OSDN Git Service

gianfar: Add Scatter Gather support
[uclinux-h8/linux.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
94
95 #include "gianfar.h"
96 #include "gianfar_mii.h"
97
98 #define TX_TIMEOUT      (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
101
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
104
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112                 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122                 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135                               int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137                                 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
143
144 extern const struct ethtool_ops gfar_ethtool_ops;
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
152 {
153         return priv->vlgrp || priv->rx_csum_enable;
154 }
155
156 static int gfar_of_init(struct net_device *dev)
157 {
158         struct device_node *phy, *mdio;
159         const unsigned int *id;
160         const char *model;
161         const char *ctype;
162         const void *mac_addr;
163         const phandle *ph;
164         u64 addr, size;
165         int err = 0;
166         struct gfar_private *priv = netdev_priv(dev);
167         struct device_node *np = priv->node;
168         char bus_name[MII_BUS_ID_SIZE];
169
170         if (!np || !of_device_is_available(np))
171                 return -ENODEV;
172
173         /* get a pointer to the register memory */
174         addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
175         priv->regs = ioremap(addr, size);
176
177         if (priv->regs == NULL)
178                 return -ENOMEM;
179
180         priv->interruptTransmit = irq_of_parse_and_map(np, 0);
181
182         model = of_get_property(np, "model", NULL);
183
184         /* If we aren't the FEC we have multiple interrupts */
185         if (model && strcasecmp(model, "FEC")) {
186                 priv->interruptReceive = irq_of_parse_and_map(np, 1);
187
188                 priv->interruptError = irq_of_parse_and_map(np, 2);
189
190                 if (priv->interruptTransmit < 0 ||
191                                 priv->interruptReceive < 0 ||
192                                 priv->interruptError < 0) {
193                         err = -EINVAL;
194                         goto err_out;
195                 }
196         }
197
198         mac_addr = of_get_mac_address(np);
199         if (mac_addr)
200                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
201
202         if (model && !strcasecmp(model, "TSEC"))
203                 priv->device_flags =
204                         FSL_GIANFAR_DEV_HAS_GIGABIT |
205                         FSL_GIANFAR_DEV_HAS_COALESCE |
206                         FSL_GIANFAR_DEV_HAS_RMON |
207                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
208         if (model && !strcasecmp(model, "eTSEC"))
209                 priv->device_flags =
210                         FSL_GIANFAR_DEV_HAS_GIGABIT |
211                         FSL_GIANFAR_DEV_HAS_COALESCE |
212                         FSL_GIANFAR_DEV_HAS_RMON |
213                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
214                         FSL_GIANFAR_DEV_HAS_PADDING |
215                         FSL_GIANFAR_DEV_HAS_CSUM |
216                         FSL_GIANFAR_DEV_HAS_VLAN |
217                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
218                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
219
220         ctype = of_get_property(np, "phy-connection-type", NULL);
221
222         /* We only care about rgmii-id.  The rest are autodetected */
223         if (ctype && !strcmp(ctype, "rgmii-id"))
224                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
225         else
226                 priv->interface = PHY_INTERFACE_MODE_MII;
227
228         if (of_get_property(np, "fsl,magic-packet", NULL))
229                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
230
231         ph = of_get_property(np, "phy-handle", NULL);
232         if (ph == NULL) {
233                 u32 *fixed_link;
234
235                 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
236                 if (!fixed_link) {
237                         err = -ENODEV;
238                         goto err_out;
239                 }
240
241                 snprintf(priv->phy_bus_id, BUS_ID_SIZE, PHY_ID_FMT, "0",
242                                 fixed_link[0]);
243         } else {
244                 phy = of_find_node_by_phandle(*ph);
245
246                 if (phy == NULL) {
247                         err = -ENODEV;
248                         goto err_out;
249                 }
250
251                 mdio = of_get_parent(phy);
252
253                 id = of_get_property(phy, "reg", NULL);
254
255                 of_node_put(phy);
256                 of_node_put(mdio);
257
258                 gfar_mdio_bus_name(bus_name, mdio);
259                 snprintf(priv->phy_bus_id, BUS_ID_SIZE, "%s:%02x",
260                                 bus_name, *id);
261         }
262
263         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
264         ph = of_get_property(np, "tbi-handle", NULL);
265         if (ph) {
266                 struct device_node *tbi = of_find_node_by_phandle(*ph);
267                 struct of_device *ofdev;
268                 struct mii_bus *bus;
269
270                 if (!tbi)
271                         return 0;
272
273                 mdio = of_get_parent(tbi);
274                 if (!mdio)
275                         return 0;
276
277                 ofdev = of_find_device_by_node(mdio);
278
279                 of_node_put(mdio);
280
281                 id = of_get_property(tbi, "reg", NULL);
282                 if (!id)
283                         return 0;
284
285                 of_node_put(tbi);
286
287                 bus = dev_get_drvdata(&ofdev->dev);
288
289                 priv->tbiphy = bus->phy_map[*id];
290         }
291
292         return 0;
293
294 err_out:
295         iounmap(priv->regs);
296         return err;
297 }
298
299 /* Set up the ethernet device structure, private data,
300  * and anything else we need before we start */
301 static int gfar_probe(struct of_device *ofdev,
302                 const struct of_device_id *match)
303 {
304         u32 tempval;
305         struct net_device *dev = NULL;
306         struct gfar_private *priv = NULL;
307         int err = 0;
308         DECLARE_MAC_BUF(mac);
309
310         /* Create an ethernet device instance */
311         dev = alloc_etherdev(sizeof (*priv));
312
313         if (NULL == dev)
314                 return -ENOMEM;
315
316         priv = netdev_priv(dev);
317         priv->dev = dev;
318         priv->node = ofdev->node;
319
320         err = gfar_of_init(dev);
321
322         if (err)
323                 goto regs_fail;
324
325         spin_lock_init(&priv->txlock);
326         spin_lock_init(&priv->rxlock);
327         spin_lock_init(&priv->bflock);
328         INIT_WORK(&priv->reset_task, gfar_reset_task);
329
330         dev_set_drvdata(&ofdev->dev, priv);
331
332         /* Stop the DMA engine now, in case it was running before */
333         /* (The firmware could have used it, and left it running). */
334         gfar_halt(dev);
335
336         /* Reset MAC layer */
337         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
338
339         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
340         gfar_write(&priv->regs->maccfg1, tempval);
341
342         /* Initialize MACCFG2. */
343         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
344
345         /* Initialize ECNTRL */
346         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
347
348         /* Set the dev->base_addr to the gfar reg region */
349         dev->base_addr = (unsigned long) (priv->regs);
350
351         SET_NETDEV_DEV(dev, &ofdev->dev);
352
353         /* Fill in the dev structure */
354         dev->open = gfar_enet_open;
355         dev->hard_start_xmit = gfar_start_xmit;
356         dev->tx_timeout = gfar_timeout;
357         dev->watchdog_timeo = TX_TIMEOUT;
358         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
359 #ifdef CONFIG_NET_POLL_CONTROLLER
360         dev->poll_controller = gfar_netpoll;
361 #endif
362         dev->stop = gfar_close;
363         dev->change_mtu = gfar_change_mtu;
364         dev->mtu = 1500;
365         dev->set_multicast_list = gfar_set_multi;
366
367         dev->ethtool_ops = &gfar_ethtool_ops;
368
369         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
370                 priv->rx_csum_enable = 1;
371                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
372         } else
373                 priv->rx_csum_enable = 0;
374
375         priv->vlgrp = NULL;
376
377         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
378                 dev->vlan_rx_register = gfar_vlan_rx_register;
379
380                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
381         }
382
383         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
384                 priv->extended_hash = 1;
385                 priv->hash_width = 9;
386
387                 priv->hash_regs[0] = &priv->regs->igaddr0;
388                 priv->hash_regs[1] = &priv->regs->igaddr1;
389                 priv->hash_regs[2] = &priv->regs->igaddr2;
390                 priv->hash_regs[3] = &priv->regs->igaddr3;
391                 priv->hash_regs[4] = &priv->regs->igaddr4;
392                 priv->hash_regs[5] = &priv->regs->igaddr5;
393                 priv->hash_regs[6] = &priv->regs->igaddr6;
394                 priv->hash_regs[7] = &priv->regs->igaddr7;
395                 priv->hash_regs[8] = &priv->regs->gaddr0;
396                 priv->hash_regs[9] = &priv->regs->gaddr1;
397                 priv->hash_regs[10] = &priv->regs->gaddr2;
398                 priv->hash_regs[11] = &priv->regs->gaddr3;
