OSDN Git Service

Hulk did something
[bytom/vapor.git] / vendor / golang.org / x / text / message / print.go
diff --git a/vendor/golang.org/x/text/message/print.go b/vendor/golang.org/x/text/message/print.go
new file mode 100644 (file)
index 0000000..07feaa2
--- /dev/null
@@ -0,0 +1,1187 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package message
+
+import (
+       "bytes"
+       "fmt" // TODO: consider copying interfaces from package fmt to avoid dependency.
+       "math"
+       "reflect"
+       "unicode/utf8"
+
+       "golang.org/x/text/internal/number"
+       "golang.org/x/text/language"
+       "golang.org/x/text/message/catalog"
+)
+
+// Strings for use with buffer.WriteString.
+// This is less overhead than using buffer.Write with byte arrays.
+const (
+       commaSpaceString  = ", "
+       nilAngleString    = "<nil>"
+       nilParenString    = "(nil)"
+       nilString         = "nil"
+       mapString         = "map["
+       percentBangString = "%!"
+       missingString     = "(MISSING)"
+       badIndexString    = "(BADINDEX)"
+       panicString       = "(PANIC="
+       extraString       = "%!(EXTRA "
+       badWidthString    = "%!(BADWIDTH)"
+       badPrecString     = "%!(BADPREC)"
+       noVerbString      = "%!(NOVERB)"
+
+       invReflectString = "<invalid reflect.Value>"
+)
+
+// printer is used to store a printer's state.
+// It implements "golang.org/x/text/internal/format".State.
+type printer struct {
+       // the context for looking up message translations
+       catContext *catalog.Context
+       // the language
+       tag language.Tag
+
+       // buffer for accumulating output.
+       bytes.Buffer
+
+       // retain arguments across calls.
+       args []interface{}
+       // retain current argument number across calls
+       argNum int
+       // arg holds the current item, as an interface{}.
+       arg interface{}
+       // value is used instead of arg for reflect values.
+       value reflect.Value
+
+       // fmt is used to format basic items such as integers or strings.
+       fmt formatInfo
+
+       // reordered records whether the format string used argument reordering.
+       reordered bool
+       // goodArgNum records whether the most recent reordering directive was valid.
+       goodArgNum bool
+       // panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion.
+       panicking bool
+       // erroring is set when printing an error string to guard against calling handleMethods.
+       erroring bool
+
+       toDecimal    number.Formatter
+       toScientific number.Formatter
+}
+
+func (p *printer) reset() {
+       p.Buffer.Reset()
+       p.argNum = 0
+       p.reordered = false
+       p.panicking = false
+       p.erroring = false
+       p.fmt.init(&p.Buffer)
+}
+
+// Language implements "golang.org/x/text/internal/format".State.
+func (p *printer) Language() language.Tag { return p.tag }
+
+func (p *printer) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
+
+func (p *printer) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
+
+func (p *printer) Flag(b int) bool {
+       switch b {
+       case '-':
+               return p.fmt.minus
+       case '+':
+               return p.fmt.plus || p.fmt.plusV
+       case '#':
+               return p.fmt.sharp || p.fmt.sharpV
+       case ' ':
+               return p.fmt.space
+       case '0':
+               return p.fmt.zero
+       }
+       return false
+}
+
+// getField gets the i'th field of the struct value.
+// If the field is itself is an interface, return a value for
+// the thing inside the interface, not the interface itself.
+func getField(v reflect.Value, i int) reflect.Value {
+       val := v.Field(i)
+       if val.Kind() == reflect.Interface && !val.IsNil() {
+               val = val.Elem()
+       }
+       return val
+}
+
+// tooLarge reports whether the magnitude of the integer is
+// too large to be used as a formatting width or precision.
+func tooLarge(x int) bool {
+       const max int = 1e6
+       return x > max || x < -max
+}
+
+// parsenum converts ASCII to integer.  num is 0 (and isnum is false) if no number present.
+func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
+       if start >= end {
+               return 0, false, end
+       }
+       for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
+               if tooLarge(num) {
+                       return 0, false, end // Overflow; crazy long number most likely.
+               }
+               num = num*10 + int(s[newi]-'0')
+               isnum = true
+       }
+       return
+}
+
+func (p *printer) unknownType(v reflect.Value) {
+       if !v.IsValid() {
+               p.WriteString(nilAngleString)
+               return
+       }
+       p.WriteByte('?')
+       p.WriteString(v.Type().String())
+       p.WriteByte('?')
