device handle.

Parameters: Hnd The handle of the device for which the maximum
subscription time-out is being set.

MaxSubscriptionTimeOut The maximum subscription time-out to be ac-
cepted.

4.6.9

EXPORT SPEC int UpnpSubscribe (IN UpnpClient Handle Hnd, IN

const char* PublisherUrl, INOUT

int* TimeOut, OUT Upnp SID Sub-

sId)

UpnpSubscribe registers a control point to receive event notifications from another device.

UpnpSubscribe registers a control point to receive event notifications from another device. This
operation is synchronous.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 72

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: PublisherUrl is not
a valid URL.

• UPNP E INVALID PARAM: Timeout is not a
valid pointer or SubsId or PublisherUrl
is NULL.

• UPNP E NETWORK ERROR: A network error oc-
cured.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting to PublisherUrl.

• UPNP E OUTOF SOCKET: An error occurred
creating a socket.

• UPNP E BAD RESPONSE: An error occurred in
response from the publisher.

• UPNP E SUBSCRIBE UNACCEPTED: The pub-
lisher refused the subscription request.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the control point.
PublisherUrl The URL of the service to subscribe to.
TimeOut Pointer to a variable containing the requested

subscription time. Upon return, it contains the
actual subscription time returned from the ser-
vice.

SubsId Pointer to a variable to receive the subscription
ID (SID).

4.6.10

EXPORT SPEC int UpnpSubscribeAsync (IN UpnpClient Handle

Hnd, IN const char* Pub-
lisherUrl, IN int TimeOut,
IN Upnp FunPtr Fun, IN

const void* Cookie)

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 73

4 The API

UpnpSubscribeAsync performs the same operation as UpnpSubscribe, but returns
immediately and calls the registered callback function when the operation is complete.

UpnpSubscribeAsync performs the same operation as UpnpSubscribe, but returns immedi-
ately and calls the registered callback function when the operation is complete.

Note that many of the error codes for this function are returned in the
Upnp Event Subscribe structure. In those cases, the function returns UPNP E SUCCESS
and the appropriate error code will be in the Upnp Event Subscribe.ErrCode field in the
Event structure passed to the callback.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 74

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID URL: The PublisherUrl is
not a valid URL.

• UPNP E INVALID PARAM: Either TimeOut
or Fun or PublisherUrl is not a valid
pointer.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

• UPNP E NETWORK ERROR: A network
error occured (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E SOCKET WRITE: An error or time-
out occurred writing to a socket (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SOCKET BIND: An error occurred
binding the socket (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E SOCKET CONNECT: An error occurred
connecting to PublisherUrl (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E OUTOF SOCKET: An error occurred
creating the socket (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E BAD RESPONSE: An error occurred
in response from the publisher (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SUBSCRIBE UNACCEPTED:
The publisher refused the sub-
scription request (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 75

4 The API

Parameters: Hnd The handle of the control point that is subscrib-
ing.

PublisherUrl The URL of the service to subscribe to.
TimeOut The requested subscription time. Upon return,

it contains the actual subscription time returned
from the service.

Fun Pointer to the callback function for this subscribe
request.

Cookie A user data value passed to the callback function
when invoked.

4.6.11

EXPORT SPEC int UpnpUnSubscribe (IN UpnpClient Handle Hnd, IN

Upnp SID SubsId)

UpnpUnSubscribe removes the subscription of a control point from a service previously
subscribed to using UpnpSubscribe or UpnpSubscribeAsync.

UpnpUnSubscribe removes the subscription of a control point from a service previously sub-
scribed to using UpnpSubscribe or UpnpSubscribeAsync. This is a synchronous call.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 76

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID SID: The SubsId is not a
valid subscription ID.

• UPNP E NETWORK ERROR: A network error oc-
cured.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting to PublisherUrl.

• UPNP E OUTOF SOCKET: An error ocurred
creating a socket.

• UPNP E BAD RESPONSE: An error occurred in
response from the publisher.

• UPNP E UNSUBSCRIBE UNACCEPTED: The
publisher refused the unsubscribe request
(the client is still unsubscribed and no
longer receives events).

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: Hnd The handle of the subscribed control point.
SubsId The ID returned when the control point sub-

scribed to the service.