399                 priv->hash_regs[12] = &priv->regs->gaddr4;
400                 priv->hash_regs[13] = &priv->regs->gaddr5;
401                 priv->hash_regs[14] = &priv->regs->gaddr6;
402                 priv->hash_regs[15] = &priv->regs->gaddr7;
403
404         } else {
405                 priv->extended_hash = 0;
406                 priv->hash_width = 8;
407
408                 priv->hash_regs[0] = &priv->regs->gaddr0;
409                 priv->hash_regs[1] = &priv->regs->gaddr1;
410                 priv->hash_regs[2] = &priv->regs->gaddr2;
411                 priv->hash_regs[3] = &priv->regs->gaddr3;
412                 priv->hash_regs[4] = &priv->regs->gaddr4;
413                 priv->hash_regs[5] = &priv->regs->gaddr5;
414                 priv->hash_regs[6] = &priv->regs->gaddr6;
415                 priv->hash_regs[7] = &priv->regs->gaddr7;
416         }
417
418         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
419                 priv->padding = DEFAULT_PADDING;
420         else
421                 priv->padding = 0;
422
423         if (dev->features & NETIF_F_IP_CSUM)
424                 dev->hard_header_len += GMAC_FCB_LEN;
425
426         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
427         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
428         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
429         priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
430
431         priv->txcoalescing = DEFAULT_TX_COALESCE;
432         priv->txic = DEFAULT_TXIC;
433         priv->rxcoalescing = DEFAULT_RX_COALESCE;
434         priv->rxic = DEFAULT_RXIC;
435
436         /* Enable most messages by default */
437         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
438
439         /* Carrier starts down, phylib will bring it up */
440         netif_carrier_off(dev);
441
442         err = register_netdev(dev);
443
444         if (err) {
445                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
446                                 dev->name);
447                 goto register_fail;
448         }
449
450         /* Create all the sysfs files */
451         gfar_init_sysfs(dev);
452
453         /* Print out the device info */
454         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
455
456         /* Even more device info helps when determining which kernel */
457         /* provided which set of benchmarks. */
458         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
459         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
460                dev->name, priv->rx_ring_size, priv->tx_ring_size);
461
462         return 0;
463
464 register_fail:
465         iounmap(priv->regs);
466 regs_fail:
467         free_netdev(dev);
468         return err;
469 }
470
471 static int gfar_remove(struct of_device *ofdev)
472 {
473         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
474
475         dev_set_drvdata(&ofdev->dev, NULL);
476
477         iounmap(priv->regs);
478         free_netdev(priv->dev);
479
480         return 0;
481 }
482
483 #ifdef CONFIG_PM
484 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
485 {
486         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
487         struct net_device *dev = priv->dev;
488         unsigned long flags;
489         u32 tempval;
490
491         int magic_packet = priv->wol_en &&
492                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
493
494         netif_device_detach(dev);
495
496         if (netif_running(dev)) {
497                 spin_lock_irqsave(&priv->txlock, flags);
498                 spin_lock(&priv->rxlock);
499
500                 gfar_halt_nodisable(dev);
501
502                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
503                 tempval = gfar_read(&priv->regs->maccfg1);
504
505                 tempval &= ~MACCFG1_TX_EN;
506
507                 if (!magic_packet)
508                         tempval &= ~MACCFG1_RX_EN;
509
510                 gfar_write(&priv->regs->maccfg1, tempval);
511
512                 spin_unlock(&priv->rxlock);
513                 spin_unlock_irqrestore(&priv->txlock, flags);
514
515                 napi_disable(&priv->napi);
516
517                 if (magic_packet) {
518                         /* Enable interrupt on Magic Packet */
519                         gfar_write(&priv->regs->imask, IMASK_MAG);
520
521                         /* Enable Magic Packet mode */
522                         tempval = gfar_read(&priv->regs->maccfg2);
523                         tempval |= MACCFG2_MPEN;
524                         gfar_write(&priv->regs->maccfg2, tempval);
525                 } else {
526                         phy_stop(priv->phydev);
527                 }
528         }
529
530         return 0;
531 }
532
533 static int gfar_resume(struct of_device *ofdev)
534 {
535         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
536         struct net_device *dev = priv->dev;
537         unsigned long flags;
538         u32 tempval;
539         int magic_packet = priv->wol_en &&
540                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
541
542         if (!netif_running(dev)) {
543                 netif_device_attach(dev);
544                 return 0;
545         }
546
547         if (!magic_packet && priv->phydev)
548                 phy_start(priv->phydev);
549
550         /* Disable Magic Packet mode, in case something
551          * else woke us up.
552          */
553
554         spin_lock_irqsave(&priv->txlock, flags);
555         spin_lock(&priv->rxlock);
556
557         tempval = gfar_read(&priv->regs->maccfg2);
558         tempval &= ~MACCFG2_MPEN;
559         gfar_write(&priv->regs->maccfg2, tempval);
560
561         gfar_start(dev);
562
563         spin_unlock(&priv->rxlock);
564         spin_unlock_irqrestore(&priv->txlock, flags);
565
566         netif_device_attach(dev);
567
568         napi_enable(&priv->napi);
569
570         return 0;
571 }
572 #else
573 #define gfar_suspend NULL
574 #define gfar_resume NULL
575 #endif
576
577 /* Reads the controller's registers to determine what interface
578  * connects it to the PHY.
579  */
580 static phy_interface_t gfar_get_interface(struct net_device *dev)
581 {
582         struct gfar_private *priv = netdev_priv(dev);
583         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
584
585         if (ecntrl & ECNTRL_SGMII_MODE)
586                 return PHY_INTERFACE_MODE_SGMII;
587
588         if (ecntrl & ECNTRL_TBI_MODE) {
589                 if (ecntrl & ECNTRL_REDUCED_MODE)
590                         return PHY_INTERFACE_MODE_RTBI;
591                 else
592                         return PHY_INTERFACE_MODE_TBI;
593         }
594
595         if (ecntrl & ECNTRL_REDUCED_MODE) {
596                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
597                         return PHY_INTERFACE_MODE_RMII;
598                 else {
599                         phy_interface_t interface = priv->interface;
600
601                         /*
602                          * This isn't autodetected right now, so it must
603                          * be set by the device tree or platform code.
604                          */
605                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
606                                 return PHY_INTERFACE_MODE_RGMII_ID;
607
608                         return PHY_INTERFACE_MODE_RGMII;
609                 }
610         }
611
612         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
613                 return PHY_INTERFACE_MODE_GMII;
614
615         return PHY_INTERFACE_MODE_MII;
616 }
617
618
619 /* Initializes driver's PHY state, and attaches to the PHY.
620  * Returns 0 on success.
621  */
622 static int init_phy(struct net_device *dev)
623 {
624         struct gfar_private *priv = netdev_priv(dev);
625         uint gigabit_support =
626                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
627                 SUPPORTED_1000baseT_Full : 0;
628         struct phy_device *phydev;
629         phy_interface_t interface;
630
631         priv->oldlink = 0;
632         priv->oldspeed = 0;
633         priv->oldduplex = -1;
634
635         interface = gfar_get_interface(dev);
636
637         phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
638
639         if (interface == PHY_INTERFACE_MODE_SGMII)
640                 gfar_configure_serdes(dev);
641
642         if (IS_ERR(phydev)) {
643                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
644                 return PTR_ERR(phydev);
645         }
646
647         /* Remove any features not supported by the controller */
648         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
649         phydev->advertising = phydev->supported;
650
651         priv->phydev = phydev;
652
653         return 0;
654 }
655
656 /*
657  * Initialize TBI PHY interface for communicating with the
658  * SERDES lynx PHY on the chip.  We communicate with this PHY
659  * through the MDIO bus on each controller, treating it as a
660  * "normal" PHY at the address found in the TBIPA register.  We assume
661  * that the TBIPA register is valid.  Either the MDIO bus code will set
662  * it to a value that doesn't conflict with other PHYs on the bus, or the
663  * value doesn't matter, as there are no other PHYs on the bus.
664  */
665 static void gfar_configure_serdes(struct net_device *dev)
666 {
667         struct gfar_private *priv = netdev_priv(dev);
668
669         if (!priv->tbiphy) {
670                 printk(KERN_WARNING "SGMII mode requires that the device "
671                                 "tree specify a tbi-handle\n");
672                 return;
673         }
674
675         /*
676          * If the link is already up, we must already be ok, and don't need to
677          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
678          * everything for us?  Resetting it takes the link down and requires
679          * several seconds for it to come back.
