OSDN Git Service

80da50562d3232c638ada50fdd158a4b86ee9416
[android-x86/external-llvm.git] / lib / CodeGen / GlobalISel / IRTranslator.cpp
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the IRTranslator class.
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
22 #include "llvm/CodeGen/LowLevelType.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackProtector.h"
31 #include "llvm/CodeGen/TargetFrameLowering.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GetElementPtrTypeIterator.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/LowLevelTypeImpl.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <string>
71 #include <utility>
72 #include <vector>
73
74 #define DEBUG_TYPE "irtranslator"
75
76 using namespace llvm;
77
78 char IRTranslator::ID = 0;
79
80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
81                 false, false)
82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
84                 false, false)
85
86 static void reportTranslationError(MachineFunction &MF,
87                                    const TargetPassConfig &TPC,
88                                    OptimizationRemarkEmitter &ORE,
89                                    OptimizationRemarkMissed &R) {
90   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
91
92   // Print the function name explicitly if we don't have a debug location (which
93   // makes the diagnostic less useful) or if we're going to emit a raw error.
94   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
95     R << (" (in function: " + MF.getName() + ")").str();
96
97   if (TPC.isGlobalISelAbortEnabled())
98     report_fatal_error(R.getMsg());
99   else
100     ORE.emit(R);
101 }
102
103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
104   initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
105 }
106
107 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
108   AU.addRequired<StackProtector>();
109   AU.addRequired<TargetPassConfig>();
110   getSelectionDAGFallbackAnalysisUsage(AU);
111   MachineFunctionPass::getAnalysisUsage(AU);
112 }
113
114 static void computeValueLLTs(const DataLayout &DL, Type &Ty,
115                              SmallVectorImpl<LLT> &ValueTys,
116                              SmallVectorImpl<uint64_t> *Offsets = nullptr,
117                              uint64_t StartingOffset = 0) {
118   // Given a struct type, recursively traverse the elements.
119   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
120     const StructLayout *SL = DL.getStructLayout(STy);
121     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
122       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
123                        StartingOffset + SL->getElementOffset(I));
124     return;
125   }
126   // Given an array type, recursively traverse the elements.
127   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
128     Type *EltTy = ATy->getElementType();
129     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
130     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
131       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
132                        StartingOffset + i * EltSize);
133     return;
134   }
135   // Interpret void as zero return values.
136   if (Ty.isVoidTy())
137     return;
138   // Base case: we can get an LLT for this LLVM IR type.
139   ValueTys.push_back(getLLTForType(Ty, DL));
140   if (Offsets != nullptr)
141     Offsets->push_back(StartingOffset * 8);
142 }
143
144 IRTranslator::ValueToVRegInfo::VRegListT &
145 IRTranslator::allocateVRegs(const Value &Val) {
146   assert(!VMap.contains(Val) && "Value already allocated in VMap");
147   auto *Regs = VMap.getVRegs(Val);
148   auto *Offsets = VMap.getOffsets(Val);
149   SmallVector<LLT, 4> SplitTys;
150   computeValueLLTs(*DL, *Val.getType(), SplitTys,
151                    Offsets->empty() ? Offsets : nullptr);
152   for (unsigned i = 0; i < SplitTys.size(); ++i)
153     Regs->push_back(0);
154   return *Regs;
155 }
156
157 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) {
158   auto VRegsIt = VMap.findVRegs(Val);
159   if (VRegsIt != VMap.vregs_end())
160     return *VRegsIt->second;
161
162   if (Val.getType()->isVoidTy())
163     return *VMap.getVRegs(Val);
164
165   // Create entry for this type.
166   auto *VRegs = VMap.getVRegs(Val);
167   auto *Offsets = VMap.getOffsets(Val);
168
169   assert(Val.getType()->isSized() &&
170          "Don't know how to create an empty vreg");
171
172   SmallVector<LLT, 4> SplitTys;
173   computeValueLLTs(*DL, *Val.getType(), SplitTys,
174                    Offsets->empty() ? Offsets : nullptr);
175
176   if (!isa<Constant>(Val)) {
177     for (auto Ty : SplitTys)
178       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
179     return *VRegs;
180   }
181
182   if (Val.getType()->isAggregateType()) {
183     // UndefValue, ConstantAggregateZero
184     auto &C = cast<Constant>(Val);
185     unsigned Idx = 0;
186     while (auto Elt = C.getAggregateElement(Idx++)) {
187       auto EltRegs = getOrCreateVRegs(*Elt);
188       std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs));
189     }
190   } else {
191     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
192     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
193     bool Success = translate(cast<Constant>(Val), VRegs->front());
194     if (!Success) {
195       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
196                                  MF->getFunction().getSubprogram(),
197                                  &MF->getFunction().getEntryBlock());
198       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
199       reportTranslationError(*MF, *TPC, *ORE, R);
200       return *VRegs;
201     }
202   }
203
204   return *VRegs;
205 }
206
207 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
208   if (FrameIndices.find(&AI) != FrameIndices.end())
209     return FrameIndices[&AI];
210
211   unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
212   unsigned Size =
213       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
214
215   // Always allocate at least one byte.