4.6.12

EXPORT SPEC int UpnpUnSubscribeAsync (IN UpnpClient Handle

Hnd, IN Upnp SID Sub-
sId, IN Upnp FunPtr

Fun, IN const void*

Cookie)

UpnpUnSubscribeAsync removes a subscription of a control point from a service previously
subscribed to using UpnpSubscribe or UpnpSubscribeAsync, generating a callback when the

operation is complete.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 77

4 The API

UpnpUnSubscribeAsync removes a subscription of a control point from a service previously
subscribed to using UpnpSubscribe or UpnpSubscribeAsync, generating a callback when the
operation is complete.

Note that many of the error codes for this function are returned in the
Upnp Event Subscribe structure. In those cases, the function returns UPNP E SUCCESS
and the appropriate error code will be in the Upnp Event Subscribe.ErrCode field in the
Event structure passed to the callback.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 78

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID HANDLE: The handle is not
a valid control point handle.

• UPNP E INVALID SID: The SubsId is not a
valid SID.

• UPNP E INVALID PARAM: Fun is not a valid
callback function pointer.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

• UPNP E NETWORK ERROR: A network
error occured (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E SOCKET WRITE: An error or time-
out occurred writing to a socket (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E SOCKET BIND: An error occurred
binding the socket (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E SOCKET CONNECT: An error occurred
connecting to PublisherUrl (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E OUTOF SOCKET: An error oc-
curred creating a socket (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

• UPNP E BAD RESPONSE: An error occurred
in response from the publisher (returned
in the Upnp Event Subscribe.ErrCode
field as part of the callback).

• UPNP E UNSUBSCRIBE UNACCEPTED:
The publisher refused the sub-
scription request (returned in the
Upnp Event Subscribe.ErrCode field
as part of the callback).

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 79

4 The API

Parameters: Hnd The handle of the subscribed control point.
SubsId The ID returned when the control point sub-

scribed to the service.
Fun Pointer to a callback function to be called when

the operation is complete.
Cookie Pointer to user data to pass to the callback func-

tion when invoked.

4.7

Control Point HTTP API

Names

4.7.1 EXPORT SPEC int
UpnpDownloadUrlItem (IN const char* url,

OUT char** outBuf,
OUT char* contentType)

UpnpDownloadUrlItem downloads a
file specified in a URL. 82

4.7.2 EXPORT SPEC int
UpnpOpenHttpGet (IN const char* url,

IN OUT void** handle,
IN OUT char** contentType,
IN OUT int* contentLength,
IN OUT int* httpStatus,
IN int timeout)
UpnpOpenHttpGet gets a file specified
in a URL. 83

4.7.3 EXPORT SPEC int
UpnpOpenHttpGetProxy (IN const char* url,

IN const char* proxy str,
IN OUT void** handle,
IN OUT char** contentType,
IN OUT int* contentLength,
IN OUT int* httpStatus,
IN int timeout)

UpnpOpenHttpGetProxy gets a file
specified in a URL through the specified
proxy. 85

4.7.4 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 80

4 The API

UpnpOpenHttpGetEx (IN const char* url,
IN OUT void** handle,
IN OUT char** contentType,
IN OUT int* contentLength,
IN OUT int* httpStatus,
IN int lowRange, IN int highRange,
IN int timeout)

UpnpOpenHttpGetEx gets specified
number of bytes from a file specified in the
URL. 86

4.7.5 EXPORT SPEC int
UpnpReadHttpGet (IN void* handle, IN OUT char* buf,

IN OUT unsigned int* size,
IN int timeout)
UpnpReadHttpGet gets specified num-
ber of bytes from a file specified in a URL.
. 87

4.7.6 EXPORT SPEC int
UpnpHttpGetProgress (IN void* handle,

OUT unsigned int* length,
OUT unsigned int* total)

UpnpHttpGetProgress rettrieve
progress information of a http-get trans-
fer. 88

4.7.7 EXPORT SPEC int
UpnpCancelHttpGet (IN void* handle)

UpnpCancelHttpGet set the cancel flag
of the handle parameter. 88

4.7.8 EXPORT SPEC int
UpnpCloseHttpGet (IN void* handle)

UpnpCloseHttpGet closes the connec-
tion and frees memory that was allocated
for the handle parameter. 89

