OSDN Git Service

Hulk did something
[bytom/vapor.git] / vendor / golang.org / x / crypto / ssh / handshake.go
diff --git a/vendor/golang.org/x/crypto/ssh/handshake.go b/vendor/golang.org/x/crypto/ssh/handshake.go
new file mode 100644 (file)
index 0000000..932ce83
--- /dev/null
@@ -0,0 +1,640 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssh
+
+import (
+       "crypto/rand"
+       "errors"
+       "fmt"
+       "io"
+       "log"
+       "net"
+       "sync"
+)
+
+// debugHandshake, if set, prints messages sent and received.  Key
+// exchange messages are printed as if DH were used, so the debug
+// messages are wrong when using ECDH.
+const debugHandshake = false
+
+// chanSize sets the amount of buffering SSH connections. This is
+// primarily for testing: setting chanSize=0 uncovers deadlocks more
+// quickly.
+const chanSize = 16
+
+// keyingTransport is a packet based transport that supports key
+// changes. It need not be thread-safe. It should pass through
+// msgNewKeys in both directions.
+type keyingTransport interface {
+       packetConn
+
+       // prepareKeyChange sets up a key change. The key change for a
+       // direction will be effected if a msgNewKeys message is sent
+       // or received.
+       prepareKeyChange(*algorithms, *kexResult) error
+}
+
+// handshakeTransport implements rekeying on top of a keyingTransport
+// and offers a thread-safe writePacket() interface.
+type handshakeTransport struct {
+       conn   keyingTransport
+       config *Config
+
+       serverVersion []byte
+       clientVersion []byte
+
+       // hostKeys is non-empty if we are the server. In that case,
+       // it contains all host keys that can be used to sign the
+       // connection.
+       hostKeys []Signer
+
+       // hostKeyAlgorithms is non-empty if we are the client. In that case,
+       // we accept these key types from the server as host key.
+       hostKeyAlgorithms []string
+
+       // On read error, incoming is closed, and readError is set.
+       incoming  chan []byte
+       readError error
+
+       mu             sync.Mutex
+       writeError     error
+       sentInitPacket []byte
+       sentInitMsg    *kexInitMsg
+       pendingPackets [][]byte // Used when a key exchange is in progress.
+
+       // If the read loop wants to schedule a kex, it pings this
+       // channel, and the write loop will send out a kex
+       // message.
+       requestKex chan struct{}
+
+       // If the other side requests or confirms a kex, its kexInit
+       // packet is sent here for the write loop to find it.
+       startKex chan *pendingKex
+
+       // data for host key checking
+       hostKeyCallback HostKeyCallback
+       dialAddress     string
+       remoteAddr      net.Addr
+
+       // Algorithms agreed in the last key exchange.
+       algorithms *algorithms
+
+       readPacketsLeft uint32
+       readBytesLeft   int64
+
+       writePacketsLeft uint32
+       writeBytesLeft   int64
+
+       // The session ID or nil if first kex did not complete yet.
+       sessionID []byte
+}
+
+type pendingKex struct {
+       otherInit []byte
+       done      chan error
+}
+
+func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
+       t := &handshakeTransport{
+               conn:          conn,
+               serverVersion: serverVersion,
+               clientVersion: clientVersion,
+               incoming:      make(chan []byte, chanSize),
+               requestKex:    make(chan struct{}, 1),
+               startKex:      make(chan *pendingKex, 1),
+
+               config: config,
+       }
+       t.resetReadThresholds()
+       t.resetWriteThresholds()
+
+       // We always start with a mandatory key exchange.
+       t.requestKex <- struct{}{}
+       return t
+}
+
+func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
+       t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
+       t.dialAddress = dialAddr
+       t.remoteAddr = addr
+       t.hostKeyCallback = config.HostKeyCallback
+       if config.HostKeyAlgorithms != nil {
+               t.hostKeyAlgorithms = config.HostKeyAlgorithms
+       } else {
+               t.hostKeyAlgorithms = supportedHostKeyAlgos
+       }
+       go t.readLoop()
+       go t.kexLoop()
+       return t
+}
+
+func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
+       t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
+       t.hostKeys = config.hostKeys
+       go t.readLoop()
+       go t.kexLoop()
+       return t
+}
+
+func (t *handshakeTransport) getSessionID() []byte {
+       return t.sessionID
+}
+
+// waitSession waits for the session to be established. This should be
+// the first thing to call after instantiating handshakeTransport.
