OSDN Git Service

Hulk did something
[bytom/vapor.git] / vendor / golang.org / x / text / unicode / norm / iter.go
diff --git a/vendor/golang.org/x/text/unicode/norm/iter.go b/vendor/golang.org/x/text/unicode/norm/iter.go
new file mode 100644 (file)
index 0000000..ce17f96
--- /dev/null
@@ -0,0 +1,457 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package norm
+
+import (
+       "fmt"
+       "unicode/utf8"
+)
+
+// MaxSegmentSize is the maximum size of a byte buffer needed to consider any
+// sequence of starter and non-starter runes for the purpose of normalization.
+const MaxSegmentSize = maxByteBufferSize
+
+// An Iter iterates over a string or byte slice, while normalizing it
+// to a given Form.
+type Iter struct {
+       rb     reorderBuffer
+       buf    [maxByteBufferSize]byte
+       info   Properties // first character saved from previous iteration
+       next   iterFunc   // implementation of next depends on form
+       asciiF iterFunc
+
+       p        int    // current position in input source
+       multiSeg []byte // remainder of multi-segment decomposition
+}
+
+type iterFunc func(*Iter) []byte
+
+// Init initializes i to iterate over src after normalizing it to Form f.
+func (i *Iter) Init(f Form, src []byte) {
+       i.p = 0
+       if len(src) == 0 {
+               i.setDone()
+               i.rb.nsrc = 0
+               return
+       }
+       i.multiSeg = nil
+       i.rb.init(f, src)
+       i.next = i.rb.f.nextMain
+       i.asciiF = nextASCIIBytes
+       i.info = i.rb.f.info(i.rb.src, i.p)
+       i.rb.ss.first(i.info)
+}
+
+// InitString initializes i to iterate over src after normalizing it to Form f.
+func (i *Iter) InitString(f Form, src string) {
+       i.p = 0
+       if len(src) == 0 {
+               i.setDone()
+               i.rb.nsrc = 0
+               return
+       }
+       i.multiSeg = nil
+       i.rb.initString(f, src)
+       i.next = i.rb.f.nextMain
+       i.asciiF = nextASCIIString
+       i.info = i.rb.f.info(i.rb.src, i.p)
+       i.rb.ss.first(i.info)
+}
+
+// Seek sets the segment to be returned by the next call to Next to start
+// at position p.  It is the responsibility of the caller to set p to the
+// start of a segment.
+func (i *Iter) Seek(offset int64, whence int) (int64, error) {
+       var abs int64
+       switch whence {
+       case 0:
+               abs = offset
+       case 1:
+               abs = int64(i.p) + offset
+       case 2:
+               abs = int64(i.rb.nsrc) + offset
+       default:
+               return 0, fmt.Errorf("norm: invalid whence")
+       }
+       if abs < 0 {
+               return 0, fmt.Errorf("norm: negative position")
+       }
+       if int(abs) >= i.rb.nsrc {
+               i.setDone()
+               return int64(i.p), nil
+       }
+       i.p = int(abs)
+       i.multiSeg = nil
+       i.next = i.rb.f.nextMain
+       i.info = i.rb.f.info(i.rb.src, i.p)
+       i.rb.ss.first(i.info)
+       return abs, nil
+}
+
+// returnSlice returns a slice of the underlying input type as a byte slice.
+// If the underlying is of type []byte, it will simply return a slice.
+// If the underlying is of type string, it will copy the slice to the buffer
+// and return that.
+func (i *Iter) returnSlice(a, b int) []byte {
+       if i.rb.src.bytes == nil {
+               return i.buf[:copy(i.buf[:], i.rb.src.str[a:b])]
+       }
+       return i.rb.src.bytes[a:b]
+}
+
+// Pos returns the byte position at which the next call to Next will commence processing.
+func (i *Iter) Pos() int {
+       return i.p
+}
+
+func (i *Iter) setDone() {
+       i.next = nextDone
+       i.p = i.rb.nsrc
+}
+
+// Done returns true if there is no more input to process.
