OSDN Git Service

libavcodec/vp9: ipred_dl_32x32_16 avx2 implementation
[android-x86/external-ffmpeg.git] / libavcodec / flacenc.c
1 /*
2  * FLAC audio encoder
3  * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "libavutil/avassert.h"
23 #include "libavutil/crc.h"
24 #include "libavutil/intmath.h"
25 #include "libavutil/md5.h"
26 #include "libavutil/opt.h"
27
28 #include "avcodec.h"
29 #include "bswapdsp.h"
30 #include "put_bits.h"
31 #include "golomb.h"
32 #include "internal.h"
33 #include "lpc.h"
34 #include "flac.h"
35 #include "flacdata.h"
36 #include "flacdsp.h"
37
38 #define FLAC_SUBFRAME_CONSTANT  0
39 #define FLAC_SUBFRAME_VERBATIM  1
40 #define FLAC_SUBFRAME_FIXED     8
41 #define FLAC_SUBFRAME_LPC      32
42
43 #define MAX_FIXED_ORDER     4
44 #define MAX_PARTITION_ORDER 8
45 #define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
46 #define MAX_LPC_PRECISION  15
47 #define MIN_LPC_SHIFT       0
48 #define MAX_LPC_SHIFT      15
49
50 enum CodingMode {
51     CODING_MODE_RICE  = 4,
52     CODING_MODE_RICE2 = 5,
53 };
54
55 typedef struct CompressionOptions {
56     int compression_level;
57     int block_time_ms;
58     enum FFLPCType lpc_type;
59     int lpc_passes;
60     int lpc_coeff_precision;
61     int min_prediction_order;
62     int max_prediction_order;
63     int prediction_order_method;
64     int min_partition_order;
65     int max_partition_order;
66     int ch_mode;
67     int exact_rice_parameters;
68     int multi_dim_quant;
69 } CompressionOptions;
70
71 typedef struct RiceContext {
72     enum CodingMode coding_mode;
73     int porder;
74     int params[MAX_PARTITIONS];
75 } RiceContext;
76
77 typedef struct FlacSubframe {
78     int type;
79     int type_code;
80     int obits;
81     int wasted;
82     int order;
83     int32_t coefs[MAX_LPC_ORDER];
84     int shift;
85
86     RiceContext rc;
87     uint32_t rc_udata[FLAC_MAX_BLOCKSIZE];
88     uint64_t rc_sums[32][MAX_PARTITIONS];
89
90     int32_t samples[FLAC_MAX_BLOCKSIZE];
91     int32_t residual[FLAC_MAX_BLOCKSIZE+11];
92 } FlacSubframe;
93
94 typedef struct FlacFrame {
95     FlacSubframe subframes[FLAC_MAX_CHANNELS];
96     int blocksize;
97     int bs_code[2];
98     uint8_t crc8;
99     int ch_mode;
100     int verbatim_only;
101 } FlacFrame;
102
103 typedef struct FlacEncodeContext {
104     AVClass *class;
105     PutBitContext pb;
106     int channels;
107     int samplerate;
108     int sr_code[2];
109     int bps_code;
110     int max_blocksize;
111     int min_framesize;
112     int max_framesize;
113     int max_encoded_framesize;
114     uint32_t frame_count;
115     uint64_t sample_count;
116     uint8_t md5sum[16];
117     FlacFrame frame;
118     CompressionOptions options;
119     AVCodecContext *avctx;
120     LPCContext lpc_ctx;
121     struct AVMD5 *md5ctx;
122     uint8_t *md5_buffer;
123     unsigned int md5_buffer_size;
124     BswapDSPContext bdsp;
125     FLACDSPContext flac_dsp;
126
127     int flushed;
128     int64_t next_pts;
129 } FlacEncodeContext;
130
131
132 /**
133  * Write streaminfo metadata block to byte array.
134  */
135 static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
136 {
137     PutBitContext pb;
138
139     memset(header, 0, FLAC_STREAMINFO_SIZE);
140     init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
141
142     /* streaminfo metadata block */
143     put_bits(&pb, 16, s->max_blocksize);
144     put_bits(&pb, 16, s->max_blocksize);
145     put_bits(&pb, 24, s->min_framesize);
146     put_bits(&pb, 24, s->max_framesize);
147     put_bits(&pb, 20, s->samplerate);
148     put_bits(&pb, 3, s->channels-1);
149     put_bits(&pb,  5, s->avctx->bits_per_raw_sample - 1);
150     /* write 36-bit sample count in 2 put_bits() calls */
151     put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
152     put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
153     flush_put_bits(&pb);
154     memcpy(&header[18], s->md5sum, 16);
155 }
156
157
158 /**
159  * Set blocksize based on samplerate.