+}
+
+func (p *printer) badVerb(verb rune) {
+       p.erroring = true
+       p.WriteString(percentBangString)
+       p.WriteRune(verb)
+       p.WriteByte('(')
+       switch {
+       case p.arg != nil:
+               p.WriteString(reflect.TypeOf(p.arg).String())
+               p.WriteByte('=')
+               p.printArg(p.arg, 'v')
+       case p.value.IsValid():
+               p.WriteString(p.value.Type().String())
+               p.WriteByte('=')
+               p.printValue(p.value, 'v', 0)
+       default:
+               p.WriteString(nilAngleString)
+       }
+       p.WriteByte(')')
+       p.erroring = false
+}
+
+func (p *printer) fmtBool(v bool, verb rune) {
+       switch verb {
+       case 't', 'v':
+               p.fmt.fmt_boolean(v)
+       default:
+               p.badVerb(verb)
+       }
+}
+
+// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
+// not, as requested, by temporarily setting the sharp flag.
+func (p *printer) fmt0x64(v uint64, leading0x bool) {
+       sharp := p.fmt.sharp
+       p.fmt.sharp = leading0x
+       p.fmt.fmt_integer(v, 16, unsigned, ldigits)
+       p.fmt.sharp = sharp
+}
+
+// fmtInteger formats a signed or unsigned integer.
+func (p *printer) fmtInteger(v uint64, isSigned bool, verb rune) {
+       switch verb {
+       case 'v':
+               if p.fmt.sharpV && !isSigned {
+                       p.fmt0x64(v, true)
+                       return
+               }
+               fallthrough
+       case 'd':
+               if p.fmt.sharp || p.fmt.sharpV {
+                       p.fmt.fmt_integer(v, 10, isSigned, ldigits)
+               } else {
+                       p.fmtDecimalInt(v, isSigned)
+               }
+       case 'b':
+               p.fmt.fmt_integer(v, 2, isSigned, ldigits)
+       case 'o':
+               p.fmt.fmt_integer(v, 8, isSigned, ldigits)
+       case 'x':
+               p.fmt.fmt_integer(v, 16, isSigned, ldigits)
+       case 'X':
+               p.fmt.fmt_integer(v, 16, isSigned, udigits)
+       case 'c':
+               p.fmt.fmt_c(v)
+       case 'q':
+               if v <= utf8.MaxRune {
+                       p.fmt.fmt_qc(v)
+               } else {
+                       p.badVerb(verb)
+               }
+       case 'U':
+               p.fmt.fmt_unicode(v)
+       default:
+               p.badVerb(verb)
+       }
+}
+
+// fmtFloat formats a float. The default precision for each verb
+// is specified as last argument in the call to fmt_float.
+func (p *printer) fmtFloat(v float64, size int, verb rune) {
+       switch verb {
+       case 'b':
+               p.fmt.fmt_float(v, size, verb, -1)
+       case 'v':
+               verb = 'g'
+               fallthrough
+       case 'g', 'G':
+               if p.fmt.sharp || p.fmt.sharpV {
+                       p.fmt.fmt_float(v, size, verb, -1)
+               } else {
+                       p.fmtVariableFloat(v, size)
+               }
+       case 'e', 'E':
+               if p.fmt.sharp || p.fmt.sharpV {
+                       p.fmt.fmt_float(v, size, verb, 6)
+               } else {
+                       p.fmtScientific(v, size, 6)
+               }
+       case 'f', 'F':
+               if p.fmt.sharp || p.fmt.sharpV {
+                       p.fmt.fmt_float(v, size, verb, 6)
+               } else {
+                       p.fmtDecimalFloat(v, size, 6)
+               }
+       default:
+               p.badVerb(verb)
+       }
+}
+
+func (p *printer) setFlags(f *number.Formatter) {
+       f.Flags &^= number.ElideSign
+       if p.fmt.plus || p.fmt.space {
+               f.Flags |= number.AlwaysSign
+               if !p.fmt.plus {
+                       f.Flags |= number.ElideSign
+               }
+       } else {
+               f.Flags &^= number.AlwaysSign
+       }
+}
+
+func (p *printer) updatePadding(f *number.Formatter) {
+       f.Flags &^= number.PadMask
+       if p.fmt.minus {
+               f.Flags |= number.PadAfterSuffix
+       } else {
+               f.Flags |= number.PadBeforePrefix
+       }
+       f.PadRune = ' '
+       f.FormatWidth = uint16(p.fmt.wid)
+}
+
+func (p *printer) initDecimal(minFrac, maxFrac int) {
+       f := &p.toDecimal
+       f.MinIntegerDigits = 1
+       f.MaxIntegerDigits = 0
+       f.MinFractionDigits = uint8(minFrac)
+       f.MaxFractionDigits = int16(maxFrac)
+       p.setFlags(f)
+       f.PadRune = 0
+       if p.fmt.widPresent {
+               if p.fmt.zero {
+                       wid := p.fmt.wid
+                       // Use significant integers for this.
+                       // TODO: this is not the same as width, but so be it.