+func (t *handshakeTransport) waitSession() error {
+       p, err := t.readPacket()
+       if err != nil {
+               return err
+       }
+       if p[0] != msgNewKeys {
+               return fmt.Errorf("ssh: first packet should be msgNewKeys")
+       }
+
+       return nil
+}
+
+func (t *handshakeTransport) id() string {
+       if len(t.hostKeys) > 0 {
+               return "server"
+       }
+       return "client"
+}
+
+func (t *handshakeTransport) printPacket(p []byte, write bool) {
+       action := "got"
+       if write {
+               action = "sent"
+       }
+
+       if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
+               log.Printf("%s %s data (packet %d bytes)", t.id(), action, len(p))
+       } else {
+               msg, err := decode(p)
+               log.Printf("%s %s %T %v (%v)", t.id(), action, msg, msg, err)
+       }
+}
+
+func (t *handshakeTransport) readPacket() ([]byte, error) {
+       p, ok := <-t.incoming
+       if !ok {
+               return nil, t.readError
+       }
+       return p, nil
+}
+
+func (t *handshakeTransport) readLoop() {
+       first := true
+       for {
+               p, err := t.readOnePacket(first)
+               first = false
+               if err != nil {
+                       t.readError = err
+                       close(t.incoming)
+                       break
+               }
+               if p[0] == msgIgnore || p[0] == msgDebug {
+                       continue
+               }
+               t.incoming <- p
+       }
+
+       // Stop writers too.
+       t.recordWriteError(t.readError)
+
+       // Unblock the writer should it wait for this.
+       close(t.startKex)
+
+       // Don't close t.requestKex; it's also written to from writePacket.
+}
+
+func (t *handshakeTransport) pushPacket(p []byte) error {
+       if debugHandshake {
+               t.printPacket(p, true)
+       }
+       return t.conn.writePacket(p)
+}
+
+func (t *handshakeTransport) getWriteError() error {
+       t.mu.Lock()
+       defer t.mu.Unlock()
+       return t.writeError
+}
+
+func (t *handshakeTransport) recordWriteError(err error) {
+       t.mu.Lock()
+       defer t.mu.Unlock()
+       if t.writeError == nil && err != nil {
+               t.writeError = err
+       }
+}
+
+func (t *handshakeTransport) requestKeyExchange() {
+       select {
+       case t.requestKex <- struct{}{}:
+       default:
+               // something already requested a kex, so do nothing.
+       }
+}
+
+func (t *handshakeTransport) resetWriteThresholds() {
+       t.writePacketsLeft = packetRekeyThreshold
+       if t.config.RekeyThreshold > 0 {
+               t.writeBytesLeft = int64(t.config.RekeyThreshold)
+       } else if t.algorithms != nil {
+               t.writeBytesLeft = t.algorithms.w.rekeyBytes()
+       } else {
+               t.writeBytesLeft = 1 << 30
+       }
+}
+
+func (t *handshakeTransport) kexLoop() {
+
+write:
+       for t.getWriteError() == nil {
+               var request *pendingKex
+               var sent bool
+
+               for request == nil || !sent {
+                       var ok bool
+                       select {
+                       case request, ok = <-t.startKex:
+                               if !ok {
+                                       break write
+                               }
+                       case <-t.requestKex:
+                               break
+                       }
+
+                       if !sent {
+                               if err := t.sendKexInit(); err != nil {
+                                       t.recordWriteError(err)
+                                       break
+                               }
+                               sent = true
+                       }
+               }
+
+               if err := t.getWriteError(); err != nil {
+                       if request != nil {
+                               request.done <- err
+                       }
+                       break
+               }
+
+               // We're not servicing t.requestKex, but that is OK:
+               // we never block on sending to t.requestKex.
+
+               // We're not servicing t.startKex, but the remote end
+               // has just sent us a kexInitMsg, so it can't send
+               // another key change request, until we close the done
+               // channel on the pendingKex request.
+
+               err := t.enterKeyExchange(request.otherInit)
+
+               t.mu.Lock()
+               t.writeError = err
+               t.sentInitPacket = nil
+               t.sentInitMsg = nil
+
+               t.resetWriteThresholds()
+
+               // we have completed the key exchange. Since the
+               // reader is still blocked, it is safe to clear out
+               // the requestKex channel. This avoids the situation
+               // where: 1) we consumed our own request for the
+               // initial kex, and 2) the kex from the remote side
+               // caused another send on the requestKex channel,
+       clear:
+               for {
+                       select {
+                       case <-t.requestKex:
+                               //
+                       default:
+                               break clear
+                       }
+               }
+
+               request.done <- t.writeError
+
+               // kex finished. Push packets that we received while
+               // the kex was in progress. Don't look at t.startKex
+               // and don't increment writtenSinceKex: if we trigger
+               // another kex while we are still busy with the last
+               // one, things will become very confusing.