4.7.9 EXPORT SPEC int
UpnpOpenHttpPost (IN const char* url,

IN OUT void** handle,
IN const char* contentType,
IN int contentLength, IN int timeout)
UpnpOpenHttpPost makes an HTTP
POST request message, opens a connec-
tion to the server and sends the POST re-
quest to the server if the connection to the
server succeeds. 89

4.7.10 EXPORT SPEC int
UpnpWriteHttpPost (IN void* handle, IN char* buf,

IN unsigned int* size, IN int timeout)
UpnpWriteHttpPost sends a request to
a server to copy the contents of a buffer
to the URI specified in the UpnpOpen-
HttpPost call. 90

4.7.11 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 81

4 The API

UpnpCloseHttpPost (IN void* handle,
IN OUT int* httpStatus,
IN int timeout)
UpnpCloseHttpPost sends and receives
any pending data, closes the connection
with the server, and frees memory allo-
cated during the call. 91

4.7.12 EXPORT SPEC int
UpnpDownloadXmlDoc (IN const char* url,

OUT IXML Document** xmlDoc)
UpnpDownloadXmlDoc downloads an
XML document specified in a URL. 91

4.7.1

EXPORT SPEC int UpnpDownloadUrlItem (IN const char* url, OUT

char** outBuf, OUT char*

contentType)

UpnpDownloadUrlItem downloads a file specified in a URL.

UpnpDownloadUrlItem downloads a file specified in a URL. The SDK allocates the memory
for outBuf and the application is responsible for freeing this memory. Note that the item is
passed as a single buffer. Large items should not be transferred using this function.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 82

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either url, outBuf
or contentType is not a valid pointer.

• UPNP E INVALID URL: The url is not a valid
URL.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to download this file.

• UPNP E NETWORK ERROR: A network error oc-
curred.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting a socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

Parameters: url URL of an item to download.
outBuf Buffer to store the downloaded item.
contentType HTTP header value content type if present. It

should be at least LINE SIZE bytes in size.

4.7.2

EXPORT SPEC int UpnpOpenHttpGet (IN const char* url, IN OUT

void** handle, IN OUT char**

contentType, IN OUT int* con-

tentLength, IN OUT int* http-

Status, IN int timeout)

UpnpOpenHttpGet gets a file specified in a URL.

UpnpOpenHttpGet gets a file specified in a URL. The SDK allocates the memory for handle
and contentType, the application is responsible for freeing this memory.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 83

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either url, han-
dle, contentType, contentLength or
httpStatus is not a valid pointer.

• UPNP E INVALID URL: The url is not a valid
URL.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to download this file.

• UPNP E NETWORK ERROR: A network error oc-
curred.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting a socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

• UPNP E BAD RESPONSE: A bad response was
received from the remote server.

Parameters: url The URL of an item to get.
handle A pointer to store the handle for this connection.
contentType A buffer to store the media type of the item.
contentLength A pointer to store the length of the item.
httpStatus The status returned on receiving a response mes-

sage.
timeout The time out value sent with the request during

which a response is expected from the server, fail-
ing which, an error is reported back to the user.

4.7.3

EXPORT SPEC int UpnpOpenHttpGetProxy (IN const char* url,

IN const char* proxy str,

IN OUT void** handle,

IN OUT char** content-
Type, IN OUT int* con-
tentLength, IN OUT

int* httpStatus, IN int

timeout)

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 84

4 The API

UpnpOpenHttpGetProxy gets a file specified in a URL through the specified proxy.

UpnpOpenHttpGetProxy gets a file specified in a URL through the specified proxy. The SDK
allocates the memory for handle and contentType, the application is responsible for freeing this
memory.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either url, han-
dle, contentType, contentLength or
httpStatus is not a valid pointer.

• UPNP E INVALID URL: The url is not a valid
URL.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to download this file.

• UPNP E NETWORK ERROR: A network error oc-
curred.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting a socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

• UPNP E BAD RESPONSE: A bad response was
received from the remote server.