680          */
681         if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
682                 return;
683
684         /* Single clk mode, mii mode off(for serdes communication) */
685         phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
686
687         phy_write(priv->tbiphy, MII_ADVERTISE,
688                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
689                         ADVERTISE_1000XPSE_ASYM);
690
691         phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
692                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
693 }
694
695 static void init_registers(struct net_device *dev)
696 {
697         struct gfar_private *priv = netdev_priv(dev);
698
699         /* Clear IEVENT */
700         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
701
702         /* Initialize IMASK */
703         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
704
705         /* Init hash registers to zero */
706         gfar_write(&priv->regs->igaddr0, 0);
707         gfar_write(&priv->regs->igaddr1, 0);
708         gfar_write(&priv->regs->igaddr2, 0);
709         gfar_write(&priv->regs->igaddr3, 0);
710         gfar_write(&priv->regs->igaddr4, 0);
711         gfar_write(&priv->regs->igaddr5, 0);
712         gfar_write(&priv->regs->igaddr6, 0);
713         gfar_write(&priv->regs->igaddr7, 0);
714
715         gfar_write(&priv->regs->gaddr0, 0);
716         gfar_write(&priv->regs->gaddr1, 0);
717         gfar_write(&priv->regs->gaddr2, 0);
718         gfar_write(&priv->regs->gaddr3, 0);
719         gfar_write(&priv->regs->gaddr4, 0);
720         gfar_write(&priv->regs->gaddr5, 0);
721         gfar_write(&priv->regs->gaddr6, 0);
722         gfar_write(&priv->regs->gaddr7, 0);
723
724         /* Zero out the rmon mib registers if it has them */
725         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
726                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
727
728                 /* Mask off the CAM interrupts */
729                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
730                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
731         }
732
733         /* Initialize the max receive buffer length */
734         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
735
736         /* Initialize the Minimum Frame Length Register */
737         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
738 }
739
740
741 /* Halt the receive and transmit queues */
742 static void gfar_halt_nodisable(struct net_device *dev)
743 {
744         struct gfar_private *priv = netdev_priv(dev);
745         struct gfar __iomem *regs = priv->regs;
746         u32 tempval;
747
748         /* Mask all interrupts */
749         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
750
751         /* Clear all interrupts */
752         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
753
754         /* Stop the DMA, and wait for it to stop */
755         tempval = gfar_read(&priv->regs->dmactrl);
756         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
757             != (DMACTRL_GRS | DMACTRL_GTS)) {
758                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
759                 gfar_write(&priv->regs->dmactrl, tempval);
760
761                 while (!(gfar_read(&priv->regs->ievent) &
762                          (IEVENT_GRSC | IEVENT_GTSC)))
763                         cpu_relax();
764         }
765 }
766
767 /* Halt the receive and transmit queues */
768 void gfar_halt(struct net_device *dev)
769 {
770         struct gfar_private *priv = netdev_priv(dev);
771         struct gfar __iomem *regs = priv->regs;
772         u32 tempval;
773
774         gfar_halt_nodisable(dev);
775
776         /* Disable Rx and Tx */
777         tempval = gfar_read(&regs->maccfg1);
778         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
779         gfar_write(&regs->maccfg1, tempval);
780 }
781
782 void stop_gfar(struct net_device *dev)
783 {
784         struct gfar_private *priv = netdev_priv(dev);
785         struct gfar __iomem *regs = priv->regs;
786         unsigned long flags;
787
788         phy_stop(priv->phydev);
789
790         /* Lock it down */
791         spin_lock_irqsave(&priv->txlock, flags);
792         spin_lock(&priv->rxlock);
793
794         gfar_halt(dev);
795
796         spin_unlock(&priv->rxlock);
797         spin_unlock_irqrestore(&priv->txlock, flags);
798
799         /* Free the IRQs */
800         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
801                 free_irq(priv->interruptError, dev);
802                 free_irq(priv->interruptTransmit, dev);
803                 free_irq(priv->interruptReceive, dev);
804         } else {
805                 free_irq(priv->interruptTransmit, dev);
806         }
807
808         free_skb_resources(priv);
809
810         dma_free_coherent(&dev->dev,
811                         sizeof(struct txbd8)*priv->tx_ring_size
812                         + sizeof(struct rxbd8)*priv->rx_ring_size,
813                         priv->tx_bd_base,
814                         gfar_read(&regs->tbase0));
815 }
816
817 /* If there are any tx skbs or rx skbs still around, free them.
818  * Then free tx_skbuff and rx_skbuff */
819 static void free_skb_resources(struct gfar_private *priv)
820 {
821         struct rxbd8 *rxbdp;
822         struct txbd8 *txbdp;
823         int i, j;
824
825         /* Go through all the buffer descriptors and free their data buffers */
826         txbdp = priv->tx_bd_base;
827
828         for (i = 0; i < priv->tx_ring_size; i++) {
829                 if (!priv->tx_skbuff[i])
830                         continue;
831
832                 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
833                                 txbdp->length, DMA_TO_DEVICE);
834                 txbdp->lstatus = 0;
835                 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
836                         txbdp++;
837                         dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
838                                         txbdp->length, DMA_TO_DEVICE);
839                 }
840                 txbdp++;
841                 dev_kfree_skb_any(priv->tx_skbuff[i]);
842                 priv->tx_skbuff[i] = NULL;
843         }
844
845         kfree(priv->tx_skbuff);
846
847         rxbdp = priv->rx_bd_base;
848
849         /* rx_skbuff is not guaranteed to be allocated, so only
850          * free it and its contents if it is allocated */
851         if(priv->rx_skbuff != NULL) {
852                 for (i = 0; i < priv->rx_ring_size; i++) {
853                         if (priv->rx_skbuff[i]) {
854                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
855                                                 priv->rx_buffer_size,
856                                                 DMA_FROM_DEVICE);
857
858                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
859                                 priv->rx_skbuff[i] = NULL;
860                         }
861
862                         rxbdp->lstatus = 0;
863                         rxbdp->bufPtr = 0;
864
865                         rxbdp++;
866                 }
867
868                 kfree(priv->rx_skbuff);
869         }
870 }
871
872 void gfar_start(struct net_device *dev)
873 {
874         struct gfar_private *priv = netdev_priv(dev);
875         struct gfar __iomem *regs = priv->regs;
876         u32 tempval;
877
878         /* Enable Rx and Tx in MACCFG1 */
879         tempval = gfar_read(&regs->maccfg1);
880         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
881         gfar_write(&regs->maccfg1, tempval);
882
883         /* Initialize DMACTRL to have WWR and WOP */
884         tempval = gfar_read(&priv->regs->dmactrl);
885         tempval |= DMACTRL_INIT_SETTINGS;
886         gfar_write(&priv->regs->dmactrl, tempval);
887
888         /* Make sure we aren't stopped */
889         tempval = gfar_read(&priv->regs->dmactrl);
890         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
891         gfar_write(&priv->regs->dmactrl, tempval);
892
893         /* Clear THLT/RHLT, so that the DMA starts polling now */
894         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
895         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
896
897         /* Unmask the interrupts we look for */
898         gfar_write(&regs->imask, IMASK_DEFAULT);
899
900         dev->trans_start = jiffies;
901 }
902
903 /* Bring the controller up and running */
904 int startup_gfar(struct net_device *dev)
905 {
906         struct txbd8 *txbdp;
907         struct rxbd8 *rxbdp;
908         dma_addr_t addr = 0;
909         unsigned long vaddr;
910         int i;
911         struct gfar_private *priv = netdev_priv(dev);
912         struct gfar __iomem *regs = priv->regs;
913         int err = 0;
914         u32 rctrl = 0;
915         u32 attrs = 0;
916
917         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
918
919         /* Allocate memory for the buffer descriptors */
920         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
921                         sizeof (struct txbd8) * priv->tx_ring_size +
922                         sizeof (struct rxbd8) * priv->rx_ring_size,
923                         &addr, GFP_KERNEL);
924
925         if (vaddr == 0) {
926                 if (netif_msg_ifup(priv))
927                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
928                                         dev->name);
929                 return -ENOMEM;
930         }
931
932         priv->tx_bd_base = (struct txbd8 *) vaddr;
933
934         /* enet DMA only understands physical addresses */