216   Size = std::max(Size, 1u);
217
218   unsigned Alignment = AI.getAlignment();
219   if (!Alignment)
220     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
221
222   int &FI = FrameIndices[&AI];
223   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
224   return FI;
225 }
226
227 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
228   unsigned Alignment = 0;
229   Type *ValTy = nullptr;
230   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
231     Alignment = SI->getAlignment();
232     ValTy = SI->getValueOperand()->getType();
233   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
234     Alignment = LI->getAlignment();
235     ValTy = LI->getType();
236   } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
237     // TODO(PR27168): This instruction has no alignment attribute, but unlike
238     // the default alignment for load/store, the default here is to assume
239     // it has NATURAL alignment, not DataLayout-specified alignment.
240     const DataLayout &DL = AI->getModule()->getDataLayout();
241     Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
242     ValTy = AI->getCompareOperand()->getType();
243   } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
244     // TODO(PR27168): This instruction has no alignment attribute, but unlike
245     // the default alignment for load/store, the default here is to assume
246     // it has NATURAL alignment, not DataLayout-specified alignment.
247     const DataLayout &DL = AI->getModule()->getDataLayout();
248     Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
249     ValTy = AI->getType();
250   } else {
251     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
252     R << "unable to translate memop: " << ore::NV("Opcode", &I);
253     reportTranslationError(*MF, *TPC, *ORE, R);
254     return 1;
255   }
256
257   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
258 }
259
260 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
261   MachineBasicBlock *&MBB = BBToMBB[&BB];
262   assert(MBB && "BasicBlock was not encountered before");
263   return *MBB;
264 }
265
266 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
267   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
268   MachinePreds[Edge].push_back(NewPred);
269 }
270
271 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
272                                      MachineIRBuilder &MIRBuilder) {
273   // FIXME: handle signed/unsigned wrapping flags.
274
275   // Get or create a virtual register for each value.
276   // Unless the value is a Constant => loadimm cst?
277   // or inline constant each time?
278   // Creation of a virtual register needs to have a size.
279   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
280   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
281   unsigned Res = getOrCreateVReg(U);
282   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
283   return true;
284 }
285
286 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
287   // -0.0 - X --> G_FNEG
288   if (isa<Constant>(U.getOperand(0)) &&
289       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
290     MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
291         .addDef(getOrCreateVReg(U))
292         .addUse(getOrCreateVReg(*U.getOperand(1)));
293     return true;
294   }
295   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
296 }
297
298 bool IRTranslator::translateCompare(const User &U,
299                                     MachineIRBuilder &MIRBuilder) {
300   const CmpInst *CI = dyn_cast<CmpInst>(&U);
301   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
302   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
303   unsigned Res = getOrCreateVReg(U);
304   CmpInst::Predicate Pred =
305       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
306                                     cast<ConstantExpr>(U).getPredicate());
307   if (CmpInst::isIntPredicate(Pred))
308     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
309   else if (Pred == CmpInst::FCMP_FALSE)
310     MIRBuilder.buildCopy(
311         Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
312   else if (Pred == CmpInst::FCMP_TRUE)
313     MIRBuilder.buildCopy(
314         Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
315   else
316     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
317
318   return true;
319 }
320
321 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
322   const ReturnInst &RI = cast<ReturnInst>(U);
323   const Value *Ret = RI.getReturnValue();
324   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
325     Ret = nullptr;
326   // The target may mess up with the insertion point, but
327   // this is not important as a return is the last instruction
328   // of the block anyway.
329
330   // FIXME: this interface should simplify when CallLowering gets adapted to
331   // multiple VRegs per Value.
332   unsigned VReg = Ret ? packRegs(*Ret, MIRBuilder) : 0;
333   return CLI->lowerReturn(MIRBuilder, Ret, VReg);
334 }
335
336 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
337   const BranchInst &BrInst = cast<BranchInst>(U);
338   unsigned Succ = 0;
339   if (!BrInst.isUnconditional()) {
340     // We want a G_BRCOND to the true BB followed by an unconditional branch.
341     unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
342     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
343     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
344     MIRBuilder.buildBrCond(Tst, TrueBB);
345   }
346
347   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
348   MachineBasicBlock &TgtBB = getMBB(BrTgt);
349   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
350
351   // If the unconditional target is the layout successor, fallthrough.
352   if (!CurBB.isLayoutSuccessor(&TgtBB))
353     MIRBuilder.buildBr(TgtBB);
354
355   // Link successors.
356   for (const BasicBlock *Succ : BrInst.successors())
357     CurBB.addSuccessor(&getMBB(*Succ));
358   return true;
359 }
360
361 bool IRTranslator::translateSwitch(const User &U,
362                                    MachineIRBuilder &MIRBuilder) {
363   // For now, just translate as a chain of conditional branches.
364   // FIXME: could we share most of the logic/code in
365   // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
366   // At first sight, it seems most of the logic in there is independent of
367   // SelectionDAG-specifics and a lot of work went in to optimize switch
368   // lowering in there.
369
370   const SwitchInst &SwInst = cast<SwitchInst>(U);
371   const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
372   const BasicBlock *OrigBB = SwInst.getParent();
373
374   LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
375   for (auto &CaseIt : SwInst.cases()) {
376     const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
377     const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
378     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
379     MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
380     const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
381     MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
382
383     MIRBuilder.buildBrCond(Tst, TrueMBB);
384     CurMBB.addSuccessor(&TrueMBB);
385     addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
386
387     MachineBasicBlock *FalseMBB =
388         MF->CreateMachineBasicBlock(SwInst.getParent());
389     // Insert the comparison blocks one after the other.
