OSDN Git Service

Hulk did something
[bytom/vapor.git] / vendor / gonum.org / v1 / gonum / lapack / gonum / dsteqr.go
diff --git a/vendor/gonum.org/v1/gonum/lapack/gonum/dsteqr.go b/vendor/gonum.org/v1/gonum/lapack/gonum/dsteqr.go
new file mode 100644 (file)
index 0000000..0e1125e
--- /dev/null
@@ -0,0 +1,373 @@
+// Copyright ©2016 The Gonum Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gonum
+
+import (
+       "math"
+
+       "gonum.org/v1/gonum/blas"
+       "gonum.org/v1/gonum/blas/blas64"
+       "gonum.org/v1/gonum/lapack"
+)
+
+// Dsteqr computes the eigenvalues and optionally the eigenvectors of a symmetric
+// tridiagonal matrix using the implicit QL or QR method. The eigenvectors of a
+// full or band symmetric matrix can also be found if Dsytrd, Dsptrd, or Dsbtrd
+// have been used to reduce this matrix to tridiagonal form.
+//
+// d, on entry, contains the diagonal elements of the tridiagonal matrix. On exit,
+// d contains the eigenvalues in ascending order. d must have length n and
+// Dsteqr will panic otherwise.
+//
+// e, on entry, contains the off-diagonal elements of the tridiagonal matrix on
+// entry, and is overwritten during the call to Dsteqr. e must have length n-1 and
+// Dsteqr will panic otherwise.
+//
+// z, on entry, contains the n×n orthogonal matrix used in the reduction to
+// tridiagonal form if compz == lapack.OriginalEV. On exit, if
+// compz == lapack.OriginalEV, z contains the orthonormal eigenvectors of the
+// original symmetric matrix, and if compz == lapack.TridiagEV, z contains the
+// orthonormal eigenvectors of the symmetric tridiagonal matrix. z is not used
+// if compz == lapack.None.
+//
+// work must have length at least max(1, 2*n-2) if the eigenvectors are computed,
+// and Dsteqr will panic otherwise.
+//
+// Dsteqr is an internal routine. It is exported for testing purposes.
+func (impl Implementation) Dsteqr(compz lapack.EVComp, n int, d, e, z []float64, ldz int, work []float64) (ok bool) {
+       if n < 0 {
+               panic(nLT0)
+       }
+       if len(d) < n {
+               panic(badD)
+       }
+       if len(e) < n-1 {
+               panic(badE)
+       }
+       if compz != lapack.None && compz != lapack.TridiagEV && compz != lapack.OriginalEV {
+               panic(badEVComp)
+       }
+       if compz != lapack.None {
+               if len(work) < max(1, 2*n-2) {
+                       panic(badWork)
+               }
+               checkMatrix(n, n, z, ldz)
+       }
+
+       var icompz int
+       if compz == lapack.OriginalEV {
+               icompz = 1
+       } else if compz == lapack.TridiagEV {
+               icompz = 2
+       }
+
+       if n == 0 {
+               return true
+       }
+       if n == 1 {
+               if icompz == 2 {
+                       z[0] = 1
+               }
+               return true
+       }
+
+       bi := blas64.Implementation()
+
+       eps := dlamchE
+       eps2 := eps * eps
+       safmin := dlamchS
+       safmax := 1 / safmin
+       ssfmax := math.Sqrt(safmax) / 3
+       ssfmin := math.Sqrt(safmin) / eps2
+
+       // Compute the eigenvalues and eigenvectors of the tridiagonal matrix.
+       if icompz == 2 {
+               impl.Dlaset(blas.All, n, n, 0, 1, z, ldz)
+       }
+       const maxit = 30
+       nmaxit := n * maxit
+
+       jtot := 0
+
+       // Determine where the matrix splits and choose QL or QR iteration for each
+       // block, according to whether top or bottom diagonal element is smaller.
+       l1 := 0
+       nm1 := n - 1
+
+       type scaletype int
+       const (
+               down scaletype = iota + 1
+               up
+       )
+       var iscale scaletype
+
+       for {
+               if l1 > n-1 {
+                       // Order eigenvalues and eigenvectors.
+                       if icompz == 0 {
+                               impl.Dlasrt(lapack.SortIncreasing, n, d)
+                       } else {
+                               // TODO(btracey): Consider replacing this sort with a call to sort.Sort.