935         gfar_write(&regs->tbase0, addr);
936
937         /* Start the rx descriptor ring where the tx ring leaves off */
938         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
939         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
940         priv->rx_bd_base = (struct rxbd8 *) vaddr;
941         gfar_write(&regs->rbase0, addr);
942
943         /* Setup the skbuff rings */
944         priv->tx_skbuff =
945             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
946                                         priv->tx_ring_size, GFP_KERNEL);
947
948         if (NULL == priv->tx_skbuff) {
949                 if (netif_msg_ifup(priv))
950                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
951                                         dev->name);
952                 err = -ENOMEM;
953                 goto tx_skb_fail;
954         }
955
956         for (i = 0; i < priv->tx_ring_size; i++)
957                 priv->tx_skbuff[i] = NULL;
958
959         priv->rx_skbuff =
960             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
961                                         priv->rx_ring_size, GFP_KERNEL);
962
963         if (NULL == priv->rx_skbuff) {
964                 if (netif_msg_ifup(priv))
965                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
966                                         dev->name);
967                 err = -ENOMEM;
968                 goto rx_skb_fail;
969         }
970
971         for (i = 0; i < priv->rx_ring_size; i++)
972                 priv->rx_skbuff[i] = NULL;
973
974         /* Initialize some variables in our dev structure */
975         priv->num_txbdfree = priv->tx_ring_size;
976         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
977         priv->cur_rx = priv->rx_bd_base;
978         priv->skb_curtx = priv->skb_dirtytx = 0;
979         priv->skb_currx = 0;
980
981         /* Initialize Transmit Descriptor Ring */
982         txbdp = priv->tx_bd_base;
983         for (i = 0; i < priv->tx_ring_size; i++) {
984                 txbdp->lstatus = 0;
985                 txbdp->bufPtr = 0;
986                 txbdp++;
987         }
988
989         /* Set the last descriptor in the ring to indicate wrap */
990         txbdp--;
991         txbdp->status |= TXBD_WRAP;
992
993         rxbdp = priv->rx_bd_base;
994         for (i = 0; i < priv->rx_ring_size; i++) {
995                 struct sk_buff *skb;
996
997                 skb = gfar_new_skb(dev);
998
999                 if (!skb) {
1000                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1001                                         dev->name);
1002
1003                         goto err_rxalloc_fail;
1004                 }
1005
1006                 priv->rx_skbuff[i] = skb;
1007
1008                 gfar_new_rxbdp(dev, rxbdp, skb);
1009
1010                 rxbdp++;
1011         }
1012
1013         /* Set the last descriptor in the ring to wrap */
1014         rxbdp--;
1015         rxbdp->status |= RXBD_WRAP;
1016
1017         /* If the device has multiple interrupts, register for
1018          * them.  Otherwise, only register for the one */
1019         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1020                 /* Install our interrupt handlers for Error,
1021                  * Transmit, and Receive */
1022                 if (request_irq(priv->interruptError, gfar_error,
1023                                 0, "enet_error", dev) < 0) {
1024                         if (netif_msg_intr(priv))
1025                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1026                                         dev->name, priv->interruptError);
1027
1028                         err = -1;
1029                         goto err_irq_fail;
1030                 }
1031
1032                 if (request_irq(priv->interruptTransmit, gfar_transmit,
1033                                 0, "enet_tx", dev) < 0) {
1034                         if (netif_msg_intr(priv))
1035                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1036                                         dev->name, priv->interruptTransmit);
1037
1038                         err = -1;
1039
1040                         goto tx_irq_fail;
1041                 }
1042
1043                 if (request_irq(priv->interruptReceive, gfar_receive,
1044                                 0, "enet_rx", dev) < 0) {
1045                         if (netif_msg_intr(priv))
1046                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1047                                                 dev->name, priv->interruptReceive);
1048
1049                         err = -1;
1050                         goto rx_irq_fail;
1051                 }
1052         } else {
1053                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1054                                 0, "gfar_interrupt", dev) < 0) {
1055                         if (netif_msg_intr(priv))
1056                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1057                                         dev->name, priv->interruptError);
1058
1059                         err = -1;
1060                         goto err_irq_fail;
1061                 }
1062         }
1063
1064         phy_start(priv->phydev);
1065
1066         /* Configure the coalescing support */
1067         gfar_write(&regs->txic, 0);
1068         if (priv->txcoalescing)
1069                 gfar_write(&regs->txic, priv->txic);
1070
1071         gfar_write(&regs->rxic, 0);
1072         if (priv->rxcoalescing)
1073                 gfar_write(&regs->rxic, priv->rxic);
1074
1075         if (priv->rx_csum_enable)
1076                 rctrl |= RCTRL_CHECKSUMMING;
1077
1078         if (priv->extended_hash) {
1079                 rctrl |= RCTRL_EXTHASH;
1080
1081                 gfar_clear_exact_match(dev);
1082                 rctrl |= RCTRL_EMEN;
1083         }
1084
1085         if (priv->padding) {
1086                 rctrl &= ~RCTRL_PAL_MASK;
1087                 rctrl |= RCTRL_PADDING(priv->padding);
1088         }
1089
1090         /* Init rctrl based on our settings */
1091         gfar_write(&priv->regs->rctrl, rctrl);
1092
1093         if (dev->features & NETIF_F_IP_CSUM)
1094                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1095
1096         /* Set the extraction length and index */
1097         attrs = ATTRELI_EL(priv->rx_stash_size) |
1098                 ATTRELI_EI(priv->rx_stash_index);
1099
1100         gfar_write(&priv->regs->attreli, attrs);
1101
1102         /* Start with defaults, and add stashing or locking
1103          * depending on the approprate variables */
1104         attrs = ATTR_INIT_SETTINGS;
1105
1106         if (priv->bd_stash_en)
1107                 attrs |= ATTR_BDSTASH;
1108
1109         if (priv->rx_stash_size != 0)
1110                 attrs |= ATTR_BUFSTASH;
1111
1112         gfar_write(&priv->regs->attr, attrs);
1113
1114         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1115         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1116         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1117
1118         /* Start the controller */
1119         gfar_start(dev);
1120
1121         return 0;
1122
1123 rx_irq_fail:
1124         free_irq(priv->interruptTransmit, dev);
1125 tx_irq_fail:
1126         free_irq(priv->interruptError, dev);
1127 err_irq_fail:
1128 err_rxalloc_fail:
1129 rx_skb_fail:
1130         free_skb_resources(priv);
1131 tx_skb_fail:
1132         dma_free_coherent(&dev->dev,
1133                         sizeof(struct txbd8)*priv->tx_ring_size
1134                         + sizeof(struct rxbd8)*priv->rx_ring_size,
1135                         priv->tx_bd_base,
1136                         gfar_read(&regs->tbase0));
1137
1138         return err;
1139 }
1140
1141 /* Called when something needs to use the ethernet device */
1142 /* Returns 0 for success. */
1143 static int gfar_enet_open(struct net_device *dev)
1144 {
1145         struct gfar_private *priv = netdev_priv(dev);
1146         int err;
1147
1148         napi_enable(&priv->napi);
1149
1150         /* Initialize a bunch of registers */
1151         init_registers(dev);
1152
1153         gfar_set_mac_address(dev);
1154
1155         err = init_phy(dev);
1156
1157         if(err) {
1158                 napi_disable(&priv->napi);
1159                 return err;
1160         }
1161
1162         err = startup_gfar(dev);
1163         if (err) {
1164                 napi_disable(&priv->napi);
1165                 return err;
1166         }
1167
1168         netif_start_queue(dev);
1169
1170         return err;
1171 }
1172
1173 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1174 {
1175         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1176
1177         cacheable_memzero(fcb, GMAC_FCB_LEN);
1178
1179         return fcb;
1180 }
1181
1182 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1183 {
1184         u8 flags = 0;
1185
1186         /* If we're here, it's a IP packet with a TCP or UDP
1187          * payload.  We set it to checksum, using a pseudo-header
1188          * we provide
1189          */
1190         flags = TXFCB_DEFAULT;
1191
1192         /* Tell the controller what the protocol is */
1193         /* And provide the already calculated phcs */
1194         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1195                 flags |= TXFCB_UDP;
1196                 fcb->phcs = udp_hdr(skb)->check;
1197         } else
1198                 fcb->phcs = tcp_hdr(skb)->check;
1199
1200         /* l3os is the distance between the start of the
1201          * frame (skb->data) and the start of the IP hdr.