390     MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
391     MIRBuilder.buildBr(*FalseMBB);
392     CurMBB.addSuccessor(FalseMBB);
393
394     MIRBuilder.setMBB(*FalseMBB);
395   }
396   // handle default case
397   const BasicBlock *DefaultBB = SwInst.getDefaultDest();
398   MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
399   MIRBuilder.buildBr(DefaultMBB);
400   MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
401   CurMBB.addSuccessor(&DefaultMBB);
402   addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
403
404   return true;
405 }
406
407 bool IRTranslator::translateIndirectBr(const User &U,
408                                        MachineIRBuilder &MIRBuilder) {
409   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
410
411   const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
412   MIRBuilder.buildBrIndirect(Tgt);
413
414   // Link successors.
415   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
416   for (const BasicBlock *Succ : BrInst.successors())
417     CurBB.addSuccessor(&getMBB(*Succ));
418
419   return true;
420 }
421
422 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
423   const LoadInst &LI = cast<LoadInst>(U);
424
425   auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
426                                : MachineMemOperand::MONone;
427   Flags |= MachineMemOperand::MOLoad;
428
429   if (DL->getTypeStoreSize(LI.getType()) == 0)
430     return true;
431
432   ArrayRef<unsigned> Regs = getOrCreateVRegs(LI);
433   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
434   unsigned Base = getOrCreateVReg(*LI.getPointerOperand());
435
436   for (unsigned i = 0; i < Regs.size(); ++i) {
437     unsigned Addr = 0;
438     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
439
440     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
441     unsigned BaseAlign = getMemOpAlignment(LI);
442     auto MMO = MF->getMachineMemOperand(
443         Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
444         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
445         LI.getSyncScopeID(), LI.getOrdering());
446     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
447   }
448
449   return true;
450 }
451
452 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
453   const StoreInst &SI = cast<StoreInst>(U);
454   auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
455                                : MachineMemOperand::MONone;
456   Flags |= MachineMemOperand::MOStore;
457
458   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
459     return true;
460
461   ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand());
462   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
463   unsigned Base = getOrCreateVReg(*SI.getPointerOperand());
464
465   for (unsigned i = 0; i < Vals.size(); ++i) {
466     unsigned Addr = 0;
467     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
468
469     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
470     unsigned BaseAlign = getMemOpAlignment(SI);
471     auto MMO = MF->getMachineMemOperand(
472         Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
473         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
474         SI.getSyncScopeID(), SI.getOrdering());
475     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
476   }
477   return true;
478 }
479
480 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
481   const Value *Src = U.getOperand(0);
482   Type *Int32Ty = Type::getInt32Ty(U.getContext());
483
484   // getIndexedOffsetInType is designed for GEPs, so the first index is the
485   // usual array element rather than looking into the actual aggregate.
486   SmallVector<Value *, 1> Indices;
487   Indices.push_back(ConstantInt::get(Int32Ty, 0));
488
489   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
490     for (auto Idx : EVI->indices())
491       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
492   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
493     for (auto Idx : IVI->indices())
494       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
495   } else {
496     for (unsigned i = 1; i < U.getNumOperands(); ++i)
497       Indices.push_back(U.getOperand(i));
498   }
499
500   return 8 * static_cast<uint64_t>(
501                  DL.getIndexedOffsetInType(Src->getType(), Indices));
502 }
503
504 bool IRTranslator::translateExtractValue(const User &U,
505                                          MachineIRBuilder &MIRBuilder) {
506   const Value *Src = U.getOperand(0);
507   uint64_t Offset = getOffsetFromIndices(U, *DL);
508   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
509   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
510   unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) -
511                  Offsets.begin();
512   auto &DstRegs = allocateVRegs(U);
513
514   for (unsigned i = 0; i < DstRegs.size(); ++i)
515     DstRegs[i] = SrcRegs[Idx++];
516
517   return true;
518 }
519
520 bool IRTranslator::translateInsertValue(const User &U,
521                                         MachineIRBuilder &MIRBuilder) {
522   const Value *Src = U.getOperand(0);
523   uint64_t Offset = getOffsetFromIndices(U, *DL);
524   auto &DstRegs = allocateVRegs(U);
525   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
526   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
527   ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
528   auto InsertedIt = InsertedRegs.begin();
529
530   for (unsigned i = 0; i < DstRegs.size(); ++i) {
531     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
532       DstRegs[i] = *InsertedIt++;
533     else
534       DstRegs[i] = SrcRegs[i];
535   }
536
537   return true;
538 }
539
540 bool IRTranslator::translateSelect(const User &U,
541                                    MachineIRBuilder &MIRBuilder) {
542   unsigned Tst = getOrCreateVReg(*U.getOperand(0));
543   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U);
544   ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
545   ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
546
547   for (unsigned i = 0; i < ResRegs.size(); ++i)
548     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]);
549
550   return true;
551 }
552
553 bool IRTranslator::translateBitCast(const User &U,
554                                     MachineIRBuilder &MIRBuilder) {
555   // If we're bitcasting to the source type, we can reuse the source vreg.
556   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
557       getLLTForType(*U.getType(), *DL)) {
558     unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
559     auto &Regs = *VMap.getVRegs(U);
560     // If we already assigned a vreg for this bitcast, we can't change that.
561     // Emit a copy to satisfy the users we already emitted.