160  * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
161  */
162 static int select_blocksize(int samplerate, int block_time_ms)
163 {
164     int i;
165     int target;
166     int blocksize;
167
168     av_assert0(samplerate > 0);
169     blocksize = ff_flac_blocksize_table[1];
170     target    = (samplerate * block_time_ms) / 1000;
171     for (i = 0; i < 16; i++) {
172         if (target >= ff_flac_blocksize_table[i] &&
173             ff_flac_blocksize_table[i] > blocksize) {
174             blocksize = ff_flac_blocksize_table[i];
175         }
176     }
177     return blocksize;
178 }
179
180
181 static av_cold void dprint_compression_options(FlacEncodeContext *s)
182 {
183     AVCodecContext     *avctx = s->avctx;
184     CompressionOptions *opt   = &s->options;
185
186     av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
187
188     switch (opt->lpc_type) {
189     case FF_LPC_TYPE_NONE:
190         av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
191         break;
192     case FF_LPC_TYPE_FIXED:
193         av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
194         break;
195     case FF_LPC_TYPE_LEVINSON:
196         av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
197         break;
198     case FF_LPC_TYPE_CHOLESKY:
199         av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
200                opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
201         break;
202     }
203
204     av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
205            opt->min_prediction_order, opt->max_prediction_order);
206
207     switch (opt->prediction_order_method) {
208     case ORDER_METHOD_EST:
209         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
210         break;
211     case ORDER_METHOD_2LEVEL:
212         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
213         break;
214     case ORDER_METHOD_4LEVEL:
215         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
216         break;
217     case ORDER_METHOD_8LEVEL:
218         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
219         break;
220     case ORDER_METHOD_SEARCH:
221         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
222         break;
223     case ORDER_METHOD_LOG:
224         av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
225         break;
226     }
227
228
229     av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
230            opt->min_partition_order, opt->max_partition_order);
231
232     av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
233
234     av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
235            opt->lpc_coeff_precision);
236 }
237
238
239 static av_cold int flac_encode_init(AVCodecContext *avctx)
240 {
241     int freq = avctx->sample_rate;
242     int channels = avctx->channels;
243     FlacEncodeContext *s = avctx->priv_data;
244     int i, level, ret;
245     uint8_t *streaminfo;
246
247     s->avctx = avctx;
248
249     switch (avctx->sample_fmt) {
250     case AV_SAMPLE_FMT_S16:
251         avctx->bits_per_raw_sample = 16;
252         s->bps_code                = 4;
253         break;
254     case AV_SAMPLE_FMT_S32:
255         if (avctx->bits_per_raw_sample != 24)
256             av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
257         avctx->bits_per_raw_sample = 24;
258         s->bps_code                = 6;
259         break;
260     }
261
262     if (channels < 1 || channels > FLAC_MAX_CHANNELS) {
263         av_log(avctx, AV_LOG_ERROR, "%d channels not supported (max %d)\n",
264                channels, FLAC_MAX_CHANNELS);
265         return AVERROR(EINVAL);
266     }
267     s->channels = channels;
268
269     /* find samplerate in table */
270     if (freq < 1)
271         return -1;
272     for (i = 4; i < 12; i++) {
273         if (freq == ff_flac_sample_rate_table[i]) {
274             s->samplerate = ff_flac_sample_rate_table[i];
275             s->sr_code[0] = i;
276             s->sr_code[1] = 0;
277             break;
278         }
279     }
280     /* if not in table, samplerate is non-standard */
281     if (i == 12) {
282         if (freq % 1000 == 0 && freq < 255000) {
283             s->sr_code[0] = 12;
284             s->sr_code[1] = freq / 1000;
285         } else if (freq % 10 == 0 && freq < 655350) {
286             s->sr_code[0] = 14;
287             s->sr_code[1] = freq / 10;
288         } else if (freq < 65535) {
289             s->sr_code[0] = 13;
290             s->sr_code[1] = freq;
291         } else {
292             av_log(avctx, AV_LOG_ERROR, "%d Hz not supported\n", freq);
293             return AVERROR(EINVAL);
294         }
295         s->samplerate = freq;
296     }
297
298     /* set compression option defaults based on avctx->compression_level */
299     if (avctx->compression_level < 0)
300         s->options.compression_level = 5;
301     else
302         s->options.compression_level = avctx->compression_level;
303
304     level = s->options.compression_level;
305     if (level > 12) {
306         av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
307                s->options.compression_level);
308         return AVERROR(EINVAL);
309     }
310
311     s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
312
313     if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT)
314         s->options.lpc_type  = ((int[]){ FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,
315                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
316                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
317                                          FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
318                                          FF_LPC_TYPE_LEVINSON})[level];
319
320     if (s->options.min_prediction_order < 0)
321         s->options.min_prediction_order = ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
322     if (s->options.max_prediction_order < 0)
323         s->options.max_prediction_order = ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
324
325     if (s->options.prediction_order_method < 0)
326         s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
327                                                        ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
328                                                        ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
329                                                        ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
330                                                        ORDER_METHOD_SEARCH})[level];
331
332     if (s->options.min_partition_order > s->options.max_partition_order) {
333         av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
334                s->options.min_partition_order, s->options.max_partition_order);
335         return AVERROR(EINVAL);
336     }
337     if (s->options.min_partition_order < 0)
338         s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
339     if (s->options.max_partition_order < 0)
340         s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
341
342 #if FF_API_PRIVATE_OPT
343 FF_DISABLE_DEPRECATION_WARNINGS