1202          * l4os is the distance between the start of the
1203          * l3 hdr and the l4 hdr */
1204         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1205         fcb->l4os = skb_network_header_len(skb);
1206
1207         fcb->flags = flags;
1208 }
1209
1210 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1211 {
1212         fcb->flags |= TXFCB_VLN;
1213         fcb->vlctl = vlan_tx_tag_get(skb);
1214 }
1215
1216 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1217                                struct txbd8 *base, int ring_size)
1218 {
1219         struct txbd8 *new_bd = bdp + stride;
1220
1221         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1222 }
1223
1224 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1225                 int ring_size)
1226 {
1227         return skip_txbd(bdp, 1, base, ring_size);
1228 }
1229
1230 /* This is called by the kernel when a frame is ready for transmission. */
1231 /* It is pointed to by the dev->hard_start_xmit function pointer */
1232 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1233 {
1234         struct gfar_private *priv = netdev_priv(dev);
1235         struct txfcb *fcb = NULL;
1236         struct txbd8 *txbdp, *txbdp_start, *base;
1237         u32 lstatus;
1238         int i;
1239         u32 bufaddr;
1240         unsigned long flags;
1241         unsigned int nr_frags, length;
1242
1243         base = priv->tx_bd_base;
1244
1245         /* total number of fragments in the SKB */
1246         nr_frags = skb_shinfo(skb)->nr_frags;
1247
1248         spin_lock_irqsave(&priv->txlock, flags);
1249
1250         /* check if there is space to queue this packet */
1251         if (nr_frags > priv->num_txbdfree) {
1252                 /* no space, stop the queue */
1253                 netif_stop_queue(dev);
1254                 dev->stats.tx_fifo_errors++;
1255                 spin_unlock_irqrestore(&priv->txlock, flags);
1256                 return NETDEV_TX_BUSY;
1257         }
1258
1259         /* Update transmit stats */
1260         dev->stats.tx_bytes += skb->len;
1261
1262         txbdp = txbdp_start = priv->cur_tx;
1263
1264         if (nr_frags == 0) {
1265                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1266         } else {
1267                 /* Place the fragment addresses and lengths into the TxBDs */
1268                 for (i = 0; i < nr_frags; i++) {
1269                         /* Point at the next BD, wrapping as needed */
1270                         txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1271
1272                         length = skb_shinfo(skb)->frags[i].size;
1273
1274                         lstatus = txbdp->lstatus | length |
1275                                 BD_LFLAG(TXBD_READY);
1276
1277                         /* Handle the last BD specially */
1278                         if (i == nr_frags - 1)
1279                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1280
1281                         bufaddr = dma_map_page(&dev->dev,
1282                                         skb_shinfo(skb)->frags[i].page,
1283                                         skb_shinfo(skb)->frags[i].page_offset,
1284                                         length,
1285                                         DMA_TO_DEVICE);
1286
1287                         /* set the TxBD length and buffer pointer */
1288                         txbdp->bufPtr = bufaddr;
1289                         txbdp->lstatus = lstatus;
1290                 }
1291
1292                 lstatus = txbdp_start->lstatus;
1293         }
1294
1295         /* Set up checksumming */
1296         if (CHECKSUM_PARTIAL == skb->ip_summed) {
1297                 fcb = gfar_add_fcb(skb);
1298                 lstatus |= BD_LFLAG(TXBD_TOE);
1299                 gfar_tx_checksum(skb, fcb);
1300         }
1301
1302         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1303                 if (unlikely(NULL == fcb)) {
1304                         fcb = gfar_add_fcb(skb);
1305                         lstatus |= BD_LFLAG(TXBD_TOE);
1306                 }
1307
1308                 gfar_tx_vlan(skb, fcb);
1309         }
1310
1311         /* setup the TxBD length and buffer pointer for the first BD */
1312         priv->tx_skbuff[priv->skb_curtx] = skb;
1313         txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1314                         skb_headlen(skb), DMA_TO_DEVICE);
1315
1316         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1317
1318         /*
1319          * The powerpc-specific eieio() is used, as wmb() has too strong
1320          * semantics (it requires synchronization between cacheable and
1321          * uncacheable mappings, which eieio doesn't provide and which we
1322          * don't need), thus requiring a more expensive sync instruction.  At
1323          * some point, the set of architecture-independent barrier functions
1324          * should be expanded to include weaker barriers.
1325          */
1326         eieio();
1327
1328         txbdp_start->lstatus = lstatus;
1329
1330         /* Update the current skb pointer to the next entry we will use
1331          * (wrapping if necessary) */
1332         priv->skb_curtx = (priv->skb_curtx + 1) &
1333                 TX_RING_MOD_MASK(priv->tx_ring_size);
1334
1335         priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1336
1337         /* reduce TxBD free count */
1338         priv->num_txbdfree -= (nr_frags + 1);
1339
1340         dev->trans_start = jiffies;
1341
1342         /* If the next BD still needs to be cleaned up, then the bds
1343            are full.  We need to tell the kernel to stop sending us stuff. */
1344         if (!priv->num_txbdfree) {
1345                 netif_stop_queue(dev);
1346
1347                 dev->stats.tx_fifo_errors++;
1348         }
1349
1350         /* Tell the DMA to go go go */
1351         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1352
1353         /* Unlock priv */
1354         spin_unlock_irqrestore(&priv->txlock, flags);
1355
1356         return 0;
1357 }
1358
1359 /* Stops the kernel queue, and halts the controller */
1360 static int gfar_close(struct net_device *dev)
1361 {
1362         struct gfar_private *priv = netdev_priv(dev);
1363
1364         napi_disable(&priv->napi);
1365
1366         cancel_work_sync(&priv->reset_task);
1367         stop_gfar(dev);
1368
1369         /* Disconnect from the PHY */
1370         phy_disconnect(priv->phydev);
1371         priv->phydev = NULL;
1372
1373         netif_stop_queue(dev);
1374
1375         return 0;
1376 }
1377
1378 /* Changes the mac address if the controller is not running. */
1379 static int gfar_set_mac_address(struct net_device *dev)
1380 {
1381         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1382
1383         return 0;
1384 }
1385
1386
1387 /* Enables and disables VLAN insertion/extraction */
1388 static void gfar_vlan_rx_register(struct net_device *dev,
1389                 struct vlan_group *grp)
1390 {
1391         struct gfar_private *priv = netdev_priv(dev);
1392         unsigned long flags;
1393         struct vlan_group *old_grp;
1394         u32 tempval;
1395
1396         spin_lock_irqsave(&priv->rxlock, flags);
1397
1398         old_grp = priv->vlgrp;
1399
1400         if (old_grp == grp)
1401                 return;
1402
1403         if (grp) {
1404                 /* Enable VLAN tag insertion */
1405                 tempval = gfar_read(&priv->regs->tctrl);
1406                 tempval |= TCTRL_VLINS;
1407
1408                 gfar_write(&priv->regs->tctrl, tempval);
1409
1410                 /* Enable VLAN tag extraction */
1411                 tempval = gfar_read(&priv->regs->rctrl);
1412                 tempval |= RCTRL_VLEX;
1413                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1414                 gfar_write(&priv->regs->rctrl, tempval);
1415         } else {
1416                 /* Disable VLAN tag insertion */
1417                 tempval = gfar_read(&priv->regs->tctrl);
1418                 tempval &= ~TCTRL_VLINS;
1419                 gfar_write(&priv->regs->tctrl, tempval);
1420
1421                 /* Disable VLAN tag extraction */
1422                 tempval = gfar_read(&priv->regs->rctrl);
1423                 tempval &= ~RCTRL_VLEX;
1424                 /* If parse is no longer required, then disable parser */
1425                 if (tempval & RCTRL_REQ_PARSER)
1426                         tempval |= RCTRL_PRSDEP_INIT;
1427                 else
1428                         tempval &= ~RCTRL_PRSDEP_INIT;
1429                 gfar_write(&priv->regs->rctrl, tempval);
1430         }
1431
1432         gfar_change_mtu(dev, dev->mtu);
1433
1434         spin_unlock_irqrestore(&priv->rxlock, flags);
1435 }
1436
1437 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1438 {
1439         int tempsize, tempval;
1440         struct gfar_private *priv = netdev_priv(dev);
1441         int oldsize = priv->rx_buffer_size;
1442         int frame_size = new_mtu + ETH_HLEN;
1443
1444         if (priv->vlgrp)
1445                 frame_size += VLAN_HLEN;
1446
1447         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1448                 if (netif_msg_drv(priv))
1449                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1450                                         dev->name);
1451                 return -EINVAL;
1452         }
1453
1454         if (gfar_uses_fcb(priv))
1455                 frame_size += GMAC_FCB_LEN;
1456
1457         frame_size += priv->padding;
1458
1459         tempsize =
1460             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1461             INCREMENTAL_BUFFER_SIZE;
1462
1463         /* Only stop and start the controller if it isn't already
1464          * stopped, and we changed something */
1465         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1466                 stop_gfar(dev);
1467
1468         priv->rx_buffer_size = tempsize;
1469
1470         dev->mtu = new_mtu;
1471
1472         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1473         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1474
1475         /* If the mtu is larger than the max size for standard
1476          * ethernet frames (ie, a jumbo frame), then set maccfg2
1477          * to allow huge frames, and to check the length */
1478         tempval = gfar_read(&priv->regs->maccfg2);
1479
1480         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1481                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1482         else
1483                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1484
1485         gfar_write(&priv->regs->maccfg2, tempval);
1486
1487         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1488                 startup_gfar(dev);
1489
1490         return 0;
1491 }
1492
1493 /* gfar_reset_task gets scheduled when a packet has not been
1494  * transmitted after a set amount of time.
1495  * For now, assume that clearing out all the structures, and
1496  * starting over will fix the problem.