+                               for ii := 1; ii < n; ii++ {
+                                       i := ii - 1
+                                       k := i
+                                       p := d[i]
+                                       for j := ii; j < n; j++ {
+                                               if d[j] < p {
+                                                       k = j
+                                                       p = d[j]
+                                               }
+                                       }
+                                       if k != i {
+                                               d[k] = d[i]
+                                               d[i] = p
+                                               bi.Dswap(n, z[i:], ldz, z[k:], ldz)
+                                       }
+                               }
+                       }
+                       return true
+               }
+               if l1 > 0 {
+                       e[l1-1] = 0
+               }
+               var m int
+               if l1 <= nm1 {
+                       for m = l1; m < nm1; m++ {
+                               test := math.Abs(e[m])
+                               if test == 0 {
+                                       break
+                               }
+                               if test <= (math.Sqrt(math.Abs(d[m]))*math.Sqrt(math.Abs(d[m+1])))*eps {
+                                       e[m] = 0
+                                       break
+                               }
+                       }
+               }
+               l := l1
+               lsv := l
+               lend := m
+               lendsv := lend
+               l1 = m + 1
+               if lend == l {
+                       continue
+               }
+
+               // Scale submatrix in rows and columns L to Lend
+               anorm := impl.Dlanst(lapack.MaxAbs, lend-l+1, d[l:], e[l:])
+               switch {
+               case anorm == 0:
+                       continue
+               case anorm > ssfmax:
+                       iscale = down
+                       // Pretend that d and e are matrices with 1 column.
+                       impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l+1, 1, d[l:], 1)
+                       impl.Dlascl(lapack.General, 0, 0, anorm, ssfmax, lend-l, 1, e[l:], 1)
+               case anorm < ssfmin:
+                       iscale = up
+                       impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l+1, 1, d[l:], 1)
+                       impl.Dlascl(lapack.General, 0, 0, anorm, ssfmin, lend-l, 1, e[l:], 1)
+               }
+
+               // Choose between QL and QR.
+               if math.Abs(d[lend]) < math.Abs(d[l]) {
+                       lend = lsv
+                       l = lendsv
+               }
+               if lend > l {
+                       // QL Iteration. Look for small subdiagonal element.
+                       for {
+                               if l != lend {
+                                       for m = l; m < lend; m++ {
+                                               v := math.Abs(e[m])
+                                               if v*v <= (eps2*math.Abs(d[m]))*math.Abs(d[m+1])+safmin {
+                                                       break
+                                               }
+                                       }
+                               } else {
+                                       m = lend
+                               }
+                               if m < lend {
+                                       e[m] = 0
+                               }
+                               p := d[l]
+                               if m == l {
+                                       // Eigenvalue found.
+                                       l++
+                                       if l > lend {
+                                               break
+                                       }
+                                       continue
+                               }
+
+                               // If remaining matrix is 2×2, use Dlae2 to compute its eigensystem.
+                               if m == l+1 {
+                                       if icompz > 0 {
+                                               d[l], d[l+1], work[l], work[n-1+l] = impl.Dlaev2(d[l], e[l], d[l+1])
+                                               impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
+                                                       n, 2, work[l:], work[n-1+l:], z[l:], ldz)
+                                       } else {
+                                               d[l], d[l+1] = impl.Dlae2(d[l], e[l], d[l+1])
+                                       }
+                                       e[l] = 0
+                                       l += 2
+                                       if l > lend {
+                                               break
+                                       }
+                                       continue
+                               }
+
+                               if jtot == nmaxit {
+                                       break
+                               }
+                               jtot++
+
+                               // Form shift
+                               g := (d[l+1] - p) / (2 * e[l])
+                               r := impl.Dlapy2(g, 1)
+                               g = d[m] - p + e[l]/(g+math.Copysign(r, g))
+                               s := 1.0
+                               c := 1.0
+                               p = 0.0
+
+                               // Inner loop
+                               for i := m - 1; i >= l; i-- {
+                                       f := s * e[i]
+                                       b := c * e[i]
+                                       c, s, r = impl.Dlartg(g, f)
+                                       if i != m-1 {
+                                               e[i+1] = r
+                                       }
+                                       g = d[i+1] - p
+                                       r = (d[i]-g)*s + 2*c*b
+                                       p = s * r
+                                       d[i+1] = g + p
+                                       g = c*r - b
+
+                                       // If eigenvectors are desired, then save rotations.