+                       if f.MinFractionDigits > 0 {
+                               wid -= 1 + int(f.MinFractionDigits)
+                       }
+                       if p.fmt.plus || p.fmt.space {
+                               wid--
+                       }
+                       if wid > 0 && wid > int(f.MinIntegerDigits) {
+                               f.MinIntegerDigits = uint8(wid)
+                       }
+               }
+               p.updatePadding(f)
+       }
+}
+
+func (p *printer) initScientific(minFrac, maxFrac int) {
+       f := &p.toScientific
+       if maxFrac < 0 {
+               f.SetPrecision(maxFrac)
+       } else {
+               f.SetPrecision(maxFrac + 1)
+               f.MinFractionDigits = uint8(minFrac)
+               f.MaxFractionDigits = int16(maxFrac)
+       }
+       f.MinExponentDigits = 2
+       p.setFlags(f)
+       f.PadRune = 0
+       if p.fmt.widPresent {
+               f.Flags &^= number.PadMask
+               if p.fmt.zero {
+                       f.PadRune = f.Digit(0)
+                       f.Flags |= number.PadAfterPrefix
+               } else {
+                       f.PadRune = ' '
+                       f.Flags |= number.PadBeforePrefix
+               }
+               p.updatePadding(f)
+       }
+}
+
+func (p *printer) fmtDecimalInt(v uint64, isSigned bool) {
+       var d number.Decimal
+
+       f := &p.toDecimal
+       if p.fmt.precPresent {
+               p.setFlags(f)
+               f.MinIntegerDigits = uint8(p.fmt.prec)
+               f.MaxIntegerDigits = 0
+               f.MinFractionDigits = 0
+               f.MaxFractionDigits = 0
+               if p.fmt.widPresent {
+                       p.updatePadding(f)
+               }
+       } else {
+               p.initDecimal(0, 0)
+       }
+       d.ConvertInt(p.toDecimal.RoundingContext, isSigned, v)
+
+       out := p.toDecimal.Format([]byte(nil), &d)
+       p.Buffer.Write(out)
+}
+
+func (p *printer) fmtDecimalFloat(v float64, size, prec int) {
+       var d number.Decimal
+       if p.fmt.precPresent {
+               prec = p.fmt.prec
+       }
+       p.initDecimal(prec, prec)
+       d.ConvertFloat(p.toDecimal.RoundingContext, v, size)
+
+       out := p.toDecimal.Format([]byte(nil), &d)
+       p.Buffer.Write(out)
+}
+
+func (p *printer) fmtVariableFloat(v float64, size int) {
+       prec := -1
+       if p.fmt.precPresent {
+               prec = p.fmt.prec
+       }
+       var d number.Decimal
+       p.initScientific(0, prec)
+       d.ConvertFloat(p.toScientific.RoundingContext, v, size)
+
+       // Copy logic of 'g' formatting from strconv. It is simplified a bit as
+       // we don't have to mind having prec > len(d.Digits).
+       shortest := prec < 0
+       ePrec := prec
+       if shortest {
+               prec = len(d.Digits)
+               ePrec = 6
+       } else if prec == 0 {
+               prec = 1
+               ePrec = 1
+       }
+       exp := int(d.Exp) - 1
+       if exp < -4 || exp >= ePrec {
+               p.initScientific(0, prec)
+
+               out := p.toScientific.Format([]byte(nil), &d)
+               p.Buffer.Write(out)
+       } else {
+               if prec > int(d.Exp) {
+                       prec = len(d.Digits)
+               }
+               if prec -= int(d.Exp); prec < 0 {
+                       prec = 0
+               }
+               p.initDecimal(0, prec)
+
+               out := p.toDecimal.Format([]byte(nil), &d)
+               p.Buffer.Write(out)
+       }
+}
+
+func (p *printer) fmtScientific(v float64, size, prec int) {
+       var d number.Decimal
+       if p.fmt.precPresent {
+               prec = p.fmt.prec
+       }
+       p.initScientific(prec, prec)
+       rc := p.toScientific.RoundingContext
+       d.ConvertFloat(rc, v, size)
+
+       out := p.toScientific.Format([]byte(nil), &d)
+       p.Buffer.Write(out)
+
+}
+
+// fmtComplex formats a complex number v with
+// r = real(v) and j = imag(v) as (r+ji) using
+// fmtFloat for r and j formatting.
+func (p *printer) fmtComplex(v complex128, size int, verb rune) {
+       // Make sure any unsupported verbs are found before the
+       // calls to fmtFloat to not generate an incorrect error string.
+       switch verb {
+       case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E':
+               p.WriteByte('(')
+               p.fmtFloat(real(v), size/2, verb)
+               // Imaginary part always has a sign.
+               if math.IsNaN(imag(v)) {
+                       // By CLDR's rules, NaNs do not use patterns or signs. As this code
+                       // relies on AlwaysSign working for imaginary parts, we need to
+                       // manually handle NaNs.