Parameters: url The URL of an item to get.
proxy str The URL of the proxy.
handle A pointer to store the handle for this connection.
contentType A buffer to store the media type of the item.
contentLength A pointer to store the length of the item.
httpStatus The status returned on receiving a response mes-

sage.
timeout The time out value sent with the request during

which a response is expected from the server, fail-
ing which, an error is reported back to the user.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 85

4 The API

4.7.4

EXPORT SPEC int UpnpOpenHttpGetEx (IN const char* url, IN

OUT void** handle, IN

OUT char** contentType,

IN OUT int* contentLength,

IN OUT int* httpStatus, IN
int lowRange, IN int high-

Range, IN int timeout)

UpnpOpenHttpGetEx gets specified number of bytes from a file specified in the URL.

UpnpOpenHttpGetEx gets specified number of bytes from a file specified in the URL. The
number of bytes is specified through a low count and a high count which are passed as a range
of bytes for the request. The SDK allocates the memory for handle and contentType, the
application is responsible for freeing this memory.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either url, han-
dle, contentType, contentLength or
httpStatus is not a valid pointer.

• UPNP E INVALID URL: The url is not a valid
URL.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to download this file.

• UPNP E NETWORK ERROR: A network error oc-
curred.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting a socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

• UPNP E BAD RESPONSE: A bad response was
received from the remote server.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 86

4 The API

Parameters: url The URL of the item to get.
handle A pointer to store the handle for this connection.
contentType A buffer to store the media type of the item.
contentLength A buffer to store the length of the item.
httpStatus The status returned on receiving a response mes-

sage from the remote server.
lowRange An integer value representing the low end of a

range to retrieve.
highRange An integer value representing the high end of a

range to retrieve.
timeout A time out value sent with the request during

which a response is expected from the server, fail-
ing which, an error is reported back to the user.

4.7.5

EXPORT SPEC int UpnpReadHttpGet (IN void* handle, IN OUT

char* buf, IN OUT unsigned

int* size, IN int timeout)

UpnpReadHttpGet gets specified number of bytes from a file specified in a URL.

UpnpReadHttpGet gets specified number of bytes from a file specified in a URL.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either handle, buf
or size is not a valid pointer.

• UPNP E BAD RESPONSE: A bad response was
received from the remote server.

• UPNP E BAD HTTPMSG: Either the request or
response was in the incorrect format.

• UPNP E CANCELED: another thread called
UpnpCancelHttpGet.

Note: In case of return values, the status code
parameter of the passed in handle value may pro-
vide additional information on the return value.

Parameters: handle The token created by the call to UpnpOpen-
HttpGet.

buf The buffer to store the read item.
size The size of the buffer to be read.
timeout The time out value sent with the request during

which a response is expected from the server, fail-
ing which, an error is reported back to the user.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 87

4 The API

4.7.6

EXPORT SPEC int UpnpHttpGetProgress (IN void* handle, OUT un-

signed int* length, OUT un-

signed int* total)

UpnpHttpGetProgress rettrieve progress information of a http-get transfer.

UpnpHttpGetProgress rettrieve progress information of a http-get transfer.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either handle,
length or total is not a valid pointer.

Parameters: handle The token created by the call
toUpnpOpenHttpGet.

length The number of bytes received.
total The content length.

4.7.7

EXPORT SPEC int UpnpCancelHttpGet (IN void* handle)

UpnpCancelHttpGet set the cancel flag of the handle parameter.

UpnpCancelHttpGet set the cancel flag of the handle parameter.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: handle is not a
valid pointer.

4.7.8

EXPORT SPEC int UpnpCloseHttpGet (IN void* handle)

UpnpCloseHttpGet closes the connection and frees memory that was allocated for the handle
parameter.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 88

4 The API

UpnpCloseHttpGet closes the connection and frees memory that was allocated for the handle
parameter.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: handle is not a
valid pointer.

4.7.9

EXPORT SPEC int UpnpOpenHttpPost (IN const char* url, IN

OUT void** handle, IN const

char* contentType, IN int con-

tentLength, IN int timeout)

UpnpOpenHttpPost makes an HTTP POST request message, opens a connection to the
server and sends the POST request to the server if the connection to the server succeeds.

UpnpOpenHttpPost makes an HTTP POST request message, opens a connection to the server
and sends the POST request to the server if the connection to the server succeeds. The SDK
allocates the memory for handle and contentType, the application is responsible for freeing this
memory.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either url, handle
or contentType is not a valid pointer.