1497  */
1498 static void gfar_reset_task(struct work_struct *work)
1499 {
1500         struct gfar_private *priv = container_of(work, struct gfar_private,
1501                         reset_task);
1502         struct net_device *dev = priv->dev;
1503
1504         if (dev->flags & IFF_UP) {
1505                 stop_gfar(dev);
1506                 startup_gfar(dev);
1507         }
1508
1509         netif_tx_schedule_all(dev);
1510 }
1511
1512 static void gfar_timeout(struct net_device *dev)
1513 {
1514         struct gfar_private *priv = netdev_priv(dev);
1515
1516         dev->stats.tx_errors++;
1517         schedule_work(&priv->reset_task);
1518 }
1519
1520 /* Interrupt Handler for Transmit complete */
1521 static int gfar_clean_tx_ring(struct net_device *dev)
1522 {
1523         struct gfar_private *priv = netdev_priv(dev);
1524         struct txbd8 *bdp;
1525         struct txbd8 *lbdp = NULL;
1526         struct txbd8 *base = priv->tx_bd_base;
1527         struct sk_buff *skb;
1528         int skb_dirtytx;
1529         int tx_ring_size = priv->tx_ring_size;
1530         int frags = 0;
1531         int i;
1532         int howmany = 0;
1533         u32 lstatus;
1534
1535         bdp = priv->dirty_tx;
1536         skb_dirtytx = priv->skb_dirtytx;
1537
1538         while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1539                 frags = skb_shinfo(skb)->nr_frags;
1540                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1541
1542                 lstatus = lbdp->lstatus;
1543
1544                 /* Only clean completed frames */
1545                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1546                                 (lstatus & BD_LENGTH_MASK))
1547                         break;
1548
1549                 dma_unmap_single(&dev->dev,
1550                                 bdp->bufPtr,
1551                                 bdp->length,
1552                                 DMA_TO_DEVICE);
1553
1554                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1555                 bdp = next_txbd(bdp, base, tx_ring_size);
1556
1557                 for (i = 0; i < frags; i++) {
1558                         dma_unmap_page(&dev->dev,
1559                                         bdp->bufPtr,
1560                                         bdp->length,
1561                                         DMA_TO_DEVICE);
1562                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1563                         bdp = next_txbd(bdp, base, tx_ring_size);
1564                 }
1565
1566                 dev_kfree_skb_any(skb);
1567                 priv->tx_skbuff[skb_dirtytx] = NULL;
1568
1569                 skb_dirtytx = (skb_dirtytx + 1) &
1570                         TX_RING_MOD_MASK(tx_ring_size);
1571
1572                 howmany++;
1573                 priv->num_txbdfree += frags + 1;
1574         }
1575
1576         /* If we freed a buffer, we can restart transmission, if necessary */
1577         if (netif_queue_stopped(dev) && priv->num_txbdfree)
1578                 netif_wake_queue(dev);
1579
1580         /* Update dirty indicators */
1581         priv->skb_dirtytx = skb_dirtytx;
1582         priv->dirty_tx = bdp;
1583
1584         dev->stats.tx_packets += howmany;
1585
1586         return howmany;
1587 }
1588
1589 /* Interrupt Handler for Transmit complete */
1590 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1591 {
1592         struct net_device *dev = (struct net_device *) dev_id;
1593         struct gfar_private *priv = netdev_priv(dev);
1594
1595         /* Clear IEVENT */
1596         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1597
1598         /* Lock priv */
1599         spin_lock(&priv->txlock);
1600
1601         gfar_clean_tx_ring(dev);
1602
1603         /* If we are coalescing the interrupts, reset the timer */
1604         /* Otherwise, clear it */
1605         if (likely(priv->txcoalescing)) {
1606                 gfar_write(&priv->regs->txic, 0);
1607                 gfar_write(&priv->regs->txic, priv->txic);
1608         }
1609
1610         spin_unlock(&priv->txlock);
1611
1612         return IRQ_HANDLED;
1613 }
1614
1615 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1616                 struct sk_buff *skb)
1617 {
1618         struct gfar_private *priv = netdev_priv(dev);
1619         u32 lstatus;
1620
1621         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1622                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1623
1624         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1625
1626         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1627                 lstatus |= BD_LFLAG(RXBD_WRAP);
1628
1629         eieio();
1630
1631         bdp->lstatus = lstatus;
1632 }
1633
1634
1635 struct sk_buff * gfar_new_skb(struct net_device *dev)
1636 {
1637         unsigned int alignamount;
1638         struct gfar_private *priv = netdev_priv(dev);
1639         struct sk_buff *skb = NULL;
1640
1641         /* We have to allocate the skb, so keep trying till we succeed */
1642         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1643
1644         if (!skb)
1645                 return NULL;
1646
1647         alignamount = RXBUF_ALIGNMENT -
1648                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1649
1650         /* We need the data buffer to be aligned properly.  We will reserve
1651          * as many bytes as needed to align the data properly
1652          */
1653         skb_reserve(skb, alignamount);
1654
1655         return skb;
1656 }
1657
1658 static inline void count_errors(unsigned short status, struct net_device *dev)
1659 {
1660         struct gfar_private *priv = netdev_priv(dev);
1661         struct net_device_stats *stats = &dev->stats;
1662         struct gfar_extra_stats *estats = &priv->extra_stats;
1663
1664         /* If the packet was truncated, none of the other errors
1665          * matter */
1666         if (status & RXBD_TRUNCATED) {
1667                 stats->rx_length_errors++;
1668
1669                 estats->rx_trunc++;
1670
1671                 return;
1672         }
1673         /* Count the errors, if there were any */
1674         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1675                 stats->rx_length_errors++;
1676
1677                 if (status & RXBD_LARGE)
1678                         estats->rx_large++;
1679                 else
1680                         estats->rx_short++;
1681         }
1682         if (status & RXBD_NONOCTET) {
1683                 stats->rx_frame_errors++;
1684                 estats->rx_nonoctet++;
1685         }
1686         if (status & RXBD_CRCERR) {
1687                 estats->rx_crcerr++;
1688                 stats->rx_crc_errors++;
1689         }
1690         if (status & RXBD_OVERRUN) {
1691                 estats->rx_overrun++;
1692                 stats->rx_crc_errors++;
1693         }
1694 }
1695
1696 irqreturn_t gfar_receive(int irq, void *dev_id)
1697 {
1698         struct net_device *dev = (struct net_device *) dev_id;
1699         struct gfar_private *priv = netdev_priv(dev);
1700         u32 tempval;
1701
1702         /* support NAPI */
1703         /* Clear IEVENT, so interrupts aren't called again
1704          * because of the packets that have already arrived */
1705         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1706
1707         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1708                 tempval = gfar_read(&priv->regs->imask);
1709                 tempval &= IMASK_RTX_DISABLED;
1710                 gfar_write(&priv->regs->imask, tempval);
1711
1712                 __netif_rx_schedule(dev, &priv->napi);
1713         } else {
1714                 if (netif_msg_rx_err(priv))
1715                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1716                                 dev->name, gfar_read(&priv->regs->ievent),
1717                                 gfar_read(&priv->regs->imask));
1718         }
1719
1720         return IRQ_HANDLED;
1721 }
1722
1723 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1724 {
1725         /* If valid headers were found, and valid sums
1726          * were verified, then we tell the kernel that no
1727          * checksumming is necessary.  Otherwise, it is */
1728         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1729                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1730         else
1731                 skb->ip_summed = CHECKSUM_NONE;
1732 }
1733
1734
1735 /* gfar_process_frame() -- handle one incoming packet if skb
1736  * isn't NULL.  */
1737 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1738                               int amount_pull)
1739 {
1740         struct gfar_private *priv = netdev_priv(dev);
1741         struct rxfcb *fcb = NULL;
1742
1743         int ret;
1744
1745         /* fcb is at the beginning if exists */
1746         fcb = (struct rxfcb *)skb->data;
1747
1748         /* Remove the FCB from the skb */
1749         /* Remove the padded bytes, if there are any */
1750         if (amount_pull)
1751                 skb_pull(skb, amount_pull);
1752
1753         if (priv->rx_csum_enable)
1754                 gfar_rx_checksum(skb, fcb);
1755
1756         /* Tell the skb what kind of packet this is */
1757         skb->protocol = eth_type_trans(skb, dev);
1758
1759         /* Send the packet up the stack */
1760         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1761                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1762         else
1763                 ret = netif_receive_skb(skb);
1764
1765         if (NET_RX_DROP == ret)
1766                 priv->extra_stats.kernel_dropped++;
1767
1768         return 0;
1769 }
1770
1771 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1772  *   until the budget/quota has been reached. Returns the number
1773  *   of frames handled
1774  */
1775 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1776 {
1777         struct rxbd8 *bdp, *base;
1778         struct sk_buff *skb;
1779         int pkt_len;
1780         int amount_pull;
1781         int howmany = 0;
1782         struct gfar_private *priv = netdev_priv(dev);
1783
1784         /* Get the first full descriptor */
1785         bdp = priv->cur_rx;
1786         base = priv->rx_bd_base;
1787
1788         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1789                 priv->padding;