344     if (avctx->min_prediction_order >= 0) {
345         if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
346             if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
347                 av_log(avctx, AV_LOG_WARNING,
348                        "invalid min prediction order %d, clamped to %d\n",
349                        avctx->min_prediction_order, MAX_FIXED_ORDER);
350                 avctx->min_prediction_order = MAX_FIXED_ORDER;
351             }
352         } else if (avctx->min_prediction_order < MIN_LPC_ORDER ||
353                    avctx->min_prediction_order > MAX_LPC_ORDER) {
354             av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
355                    avctx->min_prediction_order);
356             return AVERROR(EINVAL);
357         }
358         s->options.min_prediction_order = avctx->min_prediction_order;
359     }
360     if (avctx->max_prediction_order >= 0) {
361         if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
362             if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
363                 av_log(avctx, AV_LOG_WARNING,
364                        "invalid max prediction order %d, clamped to %d\n",
365                        avctx->max_prediction_order, MAX_FIXED_ORDER);
366                 avctx->max_prediction_order = MAX_FIXED_ORDER;
367             }
368         } else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
369                    avctx->max_prediction_order > MAX_LPC_ORDER) {
370             av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
371                    avctx->max_prediction_order);
372             return AVERROR(EINVAL);
373         }
374         s->options.max_prediction_order = avctx->max_prediction_order;
375     }
376 FF_ENABLE_DEPRECATION_WARNINGS
377 #endif
378     if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
379         s->options.min_prediction_order = 0;
380         s->options.max_prediction_order = 0;
381     } else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
382         if (s->options.min_prediction_order > MAX_FIXED_ORDER) {
383             av_log(avctx, AV_LOG_WARNING,
384                    "invalid min prediction order %d, clamped to %d\n",
385                    s->options.min_prediction_order, MAX_FIXED_ORDER);
386             s->options.min_prediction_order = MAX_FIXED_ORDER;
387         }
388         if (s->options.max_prediction_order > MAX_FIXED_ORDER) {
389             av_log(avctx, AV_LOG_WARNING,
390                    "invalid max prediction order %d, clamped to %d\n",
391                    s->options.max_prediction_order, MAX_FIXED_ORDER);
392             s->options.max_prediction_order = MAX_FIXED_ORDER;
393         }
394     }
395
396     if (s->options.max_prediction_order < s->options.min_prediction_order) {
397         av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
398                s->options.min_prediction_order, s->options.max_prediction_order);
399         return AVERROR(EINVAL);
400     }
401
402     if (avctx->frame_size > 0) {
403         if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
404                 avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
405             av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
406                    avctx->frame_size);
407             return AVERROR(EINVAL);
408         }
409     } else {
410         s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
411     }
412     s->max_blocksize = s->avctx->frame_size;
413
414     /* set maximum encoded frame size in verbatim mode */
415     s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
416                                                   s->channels,
417                                                   s->avctx->bits_per_raw_sample);
418
419     /* initialize MD5 context */
420     s->md5ctx = av_md5_alloc();
421     if (!s->md5ctx)
422         return AVERROR(ENOMEM);
423     av_md5_init(s->md5ctx);
424
425     streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
426     if (!streaminfo)
427         return AVERROR(ENOMEM);
428     write_streaminfo(s, streaminfo);
429     avctx->extradata = streaminfo;
430     avctx->extradata_size = FLAC_STREAMINFO_SIZE;
431
432     s->frame_count   = 0;
433     s->min_framesize = s->max_framesize;
434
435     if (channels == 3 &&
436             avctx->channel_layout != (AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER) ||
437         channels == 4 &&
438             avctx->channel_layout != AV_CH_LAYOUT_2_2 &&
439             avctx->channel_layout != AV_CH_LAYOUT_QUAD ||
440         channels == 5 &&
441             avctx->channel_layout != AV_CH_LAYOUT_5POINT0 &&
442             avctx->channel_layout != AV_CH_LAYOUT_5POINT0_BACK ||
443         channels == 6 &&
444             avctx->channel_layout != AV_CH_LAYOUT_5POINT1 &&
445             avctx->channel_layout != AV_CH_LAYOUT_5POINT1_BACK) {
446         if (avctx->channel_layout) {
447             av_log(avctx, AV_LOG_ERROR, "Channel layout not supported by Flac, "
448                                              "output stream will have incorrect "
449                                              "channel layout.\n");
450         } else {
451             av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The encoder "
452                                                "will use Flac channel layout for "
453                                                "%d channels.\n", channels);
454         }
455     }
456
457     ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
458                       s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON);
459
460     ff_bswapdsp_init(&s->bdsp);
461     ff_flacdsp_init(&s->flac_dsp, avctx->sample_fmt, channels,
462                     avctx->bits_per_raw_sample);
463
464     dprint_compression_options(s);
465
466     return ret;
467 }
468
469
470 static void init_frame(FlacEncodeContext *s, int nb_samples)
471 {
472     int i, ch;
473     FlacFrame *frame;
474
475     frame = &s->frame;
476
477     for (i = 0; i < 16; i++) {
478         if (nb_samples == ff_flac_blocksize_table[i]) {
479             frame->blocksize  = ff_flac_blocksize_table[i];
480             frame->bs_code[0] = i;
481             frame->bs_code[1] = 0;
482             break;
483         }
484     }
485     if (i == 16) {
486         frame->blocksize = nb_samples;
487         if (frame->blocksize <= 256) {
488             frame->bs_code[0] = 6;
489             frame->bs_code[1] = frame->blocksize-1;
490         } else {
491             frame->bs_code[0] = 7;
492             frame->bs_code[1] = frame->blocksize-1;
493         }
494     }
495
496     for (ch = 0; ch < s->channels; ch++) {
497         FlacSubframe *sub = &frame->subframes[ch];
498
499         sub->wasted = 0;
500         sub->obits  = s->avctx->bits_per_raw_sample;
501
502         if (sub->obits > 16)
503             sub->rc.coding_mode = CODING_MODE_RICE2;
504         else
505             sub->rc.coding_mode = CODING_MODE_RICE;
506     }
507
508     frame->verbatim_only = 0;
509 }
510
511
512 /**
513  * Copy channel-interleaved input samples into separate subframes.