• UPNP E INVALID URL: The url is not a valid
URL.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to download this file.

• UPNP E SOCKET ERROR: Error occured allo-
cating a socket and resources or an error
occurred binding a socket.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting a socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 89

4 The API

Parameters: url The URL in which to send the POST request.
handle A pointer in which to store the handle for this

connection. This handle is required for futher
operations over this connection.

contentType A buffer to store the media type of content being
sent.

contentLength The length of the content, in bytes, being posted.
timeout The time out value sent with the request during

which a response is expected from the receiver,
failing which, an error is reported.

4.7.10

EXPORT SPEC int UpnpWriteHttpPost (IN void* handle, IN char*

buf, IN unsigned int* size, IN

int timeout)

UpnpWriteHttpPost sends a request to a server to copy the contents of a buffer to the URI
specified in the UpnpOpenHttpPost call.

UpnpWriteHttpPost sends a request to a server to copy the contents of a buffer to the URI
specified in the UpnpOpenHttpPost call.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either handle, buf
or size is not a valid pointer.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

Parameters: handle The handle of the connection created by the call
to UpnpOpenHttpPost.

buf The buffer to be posted.
size The size, in bytes of buf.
timeout A timeout value sent with the request during

which a response is expected from the server, fail-
ing which, an error is reported.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 90

4 The API

4.7.11

EXPORT SPEC int UpnpCloseHttpPost (IN void* handle, IN OUT

int* httpStatus, IN int time-

out)

UpnpCloseHttpPost sends and receives any pending data, closes the connection with the
server, and frees memory allocated during the call.

UpnpCloseHttpPost sends and receives any pending data, closes the connection with the server,
and frees memory allocated during the call.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either handle, or
httpStatus is not a valid pointer.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

Parameters: handle The handle of the connection to close, created by
the call to UpnpOpenHttpPost.

httpStatus A pointer to a buffer to store the final status of
the connection.

timeout A time out value sent with the request during
which a response is expected from the server, fail-
ing which, an error is reported.

4.7.12

EXPORT SPEC int UpnpDownloadXmlDoc (IN const char* url,

OUT IXML Document**
xmlDoc)

UpnpDownloadXmlDoc downloads an XML document specified in a URL.

UpnpDownloadXmlDoc downloads an XML document specified in a URL. The SDK parses
the document and returns it in the form of a DOM document. The application is responsible for
freeing the DOM document.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 91

4 The API

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: Either url or xml-
Doc is not a valid pointer.

• UPNP E INVALID DESC: The XML document
was not found or it does not contain a valid
XML description.

• UPNP E INVALID URL: The url is not a valid
URL.

• UPNP E OUTOF MEMORY: There are insuffi-
cient resources to download the XML docu-
ment.

• UPNP E NETWORK ERROR: A network error oc-
curred.

• UPNP E SOCKET WRITE: An error or timeout
occurred writing to a socket.

• UPNP E SOCKET READ: An error or timeout
occurred reading from a socket.

• UPNP E SOCKET BIND: An error occurred
binding a socket.

• UPNP E SOCKET CONNECT: An error occurred
connecting the socket.

• UPNP E OUTOF SOCKET: Too many sockets
are currently allocated.

Parameters: url URL of the XML document.
xmlDoc A pointer in which to store the XML document.

4.8

Web Server API

Names

4.8.1 EXPORT SPEC int
UpnpSetWebServerRootDir (IN const char* rootDir)

UpnpSetWebServerRootDir sets the
document root directory for the internal
web server. 93

4.8.2 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 92

4 The API

UpnpSetVirtualDirCallbacks (IN struct
UpnpVirtualDirCallbacks*
callbacks)

UpnpSetVirtualDirCallbacks sets the
callback function to be used to access a vir-
tual directory. 94

4.8.3 EXPORT SPEC int
UpnpEnableWebserver (IN int enable)

UpnpEnableWebServer enables or dis-
ables the webserver. 94

4.8.4 EXPORT SPEC int
UpnpIsWebserverEnabled ()

UpnpIsWebServerEnabled returns
TRUE if the webserver is enabled, or
FALSE if it is not. 95