+                       f := &p.toScientific
+                       p.setFlags(f)
+                       p.updatePadding(f)
+                       p.setFlags(f)
+                       nan := f.Symbol(number.SymNan)
+                       extra := 0
+                       if w, ok := p.Width(); ok {
+                               extra = w - utf8.RuneCountInString(nan) - 1
+                       }
+                       if f.Flags&number.PadAfterNumber == 0 {
+                               for ; extra > 0; extra-- {
+                                       p.WriteRune(f.PadRune)
+                               }
+                       }
+                       p.WriteString(f.Symbol(number.SymPlusSign))
+                       p.WriteString(nan)
+                       for ; extra > 0; extra-- {
+                               p.WriteRune(f.PadRune)
+                       }
+                       p.WriteString("i)")
+                       return
+               }
+               oldPlus := p.fmt.plus
+               p.fmt.plus = true
+               p.fmtFloat(imag(v), size/2, verb)
+               p.WriteString("i)") // TODO: use symbol?
+               p.fmt.plus = oldPlus
+       default:
+               p.badVerb(verb)
+       }
+}
+
+func (p *printer) fmtString(v string, verb rune) {
+       switch verb {
+       case 'v':
+               if p.fmt.sharpV {
+                       p.fmt.fmt_q(v)
+               } else {
+                       p.fmt.fmt_s(v)
+               }
+       case 's':
+               p.fmt.fmt_s(v)
+       case 'x':
+               p.fmt.fmt_sx(v, ldigits)
+       case 'X':
+               p.fmt.fmt_sx(v, udigits)
+       case 'q':
+               p.fmt.fmt_q(v)
+       default:
+               p.badVerb(verb)
+       }
+}
+
+func (p *printer) fmtBytes(v []byte, verb rune, typeString string) {
+       switch verb {
+       case 'v', 'd':
+               if p.fmt.sharpV {
+                       p.WriteString(typeString)
+                       if v == nil {
+                               p.WriteString(nilParenString)
+                               return
+                       }
+                       p.WriteByte('{')
+                       for i, c := range v {
+                               if i > 0 {
+                                       p.WriteString(commaSpaceString)
+                               }
+                               p.fmt0x64(uint64(c), true)
+                       }
+                       p.WriteByte('}')
+               } else {
+                       p.WriteByte('[')
+                       for i, c := range v {
+                               if i > 0 {
+                                       p.WriteByte(' ')
+                               }
+                               p.fmt.fmt_integer(uint64(c), 10, unsigned, ldigits)
+                       }
+                       p.WriteByte(']')
+               }
+       case 's':
+               p.fmt.fmt_s(string(v))
+       case 'x':
+               p.fmt.fmt_bx(v, ldigits)
+       case 'X':
+               p.fmt.fmt_bx(v, udigits)
+       case 'q':
+               p.fmt.fmt_q(string(v))
+       default:
+               p.printValue(reflect.ValueOf(v), verb, 0)
+       }
+}
+
+func (p *printer) fmtPointer(value reflect.Value, verb rune) {
+       var u uintptr
+       switch value.Kind() {
+       case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
+               u = value.Pointer()
+       default:
+               p.badVerb(verb)
+               return
+       }
+
+       switch verb {
+       case 'v':
+               if p.fmt.sharpV {
+                       p.WriteByte('(')
+                       p.WriteString(value.Type().String())
+                       p.WriteString(")(")
+                       if u == 0 {
+                               p.WriteString(nilString)
+                       } else {
+                               p.fmt0x64(uint64(u), true)
+                       }
+                       p.WriteByte(')')
+               } else {
+                       if u == 0 {
+                               p.fmt.padString(nilAngleString)
+                       } else {
+                               p.fmt0x64(uint64(u), !p.fmt.sharp)
+                       }
+               }
+       case 'p':
+               p.fmt0x64(uint64(u), !p.fmt.sharp)
+       case 'b', 'o', 'd', 'x', 'X':
+               if verb == 'd' {
+                       p.fmt.sharp = true // Print as standard go. TODO: does this make sense?
+               }
+               p.fmtInteger(uint64(u), unsigned, verb)
+       default:
+               p.badVerb(verb)
+       }
+}
+
+func (p *printer) catchPanic(arg interface{}, verb rune) {
+       if err := recover(); err != nil {
+               // If it's a nil pointer, just say "<nil>". The likeliest causes are a
+               // Stringer that fails to guard against nil or a nil pointer for a
+               // value receiver, and in either case, "<nil>" is a nice result.
+               if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
+                       p.WriteString(nilAngleString)
+                       return
+               }
+               // Otherwise print a concise panic message. Most of the time the panic
+               // value will print itself nicely.
+               if p.panicking {
+                       // Nested panics; the recursion in printArg cannot succeed.
+                       panic(err)
+               }
+
+               oldFlags := p.fmt.fmtFlags
+               // For this output we want default behavior.