+                                       if icompz > 0 {
+                                               work[i] = c
+                                               work[n-1+i] = -s
+                                       }
+                               }
+                               // If eigenvectors are desired, then apply saved rotations.
+                               if icompz > 0 {
+                                       mm := m - l + 1
+                                       impl.Dlasr(blas.Right, lapack.Variable, lapack.Backward,
+                                               n, mm, work[l:], work[n-1+l:], z[l:], ldz)
+                               }
+                               d[l] -= p
+                               e[l] = g
+                       }
+               } else {
+                       // QR Iteration.
+                       // Look for small superdiagonal element.
+                       for {
+                               if l != lend {
+                                       for m = l; m > lend; m-- {
+                                               v := math.Abs(e[m-1])
+                                               if v*v <= (eps2*math.Abs(d[m])*math.Abs(d[m-1]) + safmin) {
+                                                       break
+                                               }
+                                       }
+                               } else {
+                                       m = lend
+                               }
+                               if m > lend {
+                                       e[m-1] = 0
+                               }
+                               p := d[l]
+                               if m == l {
+                                       // Eigenvalue found
+                                       l--
+                                       if l < lend {
+                                               break
+                                       }
+                                       continue
+                               }
+
+                               // If remaining matrix is 2×2, use Dlae2 to compute its eigenvalues.
+                               if m == l-1 {
+                                       if icompz > 0 {
+                                               d[l-1], d[l], work[m], work[n-1+m] = impl.Dlaev2(d[l-1], e[l-1], d[l])
+                                               impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
+                                                       n, 2, work[m:], work[n-1+m:], z[l-1:], ldz)
+                                       } else {
+                                               d[l-1], d[l] = impl.Dlae2(d[l-1], e[l-1], d[l])
+                                       }
+                                       e[l-1] = 0
+                                       l -= 2
+                                       if l < lend {
+                                               break
+                                       }
+                                       continue
+                               }
+                               if jtot == nmaxit {
+                                       break
+                               }
+                               jtot++
+
+                               // Form shift.
+                               g := (d[l-1] - p) / (2 * e[l-1])
+                               r := impl.Dlapy2(g, 1)
+                               g = d[m] - p + (e[l-1])/(g+math.Copysign(r, g))
+                               s := 1.0
+                               c := 1.0
+                               p = 0.0
+
+                               // Inner loop.
+                               for i := m; i < l; i++ {
+                                       f := s * e[i]
+                                       b := c * e[i]
+                                       c, s, r = impl.Dlartg(g, f)
+                                       if i != m {
+                                               e[i-1] = r
+                                       }
+                                       g = d[i] - p
+                                       r = (d[i+1]-g)*s + 2*c*b
+                                       p = s * r
+                                       d[i] = g + p
+                                       g = c*r - b
+
+                                       // If eigenvectors are desired, then save rotations.
+                                       if icompz > 0 {
+                                               work[i] = c
+                                               work[n-1+i] = s
+                                       }
+                               }
+
+                               // If eigenvectors are desired, then apply saved rotations.
+                               if icompz > 0 {
+                                       mm := l - m + 1
+                                       impl.Dlasr(blas.Right, lapack.Variable, lapack.Forward,
+                                               n, mm, work[m:], work[n-1+m:], z[m:], ldz)
+                               }
+                               d[l] -= p
+                               e[l-1] = g
+                       }
+               }
+
+               // Undo scaling if necessary.
+               switch iscale {
+               case down:
+                       // Pretend that d and e are matrices with 1 column.
+                       impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv+1, 1, d[lsv:], 1)
+                       impl.Dlascl(lapack.General, 0, 0, ssfmax, anorm, lendsv-lsv, 1, e[lsv:], 1)
+               case up:
+                       impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv+1, 1, d[lsv:], 1)
+                       impl.Dlascl(lapack.General, 0, 0, ssfmin, anorm, lendsv-lsv, 1, e[lsv:], 1)
+               }
+
+               // Check for no convergence to an eigenvalue after a total of n*maxit iterations.
+               if jtot >= nmaxit {
+                       break
+               }
+       }
+       for i := 0; i < n-1; i++ {
+               if e[i] != 0 {
+                       return false
+               }
+       }
+       return true
+}