4.8.5 EXPORT SPEC int
UpnpAddVirtualDir (IN const char* dirName)

UpnpAddVirtualDir adds a virtual di-
rectory mapping. 95

4.8.6 EXPORT SPEC int
UpnpRemoveVirtualDir (IN const char* dirName)

UpnpRemoveVirtualDir removes a
virtual directory mapping made with
UpnpAddVirtualDir. 95

4.8.7 EXPORT SPEC void
UpnpRemoveAllVirtualDirs ()

UpnpRemoveAllVirtualDirs removes
all virtual directory mappings. 96

4.8.1

EXPORT SPEC int UpnpSetWebServerRootDir (IN const char* root-
Dir)

UpnpSetWebServerRootDir sets the document root directory for the internal web server.

UpnpSetWebServerRootDir sets the document root directory for the internal web server. This
directory is considered the root directory (i.e. ”/”) of the web server.

This function also activates or deactivates the web server. To disable the web server, pass NULL
for rootDir; to activate, pass a valid directory string.

Note that this function is not available when the web server is not compiled into the SDK.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 93

4 The API

Return Value: [int] An integer representing one of the following:

• UPPN E SUCCESS: The operation completed
successfully.

• UPNP E INVALID ARGUMENT: rootDir is an
invalid directory.

Parameters: rootDir Path of the root directory of the web server.

4.8.2

EXPORT SPEC int UpnpSetVirtualDirCallbacks (IN struct UpnpVir-
tualDirCallbacks* callbacks)

UpnpSetVirtualDirCallbacks sets the callback function to be used to access a virtual
directory.

UpnpSetVirtualDirCallbacks sets the callback function to be used to access a virtual directory.
Refer to the description of UpnpVirtualDirCallbacks for a description of the functions.

Return Value: [int] An integer representing one of the following:

• UPPN E SUCCESS: The operation completed
successfully.

• UPNP E INVALID ARGUMENT: callbacks is
not a valid pointer.

Parameters: callbacks Pointer to a structure containing points to the
virtual interface functions.

4.8.3

EXPORT SPEC int UpnpEnableWebserver (IN int enable)

UpnpEnableWebServer enables or disables the webserver.

UpnpEnableWebServer enables or disables the webserver. A value of TRUE enables the web-
server, FALSE disables it.

Return Value: [int] An integer representing one of the following:

• UPPN E SUCCESS: The operation completed
successfully.

• UPNP E INVALID ARGUMENT: enable is not
valid.

Parameters: enable TRUE to enable, FALSE to disable.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 94

4 The API

4.8.4

EXPORT SPEC int UpnpIsWebserverEnabled ()

UpnpIsWebServerEnabled returns TRUE if the webserver is enabled, or FALSE if it is not.

UpnpIsWebServerEnabled returns TRUE if the webserver is enabled, or FALSE if it is not.

Return Value: [int] An integer representing one of the following:

• TRUE: The webserver is enabled.

• FALSE: The webserver is not enabled

4.8.5

EXPORT SPEC int UpnpAddVirtualDir (IN const char* dirName)

UpnpAddVirtualDir adds a virtual directory mapping.

UpnpAddVirtualDir adds a virtual directory mapping.

All webserver requests containing the given directory are read using functions contained in a
UpnpVirtualDirCallbacks structure registered via UpnpSetVirtualDirCallbacks.

Return Value: [int] An integer representing one of the following:

• UPPN E SUCCESS: The operation completed
successfully.

• UPNP E INVALID ARGUMENT: dirName is
not valid.

Parameters: dirName The name of the new directory mapping to add.

4.8.6

EXPORT SPEC int UpnpRemoveVirtualDir (IN const char* dirName

)

UpnpRemoveVirtualDir removes a virtual directory mapping made with
UpnpAddVirtualDir.

UpnpRemoveVirtualDir removes a virtual directory mapping made with UpnpAddVir-
tualDir.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 95

4 The API

Return Value: [int] An integer representing one of the following:

• UPPN E SUCCESS: The operation completed
successfully.

• UPNP E INVALID ARGUMENT: dirName is
not valid.

Parameters: dirName The name of the virtual directory mapping to
remove.