+func (i *Iter) Done() bool {
+       return i.p >= i.rb.nsrc
+}
+
+// Next returns f(i.input[i.Pos():n]), where n is a boundary of i.input.
+// For any input a and b for which f(a) == f(b), subsequent calls
+// to Next will return the same segments.
+// Modifying runes are grouped together with the preceding starter, if such a starter exists.
+// Although not guaranteed, n will typically be the smallest possible n.
+func (i *Iter) Next() []byte {
+       return i.next(i)
+}
+
+func nextASCIIBytes(i *Iter) []byte {
+       p := i.p + 1
+       if p >= i.rb.nsrc {
+               i.setDone()
+               return i.rb.src.bytes[i.p:p]
+       }
+       if i.rb.src.bytes[p] < utf8.RuneSelf {
+               p0 := i.p
+               i.p = p
+               return i.rb.src.bytes[p0:p]
+       }
+       i.info = i.rb.f.info(i.rb.src, i.p)
+       i.next = i.rb.f.nextMain
+       return i.next(i)
+}
+
+func nextASCIIString(i *Iter) []byte {
+       p := i.p + 1
+       if p >= i.rb.nsrc {
+               i.buf[0] = i.rb.src.str[i.p]
+               i.setDone()
+               return i.buf[:1]
+       }
+       if i.rb.src.str[p] < utf8.RuneSelf {
+               i.buf[0] = i.rb.src.str[i.p]
+               i.p = p
+               return i.buf[:1]
+       }
+       i.info = i.rb.f.info(i.rb.src, i.p)
+       i.next = i.rb.f.nextMain
+       return i.next(i)
+}
+
+func nextHangul(i *Iter) []byte {
+       p := i.p
+       next := p + hangulUTF8Size
+       if next >= i.rb.nsrc {
+               i.setDone()
+       } else if i.rb.src.hangul(next) == 0 {
+               i.rb.ss.next(i.info)
+               i.info = i.rb.f.info(i.rb.src, i.p)
+               i.next = i.rb.f.nextMain
+               return i.next(i)
+       }
+       i.p = next
+       return i.buf[:decomposeHangul(i.buf[:], i.rb.src.hangul(p))]
+}
+
+func nextDone(i *Iter) []byte {
+       return nil
+}
+
+// nextMulti is used for iterating over multi-segment decompositions
+// for decomposing normal forms.
+func nextMulti(i *Iter) []byte {
+       j := 0
+       d := i.multiSeg
+       // skip first rune
+       for j = 1; j < len(d) && !utf8.RuneStart(d[j]); j++ {
+       }
+       for j < len(d) {
+               info := i.rb.f.info(input{bytes: d}, j)
+               if info.BoundaryBefore() {
+                       i.multiSeg = d[j:]
+                       return d[:j]
+               }
+               j += int(info.size)
+       }
+       // treat last segment as normal decomposition
+       i.next = i.rb.f.nextMain
+       return i.next(i)
+}
+
+// nextMultiNorm is used for iterating over multi-segment decompositions
+// for composing normal forms.
+func nextMultiNorm(i *Iter) []byte {
+       j := 0
+       d := i.multiSeg
+       for j < len(d) {
+               info := i.rb.f.info(input{bytes: d}, j)
+               if info.BoundaryBefore() {
+                       i.rb.compose()
+                       seg := i.buf[:i.rb.flushCopy(i.buf[:])]
+                       i.rb.insertUnsafe(input{bytes: d}, j, info)
+                       i.multiSeg = d[j+int(info.size):]
+                       return seg
+               }
+               i.rb.insertUnsafe(input{bytes: d}, j, info)
+               j += int(info.size)
+       }
+       i.multiSeg = nil
+       i.next = nextComposed
+       return doNormComposed(i)
+}
+
+// nextDecomposed is the implementation of Next for forms NFD and NFKD.
+func nextDecomposed(i *Iter) (next []byte) {
+       outp := 0
+       inCopyStart, outCopyStart := i.p, 0
+       for {
+               if sz := int(i.info.size); sz <= 1 {
+                       i.rb.ss = 0
+                       p := i.p
+                       i.p++ // ASCII or illegal byte.  Either way, advance by 1.