1790
1791         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1792                 struct sk_buff *newskb;
1793                 rmb();
1794
1795                 /* Add another skb for the future */
1796                 newskb = gfar_new_skb(dev);
1797
1798                 skb = priv->rx_skbuff[priv->skb_currx];
1799
1800                 dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1801                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
1802
1803                 /* We drop the frame if we failed to allocate a new buffer */
1804                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1805                                  bdp->status & RXBD_ERR)) {
1806                         count_errors(bdp->status, dev);
1807
1808                         if (unlikely(!newskb))
1809                                 newskb = skb;
1810                         else if (skb)
1811                                 dev_kfree_skb_any(skb);
1812                 } else {
1813                         /* Increment the number of packets */
1814                         dev->stats.rx_packets++;
1815                         howmany++;
1816
1817                         if (likely(skb)) {
1818                                 pkt_len = bdp->length - ETH_FCS_LEN;
1819                                 /* Remove the FCS from the packet length */
1820                                 skb_put(skb, pkt_len);
1821                                 dev->stats.rx_bytes += pkt_len;
1822
1823                                 gfar_process_frame(dev, skb, amount_pull);
1824
1825                         } else {
1826                                 if (netif_msg_rx_err(priv))
1827                                         printk(KERN_WARNING
1828                                                "%s: Missing skb!\n", dev->name);
1829                                 dev->stats.rx_dropped++;
1830                                 priv->extra_stats.rx_skbmissing++;
1831                         }
1832
1833                 }
1834
1835                 priv->rx_skbuff[priv->skb_currx] = newskb;
1836
1837                 /* Setup the new bdp */
1838                 gfar_new_rxbdp(dev, bdp, newskb);
1839
1840                 /* Update to the next pointer */
1841                 bdp = next_bd(bdp, base, priv->rx_ring_size);
1842
1843                 /* update to point at the next skb */
1844                 priv->skb_currx =
1845                     (priv->skb_currx + 1) &
1846                     RX_RING_MOD_MASK(priv->rx_ring_size);
1847         }
1848
1849         /* Update the current rxbd pointer to be the next one */
1850         priv->cur_rx = bdp;
1851
1852         return howmany;
1853 }
1854
1855 static int gfar_poll(struct napi_struct *napi, int budget)
1856 {
1857         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1858         struct net_device *dev = priv->dev;
1859         int howmany;
1860         unsigned long flags;
1861
1862         /* If we fail to get the lock, don't bother with the TX BDs */
1863         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1864                 gfar_clean_tx_ring(dev);
1865                 spin_unlock_irqrestore(&priv->txlock, flags);
1866         }
1867
1868         howmany = gfar_clean_rx_ring(dev, budget);
1869
1870         if (howmany < budget) {
1871                 netif_rx_complete(dev, napi);
1872
1873                 /* Clear the halt bit in RSTAT */
1874                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1875
1876                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1877
1878                 /* If we are coalescing interrupts, update the timer */
1879                 /* Otherwise, clear it */
1880                 if (likely(priv->rxcoalescing)) {
1881                         gfar_write(&priv->regs->rxic, 0);
1882                         gfar_write(&priv->regs->rxic, priv->rxic);
1883                 }
1884         }
1885
1886         return howmany;
1887 }
1888
1889 #ifdef CONFIG_NET_POLL_CONTROLLER
1890 /*
1891  * Polling 'interrupt' - used by things like netconsole to send skbs
1892  * without having to re-enable interrupts. It's not called while
1893  * the interrupt routine is executing.
1894  */
1895 static void gfar_netpoll(struct net_device *dev)
1896 {
1897         struct gfar_private *priv = netdev_priv(dev);
1898
1899         /* If the device has multiple interrupts, run tx/rx */
1900         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1901                 disable_irq(priv->interruptTransmit);
1902                 disable_irq(priv->interruptReceive);
1903                 disable_irq(priv->interruptError);
1904                 gfar_interrupt(priv->interruptTransmit, dev);
1905                 enable_irq(priv->interruptError);
1906                 enable_irq(priv->interruptReceive);
1907                 enable_irq(priv->interruptTransmit);
1908         } else {
1909                 disable_irq(priv->interruptTransmit);
1910                 gfar_interrupt(priv->interruptTransmit, dev);
1911                 enable_irq(priv->interruptTransmit);
1912         }
1913 }
1914 #endif
1915
1916 /* The interrupt handler for devices with one interrupt */
1917 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1918 {
1919         struct net_device *dev = dev_id;
1920         struct gfar_private *priv = netdev_priv(dev);
1921
1922         /* Save ievent for future reference */
1923         u32 events = gfar_read(&priv->regs->ievent);
1924
1925         /* Check for reception */
1926         if (events & IEVENT_RX_MASK)
1927                 gfar_receive(irq, dev_id);
1928
1929         /* Check for transmit completion */
1930         if (events & IEVENT_TX_MASK)
1931                 gfar_transmit(irq, dev_id);
1932
1933         /* Check for errors */
1934         if (events & IEVENT_ERR_MASK)
1935                 gfar_error(irq, dev_id);
1936
1937         return IRQ_HANDLED;
1938 }
1939
1940 /* Called every time the controller might need to be made
1941  * aware of new link state.  The PHY code conveys this
1942  * information through variables in the phydev structure, and this
1943  * function converts those variables into the appropriate
1944  * register values, and can bring down the device if needed.
1945  */
1946 static void adjust_link(struct net_device *dev)
1947 {
1948         struct gfar_private *priv = netdev_priv(dev);
1949         struct gfar __iomem *regs = priv->regs;
1950         unsigned long flags;
1951         struct phy_device *phydev = priv->phydev;
1952         int new_state = 0;
1953
1954         spin_lock_irqsave(&priv->txlock, flags);
1955         if (phydev->link) {
1956                 u32 tempval = gfar_read(&regs->maccfg2);
1957                 u32 ecntrl = gfar_read(&regs->ecntrl);
1958
1959                 /* Now we make sure that we can be in full duplex mode.
1960                  * If not, we operate in half-duplex mode. */
1961                 if (phydev->duplex != priv->oldduplex) {
1962                         new_state = 1;
1963                         if (!(phydev->duplex))
1964                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1965                         else
1966                                 tempval |= MACCFG2_FULL_DUPLEX;
1967
1968                         priv->oldduplex = phydev->duplex;
1969                 }
1970
1971                 if (phydev->speed != priv->oldspeed) {
1972                         new_state = 1;
1973                         switch (phydev->speed) {
1974                         case 1000:
1975                                 tempval =
1976                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1977                                 break;
1978                         case 100:
1979                         case 10:
1980                                 tempval =
1981                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1982
1983                                 /* Reduced mode distinguishes
1984                                  * between 10 and 100 */
1985                                 if (phydev->speed == SPEED_100)
1986                                         ecntrl |= ECNTRL_R100;
1987                                 else
1988                                         ecntrl &= ~(ECNTRL_R100);
1989                                 break;
1990                         default:
1991                                 if (netif_msg_link(priv))
1992                                         printk(KERN_WARNING
1993                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1994                                                 dev->name, phydev->speed);
1995                                 break;
1996                         }
1997
1998                         priv->oldspeed = phydev->speed;
1999                 }
2000
2001                 gfar_write(&regs->maccfg2, tempval);
2002                 gfar_write(&regs->ecntrl, ecntrl);
2003
2004                 if (!priv->oldlink) {
2005                         new_state = 1;
2006                         priv->oldlink = 1;
2007                 }
2008         } else if (priv->oldlink) {
2009                 new_state = 1;
2010                 priv->oldlink = 0;
2011                 priv->oldspeed = 0;
2012                 priv->oldduplex = -1;
2013         }
2014
2015         if (new_state && netif_msg_link(priv))
2016                 phy_print_status(phydev);
2017
2018         spin_unlock_irqrestore(&priv->txlock, flags);
2019 }
2020
2021 /* Update the hash table based on the current list of multicast
2022  * addresses we subscribe to.  Also, change the promiscuity of
2023  * the device based on the flags (this function is called
2024  * whenever dev->flags is changed */
2025 static void gfar_set_multi(struct net_device *dev)
2026 {
2027         struct dev_mc_list *mc_ptr;
2028         struct gfar_private *priv = netdev_priv(dev);
2029         struct gfar __iomem *regs = priv->regs;
2030         u32 tempval;
2031
2032         if(dev->flags & IFF_PROMISC) {
2033                 /* Set RCTRL to PROM */
2034                 tempval = gfar_read(&regs->rctrl);
2035                 tempval |= RCTRL_PROM;
2036                 gfar_write(&regs->rctrl, tempval);
2037         } else {
2038                 /* Set RCTRL to not PROM */
2039                 tempval = gfar_read(&regs->rctrl);