+               p.fmt.clearflags()
+
+               p.WriteString(percentBangString)
+               p.WriteRune(verb)
+               p.WriteString(panicString)
+               p.panicking = true
+               p.printArg(err, 'v')
+               p.panicking = false
+               p.WriteByte(')')
+
+               p.fmt.fmtFlags = oldFlags
+       }
+}
+
+func (p *printer) handleMethods(verb rune) (handled bool) {
+       if p.erroring {
+               return
+       }
+       // Is it a Formatter?
+       if formatter, ok := p.arg.(fmt.Formatter); ok {
+               handled = true
+               defer p.catchPanic(p.arg, verb)
+               formatter.Format(p, verb)
+               return
+       }
+
+       // If we're doing Go syntax and the argument knows how to supply it, take care of it now.
+       if p.fmt.sharpV {
+               if stringer, ok := p.arg.(fmt.GoStringer); ok {
+                       handled = true
+                       defer p.catchPanic(p.arg, verb)
+                       // Print the result of GoString unadorned.
+                       p.fmt.fmt_s(stringer.GoString())
+                       return
+               }
+       } else {
+               // If a string is acceptable according to the format, see if
+               // the value satisfies one of the string-valued interfaces.
+               // Println etc. set verb to %v, which is "stringable".
+               switch verb {
+               case 'v', 's', 'x', 'X', 'q':
+                       // Is it an error or Stringer?
+                       // The duplication in the bodies is necessary:
+                       // setting handled and deferring catchPanic
+                       // must happen before calling the method.
+                       switch v := p.arg.(type) {
+                       case error:
+                               handled = true
+                               defer p.catchPanic(p.arg, verb)
+                               p.fmtString(v.Error(), verb)
+                               return
+
+                       case fmt.Stringer:
+                               handled = true
+                               defer p.catchPanic(p.arg, verb)
+                               p.fmtString(v.String(), verb)
+                               return
+                       }
+               }
+       }
+       return false
+}
+
+func (p *printer) printArg(arg interface{}, verb rune) {
+       p.arg = arg
+       p.value = reflect.Value{}
+
+       if arg == nil {
+               switch verb {
+               case 'T', 'v':
+                       p.fmt.padString(nilAngleString)
+               default:
+                       p.badVerb(verb)
+               }
+               return
+       }
+
+       // Special processing considerations.
+       // %T (the value's type) and %p (its address) are special; we always do them first.
+       switch verb {
+       case 'T':
+               p.fmt.fmt_s(reflect.TypeOf(arg).String())
+               return
+       case 'p':
+               p.fmtPointer(reflect.ValueOf(arg), 'p')
+               return
+       }
+
+       // Some types can be done without reflection.
+       switch f := arg.(type) {
+       case bool:
+               p.fmtBool(f, verb)
+       case float32:
+               p.fmtFloat(float64(f), 32, verb)
+       case float64:
+               p.fmtFloat(f, 64, verb)
+       case complex64:
+               p.fmtComplex(complex128(f), 64, verb)
+       case complex128:
+               p.fmtComplex(f, 128, verb)
+       case int:
+               p.fmtInteger(uint64(f), signed, verb)
+       case int8:
+               p.fmtInteger(uint64(f), signed, verb)
+       case int16:
+               p.fmtInteger(uint64(f), signed, verb)
+       case int32:
+               p.fmtInteger(uint64(f), signed, verb)
+       case int64:
+               p.fmtInteger(uint64(f), signed, verb)
+       case uint:
+               p.fmtInteger(uint64(f), unsigned, verb)
+       case uint8:
+               p.fmtInteger(uint64(f), unsigned, verb)
+       case uint16:
+               p.fmtInteger(uint64(f), unsigned, verb)
+       case uint32:
+               p.fmtInteger(uint64(f), unsigned, verb)
+       case uint64:
+               p.fmtInteger(f, unsigned, verb)
+       case uintptr:
+               p.fmtInteger(uint64(f), unsigned, verb)
+       case string:
+               p.fmtString(f, verb)
+       case []byte:
+               p.fmtBytes(f, verb, "[]byte")
+       case reflect.Value:
+               // Handle extractable values with special methods
+               // since printValue does not handle them at depth 0.
+               if f.IsValid() && f.CanInterface() {
+                       p.arg = f.Interface()
+                       if p.handleMethods(verb) {
+                               return
+                       }
+               }
+               p.printValue(f, verb, 0)
+       default:
+               // If the type is not simple, it might have methods.
+               if !p.handleMethods(verb) {
+                       // Need to use reflection, since the type had no
+                       // interface methods that could be used for formatting.
+                       p.printValue(reflect.ValueOf(f), verb, 0)
+               }
+       }
+}
+
+// printValue is similar to printArg but starts with a reflect value, not an interface{} value.
+// It does not handle 'p' and 'T' verbs because these should have been already handled by printArg.
+func (p *printer) printValue(value reflect.Value, verb rune, depth int) {
+       // Handle values with special methods if not already handled by printArg (depth == 0).