+                       if i.p >= i.rb.nsrc {
+                               i.setDone()
+                               return i.returnSlice(p, i.p)
+                       } else if i.rb.src._byte(i.p) < utf8.RuneSelf {
+                               i.next = i.asciiF
+                               return i.returnSlice(p, i.p)
+                       }
+                       outp++
+               } else if d := i.info.Decomposition(); d != nil {
+                       // Note: If leading CCC != 0, then len(d) == 2 and last is also non-zero.
+                       // Case 1: there is a leftover to copy.  In this case the decomposition
+                       // must begin with a modifier and should always be appended.
+                       // Case 2: no leftover. Simply return d if followed by a ccc == 0 value.
+                       p := outp + len(d)
+                       if outp > 0 {
+                               i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
+                               // TODO: this condition should not be possible, but we leave it
+                               // in for defensive purposes.
+                               if p > len(i.buf) {
+                                       return i.buf[:outp]
+                               }
+                       } else if i.info.multiSegment() {
+                               // outp must be 0 as multi-segment decompositions always
+                               // start a new segment.
+                               if i.multiSeg == nil {
+                                       i.multiSeg = d
+                                       i.next = nextMulti
+                                       return nextMulti(i)
+                               }
+                               // We are in the last segment.  Treat as normal decomposition.
+                               d = i.multiSeg
+                               i.multiSeg = nil
+                               p = len(d)
+                       }
+                       prevCC := i.info.tccc
+                       if i.p += sz; i.p >= i.rb.nsrc {
+                               i.setDone()
+                               i.info = Properties{} // Force BoundaryBefore to succeed.
+                       } else {
+                               i.info = i.rb.f.info(i.rb.src, i.p)
+                       }
+                       switch i.rb.ss.next(i.info) {
+                       case ssOverflow:
+                               i.next = nextCGJDecompose
+                               fallthrough
+                       case ssStarter:
+                               if outp > 0 {
+                                       copy(i.buf[outp:], d)
+                                       return i.buf[:p]
+                               }
+                               return d
+                       }
+                       copy(i.buf[outp:], d)
+                       outp = p
+                       inCopyStart, outCopyStart = i.p, outp
+                       if i.info.ccc < prevCC {
+                               goto doNorm
+                       }
+                       continue
+               } else if r := i.rb.src.hangul(i.p); r != 0 {
+                       outp = decomposeHangul(i.buf[:], r)
+                       i.p += hangulUTF8Size
+                       inCopyStart, outCopyStart = i.p, outp
+                       if i.p >= i.rb.nsrc {
+                               i.setDone()
+                               break
+                       } else if i.rb.src.hangul(i.p) != 0 {
+                               i.next = nextHangul
+                               return i.buf[:outp]
+                       }
+               } else {
+                       p := outp + sz
+                       if p > len(i.buf) {
+                               break
+                       }
+                       outp = p
+                       i.p += sz
+               }
+               if i.p >= i.rb.nsrc {
+                       i.setDone()
+                       break
+               }
+               prevCC := i.info.tccc
+               i.info = i.rb.f.info(i.rb.src, i.p)
+               if v := i.rb.ss.next(i.info); v == ssStarter {
+                       break
+               } else if v == ssOverflow {
+                       i.next = nextCGJDecompose
+                       break
+               }
+               if i.info.ccc < prevCC {
+                       goto doNorm
+               }
+       }
+       if outCopyStart == 0 {
+               return i.returnSlice(inCopyStart, i.p)
+       } else if inCopyStart < i.p {
+               i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
+       }
+       return i.buf[:outp]
+doNorm:
+       // Insert what we have decomposed so far in the reorderBuffer.
+       // As we will only reorder, there will always be enough room.