514  */
515 static void copy_samples(FlacEncodeContext *s, const void *samples)
516 {
517     int i, j, ch;
518     FlacFrame *frame;
519     int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
520                 s->avctx->bits_per_raw_sample;
521
522 #define COPY_SAMPLES(bits) do {                                     \
523     const int ## bits ## _t *samples0 = samples;                    \
524     frame = &s->frame;                                              \
525     for (i = 0, j = 0; i < frame->blocksize; i++)                   \
526         for (ch = 0; ch < s->channels; ch++, j++)                   \
527             frame->subframes[ch].samples[i] = samples0[j] >> shift; \
528 } while (0)
529
530     if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16)
531         COPY_SAMPLES(16);
532     else
533         COPY_SAMPLES(32);
534 }
535
536
537 static uint64_t rice_count_exact(const int32_t *res, int n, int k)
538 {
539     int i;
540     uint64_t count = 0;
541
542     for (i = 0; i < n; i++) {
543         int32_t v = -2 * res[i] - 1;
544         v ^= v >> 31;
545         count += (v >> k) + 1 + k;
546     }
547     return count;
548 }
549
550
551 static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
552                                      int pred_order)
553 {
554     int p, porder, psize;
555     int i, part_end;
556     uint64_t count = 0;
557
558     /* subframe header */
559     count += 8;
560
561     if (sub->wasted)
562         count += sub->wasted;
563
564     /* subframe */
565     if (sub->type == FLAC_SUBFRAME_CONSTANT) {
566         count += sub->obits;
567     } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
568         count += s->frame.blocksize * sub->obits;
569     } else {
570         /* warm-up samples */
571         count += pred_order * sub->obits;
572
573         /* LPC coefficients */
574         if (sub->type == FLAC_SUBFRAME_LPC)
575             count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
576
577         /* rice-encoded block */
578         count += 2;
579
580         /* partition order */
581         porder = sub->rc.porder;
582         psize  = s->frame.blocksize >> porder;
583         count += 4;
584
585         /* residual */
586         i        = pred_order;
587         part_end = psize;
588         for (p = 0; p < 1 << porder; p++) {
589             int k = sub->rc.params[p];
590             count += sub->rc.coding_mode;
591             count += rice_count_exact(&sub->residual[i], part_end - i, k);
592             i = part_end;
593             part_end = FFMIN(s->frame.blocksize, part_end + psize);
594         }
595     }
596
597     return count;
598 }
599
600
601 #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
602
603 /**
604  * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
605  */
606 static int find_optimal_param(uint64_t sum, int n, int max_param)
607 {
608     int k;
609     uint64_t sum2;
610
611     if (sum <= n >> 1)
612         return 0;
613     sum2 = sum - (n >> 1);
614     k    = av_log2(av_clipl_int32(sum2 / n));
615     return FFMIN(k, max_param);
616 }
617
618 static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
619 {
620     int bestk = 0;
621     int64_t bestbits = INT64_MAX;
622     int k;
623
624     for (k = 0; k <= max_param; k++) {
625         int64_t bits = sums[k][i];
626         if (bits < bestbits) {
627             bestbits = bits;
628             bestk = k;
629         }
630     }
631
632     return bestk;
633 }
634
635 static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder,
636                                          uint64_t sums[32][MAX_PARTITIONS],
637                                          int n, int pred_order, int max_param, int exact)
638 {
639     int i;
640     int k, cnt, part;
641     uint64_t all_bits;
642
643     part     = (1 << porder);
644     all_bits = 4 * part;
645
646     cnt = (n >> porder) - pred_order;
647     for (i = 0; i < part; i++) {
648         if (exact) {
649             k = find_optimal_param_exact(sums, i, max_param);
650             all_bits += sums[k][i];
651         } else {
652             k = find_optimal_param(sums[0][i], cnt, max_param);
653             all_bits += rice_encode_count(sums[0][i], cnt, k);
654         }
655         rc->params[i] = k;
656         cnt = n >> porder;
657     }
658
659     rc->porder = porder;
660
661     return all_bits;
662 }
663
664
665 static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order,
666                          uint64_t sums[32][MAX_PARTITIONS])
667 {
668     int i, k;
669     int parts;
670     const uint32_t *res, *res_end;
671
672     /* sums for highest level */
673     parts   = (1 << pmax);
674
675     for (k = 0; k <= kmax; k++) {
676         res     = &data[pred_order];
677         res_end = &data[n >> pmax];
678         for (i = 0; i < parts; i++) {
679             if (kmax) {
680                 uint64_t sum = (1LL + k) * (res_end - res);
681                 while (res < res_end)
682                     sum += *(res++) >> k;
683                 sums[k][i] = sum;
684             } else {
685                 uint64_t sum = 0;
686                 while (res < res_end)
687                     sum += *(res++);
688                 sums[k][i] = sum;
689             }
690             res_end += n >> pmax;
691         }
692     }
693 }
694
695 static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
696 {
697     int i, k;
698     int parts = (1 << level);
699     for (i = 0; i < parts; i++) {
700         for (k=0; k<=kmax; k++)
701             sums[k][i] = sums[k][2*i] + sums[k][2*i+1];
702     }
703 }
704
705 static uint64_t calc_rice_params(RiceContext *rc,
706                                  uint32_t udata[FLAC_MAX_BLOCKSIZE],
707                                  uint64_t sums[32][MAX_PARTITIONS],
708                                  int pmin, int pmax,
709                                  const int32_t *data, int n, int pred_order, int exact)
710 {
711     int i;
712     uint64_t bits[MAX_PARTITION_ORDER+1];
713     int opt_porder;
714     RiceContext tmp_rc;
715     int kmax = (1 << rc->coding_mode) - 2;
716
717     av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
718     av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
719     av_assert1(pmin <= pmax);
720
721     tmp_rc.coding_mode = rc->coding_mode;
722
723     for (i = 0; i < n; i++)
724         udata[i] = (2 * data[i]) ^ (data[i] >> 31);
725
726     calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
727
728     opt_porder = pmin;
729     bits[pmin] = UINT32_MAX;
730     for (i = pmax; ; ) {
731         bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact);
732         if (bits[i] < bits[opt_porder] || pmax == pmin) {
733             opt_porder = i;
734             *rc = tmp_rc;
735         }
736         if (i == pmin)
737             break;
738         calc_sum_next(--i, sums, exact ? kmax : 0);
739     }
740
741     return bits[opt_porder];
742 }
743
744
745 static int get_max_p_order(int max_porder, int n, int order)
746 {
747     int porder = FFMIN(max_porder, av_log2(n^(n-1)));
748     if (order > 0)
749         porder = FFMIN(porder, av_log2(n/order));