+       if depth > 0 && value.IsValid() && value.CanInterface() {
+               p.arg = value.Interface()
+               if p.handleMethods(verb) {
+                       return
+               }
+       }
+       p.arg = nil
+       p.value = value
+
+       switch f := value; value.Kind() {
+       case reflect.Invalid:
+               if depth == 0 {
+                       p.WriteString(invReflectString)
+               } else {
+                       switch verb {
+                       case 'v':
+                               p.WriteString(nilAngleString)
+                       default:
+                               p.badVerb(verb)
+                       }
+               }
+       case reflect.Bool:
+               p.fmtBool(f.Bool(), verb)
+       case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+               p.fmtInteger(uint64(f.Int()), signed, verb)
+       case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+               p.fmtInteger(f.Uint(), unsigned, verb)
+       case reflect.Float32:
+               p.fmtFloat(f.Float(), 32, verb)
+       case reflect.Float64:
+               p.fmtFloat(f.Float(), 64, verb)
+       case reflect.Complex64:
+               p.fmtComplex(f.Complex(), 64, verb)
+       case reflect.Complex128:
+               p.fmtComplex(f.Complex(), 128, verb)
+       case reflect.String:
+               p.fmtString(f.String(), verb)
+       case reflect.Map:
+               if p.fmt.sharpV {
+                       p.WriteString(f.Type().String())
+                       if f.IsNil() {
+                               p.WriteString(nilParenString)
+                               return
+                       }
+                       p.WriteByte('{')
+               } else {
+                       p.WriteString(mapString)
+               }
+               keys := f.MapKeys()
+               for i, key := range keys {
+                       if i > 0 {
+                               if p.fmt.sharpV {
+                                       p.WriteString(commaSpaceString)
+                               } else {
+                                       p.WriteByte(' ')
+                               }
+                       }
+                       p.printValue(key, verb, depth+1)
+                       p.WriteByte(':')
+                       p.printValue(f.MapIndex(key), verb, depth+1)
+               }
+               if p.fmt.sharpV {
+                       p.WriteByte('}')
+               } else {
+                       p.WriteByte(']')
+               }
+       case reflect.Struct:
+               if p.fmt.sharpV {
+                       p.WriteString(f.Type().String())
+               }
+               p.WriteByte('{')
+               for i := 0; i < f.NumField(); i++ {
+                       if i > 0 {
+                               if p.fmt.sharpV {
+                                       p.WriteString(commaSpaceString)
+                               } else {
+                                       p.WriteByte(' ')
+                               }
+                       }
+                       if p.fmt.plusV || p.fmt.sharpV {
+                               if name := f.Type().Field(i).Name; name != "" {
+                                       p.WriteString(name)
+                                       p.WriteByte(':')
+                               }
+                       }
+                       p.printValue(getField(f, i), verb, depth+1)
+               }
+               p.WriteByte('}')
+       case reflect.Interface:
+               value := f.Elem()
+               if !value.IsValid() {
+                       if p.fmt.sharpV {
+                               p.WriteString(f.Type().String())
+                               p.WriteString(nilParenString)
+                       } else {
+                               p.WriteString(nilAngleString)
+                       }
+               } else {
+                       p.printValue(value, verb, depth+1)
+               }
+       case reflect.Array, reflect.Slice:
+               switch verb {
+               case 's', 'q', 'x', 'X':
+                       // Handle byte and uint8 slices and arrays special for the above verbs.
+                       t := f.Type()
+                       if t.Elem().Kind() == reflect.Uint8 {
+                               var bytes []byte
+                               if f.Kind() == reflect.Slice {
+                                       bytes = f.Bytes()
+                               } else if f.CanAddr() {
+                                       bytes = f.Slice(0, f.Len()).Bytes()
+                               } else {
+                                       // We have an array, but we cannot Slice() a non-addressable array,
+                                       // so we build a slice by hand. This is a rare case but it would be nice
+                                       // if reflection could help a little more.
+                                       bytes = make([]byte, f.Len())
+                                       for i := range bytes {
+                                               bytes[i] = byte(f.Index(i).Uint())
+                                       }
+                               }
+                               p.fmtBytes(bytes, verb, t.String())
+                               return
+                       }
+               }
+               if p.fmt.sharpV {
+                       p.WriteString(f.Type().String())
+                       if f.Kind() == reflect.Slice && f.IsNil() {
+                               p.WriteString(nilParenString)
+                               return
+                       }
+                       p.WriteByte('{')
+                       for i := 0; i < f.Len(); i++ {
+                               if i > 0 {
+                                       p.WriteString(commaSpaceString)
+                               }
+                               p.printValue(f.Index(i), verb, depth+1)
+                       }
+                       p.WriteByte('}')
+               } else {
+                       p.WriteByte('[')
+                       for i := 0; i < f.Len(); i++ {
+                               if i > 0 {
+                                       p.WriteByte(' ')
+                               }
+                               p.printValue(f.Index(i), verb, depth+1)
+                       }
+                       p.WriteByte(']')
+               }
+       case reflect.Ptr:
+               // pointer to array or slice or struct?  ok at top level
+               // but not embedded (avoid loops)
+               if depth == 0 && f.Pointer() != 0 {
+                       switch a := f.Elem(); a.Kind() {
+                       case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map:
+                               p.WriteByte('&')
+                               p.printValue(a, verb, depth+1)
+                               return
+                       }
+               }
+               fallthrough
+       case reflect.Chan, reflect.Func, reflect.UnsafePointer:
+               p.fmtPointer(f, verb)
+       default:
+               p.unknownType(f)
+       }
+}
+
+// intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has integer type.