562     if (!Regs.empty())
563       MIRBuilder.buildCopy(Regs[0], SrcReg);
564     else {
565       Regs.push_back(SrcReg);
566       VMap.getOffsets(U)->push_back(0);
567     }
568     return true;
569   }
570   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
571 }
572
573 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
574                                  MachineIRBuilder &MIRBuilder) {
575   unsigned Op = getOrCreateVReg(*U.getOperand(0));
576   unsigned Res = getOrCreateVReg(U);
577   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
578   return true;
579 }
580
581 bool IRTranslator::translateGetElementPtr(const User &U,
582                                           MachineIRBuilder &MIRBuilder) {
583   // FIXME: support vector GEPs.
584   if (U.getType()->isVectorTy())
585     return false;
586
587   Value &Op0 = *U.getOperand(0);
588   unsigned BaseReg = getOrCreateVReg(Op0);
589   Type *PtrIRTy = Op0.getType();
590   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
591   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
592   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
593
594   int64_t Offset = 0;
595   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
596        GTI != E; ++GTI) {
597     const Value *Idx = GTI.getOperand();
598     if (StructType *StTy = GTI.getStructTypeOrNull()) {
599       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
600       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
601       continue;
602     } else {
603       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
604
605       // If this is a scalar constant or a splat vector of constants,
606       // handle it quickly.
607       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
608         Offset += ElementSize * CI->getSExtValue();
609         continue;
610       }
611
612       if (Offset != 0) {
613         unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
614         unsigned OffsetReg =
615             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
616         MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
617
618         BaseReg = NewBaseReg;
619         Offset = 0;
620       }
621
622       unsigned IdxReg = getOrCreateVReg(*Idx);
623       if (MRI->getType(IdxReg) != OffsetTy) {
624         unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
625         MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
626         IdxReg = NewIdxReg;
627       }
628
629       // N = N + Idx * ElementSize;
630       // Avoid doing it for ElementSize of 1.
631       unsigned GepOffsetReg;
632       if (ElementSize != 1) {
633         unsigned ElementSizeReg =
634             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
635
636         GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
637         MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg);
638       } else
639         GepOffsetReg = IdxReg;
640
641       unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
642       MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
643       BaseReg = NewBaseReg;
644     }
645   }
646
647   if (Offset != 0) {
648     unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
649     MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
650     return true;
651   }
652
653   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
654   return true;
655 }
656
657 bool IRTranslator::translateMemfunc(const CallInst &CI,
658                                     MachineIRBuilder &MIRBuilder,
659                                     unsigned ID) {
660   LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
661   Type *DstTy = CI.getArgOperand(0)->getType();
662   if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
663       SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
664     return false;
665
666   SmallVector<CallLowering::ArgInfo, 8> Args;
667   for (int i = 0; i < 3; ++i) {
668     const auto &Arg = CI.getArgOperand(i);
669     Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
670   }
671
672   const char *Callee;
673   switch (ID) {
674   case Intrinsic::memmove:
675   case Intrinsic::memcpy: {
676     Type *SrcTy = CI.getArgOperand(1)->getType();
677     if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
678       return false;
679     Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
680     break;
681   }
682   case Intrinsic::memset:
683     Callee = "memset";
684     break;
685   default:
686     return false;
687   }
688
689   return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
690                         MachineOperand::CreateES(Callee),
691                         CallLowering::ArgInfo(0, CI.getType()), Args);
692 }
693
694 void IRTranslator::getStackGuard(unsigned DstReg,
695                                  MachineIRBuilder &MIRBuilder) {
696   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
697   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
698   auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
699   MIB.addDef(DstReg);
700
701   auto &TLI = *MF->getSubtarget().getTargetLowering();
702   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
703   if (!Global)
704     return;
705
706   MachinePointerInfo MPInfo(Global);
707   MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1);
708   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
709                MachineMemOperand::MODereferenceable;
710   *MemRefs =
711       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
712                                DL->getPointerABIAlignment(0));
713   MIB.setMemRefs(MemRefs, MemRefs + 1);
714 }
715
716 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
717                                               MachineIRBuilder &MIRBuilder) {
718   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI);
719   auto MIB = MIRBuilder.buildInstr(Op)
720                  .addDef(ResRegs[0])
721                  .addDef(ResRegs[1])
722                  .addUse(getOrCreateVReg(*CI.getOperand(0)))
723                  .addUse(getOrCreateVReg(*CI.getOperand(1)));
724
725   if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
726     unsigned Zero = getOrCreateVReg(
727         *Constant::getNullValue(Type::getInt1Ty(CI.getContext())));
728     MIB.addUse(Zero);
729   }
730
731   return true;
732 }
733
734 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
735                                            MachineIRBuilder &MIRBuilder) {
736   switch (ID) {
737   default:
738     break;
739   case Intrinsic::lifetime_start:
740   case Intrinsic::lifetime_end:
741     // Stack coloring is not enabled in O0 (which we care about now) so we can
742     // drop these. Make sure someone notices when we start compiling at higher
743     // opts though.