750     return porder;
751 }
752
753
754 static uint64_t find_subframe_rice_params(FlacEncodeContext *s,
755                                           FlacSubframe *sub, int pred_order)
756 {
757     int pmin = get_max_p_order(s->options.min_partition_order,
758                                s->frame.blocksize, pred_order);
759     int pmax = get_max_p_order(s->options.max_partition_order,
760                                s->frame.blocksize, pred_order);
761
762     uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode;
763     if (sub->type == FLAC_SUBFRAME_LPC)
764         bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
765     bits += calc_rice_params(&sub->rc, sub->rc_udata, sub->rc_sums, pmin, pmax, sub->residual,
766                              s->frame.blocksize, pred_order, s->options.exact_rice_parameters);
767     return bits;
768 }
769
770
771 static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
772                                   int order)
773 {
774     int i;
775
776     for (i = 0; i < order; i++)
777         res[i] = smp[i];
778
779     if (order == 0) {
780         for (i = order; i < n; i++)
781             res[i] = smp[i];
782     } else if (order == 1) {
783         for (i = order; i < n; i++)
784             res[i] = smp[i] - smp[i-1];
785     } else if (order == 2) {
786         int a = smp[order-1] - smp[order-2];
787         for (i = order; i < n; i += 2) {
788             int b    = smp[i  ] - smp[i-1];
789             res[i]   = b - a;
790             a        = smp[i+1] - smp[i  ];
791             res[i+1] = a - b;
792         }
793     } else if (order == 3) {
794         int a = smp[order-1] -   smp[order-2];
795         int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
796         for (i = order; i < n; i += 2) {
797             int b    = smp[i  ] - smp[i-1];
798             int d    = b - a;
799             res[i]   = d - c;
800             a        = smp[i+1] - smp[i  ];
801             c        = a - b;
802             res[i+1] = c - d;
803         }
804     } else {
805         int a = smp[order-1] -   smp[order-2];
806         int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
807         int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
808         for (i = order; i < n; i += 2) {
809             int b    = smp[i  ] - smp[i-1];
810             int d    = b - a;
811             int f    = d - c;
812             res[i  ] = f - e;
813             a        = smp[i+1] - smp[i  ];
814             c        = a - b;
815             e        = c - d;
816             res[i+1] = e - f;
817         }
818     }
819 }
820
821
822 static int encode_residual_ch(FlacEncodeContext *s, int ch)
823 {
824     int i, n;
825     int min_order, max_order, opt_order, omethod;
826     FlacFrame *frame;
827     FlacSubframe *sub;
828     int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
829     int shift[MAX_LPC_ORDER];
830     int32_t *res, *smp;
831
832     frame = &s->frame;
833     sub   = &frame->subframes[ch];
834     res   = sub->residual;
835     smp   = sub->samples;
836     n     = frame->blocksize;
837
838     /* CONSTANT */
839     for (i = 1; i < n; i++)
840         if(smp[i] != smp[0])
841             break;
842     if (i == n) {
843         sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
844         res[0] = smp[0];
845         return subframe_count_exact(s, sub, 0);
846     }
847
848     /* VERBATIM */
849     if (frame->verbatim_only || n < 5) {
850         sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
851         memcpy(res, smp, n * sizeof(int32_t));
852         return subframe_count_exact(s, sub, 0);
853     }
854
855     min_order  = s->options.min_prediction_order;
856     max_order  = s->options.max_prediction_order;
857     omethod    = s->options.prediction_order_method;
858
859     /* FIXED */
860     sub->type = FLAC_SUBFRAME_FIXED;
861     if (s->options.lpc_type == FF_LPC_TYPE_NONE  ||
862         s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
863         uint64_t bits[MAX_FIXED_ORDER+1];
864         if (max_order > MAX_FIXED_ORDER)
865             max_order = MAX_FIXED_ORDER;
866         opt_order = 0;
867         bits[0]   = UINT32_MAX;
868         for (i = min_order; i <= max_order; i++) {
869             encode_residual_fixed(res, smp, n, i);
870             bits[i] = find_subframe_rice_params(s, sub, i);
871             if (bits[i] < bits[opt_order])
872                 opt_order = i;
873         }
874         sub->order     = opt_order;
875         sub->type_code = sub->type | sub->order;
876         if (sub->order != max_order) {
877             encode_residual_fixed(res, smp, n, sub->order);
878             find_subframe_rice_params(s, sub, sub->order);
879         }
880         return subframe_count_exact(s, sub, sub->order);
881     }
882
883     /* LPC */
884     sub->type = FLAC_SUBFRAME_LPC;
885     opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
886                                   s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
887                                   s->options.lpc_passes, omethod,
888                                   MIN_LPC_SHIFT, MAX_LPC_SHIFT, 0);
889
890     if (omethod == ORDER_METHOD_2LEVEL ||
891         omethod == ORDER_METHOD_4LEVEL ||
892         omethod == ORDER_METHOD_8LEVEL) {
893         int levels = 1 << omethod;
894         uint64_t bits[1 << ORDER_METHOD_8LEVEL];
895         int order       = -1;
896         int opt_index   = levels-1;
897         opt_order       = max_order-1;
898         bits[opt_index] = UINT32_MAX;
899         for (i = levels-1; i >= 0; i--) {
900             int last_order = order;
901             order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
902             order = av_clip(order, min_order - 1, max_order - 1);
903             if (order == last_order)
904                 continue;
905             if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(order) <= 32) {
906                 s->flac_dsp.lpc16_encode(res, smp, n, order+1, coefs[order],
907                                          shift[order]);
908             } else {
909                 s->flac_dsp.lpc32_encode(res, smp, n, order+1, coefs[order],
910                                          shift[order]);
911             }
912             bits[i] = find_subframe_rice_params(s, sub, order+1);
913             if (bits[i] < bits[opt_index]) {
914                 opt_index = i;
915                 opt_order = order;
916             }
917         }
918         opt_order++;
919     } else if (omethod == ORDER_METHOD_SEARCH) {
920         // brute-force optimal order search
921         uint64_t bits[MAX_LPC_ORDER];
922         opt_order = 0;
923         bits[0]   = UINT32_MAX;
924         for (i = min_order-1; i < max_order; i++) {
925             if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
926                 s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
927             } else {
928                 s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
929             }
930             bits[i] = find_subframe_rice_params(s, sub, i+1);