+               for _, p := range t.pendingPackets {
+                       t.writeError = t.pushPacket(p)
+                       if t.writeError != nil {
+                               break
+                       }
+               }
+               t.pendingPackets = t.pendingPackets[:0]
+               t.mu.Unlock()
+       }
+
+       // drain startKex channel. We don't service t.requestKex
+       // because nobody does blocking sends there.
+       go func() {
+               for init := range t.startKex {
+                       init.done <- t.writeError
+               }
+       }()
+
+       // Unblock reader.
+       t.conn.Close()
+}
+
+// The protocol uses uint32 for packet counters, so we can't let them
+// reach 1<<32.  We will actually read and write more packets than
+// this, though: the other side may send more packets, and after we
+// hit this limit on writing we will send a few more packets for the
+// key exchange itself.
+const packetRekeyThreshold = (1 << 31)
+
+func (t *handshakeTransport) resetReadThresholds() {
+       t.readPacketsLeft = packetRekeyThreshold
+       if t.config.RekeyThreshold > 0 {
+               t.readBytesLeft = int64(t.config.RekeyThreshold)
+       } else if t.algorithms != nil {
+               t.readBytesLeft = t.algorithms.r.rekeyBytes()
+       } else {
+               t.readBytesLeft = 1 << 30
+       }
+}
+
+func (t *handshakeTransport) readOnePacket(first bool) ([]byte, error) {
+       p, err := t.conn.readPacket()
+       if err != nil {
+               return nil, err
+       }
+
+       if t.readPacketsLeft > 0 {
+               t.readPacketsLeft--
+       } else {
+               t.requestKeyExchange()
+       }
+
+       if t.readBytesLeft > 0 {
+               t.readBytesLeft -= int64(len(p))
+       } else {
+               t.requestKeyExchange()
+       }
+
+       if debugHandshake {
+               t.printPacket(p, false)
+       }
+
+       if first && p[0] != msgKexInit {
+               return nil, fmt.Errorf("ssh: first packet should be msgKexInit")
+       }
+
+       if p[0] != msgKexInit {
+               return p, nil
+       }
+
+       firstKex := t.sessionID == nil
+
+       kex := pendingKex{
+               done:      make(chan error, 1),
+               otherInit: p,
+       }
+       t.startKex <- &kex
+       err = <-kex.done
+
+       if debugHandshake {
+               log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)
+       }
+
+       if err != nil {
+               return nil, err
+       }
+
+       t.resetReadThresholds()
+
+       // By default, a key exchange is hidden from higher layers by
+       // translating it into msgIgnore.
+       successPacket := []byte{msgIgnore}
+       if firstKex {
+               // sendKexInit() for the first kex waits for
+               // msgNewKeys so the authentication process is
+               // guaranteed to happen over an encrypted transport.
+               successPacket = []byte{msgNewKeys}
+       }
+
+       return successPacket, nil
+}
+
+// sendKexInit sends a key change message.
+func (t *handshakeTransport) sendKexInit() error {
+       t.mu.Lock()
+       defer t.mu.Unlock()
+       if t.sentInitMsg != nil {
+               // kexInits may be sent either in response to the other side,
+               // or because our side wants to initiate a key change, so we
+               // may have already sent a kexInit. In that case, don't send a
+               // second kexInit.
+               return nil
+       }
+
+       msg := &kexInitMsg{
+               KexAlgos:                t.config.KeyExchanges,
+               CiphersClientServer:     t.config.Ciphers,
+               CiphersServerClient:     t.config.Ciphers,
+               MACsClientServer:        t.config.MACs,
+               MACsServerClient:        t.config.MACs,
+               CompressionClientServer: supportedCompressions,
+               CompressionServerClient: supportedCompressions,
+       }
+       io.ReadFull(rand.Reader, msg.Cookie[:])
+
+       if len(t.hostKeys) > 0 {
+               for _, k := range t.hostKeys {
+                       msg.ServerHostKeyAlgos = append(
+                               msg.ServerHostKeyAlgos, k.PublicKey().Type())
+               }
+       } else {
+               msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
+       }
+       packet := Marshal(msg)
+
+       // writePacket destroys the contents, so save a copy.