744     if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
745       return false;
746     return true;
747   case Intrinsic::dbg_declare: {
748     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
749     assert(DI.getVariable() && "Missing variable");
750
751     const Value *Address = DI.getAddress();
752     if (!Address || isa<UndefValue>(Address)) {
753       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
754       return true;
755     }
756
757     assert(DI.getVariable()->isValidLocationForIntrinsic(
758                MIRBuilder.getDebugLoc()) &&
759            "Expected inlined-at fields to agree");
760     auto AI = dyn_cast<AllocaInst>(Address);
761     if (AI && AI->isStaticAlloca()) {
762       // Static allocas are tracked at the MF level, no need for DBG_VALUE
763       // instructions (in fact, they get ignored if they *do* exist).
764       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
765                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
766     } else
767       MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address),
768                                      DI.getVariable(), DI.getExpression());
769     return true;
770   }
771   case Intrinsic::vaend:
772     // No target I know of cares about va_end. Certainly no in-tree target
773     // does. Simplest intrinsic ever!
774     return true;
775   case Intrinsic::vastart: {
776     auto &TLI = *MF->getSubtarget().getTargetLowering();
777     Value *Ptr = CI.getArgOperand(0);
778     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
779
780     MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
781         .addUse(getOrCreateVReg(*Ptr))
782         .addMemOperand(MF->getMachineMemOperand(
783             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
784     return true;
785   }
786   case Intrinsic::dbg_value: {
787     // This form of DBG_VALUE is target-independent.
788     const DbgValueInst &DI = cast<DbgValueInst>(CI);
789     const Value *V = DI.getValue();
790     assert(DI.getVariable()->isValidLocationForIntrinsic(
791                MIRBuilder.getDebugLoc()) &&
792            "Expected inlined-at fields to agree");
793     if (!V) {
794       // Currently the optimizer can produce this; insert an undef to
795       // help debugging.  Probably the optimizer should not do this.
796       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
797     } else if (const auto *CI = dyn_cast<Constant>(V)) {
798       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
799     } else {
800       unsigned Reg = getOrCreateVReg(*V);
801       // FIXME: This does not handle register-indirect values at offset 0. The
802       // direct/indirect thing shouldn't really be handled by something as
803       // implicit as reg+noreg vs reg+imm in the first palce, but it seems
804       // pretty baked in right now.
805       MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
806     }
807     return true;
808   }
809   case Intrinsic::uadd_with_overflow:
810     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder);
811   case Intrinsic::sadd_with_overflow:
812     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
813   case Intrinsic::usub_with_overflow:
814     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder);
815   case Intrinsic::ssub_with_overflow:
816     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
817   case Intrinsic::umul_with_overflow:
818     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
819   case Intrinsic::smul_with_overflow:
820     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
821   case Intrinsic::pow:
822     MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
823         .addDef(getOrCreateVReg(CI))
824         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
825         .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
826     return true;
827   case Intrinsic::exp:
828     MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
829         .addDef(getOrCreateVReg(CI))
830         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
831     return true;
832   case Intrinsic::exp2:
833     MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
834         .addDef(getOrCreateVReg(CI))
835         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
836     return true;
837   case Intrinsic::log:
838     MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
839         .addDef(getOrCreateVReg(CI))
840         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
841     return true;
842   case Intrinsic::log2:
843     MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
844         .addDef(getOrCreateVReg(CI))
845         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
846     return true;
847   case Intrinsic::fabs:
848     MIRBuilder.buildInstr(TargetOpcode::G_FABS)
849         .addDef(getOrCreateVReg(CI))
850         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
851     return true;
852   case Intrinsic::fma:
853     MIRBuilder.buildInstr(TargetOpcode::G_FMA)
854         .addDef(getOrCreateVReg(CI))
855         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
856         .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
857         .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
858     return true;
859   case Intrinsic::fmuladd: {
860     const TargetMachine &TM = MF->getTarget();
861     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
862     unsigned Dst = getOrCreateVReg(CI);
863     unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0));
864     unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1));
865     unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2));
866     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
867         TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
868       // TODO: Revisit this to see if we should move this part of the
869       // lowering to the combiner.
870       MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2);
871     } else {
872       LLT Ty = getLLTForType(*CI.getType(), *DL);
873       auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1);
874       MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2);
875     }
876     return true;
877   }
878   case Intrinsic::memcpy:
879   case Intrinsic::memmove:
880   case Intrinsic::memset:
881     return translateMemfunc(CI, MIRBuilder, ID);
882   case Intrinsic::eh_typeid_for: {
883     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
884     unsigned Reg = getOrCreateVReg(CI);
885     unsigned TypeID = MF->getTypeIDFor(GV);
886     MIRBuilder.buildConstant(Reg, TypeID);
887     return true;
888   }
889   case Intrinsic::objectsize: {
890     // If we don't know by now, we're never going to know.