931             if (bits[i] < bits[opt_order])
932                 opt_order = i;
933         }
934         opt_order++;
935     } else if (omethod == ORDER_METHOD_LOG) {
936         uint64_t bits[MAX_LPC_ORDER];
937         int step;
938
939         opt_order = min_order - 1 + (max_order-min_order)/3;
940         memset(bits, -1, sizeof(bits));
941
942         for (step = 16; step; step >>= 1) {
943             int last = opt_order;
944             for (i = last-step; i <= last+step; i += step) {
945                 if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
946                     continue;
947                 if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
948                     s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
949                 } else {
950                     s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
951                 }
952                 bits[i] = find_subframe_rice_params(s, sub, i+1);
953                 if (bits[i] < bits[opt_order])
954                     opt_order = i;
955             }
956         }
957         opt_order++;
958     }
959
960     if (s->options.multi_dim_quant) {
961         int allsteps = 1;
962         int i, step, improved;
963         int64_t best_score = INT64_MAX;
964         int32_t qmax;
965
966         qmax = (1 << (s->options.lpc_coeff_precision - 1)) - 1;
967
968         for (i=0; i<opt_order; i++)
969             allsteps *= 3;
970
971         do {
972             improved = 0;
973             for (step = 0; step < allsteps; step++) {
974                 int tmp = step;
975                 int32_t lpc_try[MAX_LPC_ORDER];
976                 int64_t score = 0;
977                 int diffsum = 0;
978
979                 for (i=0; i<opt_order; i++) {
980                     int diff = ((tmp + 1) % 3) - 1;
981                     lpc_try[i] = av_clip(coefs[opt_order - 1][i] + diff, -qmax, qmax);
982                     tmp /= 3;
983                     diffsum += !!diff;
984                 }
985                 if (diffsum >8)
986                     continue;
987
988                 if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order - 1) <= 32) {
989                     s->flac_dsp.lpc16_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
990                 } else {
991                     s->flac_dsp.lpc32_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
992                 }
993                 score = find_subframe_rice_params(s, sub, opt_order);
994                 if (score < best_score) {
995                     best_score = score;
996                     memcpy(coefs[opt_order-1], lpc_try, sizeof(*coefs));
997                     improved=1;
998                 }
999             }
1000         } while(improved);
1001     }
1002
1003     sub->order     = opt_order;
1004     sub->type_code = sub->type | (sub->order-1);
1005     sub->shift     = shift[sub->order-1];
1006     for (i = 0; i < sub->order; i++)
1007         sub->coefs[i] = coefs[sub->order-1][i];
1008
1009     if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order) <= 32) {
1010         s->flac_dsp.lpc16_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
1011     } else {
1012         s->flac_dsp.lpc32_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
1013     }
1014
1015     find_subframe_rice_params(s, sub, sub->order);
1016
1017     return subframe_count_exact(s, sub, sub->order);
1018 }
1019
1020
1021 static int count_frame_header(FlacEncodeContext *s)
1022 {
1023     uint8_t av_unused tmp;
1024     int count;
1025
1026     /*
1027     <14> Sync code
1028     <1>  Reserved
1029     <1>  Blocking strategy
1030     <4>  Block size in inter-channel samples
1031     <4>  Sample rate
1032     <4>  Channel assignment
1033     <3>  Sample size in bits
1034     <1>  Reserved
1035     */
1036     count = 32;
1037
1038     /* coded frame number */
1039     PUT_UTF8(s->frame_count, tmp, count += 8;)
1040
1041     /* explicit block size */
1042     if (s->frame.bs_code[0] == 6)
1043         count += 8;
1044     else if (s->frame.bs_code[0] == 7)
1045         count += 16;
1046
1047     /* explicit sample rate */
1048     count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12) * 2) * 8;
1049
1050     /* frame header CRC-8 */
1051     count += 8;
1052
1053     return count;
1054 }
1055
1056
1057 static int encode_frame(FlacEncodeContext *s)
1058 {
1059     int ch;
1060     uint64_t count;
1061
1062     count = count_frame_header(s);
1063
1064     for (ch = 0; ch < s->channels; ch++)
1065         count += encode_residual_ch(s, ch);
1066
1067     count += (8 - (count & 7)) & 7; // byte alignment
1068     count += 16;                    // CRC-16
1069
1070     count >>= 3;
1071     if (count > INT_MAX)
1072         return AVERROR_BUG;
1073     return count;
1074 }
1075
1076
1077 static void remove_wasted_bits(FlacEncodeContext *s)
1078 {
1079     int ch, i;
1080
1081     for (ch = 0; ch < s->channels; ch++) {
1082         FlacSubframe *sub = &s->frame.subframes[ch];
1083         int32_t v         = 0;
1084
1085         for (i = 0; i < s->frame.blocksize; i++) {
1086             v |= sub->samples[i];
1087             if (v & 1)
1088                 break;
1089         }
1090
1091         if (v && !(v & 1)) {
1092             v = ff_ctz(v);
1093
1094             for (i = 0; i < s->frame.blocksize; i++)
1095                 sub->samples[i] >>= v;
1096
1097             sub->wasted = v;
1098             sub->obits -= v;
1099
1100             /* for 24-bit, check if removing wasted bits makes the range better
1101                suited for using RICE instead of RICE2 for entropy coding */
1102             if (sub->obits <= 17)
1103                 sub->rc.coding_mode = CODING_MODE_RICE;
1104         }
1105     }
1106 }
1107
1108
1109 static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n,
1110                                 int max_rice_param)
1111 {
1112     int i, best;
1113     int32_t lt, rt;
1114     uint64_t sum[4];
1115     uint64_t score[4];
1116     int k;
1117
1118     /* calculate sum of 2nd order residual for each channel */
1119     sum[0] = sum[1] = sum[2] = sum[3] = 0;
1120     for (i = 2; i < n; i++) {
1121         lt = left_ch[i]  - 2*left_ch[i-1]  + left_ch[i-2];
1122         rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
1123         sum[2] += FFABS((lt + rt) >> 1);
1124         sum[3] += FFABS(lt - rt);
1125         sum[0] += FFABS(lt);
1126         sum[1] += FFABS(rt);
1127     }
1128     /* estimate bit counts */
1129     for (i = 0; i < 4; i++) {
1130         k      = find_optimal_param(2 * sum[i], n, max_rice_param);
1131         sum[i] = rice_encode_count( 2 * sum[i], n, k);
1132     }
1133
1134     /* calculate score for each mode */
1135     score[0] = sum[0] + sum[1];
1136     score[1] = sum[0] + sum[3];
1137     score[2] = sum[1] + sum[3];
1138     score[3] = sum[2] + sum[3];
1139
1140     /* return mode with lowest score */
1141     best = 0;
1142     for (i = 1; i < 4; i++)
1143         if (score[i] < score[best])
1144             best = i;
1145
1146     return best;
1147 }
1148
1149
1150 /**
1151  * Perform stereo channel decorrelation.