+       packetCopy := make([]byte, len(packet))
+       copy(packetCopy, packet)
+
+       if err := t.pushPacket(packetCopy); err != nil {
+               return err
+       }
+
+       t.sentInitMsg = msg
+       t.sentInitPacket = packet
+
+       return nil
+}
+
+func (t *handshakeTransport) writePacket(p []byte) error {
+       switch p[0] {
+       case msgKexInit:
+               return errors.New("ssh: only handshakeTransport can send kexInit")
+       case msgNewKeys:
+               return errors.New("ssh: only handshakeTransport can send newKeys")
+       }
+
+       t.mu.Lock()
+       defer t.mu.Unlock()
+       if t.writeError != nil {
+               return t.writeError
+       }
+
+       if t.sentInitMsg != nil {
+               // Copy the packet so the writer can reuse the buffer.
+               cp := make([]byte, len(p))
+               copy(cp, p)
+               t.pendingPackets = append(t.pendingPackets, cp)
+               return nil
+       }
+
+       if t.writeBytesLeft > 0 {
+               t.writeBytesLeft -= int64(len(p))
+       } else {
+               t.requestKeyExchange()
+       }
+
+       if t.writePacketsLeft > 0 {
+               t.writePacketsLeft--
+       } else {
+               t.requestKeyExchange()
+       }
+
+       if err := t.pushPacket(p); err != nil {
+               t.writeError = err
+       }
+
+       return nil
+}
+
+func (t *handshakeTransport) Close() error {
+       return t.conn.Close()
+}
+
+func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
+       if debugHandshake {
+               log.Printf("%s entered key exchange", t.id())
+       }
+
+       otherInit := &kexInitMsg{}
+       if err := Unmarshal(otherInitPacket, otherInit); err != nil {
+               return err
+       }
+
+       magics := handshakeMagics{
+               clientVersion: t.clientVersion,
+               serverVersion: t.serverVersion,
+               clientKexInit: otherInitPacket,
+               serverKexInit: t.sentInitPacket,
+       }
+
+       clientInit := otherInit
+       serverInit := t.sentInitMsg
+       if len(t.hostKeys) == 0 {
+               clientInit, serverInit = serverInit, clientInit
+
+               magics.clientKexInit = t.sentInitPacket
+               magics.serverKexInit = otherInitPacket
+       }
+
+       var err error
+       t.algorithms, err = findAgreedAlgorithms(clientInit, serverInit)
+       if err != nil {
+               return err
+       }
+
+       // We don't send FirstKexFollows, but we handle receiving it.
+       //
+       // RFC 4253 section 7 defines the kex and the agreement method for
+       // first_kex_packet_follows. It states that the guessed packet
+       // should be ignored if the "kex algorithm and/or the host
+       // key algorithm is guessed wrong (server and client have
+       // different preferred algorithm), or if any of the other
+       // algorithms cannot be agreed upon". The other algorithms have
+       // already been checked above so the kex algorithm and host key
+       // algorithm are checked here.
+       if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
+               // other side sent a kex message for the wrong algorithm,
+               // which we have to ignore.
+               if _, err := t.conn.readPacket(); err != nil {
+                       return err
+               }
+       }
+
+       kex, ok := kexAlgoMap[t.algorithms.kex]
+       if !ok {
+               return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex)
+       }
+
+       var result *kexResult
+       if len(t.hostKeys) > 0 {
+               result, err = t.server(kex, t.algorithms, &magics)
+       } else {
+               result, err = t.client(kex, t.algorithms, &magics)
+       }
+
+       if err != nil {
+               return err
+       }
+
+       if t.sessionID == nil {
+               t.sessionID = result.H
+       }
+       result.SessionID = t.sessionID
+
+       if err := t.conn.prepareKeyChange(t.algorithms, result); err != nil {
+               return err
+       }
+       if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
+               return err
+       }
+       if packet, err := t.conn.readPacket(); err != nil {
+               return err
+       } else if packet[0] != msgNewKeys {
+               return unexpectedMessageError(msgNewKeys, packet[0])
+       }
+
+       return nil
+}
+
+func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
+       var hostKey Signer
+       for _, k := range t.hostKeys {
+               if algs.hostKey == k.PublicKey().Type() {
+                       hostKey = k
+               }
+       }
+
+       r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey)
+       return r, err
+}
+
+func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
+       result, err := kex.Client(t.conn, t.config.Rand, magics)
+       if err != nil {
+               return nil, err
+       }
+
+       hostKey, err := ParsePublicKey(result.HostKey)
+       if err != nil {
+               return nil, err
+       }
+
+       if err := verifyHostKeySignature(hostKey, result); err != nil {
+               return nil, err
+       }
+
+       err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
+       if err != nil {
+               return nil, err
+       }
+
+       return result, nil
+}