+       i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
+       i.rb.insertDecomposed(i.buf[0:outp])
+       return doNormDecomposed(i)
+}
+
+func doNormDecomposed(i *Iter) []byte {
+       for {
+               i.rb.insertUnsafe(i.rb.src, i.p, i.info)
+               if i.p += int(i.info.size); i.p >= i.rb.nsrc {
+                       i.setDone()
+                       break
+               }
+               i.info = i.rb.f.info(i.rb.src, i.p)
+               if i.info.ccc == 0 {
+                       break
+               }
+               if s := i.rb.ss.next(i.info); s == ssOverflow {
+                       i.next = nextCGJDecompose
+                       break
+               }
+       }
+       // new segment or too many combining characters: exit normalization
+       return i.buf[:i.rb.flushCopy(i.buf[:])]
+}
+
+func nextCGJDecompose(i *Iter) []byte {
+       i.rb.ss = 0
+       i.rb.insertCGJ()
+       i.next = nextDecomposed
+       i.rb.ss.first(i.info)
+       buf := doNormDecomposed(i)
+       return buf
+}
+
+// nextComposed is the implementation of Next for forms NFC and NFKC.
+func nextComposed(i *Iter) []byte {
+       outp, startp := 0, i.p
+       var prevCC uint8
+       for {
+               if !i.info.isYesC() {
+                       goto doNorm
+               }
+               prevCC = i.info.tccc
+               sz := int(i.info.size)
+               if sz == 0 {
+                       sz = 1 // illegal rune: copy byte-by-byte
+               }
+               p := outp + sz
+               if p > len(i.buf) {
+                       break
+               }
+               outp = p
+               i.p += sz
+               if i.p >= i.rb.nsrc {
+                       i.setDone()
+                       break
+               } else if i.rb.src._byte(i.p) < utf8.RuneSelf {
+                       i.rb.ss = 0
+                       i.next = i.asciiF
+                       break
+               }
+               i.info = i.rb.f.info(i.rb.src, i.p)
+               if v := i.rb.ss.next(i.info); v == ssStarter {
+                       break
+               } else if v == ssOverflow {
+                       i.next = nextCGJCompose
+                       break
+               }
+               if i.info.ccc < prevCC {
+                       goto doNorm
+               }
+       }
+       return i.returnSlice(startp, i.p)
+doNorm:
+       // reset to start position
+       i.p = startp
+       i.info = i.rb.f.info(i.rb.src, i.p)
+       i.rb.ss.first(i.info)
+       if i.info.multiSegment() {
+               d := i.info.Decomposition()
+               info := i.rb.f.info(input{bytes: d}, 0)
+               i.rb.insertUnsafe(input{bytes: d}, 0, info)
+               i.multiSeg = d[int(info.size):]
+               i.next = nextMultiNorm
+               return nextMultiNorm(i)
+       }
+       i.rb.ss.first(i.info)
+       i.rb.insertUnsafe(i.rb.src, i.p, i.info)
+       return doNormComposed(i)
+}
+
+func doNormComposed(i *Iter) []byte {
+       // First rune should already be inserted.
+       for {
+               if i.p += int(i.info.size); i.p >= i.rb.nsrc {
+                       i.setDone()
+                       break
+               }
+               i.info = i.rb.f.info(i.rb.src, i.p)
+               if s := i.rb.ss.next(i.info); s == ssStarter {
+                       break
+               } else if s == ssOverflow {
+                       i.next = nextCGJCompose
+                       break
+               }
+               i.rb.insertUnsafe(i.rb.src, i.p, i.info)
+       }
+       i.rb.compose()
+       seg := i.buf[:i.rb.flushCopy(i.buf[:])]
+       return seg
+}
+
+func nextCGJCompose(i *Iter) []byte {
+       i.rb.ss = 0 // instead of first
+       i.rb.insertCGJ()
+       i.next = nextComposed
+       // Note that we treat any rune with nLeadingNonStarters > 0 as a non-starter,
+       // even if they are not. This is particularly dubious for U+FF9E and UFF9A.
+       // If we ever change that, insert a check here.
+       i.rb.ss.first(i.info)
+       i.rb.insertUnsafe(i.rb.src, i.p, i.info)
+       return doNormComposed(i)
+}