1152  */
1153 static void channel_decorrelation(FlacEncodeContext *s)
1154 {
1155     FlacFrame *frame;
1156     int32_t *left, *right;
1157     int i, n;
1158
1159     frame = &s->frame;
1160     n     = frame->blocksize;
1161     left  = frame->subframes[0].samples;
1162     right = frame->subframes[1].samples;
1163
1164     if (s->channels != 2) {
1165         frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
1166         return;
1167     }
1168
1169     if (s->options.ch_mode < 0) {
1170         int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2;
1171         frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param);
1172     } else
1173         frame->ch_mode = s->options.ch_mode;
1174
1175     /* perform decorrelation and adjust bits-per-sample */
1176     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1177         return;
1178     if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
1179         int32_t tmp;
1180         for (i = 0; i < n; i++) {
1181             tmp      = left[i];
1182             left[i]  = (tmp + right[i]) >> 1;
1183             right[i] =  tmp - right[i];
1184         }
1185         frame->subframes[1].obits++;
1186     } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
1187         for (i = 0; i < n; i++)
1188             right[i] = left[i] - right[i];
1189         frame->subframes[1].obits++;
1190     } else {
1191         for (i = 0; i < n; i++)
1192             left[i] -= right[i];
1193         frame->subframes[0].obits++;
1194     }
1195 }
1196
1197
1198 static void write_utf8(PutBitContext *pb, uint32_t val)
1199 {
1200     uint8_t tmp;
1201     PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
1202 }
1203
1204
1205 static void write_frame_header(FlacEncodeContext *s)
1206 {
1207     FlacFrame *frame;
1208     int crc;
1209
1210     frame = &s->frame;
1211
1212     put_bits(&s->pb, 16, 0xFFF8);
1213     put_bits(&s->pb, 4, frame->bs_code[0]);
1214     put_bits(&s->pb, 4, s->sr_code[0]);
1215
1216     if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1217         put_bits(&s->pb, 4, s->channels-1);
1218     else
1219         put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1);
1220
1221     put_bits(&s->pb, 3, s->bps_code);
1222     put_bits(&s->pb, 1, 0);
1223     write_utf8(&s->pb, s->frame_count);
1224
1225     if (frame->bs_code[0] == 6)
1226         put_bits(&s->pb, 8, frame->bs_code[1]);
1227     else if (frame->bs_code[0] == 7)
1228         put_bits(&s->pb, 16, frame->bs_code[1]);
1229
1230     if (s->sr_code[0] == 12)
1231         put_bits(&s->pb, 8, s->sr_code[1]);
1232     else if (s->sr_code[0] > 12)
1233         put_bits(&s->pb, 16, s->sr_code[1]);
1234
1235     flush_put_bits(&s->pb);
1236     crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
1237                  put_bits_count(&s->pb) >> 3);
1238     put_bits(&s->pb, 8, crc);
1239 }
1240
1241
1242 static void write_subframes(FlacEncodeContext *s)
1243 {
1244     int ch;
1245
1246     for (ch = 0; ch < s->channels; ch++) {
1247         FlacSubframe *sub = &s->frame.subframes[ch];
1248         int i, p, porder, psize;
1249         int32_t *part_end;
1250         int32_t *res       =  sub->residual;
1251         int32_t *frame_end = &sub->residual[s->frame.blocksize];
1252
1253         /* subframe header */
1254         put_bits(&s->pb, 1, 0);
1255         put_bits(&s->pb, 6, sub->type_code);
1256         put_bits(&s->pb, 1, !!sub->wasted);
1257         if (sub->wasted)
1258             put_bits(&s->pb, sub->wasted, 1);
1259
1260         /* subframe */
1261         if (sub->type == FLAC_SUBFRAME_CONSTANT) {
1262             put_sbits(&s->pb, sub->obits, res[0]);
1263         } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
1264             while (res < frame_end)
1265                 put_sbits(&s->pb, sub->obits, *res++);
1266         } else {
1267             /* warm-up samples */
1268             for (i = 0; i < sub->order; i++)
1269                 put_sbits(&s->pb, sub->obits, *res++);
1270
1271             /* LPC coefficients */
1272             if (sub->type == FLAC_SUBFRAME_LPC) {
1273                 int cbits = s->options.lpc_coeff_precision;
1274                 put_bits( &s->pb, 4, cbits-1);
1275                 put_sbits(&s->pb, 5, sub->shift);
1276                 for (i = 0; i < sub->order; i++)
1277                     put_sbits(&s->pb, cbits, sub->coefs[i]);
1278             }
1279
1280             /* rice-encoded block */
1281             put_bits(&s->pb, 2, sub->rc.coding_mode - 4);
1282
1283             /* partition order */
1284             porder  = sub->rc.porder;
1285             psize   = s->frame.blocksize >> porder;
1286             put_bits(&s->pb, 4, porder);
1287
1288             /* residual */
1289             part_end  = &sub->residual[psize];
1290             for (p = 0; p < 1 << porder; p++) {
1291                 int k = sub->rc.params[p];
1292                 put_bits(&s->pb, sub->rc.coding_mode, k);
1293                 while (res < part_end)
1294                     set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
1295                 part_end = FFMIN(frame_end, part_end + psize);
1296             }
1297         }
1298     }
1299 }
1300
1301
1302 static void write_frame_footer(FlacEncodeContext *s)
1303 {
1304     int crc;
1305     flush_put_bits(&s->pb);
1306     crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
1307                             put_bits_count(&s->pb)>>3));
1308     put_bits(&s->pb, 16, crc);
1309     flush_put_bits(&s->pb);
1310 }
1311
1312
1313 static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
1314 {
1315     init_put_bits(&s->pb, avpkt->data, avpkt->size);
1316     write_frame_header(s);
1317     write_subframes(s);
1318     write_frame_footer(s);
1319     return put_bits_count(&s->pb) >> 3;
1320 }
1321
1322
1323 static int update_md5_sum(FlacEncodeContext *s, const void *samples)
1324 {
1325     const uint8_t *buf;
1326     int buf_size = s->frame.blocksize * s->channels *
1327                    ((s->avctx->bits_per_raw_sample + 7) / 8);
1328
1329     if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
1330         av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size);
1331         if (!s->md5_buffer)
1332             return AVERROR(ENOMEM);
1333     }
1334
1335     if (s->avctx->bits_per_raw_sample <= 16) {
1336         buf = (const uint8_t *)samples;
1337 #if HAVE_BIGENDIAN
1338         s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer,
1339                             (const uint16_t *) samples, buf_size / 2);
1340         buf = s->md5_buffer;
1341 #endif
1342     } else {
1343         int i;
1344         const int32_t *samples0 = samples;
1345         uint8_t *tmp            = s->md5_buffer;
1346
1347         for (i = 0; i < s->frame.blocksize * s->channels; i++) {
1348             int32_t v = samples0[i] >> 8;
1349             AV_WL24(tmp + 3*i, v);
1350         }
1351         buf = s->md5_buffer;
1352     }
1353     av_md5_update(s->md5ctx, buf, buf_size);
1354
1355     return 0;
1356 }
1357
1358
1359 static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
1360                              const AVFrame *frame, int *got_packet_ptr)