+func (p *printer) intFromArg() (num int, isInt bool) {
+       if p.argNum < len(p.args) {
+               arg := p.args[p.argNum]
+               num, isInt = arg.(int) // Almost always OK.
+               if !isInt {
+                       // Work harder.
+                       switch v := reflect.ValueOf(arg); v.Kind() {
+                       case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+                               n := v.Int()
+                               if int64(int(n)) == n {
+                                       num = int(n)
+                                       isInt = true
+                               }
+                       case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+                               n := v.Uint()
+                               if int64(n) >= 0 && uint64(int(n)) == n {
+                                       num = int(n)
+                                       isInt = true
+                               }
+                       default:
+                               // Already 0, false.
+                       }
+               }
+               p.argNum++
+               if tooLarge(num) {
+                       num = 0
+                       isInt = false
+               }
+       }
+       return
+}
+
+// parseArgNumber returns the value of the bracketed number, minus 1
+// (explicit argument numbers are one-indexed but we want zero-indexed).
+// The opening bracket is known to be present at format[0].
+// The returned values are the index, the number of bytes to consume
+// up to the closing paren, if present, and whether the number parsed
+// ok. The bytes to consume will be 1 if no closing paren is present.
+func parseArgNumber(format string) (index int, wid int, ok bool) {
+       // There must be at least 3 bytes: [n].
+       if len(format) < 3 {
+               return 0, 1, false
+       }
+
+       // Find closing bracket.
+       for i := 1; i < len(format); i++ {
+               if format[i] == ']' {
+                       width, ok, newi := parsenum(format, 1, i)
+                       if !ok || newi != i {
+                               return 0, i + 1, false
+                       }
+                       return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
+               }
+       }
+       return 0, 1, false
+}
+
+// updateArgNumber returns the next argument to evaluate, which is either the value of the passed-in
+// argNum or the value of the bracketed integer that begins format[i:]. It also returns
+// the new value of i, that is, the index of the next byte of the format to process.
+func (p *printer) updateArgNumber(format string, i int) (newi int, found bool) {
+       if len(format) <= i || format[i] != '[' {
+               return i, false
+       }
+       p.reordered = true
+       index, wid, ok := parseArgNumber(format[i:])
+       if ok && 0 <= index && index < len(p.args) {
+               p.argNum = index
+               return i + wid, true
+       }
+       p.goodArgNum = false
+       return i + wid, ok
+}
+
+func (p *printer) badArgNum(verb rune) {
+       p.WriteString(percentBangString)
+       p.WriteRune(verb)
+       p.WriteString(badIndexString)
+}
+
+func (p *printer) missingArg(verb rune) {
+       p.WriteString(percentBangString)
+       p.WriteRune(verb)
+       p.WriteString(missingString)
+}
+
+func (p *printer) doPrintf(format string) {
+       end := len(format)
+       afterIndex := false // previous item in format was an index like [3].
+formatLoop:
+       for i := 0; i < end; {
+               p.goodArgNum = true
+               lasti := i
+               for i < end && format[i] != '%' {
+                       i++
+               }
+               if i > lasti {
+                       p.WriteString(format[lasti:i])
+               }
+               if i >= end {
+                       // done processing format string
+                       break
+               }
+
+               // Process one verb
+               i++
+
+               // Do we have flags?
+               p.fmt.clearflags()
+       simpleFormat:
+               for ; i < end; i++ {
+                       c := format[i]
+                       switch c {
+                       case '#':
+                               p.fmt.sharp = true
+                       case '0':
+                               p.fmt.zero = !p.fmt.minus // Only allow zero padding to the left.
+                       case '+':
+                               p.fmt.plus = true
+                       case '-':
+                               p.fmt.minus = true
+                               p.fmt.zero = false // Do not pad with zeros to the right.
+                       case ' ':
+                               p.fmt.space = true
+                       default:
+                               // Fast path for common case of ascii lower case simple verbs
+                               // without precision or width or argument indices.