2040                 tempval &= ~(RCTRL_PROM);
2041                 gfar_write(&regs->rctrl, tempval);
2042         }
2043
2044         if(dev->flags & IFF_ALLMULTI) {
2045                 /* Set the hash to rx all multicast frames */
2046                 gfar_write(&regs->igaddr0, 0xffffffff);
2047                 gfar_write(&regs->igaddr1, 0xffffffff);
2048                 gfar_write(&regs->igaddr2, 0xffffffff);
2049                 gfar_write(&regs->igaddr3, 0xffffffff);
2050                 gfar_write(&regs->igaddr4, 0xffffffff);
2051                 gfar_write(&regs->igaddr5, 0xffffffff);
2052                 gfar_write(&regs->igaddr6, 0xffffffff);
2053                 gfar_write(&regs->igaddr7, 0xffffffff);
2054                 gfar_write(&regs->gaddr0, 0xffffffff);
2055                 gfar_write(&regs->gaddr1, 0xffffffff);
2056                 gfar_write(&regs->gaddr2, 0xffffffff);
2057                 gfar_write(&regs->gaddr3, 0xffffffff);
2058                 gfar_write(&regs->gaddr4, 0xffffffff);
2059                 gfar_write(&regs->gaddr5, 0xffffffff);
2060                 gfar_write(&regs->gaddr6, 0xffffffff);
2061                 gfar_write(&regs->gaddr7, 0xffffffff);
2062         } else {
2063                 int em_num;
2064                 int idx;
2065
2066                 /* zero out the hash */
2067                 gfar_write(&regs->igaddr0, 0x0);
2068                 gfar_write(&regs->igaddr1, 0x0);
2069                 gfar_write(&regs->igaddr2, 0x0);
2070                 gfar_write(&regs->igaddr3, 0x0);
2071                 gfar_write(&regs->igaddr4, 0x0);
2072                 gfar_write(&regs->igaddr5, 0x0);
2073                 gfar_write(&regs->igaddr6, 0x0);
2074                 gfar_write(&regs->igaddr7, 0x0);
2075                 gfar_write(&regs->gaddr0, 0x0);
2076                 gfar_write(&regs->gaddr1, 0x0);
2077                 gfar_write(&regs->gaddr2, 0x0);
2078                 gfar_write(&regs->gaddr3, 0x0);
2079                 gfar_write(&regs->gaddr4, 0x0);
2080                 gfar_write(&regs->gaddr5, 0x0);
2081                 gfar_write(&regs->gaddr6, 0x0);
2082                 gfar_write(&regs->gaddr7, 0x0);
2083
2084                 /* If we have extended hash tables, we need to
2085                  * clear the exact match registers to prepare for
2086                  * setting them */
2087                 if (priv->extended_hash) {
2088                         em_num = GFAR_EM_NUM + 1;
2089                         gfar_clear_exact_match(dev);
2090                         idx = 1;
2091                 } else {
2092                         idx = 0;
2093                         em_num = 0;
2094                 }
2095
2096                 if(dev->mc_count == 0)
2097                         return;
2098
2099                 /* Parse the list, and set the appropriate bits */
2100                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2101                         if (idx < em_num) {
2102                                 gfar_set_mac_for_addr(dev, idx,
2103                                                 mc_ptr->dmi_addr);
2104                                 idx++;
2105                         } else
2106                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2107                 }
2108         }
2109
2110         return;
2111 }
2112
2113
2114 /* Clears each of the exact match registers to zero, so they
2115  * don't interfere with normal reception */
2116 static void gfar_clear_exact_match(struct net_device *dev)
2117 {
2118         int idx;
2119         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2120
2121         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2122                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2123 }
2124
2125 /* Set the appropriate hash bit for the given addr */
2126 /* The algorithm works like so:
2127  * 1) Take the Destination Address (ie the multicast address), and
2128  * do a CRC on it (little endian), and reverse the bits of the
2129  * result.
2130  * 2) Use the 8 most significant bits as a hash into a 256-entry
2131  * table.  The table is controlled through 8 32-bit registers:
2132  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2133  * gaddr7.  This means that the 3 most significant bits in the
2134  * hash index which gaddr register to use, and the 5 other bits
2135  * indicate which bit (assuming an IBM numbering scheme, which
2136  * for PowerPC (tm) is usually the case) in the register holds
2137  * the entry. */
2138 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2139 {
2140         u32 tempval;
2141         struct gfar_private *priv = netdev_priv(dev);
2142         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2143         int width = priv->hash_width;
2144         u8 whichbit = (result >> (32 - width)) & 0x1f;
2145         u8 whichreg = result >> (32 - width + 5);
2146         u32 value = (1 << (31-whichbit));
2147
2148         tempval = gfar_read(priv->hash_regs[whichreg]);
2149         tempval |= value;
2150         gfar_write(priv->hash_regs[whichreg], tempval);
2151
2152         return;
2153 }
2154
2155
2156 /* There are multiple MAC Address register pairs on some controllers
2157  * This function sets the numth pair to a given address
2158  */
2159 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2160 {
2161         struct gfar_private *priv = netdev_priv(dev);
2162         int idx;
2163         char tmpbuf[MAC_ADDR_LEN];
2164         u32 tempval;
2165         u32 __iomem *macptr = &priv->regs->macstnaddr1;
2166
2167         macptr += num*2;
2168
2169         /* Now copy it into the mac registers backwards, cuz */
2170         /* little endian is silly */
2171         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2172                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2173
2174         gfar_write(macptr, *((u32 *) (tmpbuf)));
2175
2176         tempval = *((u32 *) (tmpbuf + 4));
2177
2178         gfar_write(macptr+1, tempval);
2179 }
2180
2181 /* GFAR error interrupt handler */
2182 static irqreturn_t gfar_error(int irq, void *dev_id)
2183 {
2184         struct net_device *dev = dev_id;
2185         struct gfar_private *priv = netdev_priv(dev);
2186
2187         /* Save ievent for future reference */
2188         u32 events = gfar_read(&priv->regs->ievent);
2189
2190         /* Clear IEVENT */
2191         gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2192
2193         /* Magic Packet is not an error. */
2194         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2195             (events & IEVENT_MAG))
2196                 events &= ~IEVENT_MAG;
2197
2198         /* Hmm... */
2199         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2200                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2201                        dev->name, events, gfar_read(&priv->regs->imask));
2202
2203         /* Update the error counters */
2204         if (events & IEVENT_TXE) {
2205                 dev->stats.tx_errors++;
2206
2207                 if (events & IEVENT_LC)
2208                         dev->stats.tx_window_errors++;
2209                 if (events & IEVENT_CRL)
2210                         dev->stats.tx_aborted_errors++;
2211                 if (events & IEVENT_XFUN) {
2212                         if (netif_msg_tx_err(priv))
2213                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2214                                        "packet dropped.\n", dev->name);
2215                         dev->stats.tx_dropped++;
2216                         priv->extra_stats.tx_underrun++;
2217
2218                         /* Reactivate the Tx Queues */
2219                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2220                 }
2221                 if (netif_msg_tx_err(priv))
2222                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2223         }
2224         if (events & IEVENT_BSY) {
2225                 dev->stats.rx_errors++;
2226                 priv->extra_stats.rx_bsy++;
2227
2228                 gfar_receive(irq, dev_id);
2229
2230                 if (netif_msg_rx_err(priv))
2231                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2232                                dev->name, gfar_read(&priv->regs->rstat));
2233         }
2234         if (events & IEVENT_BABR) {
2235                 dev->stats.rx_errors++;
2236                 priv->extra_stats.rx_babr++;
2237
2238                 if (netif_msg_rx_err(priv))
2239                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2240         }
2241         if (events & IEVENT_EBERR) {
2242                 priv->extra_stats.eberr++;
2243                 if (netif_msg_rx_err(priv))
2244                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2245         }
2246         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2247                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2248
2249         if (events & IEVENT_BABT) {
2250                 priv->extra_stats.tx_babt++;
2251                 if (netif_msg_tx_err(priv))
2252                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2253         }
2254         return IRQ_HANDLED;
2255 }
2256
2257 /* work with hotplug and coldplug */
2258 MODULE_ALIAS("platform:fsl-gianfar");
2259
2260 static struct of_device_id gfar_match[] =
2261 {
2262         {
2263                 .type = "network",
2264                 .compatible = "gianfar",
2265         },
2266         {},
2267 };
2268
2269 /* Structure for a device driver */
2270 static struct of_platform_driver gfar_driver = {
2271         .name = "fsl-gianfar",
2272         .match_table = gfar_match,
2273
2274         .probe = gfar_probe,
2275         .remove = gfar_remove,
2276         .suspend = gfar_suspend,
2277         .resume = gfar_resume,
2278 };
2279
2280 static int __init gfar_init(void)
2281 {
2282         int err = gfar_mdio_init();
2283
2284         if (err)
2285                 return err;
2286
2287         err = of_register_platform_driver(&gfar_driver);
2288
2289         if (err)
2290                 gfar_mdio_exit();
2291
2292         return err;
2293 }
2294
2295 static void __exit gfar_exit(void)
2296 {
2297         of_unregister_platform_driver(&gfar_driver);
2298         gfar_mdio_exit();
2299 }
2300
2301 module_init(gfar_init);
2302 module_exit(gfar_exit);
2303