1361 {
1362     FlacEncodeContext *s;
1363     int frame_bytes, out_bytes, ret;
1364
1365     s = avctx->priv_data;
1366
1367     /* when the last block is reached, update the header in extradata */
1368     if (!frame) {
1369         s->max_framesize = s->max_encoded_framesize;
1370         av_md5_final(s->md5ctx, s->md5sum);
1371         write_streaminfo(s, avctx->extradata);
1372
1373 #if FF_API_SIDEDATA_ONLY_PKT
1374 FF_DISABLE_DEPRECATION_WARNINGS
1375         if (avctx->side_data_only_packets && !s->flushed) {
1376 FF_ENABLE_DEPRECATION_WARNINGS
1377 #else
1378         if (!s->flushed) {
1379 #endif
1380             uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
1381                                                          avctx->extradata_size);
1382             if (!side_data)
1383                 return AVERROR(ENOMEM);
1384             memcpy(side_data, avctx->extradata, avctx->extradata_size);
1385
1386             avpkt->pts = s->next_pts;
1387
1388             *got_packet_ptr = 1;
1389             s->flushed = 1;
1390         }
1391
1392         return 0;
1393     }
1394
1395     /* change max_framesize for small final frame */
1396     if (frame->nb_samples < s->frame.blocksize) {
1397         s->max_framesize = ff_flac_get_max_frame_size(frame->nb_samples,
1398                                                       s->channels,
1399                                                       avctx->bits_per_raw_sample);
1400     }
1401
1402     init_frame(s, frame->nb_samples);
1403
1404     copy_samples(s, frame->data[0]);
1405
1406     channel_decorrelation(s);
1407
1408     remove_wasted_bits(s);
1409
1410     frame_bytes = encode_frame(s);
1411
1412     /* Fall back on verbatim mode if the compressed frame is larger than it
1413        would be if encoded uncompressed. */
1414     if (frame_bytes < 0 || frame_bytes > s->max_framesize) {
1415         s->frame.verbatim_only = 1;
1416         frame_bytes = encode_frame(s);
1417         if (frame_bytes < 0) {
1418             av_log(avctx, AV_LOG_ERROR, "Bad frame count\n");
1419             return frame_bytes;
1420         }
1421     }
1422
1423     if ((ret = ff_alloc_packet2(avctx, avpkt, frame_bytes, 0)) < 0)
1424         return ret;
1425
1426     out_bytes = write_frame(s, avpkt);
1427
1428     s->frame_count++;
1429     s->sample_count += frame->nb_samples;
1430     if ((ret = update_md5_sum(s, frame->data[0])) < 0) {
1431         av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n");
1432         return ret;
1433     }
1434     if (out_bytes > s->max_encoded_framesize)
1435         s->max_encoded_framesize = out_bytes;
1436     if (out_bytes < s->min_framesize)
1437         s->min_framesize = out_bytes;
1438
1439     avpkt->pts      = frame->pts;
1440     avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
1441     avpkt->size     = out_bytes;
1442
1443     s->next_pts = avpkt->pts + avpkt->duration;
1444
1445     *got_packet_ptr = 1;
1446     return 0;
1447 }
1448
1449
1450 static av_cold int flac_encode_close(AVCodecContext *avctx)
1451 {
1452     if (avctx->priv_data) {
1453         FlacEncodeContext *s = avctx->priv_data;
1454         av_freep(&s->md5ctx);
1455         av_freep(&s->md5_buffer);
1456         ff_lpc_end(&s->lpc_ctx);
1457     }
1458     av_freep(&avctx->extradata);
1459     avctx->extradata_size = 0;
1460     return 0;
1461 }
1462
1463 #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1464 static const AVOption options[] = {
1465 { "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
1466 { "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" },
1467 { "none",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE },     INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1468 { "fixed",    NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED },    INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1469 { "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1470 { "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1471 { "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes),  AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS },
1472 { "min_partition_order",  NULL, offsetof(FlacEncodeContext, options.min_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
1473 { "max_partition_order",  NULL, offsetof(FlacEncodeContext, options.max_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
1474 { "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" },
1475 { "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST },    INT_MIN, INT_MAX, FLAGS, "predm" },
1476 { "2level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1477 { "4level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1478 { "8level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1479 { "search",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" },
1480 { "log",        NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG },    INT_MIN, INT_MAX, FLAGS, "predm" },
1481 { "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" },
1482 { "auto",       NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1                      }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1483 { "indep",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1484 { "left_side",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE   }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1485 { "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE  }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1486 { "mid_side",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE    }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1487 { "exact_rice_parameters", "Calculate rice parameters exactly", offsetof(FlacEncodeContext, options.exact_rice_parameters), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1488 { "multi_dim_quant",       "Multi-dimensional quantization",    offsetof(FlacEncodeContext, options.multi_dim_quant),       AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1489 { "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1490 { "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1491
1492 { NULL },
1493 };
1494
1495 static const AVClass flac_encoder_class = {
1496     .class_name = "FLAC encoder",
1497     .item_name  = av_default_item_name,
1498     .option     = options,
1499     .version    = LIBAVUTIL_VERSION_INT,
1500 };
1501
1502 AVCodec ff_flac_encoder = {
1503     .name           = "flac",
1504     .long_name      = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
1505     .type           = AVMEDIA_TYPE_AUDIO,
1506     .id             = AV_CODEC_ID_FLAC,
1507     .priv_data_size = sizeof(FlacEncodeContext),
1508     .init           = flac_encode_init,
1509     .encode2        = flac_encode_frame,
1510     .close          = flac_encode_close,
1511     .capabilities   = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_LOSSLESS,
1512     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
1513                                                      AV_SAMPLE_FMT_S32,
1514                                                      AV_SAMPLE_FMT_NONE },
1515     .priv_class     = &flac_encoder_class,
1516 };