4.8.7

EXPORT SPEC void UpnpRemoveAllVirtualDirs ()

UpnpRemoveAllVirtualDirs removes all virtual directory mappings.

UpnpRemoveAllVirtualDirs removes all virtual directory mappings.

Return Value: [void] This function does not return a value.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 96

5 Optional Tool APIs

5

Optional Tool APIs

Names

5.1 EXPORT SPEC int
UpnpResolveURL (IN const char* BaseURL,

IN const char* RelURL,
OUT char* AbsURL)

UpnpResolveURL combines a base
URL and a relative URL into a single ab-
solute URL. 98

5.2 EXPORT SPEC IXML Document*
UpnpMakeAction (IN const char* ActionName,

IN const char* ServType,
IN int NumArg, IN const char* Arg,
IN ...)

UpnpMakeAction creates an action re-
quest packet based on its input parameters
(status variable name and value pair). . 99

5.3 EXPORT SPEC int
UpnpAddToAction (IN OUT IXML Document** ActionDoc,

IN const char* ActionName,
IN const char* ServType,
IN const char* ArgName,
IN const char* ArgVal)
UpnpAddToAction creates an action
request packet based on its input parame-
ters (status variable name and value pair).
. 100

5.4 EXPORT SPEC IXML Document*
UpnpMakeActionResponse (IN const char* ActionName,

IN const char* ServType,
IN int NumArg,
IN const char* Arg, IN ...)

UpnpMakeActionResponse creates an
action response packet based on its out-
put parameters (status variable name and
value pair). 100

5.5 EXPORT SPEC int

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 97

5 Optional Tool APIs

UpnpAddToActionResponse (IN OUT IXML Document**
ActionResponse,
IN const char* ActionName,
IN const char* ServType,
IN const char* ArgName,
IN const char* ArgVal)

UpnpAddToActionResponse creates
an action response packet based on its out-
put parameters (status variable name and
value pair). 101

5.6 EXPORT SPEC int
UpnpAddToPropertySet (IN OUT IXML Document**

PropSet,
IN const char* ArgName,
IN const char* ArgVal)

UpnpAddToPropertySet can be used
when an application needs to transfer the
status of many variables at once. 101

5.7 EXPORT SPEC IXML Document*
UpnpCreatePropertySet (IN int NumArg,

IN const char* Arg, IN ...)
UpnpCreatePropertySet creates a
property set message packet. 102

5.8 EXPORT SPEC const char*
UpnpGetErrorMessage (int errorcode)

UpnpGetErrorMessage converts an
SDK error code into a string error mes-
sage suitable for display. 102

The Linux SDK for UPnP Devices contains some additional, optional utility APIs that can be
helpful in writing applications using the SDK. These additional APIs can be compiled out in order
to save code size in the SDK. Refer to the README for details.

5.1

EXPORT SPEC int UpnpResolveURL (IN const char* BaseURL, IN

const char* RelURL, OUT char*

AbsURL)

UpnpResolveURL combines a base URL and a relative URL into a single absolute URL.

UpnpResolveURL combines a base URL and a relative URL into a single absolute URL. The
memory for AbsURL needs to be allocated by the caller and must be large enough to hold the
BaseURL and RelURL combined.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 98

5 Optional Tool APIs

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: RelURL is NULL.

• UPNP E INVALID URL: The BaseURL / Re-
lURL combination does not form a valid
URL.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: BaseURL The base URL to combine.
RelURL The relative URL to BaseURL.
AbsURL A pointer to a buffer to store the absolute URL.

5.2

EXPORT SPEC IXML Document* UpnpMakeAction (IN const char*
ActionName, IN const char* ServType, IN int NumArg, IN const char*
Arg, IN ...)

UpnpMakeAction creates an action request packet based on its input parameters (status
variable name and value pair).

UpnpMakeAction creates an action request packet based on its input parameters (status variable
name and value pair). Any number of input parameters can be passed to this function but every
input variable name should have a matching value argument.

Return Value: [IXML Document*] The action node of Upnp Document type or
NULL if the operation failed.

Parameters: ActionName The action name.
ServType The service type.
NumArg Number of argument pairs to be passed.
Arg Status variable name and value pair.