+                               if 'a' <= c && c <= 'z' && p.argNum < len(p.args) {
+                                       if c == 'v' {
+                                               // Go syntax
+                                               p.fmt.sharpV = p.fmt.sharp
+                                               p.fmt.sharp = false
+                                               // Struct-field syntax
+                                               p.fmt.plusV = p.fmt.plus
+                                               p.fmt.plus = false
+                                       }
+                                       p.printArg(p.Arg(p.argNum+1), rune(c))
+                                       p.argNum++
+                                       i++
+                                       continue formatLoop
+                               }
+                               // Format is more complex than simple flags and a verb or is malformed.
+                               break simpleFormat
+                       }
+               }
+
+               // Do we have an explicit argument index?
+               i, afterIndex = p.updateArgNumber(format, i)
+
+               // Do we have width?
+               if i < end && format[i] == '*' {
+                       i++
+                       p.fmt.wid, p.fmt.widPresent = p.intFromArg()
+
+                       if !p.fmt.widPresent {
+                               p.WriteString(badWidthString)
+                       }
+
+                       // We have a negative width, so take its value and ensure
+                       // that the minus flag is set
+                       if p.fmt.wid < 0 {
+                               p.fmt.wid = -p.fmt.wid
+                               p.fmt.minus = true
+                               p.fmt.zero = false // Do not pad with zeros to the right.
+                       }
+                       afterIndex = false
+               } else {
+                       p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
+                       if afterIndex && p.fmt.widPresent { // "%[3]2d"
+                               p.goodArgNum = false
+                       }
+               }
+
+               // Do we have precision?
+               if i+1 < end && format[i] == '.' {
+                       i++
+                       if afterIndex { // "%[3].2d"
+                               p.goodArgNum = false
+                       }
+                       i, afterIndex = p.updateArgNumber(format, i)
+                       if i < end && format[i] == '*' {
+                               i++
+                               p.fmt.prec, p.fmt.precPresent = p.intFromArg()
+                               // Negative precision arguments don't make sense
+                               if p.fmt.prec < 0 {
+                                       p.fmt.prec = 0
+                                       p.fmt.precPresent = false
+                               }
+                               if !p.fmt.precPresent {
+                                       p.WriteString(badPrecString)
+                               }
+                               afterIndex = false
+                       } else {
+                               p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
+                               if !p.fmt.precPresent {
+                                       p.fmt.prec = 0
+                                       p.fmt.precPresent = true
+                               }
+                       }
+               }
+
+               if !afterIndex {
+                       i, afterIndex = p.updateArgNumber(format, i)
+               }
+
+               if i >= end {
+                       p.WriteString(noVerbString)
+                       break
+               }
+
+               verb, w := utf8.DecodeRuneInString(format[i:])
+               i += w
+
+               switch {
+               case verb == '%': // Percent does not absorb operands and ignores f.wid and f.prec.
+                       p.WriteByte('%')
+               case !p.goodArgNum:
+                       p.badArgNum(verb)
+               case p.argNum >= len(p.args): // No argument left over to print for the current verb.
+                       p.missingArg(verb)
+               case verb == 'v':
+                       // Go syntax
+                       p.fmt.sharpV = p.fmt.sharp
+                       p.fmt.sharp = false
+                       // Struct-field syntax
+                       p.fmt.plusV = p.fmt.plus
+                       p.fmt.plus = false
+                       fallthrough
+               default:
+                       p.printArg(p.args[p.argNum], verb)
+                       p.argNum++
+               }
+       }
+
+       // Check for extra arguments, but only if there was at least one ordered
+       // argument. Note that this behavior is necessarily different from fmt:
+       // different variants of messages may opt to drop some or all of the
+       // arguments.
+       if !p.reordered && p.argNum < len(p.args) && p.argNum != 0 {
+               p.fmt.clearflags()
+               p.WriteString(extraString)
+               for i, arg := range p.args[p.argNum:] {
+                       if i > 0 {
+                               p.WriteString(commaSpaceString)
+                       }
+                       if arg == nil {
+                               p.WriteString(nilAngleString)
+                       } else {
+                               p.WriteString(reflect.TypeOf(arg).String())
+                               p.WriteByte('=')
+                               p.printArg(arg, 'v')
+                       }
+               }
+               p.WriteByte(')')
+       }
+}
+
+func (p *printer) doPrint(a []interface{}) {
+       prevString := false
+       for argNum, arg := range a {
+               isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
+               // Add a space between two non-string arguments.
+               if argNum > 0 && !isString && !prevString {
+                       p.WriteByte(' ')
+               }
+               p.printArg(arg, 'v')
+               prevString = isString
+       }
+}
+
+// doPrintln is like doPrint but always adds a space between arguments
+// and a newline after the last argument.
+func (p *printer) doPrintln(a []interface{}) {
+       for argNum, arg := range a {
+               if argNum > 0 {
+                       p.WriteByte(' ')
+               }
+               p.printArg(arg, 'v')
+       }
+       p.WriteByte('\n')
+}