891     const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
892
893     MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
894     return true;
895   }
896   case Intrinsic::stackguard:
897     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
898     return true;
899   case Intrinsic::stackprotector: {
900     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
901     unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
902     getStackGuard(GuardVal, MIRBuilder);
903
904     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
905     MIRBuilder.buildStore(
906         GuardVal, getOrCreateVReg(*Slot),
907         *MF->getMachineMemOperand(
908             MachinePointerInfo::getFixedStack(*MF,
909                                               getOrCreateFrameIndex(*Slot)),
910             MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
911             PtrTy.getSizeInBits() / 8, 8));
912     return true;
913   }
914   }
915   return false;
916 }
917
918 bool IRTranslator::translateInlineAsm(const CallInst &CI,
919                                       MachineIRBuilder &MIRBuilder) {
920   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
921   if (!IA.getConstraintString().empty())
922     return false;
923
924   unsigned ExtraInfo = 0;
925   if (IA.hasSideEffects())
926     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
927   if (IA.getDialect() == InlineAsm::AD_Intel)
928     ExtraInfo |= InlineAsm::Extra_AsmDialect;
929
930   MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
931     .addExternalSymbol(IA.getAsmString().c_str())
932     .addImm(ExtraInfo);
933
934   return true;
935 }
936
937 unsigned IRTranslator::packRegs(const Value &V,
938                                   MachineIRBuilder &MIRBuilder) {
939   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
940   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
941   LLT BigTy = getLLTForType(*V.getType(), *DL);
942
943   if (Regs.size() == 1)
944     return Regs[0];
945
946   unsigned Dst = MRI->createGenericVirtualRegister(BigTy);
947   MIRBuilder.buildUndef(Dst);
948   for (unsigned i = 0; i < Regs.size(); ++i) {
949     unsigned NewDst = MRI->createGenericVirtualRegister(BigTy);
950     MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]);
951     Dst = NewDst;
952   }
953   return Dst;
954 }
955
956 void IRTranslator::unpackRegs(const Value &V, unsigned Src,
957                                 MachineIRBuilder &MIRBuilder) {
958   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
959   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
960
961   for (unsigned i = 0; i < Regs.size(); ++i)
962     MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]);
963 }
964
965 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
966   const CallInst &CI = cast<CallInst>(U);
967   auto TII = MF->getTarget().getIntrinsicInfo();
968   const Function *F = CI.getCalledFunction();
969
970   // FIXME: support Windows dllimport function calls.
971   if (F && F->hasDLLImportStorageClass())
972     return false;
973
974   if (CI.isInlineAsm())
975     return translateInlineAsm(CI, MIRBuilder);
976
977   Intrinsic::ID ID = Intrinsic::not_intrinsic;
978   if (F && F->isIntrinsic()) {
979     ID = F->getIntrinsicID();
980     if (TII && ID == Intrinsic::not_intrinsic)
981       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
982   }
983
984   bool IsSplitType = valueIsSplit(CI);
985   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
986     unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister(
987                                      getLLTForType(*CI.getType(), *DL))
988                                : getOrCreateVReg(CI);
989
990     SmallVector<unsigned, 8> Args;
991     for (auto &Arg: CI.arg_operands())
992       Args.push_back(packRegs(*Arg, MIRBuilder));
993
994     MF->getFrameInfo().setHasCalls(true);
995     bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
996       return getOrCreateVReg(*CI.getCalledValue());
997     });
998
999     if (IsSplitType)
1000       unpackRegs(CI, Res, MIRBuilder);
1001     return Success;
1002   }
1003
1004   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1005
1006   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1007     return true;
1008
1009   unsigned Res = 0;
1010   if (!CI.getType()->isVoidTy()) {
1011     if (IsSplitType)
1012       Res =
1013           MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL));
1014     else
1015       Res = getOrCreateVReg(CI);
1016   }
1017   MachineInstrBuilder MIB =
1018       MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
1019
1020   for (auto &Arg : CI.arg_operands()) {
1021     // Some intrinsics take metadata parameters. Reject them.
1022     if (isa<MetadataAsValue>(Arg))
1023       return false;
1024     MIB.addUse(packRegs(*Arg, MIRBuilder));
1025   }
1026
1027   if (IsSplitType)
1028     unpackRegs(CI, Res, MIRBuilder);
1029
1030   // Add a MachineMemOperand if it is a target mem intrinsic.
1031   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1032   TargetLowering::IntrinsicInfo Info;
1033   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1034   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1035     uint64_t Size = Info.memVT.getStoreSize();
1036     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1037                                                Info.flags, Size, Info.align));
1038   }
1039
1040   return true;
1041 }
1042
1043 bool IRTranslator::translateInvoke(const User &U,
1044                                    MachineIRBuilder &MIRBuilder) {
1045   const InvokeInst &I = cast<InvokeInst>(U);
1046   MCContext &Context = MF->getContext();
1047
1048   const BasicBlock *ReturnBB = I.getSuccessor(0);
1049   const BasicBlock *EHPadBB = I.getSuccessor(1);
1050
1051   const Value *Callee = I.getCalledValue();
1052   const Function *Fn = dyn_cast<Function>(Callee);
1053   if (isa<InlineAsm>(Callee))
1054     return false;
1055
1056   // FIXME: support invoking patchpoint and statepoint intrinsics.
1057   if (Fn && Fn->isIntrinsic())
1058     return false;
1059
1060   // FIXME: support whatever these are.
1061   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1062     return false;
1063
1064   // FIXME: support Windows exception handling.
1065   if (!isa<LandingPadInst>(EHPadBB->front()))
1066     return false;
1067
1068   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1069   // the region covered by the try.
1070   MCSymbol *BeginSymbol = Context.createTempSymbol();
1071   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1072
1073   unsigned Res =
1074         MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL));
1075   SmallVector<unsigned, 8> Args;
1076   for (auto &Arg: I.arg_operands())
1077     Args.push_back(packRegs(*Arg, MIRBuilder));
1078
1079   if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
1080                       [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
1081     return false;
1082
1083   unpackRegs(I, Res, MIRBuilder);
1084
1085   MCSymbol *EndSymbol = Context.createTempSymbol();
1086   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1087
1088   // FIXME: track probabilities.