5.3

EXPORT SPEC int UpnpAddToAction (IN OUT IXML Document**

ActionDoc, IN const char*

ActionName, IN const char*

ServType, IN const char*

ArgName, IN const char*

ArgVal)

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 99

5 Optional Tool APIs

UpnpAddToAction creates an action request packet based on its input parameters (status
variable name and value pair).

UpnpAddToAction creates an action request packet based on its input parameters (status
variable name and value pair). This API is specially suitable inside a loop to add any number
input parameters into an existing action. If no action document exists in the beginning then a
Upnp Document variable initialized with NULL should be passed as a parameter.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: One or more of the
parameters are invalid.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: ActionDoc A pointer to store the action document node.
ActionName The action name.
ServType The service type.
ArgName The status variable name.
ArgVal The status variable value.

5.4

EXPORT SPEC IXML Document* UpnpMakeActionResponse (IN
const char* ActionName, IN const char* ServType, IN int NumArg,
IN const char* Arg, IN ...)

UpnpMakeActionResponse creates an action response packet based on its output parameters
(status variable name and value pair).

UpnpMakeActionResponse creates an action response packet based on its output parameters
(status variable name and value pair). Any number of input parameters can be passed to this
function but every output variable name should have a matching value argument.

Return Value: [IXML Document*] The action node of Upnp Document type or
NULL if the operation failed.

Parameters: ActionName The action name.
ServType The service type.
NumArg The number of argument pairs passed.
Arg The status variable name and value pair.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 100

5 Optional Tool APIs

5.5

EXPORT SPEC int UpnpAddToActionResponse (IN OUT
IXML Document** ActionResponse, IN const char* ActionName,
IN const char* ServType, IN const char* ArgName, IN const char*
ArgVal)

UpnpAddToActionResponse creates an action response packet based on its output
parameters (status variable name and value pair).

UpnpAddToActionResponse creates an action response packet based on its output parameters
(status variable name and value pair). This API is especially suitable inside a loop to add any
number of input parameters into an existing action response. If no action document exists in the
beginning, a Upnp Document variable initialized with NULL should be passed as a parameter.

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: One or more of the
parameters are invalid.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: ActionResponse Pointer to a document to store the action docu-
ment node.

ActionName The action name.
ServType The service type.
ArgName The status variable name.
ArgVal The status variable value.

5.6

EXPORT SPEC int UpnpAddToPropertySet (IN OUT

IXML Document**
PropSet, IN const char*
ArgName, IN const

char* ArgVal)

UpnpAddToPropertySet can be used when an application needs to transfer the status of
many variables at once.

UpnpAddToPropertySet can be used when an application needs to transfer the status of many
variables at once. It can be used (inside a loop) to add some extra status variables into an existing
property set. If the application does not already have a property set document, the application
should create a variable initialized with NULL and pass that as the first parameter.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 101

5 Optional Tool APIs

Return Value: [int] An integer representing one of the following:

• UPNP E SUCCESS: The operation completed
successfully.

• UPNP E INVALID PARAM: One or more of the
parameters are invalid.

• UPNP E OUTOF MEMORY: Insufficient resources
exist to complete this operation.

Parameters: PropSet A pointer to the document containing the prop-
erty set document node.

ArgName The status variable name.
ArgVal The status variable value.

5.7

EXPORT SPEC IXML Document* UpnpCreatePropertySet (IN int
NumArg, IN const char* Arg, IN ...)

UpnpCreatePropertySet creates a property set message packet.

UpnpCreatePropertySet creates a property set message packet. Any number of input param-
eters can be passed to this function but every input variable name should have a matching value
input argument.

Return Value: [IXML Document*] NULL on failure, or the property-set document
node.

Parameters: NumArg The number of argument pairs passed.
Arg The status variable name and value pair.

5.8

EXPORT SPEC const char* UpnpGetErrorMessage (int errorcode)

UpnpGetErrorMessage converts an SDK error code into a string error message suitable for
display.

UpnpGetErrorMessage converts an SDK error code into a string error message suitable for
display. The memory returned from this function should NOT be freed.

Return Value: [char*] An ASCII text string representation of the error
message associated with the error code.

Parameters: errorcode The SDK error code to convert.

This page was generated with the help of DOC++

http://docpp.sourceforge.net
July 4, 2006 102