1089   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1090                     &ReturnMBB = getMBB(*ReturnBB);
1091   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1092   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1093   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1094   MIRBuilder.buildBr(ReturnMBB);
1095
1096   return true;
1097 }
1098
1099 bool IRTranslator::translateLandingPad(const User &U,
1100                                        MachineIRBuilder &MIRBuilder) {
1101   const LandingPadInst &LP = cast<LandingPadInst>(U);
1102
1103   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1104   addLandingPadInfo(LP, MBB);
1105
1106   MBB.setIsEHPad();
1107
1108   // If there aren't registers to copy the values into (e.g., during SjLj
1109   // exceptions), then don't bother.
1110   auto &TLI = *MF->getSubtarget().getTargetLowering();
1111   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1112   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1113       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1114     return true;
1115
1116   // If landingpad's return type is token type, we don't create DAG nodes
1117   // for its exception pointer and selector value. The extraction of exception
1118   // pointer or selector value from token type landingpads is not currently
1119   // supported.
1120   if (LP.getType()->isTokenTy())
1121     return true;
1122
1123   // Add a label to mark the beginning of the landing pad.  Deletion of the
1124   // landing pad can thus be detected via the MachineModuleInfo.
1125   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1126     .addSym(MF->addLandingPad(&MBB));
1127
1128   LLT Ty = getLLTForType(*LP.getType(), *DL);
1129   unsigned Undef = MRI->createGenericVirtualRegister(Ty);
1130   MIRBuilder.buildUndef(Undef);
1131
1132   SmallVector<LLT, 2> Tys;
1133   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1134     Tys.push_back(getLLTForType(*Ty, *DL));
1135   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1136
1137   // Mark exception register as live in.
1138   unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1139   if (!ExceptionReg)
1140     return false;
1141
1142   MBB.addLiveIn(ExceptionReg);
1143   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP);
1144   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1145
1146   unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1147   if (!SelectorReg)
1148     return false;
1149
1150   MBB.addLiveIn(SelectorReg);
1151   unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1152   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1153   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1154
1155   return true;
1156 }
1157
1158 bool IRTranslator::translateAlloca(const User &U,
1159                                    MachineIRBuilder &MIRBuilder) {
1160   auto &AI = cast<AllocaInst>(U);
1161
1162   if (AI.isSwiftError())
1163     return false;
1164
1165   if (AI.isStaticAlloca()) {
1166     unsigned Res = getOrCreateVReg(AI);
1167     int FI = getOrCreateFrameIndex(AI);
1168     MIRBuilder.buildFrameIndex(Res, FI);
1169     return true;
1170   }
1171
1172   // FIXME: support stack probing for Windows.
1173   if (MF->getTarget().getTargetTriple().isOSWindows())
1174     return false;
1175
1176   // Now we're in the harder dynamic case.
1177   Type *Ty = AI.getAllocatedType();
1178   unsigned Align =
1179       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
1180
1181   unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
1182
1183   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1184   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1185   if (MRI->getType(NumElts) != IntPtrTy) {
1186     unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1187     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1188     NumElts = ExtElts;
1189   }
1190
1191   unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1192   unsigned TySize =
1193       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
1194   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1195
1196   LLT PtrTy = getLLTForType(*AI.getType(), *DL);
1197   auto &TLI = *MF->getSubtarget().getTargetLowering();
1198   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1199
1200   unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
1201   MIRBuilder.buildCopy(SPTmp, SPReg);
1202
1203   unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
1204   MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
1205
1206   // Handle alignment. We have to realign if the allocation granule was smaller
1207   // than stack alignment, or the specific alloca requires more than stack
1208   // alignment.
1209   unsigned StackAlign =
1210       MF->getSubtarget().getFrameLowering()->getStackAlignment();
1211   Align = std::max(Align, StackAlign);
1212   if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
1213     // Round the size of the allocation up to the stack alignment size
1214     // by add SA-1 to the size. This doesn't overflow because we're computing
1215     // an address inside an alloca.
1216     unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
1217     MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
1218     AllocTmp = AlignedAlloc;
1219   }
1220
1221   MIRBuilder.buildCopy(SPReg, AllocTmp);
1222   MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
1223
1224   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
1225   assert(MF->getFrameInfo().hasVarSizedObjects());
1226   return true;
1227 }
1228
1229 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1230   // FIXME: We may need more info about the type. Because of how LLT works,
1231   // we're completely discarding the i64/double distinction here (amongst
1232   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1233   // anyway but that's not guaranteed.
1234   MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
1235     .addDef(getOrCreateVReg(U))
1236     .addUse(getOrCreateVReg(*U.getOperand(0)))
1237     .addImm(DL->getABITypeAlignment(U.getType()));
1238   return true;
1239 }
1240
1241 bool IRTranslator::translateInsertElement(const User &U,
1242                                           MachineIRBuilder &MIRBuilder) {
1243   // If it is a <1 x Ty> vector, use the scalar as it is
1244   // not a legal vector type in LLT.
1245   if (U.getType()->getVectorNumElements() == 1) {
1246     unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1247     auto &Regs = *VMap.getVRegs(U);
1248     if (Regs.empty()) {
1249       Regs.push_back(Elt);
1250       VMap.getOffsets(U)->push_back(0);
1251     } else {
1252       MIRBuilder.buildCopy(Regs[0], Elt);
1253     }
1254     return true;
1255   }
1256
1257   unsigned Res = getOrCreateVReg(U);
1258   unsigned Val = getOrCreateVReg(*U.getOperand(0));
1259   unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1260   unsigned Idx = getOrCreateVReg(*U.getOperand(2));
1261   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1262   return true;
1263 }
1264
1265 bool IRTranslator::translateExtractElement(const User &U,
1266                                            MachineIRBuilder &MIRBuilder) {
1267   // If it is a <1 x Ty> vector, use the scalar as it is
1268   // not a legal vector type in LLT.
1269   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
1270     unsigned Elt = getOrCreateVReg(*U.getOperand(0));
1271     auto &Regs = *VMap.getVRegs(U);
1272     if (Regs.empty()) {
1273       Regs.push_back(Elt);
1274       VMap.getOffsets(U)->push_back(0);
1275     } else {
1276       MIRBuilder.buildCopy(Regs[0], Elt);
1277     }
1278     return true;
1279   }
1280   unsigned Res = getOrCreateVReg(U);
1281   unsigned Val = getOrCreateVReg(*U.getOperand(0));
1282   unsigned Idx = getOrCreateVReg(*U.getOperand(1));
1283   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1284   return true;
1285 }
1286
1287 bool IRTranslator::translateShuffleVector(const User &U,
1288                                           MachineIRBuilder &MIRBuilder) {
1289   MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
1290       .addDef(getOrCreateVReg(U))
1291       .addUse(getOrCreateVReg(*U.getOperand(0)))
1292       .addUse(getOrCreateVReg(*U.getOperand(1)))
1293       .addUse(getOrCreateVReg(*U.getOperand(2)));
1294   return true;
1295 }
1296
1297 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1298   const PHINode &PI = cast<PHINode>(U);
1299
1300   SmallVector<MachineInstr *, 4> Insts;
1301   for (auto Reg : getOrCreateVRegs(PI)) {
1302     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg);
1303     Insts.push_back(MIB.getInstr());
1304   }
1305
1306   PendingPHIs.emplace_back(&PI, std::move(Insts));
1307   return true;
1308 }
1309
1310 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1311                                           MachineIRBuilder &MIRBuilder) {
1312   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1313
1314   if (I.isWeak())
1315     return false;
1316
1317   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1318                               : MachineMemOperand::MONone;
1319   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1320
1321   Type *ResType = I.getType();
1322   Type *ValType = ResType->Type::getStructElementType(0);
1323
1324   auto Res = getOrCreateVRegs(I);
1325   unsigned OldValRes = Res[0];
1326   unsigned SuccessRes = Res[1];
1327   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1328   unsigned Cmp = getOrCreateVReg(*I.getCompareOperand());
1329   unsigned NewVal = getOrCreateVReg(*I.getNewValOperand());
1330
1331   MIRBuilder.buildAtomicCmpXchgWithSuccess(
1332       OldValRes, SuccessRes, Addr, Cmp, NewVal,
1333       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1334                                 Flags, DL->getTypeStoreSize(ValType),
1335                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
1336                                 I.getSyncScopeID(), I.getSuccessOrdering(),
1337                                 I.getFailureOrdering()));
1338   return true;
1339 }
1340
1341 bool IRTranslator::translateAtomicRMW(const User &U,
1342                                       MachineIRBuilder &MIRBuilder) {
1343   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
1344
1345   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1346                               : MachineMemOperand::MONone;
1347   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1348
1349   Type *ResType = I.getType();
1350
1351   unsigned Res = getOrCreateVReg(I);
1352   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1353   unsigned Val = getOrCreateVReg(*I.getValOperand());
1354
1355   unsigned Opcode = 0;
1356   switch (I.getOperation()) {
1357   default:
1358     llvm_unreachable("Unknown atomicrmw op");
1359     return false;
1360   case AtomicRMWInst::Xchg:
1361     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
1362     break;
1363   case AtomicRMWInst::Add:
1364     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
1365     break;
1366   case AtomicRMWInst::Sub:
1367     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
1368     break;
1369   case AtomicRMWInst::And:
1370     Opcode = TargetOpcode::G_ATOMICRMW_AND;
1371     break;
1372   case AtomicRMWInst::Nand:
1373     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
1374     break;
1375   case AtomicRMWInst::Or:
1376     Opcode = TargetOpcode::G_ATOMICRMW_OR;
1377     break;
1378   case AtomicRMWInst::Xor:
1379     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
1380     break;
1381   case AtomicRMWInst::Max:
1382     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
1383     break;
1384   case AtomicRMWInst::Min:
1385     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
1386     break;
1387   case AtomicRMWInst::UMax:
1388     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
1389     break;
1390   case AtomicRMWInst::UMin:
1391     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
1392     break;
1393   }
1394
1395   MIRBuilder.buildAtomicRMW(
1396       Opcode, Res, Addr, Val,
1397       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1398                                 Flags, DL->getTypeStoreSize(ResType),
1399                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
1400                                 I.getSyncScopeID(), I.getOrdering()));
1401   return true;
1402 }
1403
1404 void IRTranslator::finishPendingPhis() {
1405   for (auto &Phi : PendingPHIs) {
1406     const PHINode *PI = Phi.first;
1407     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
1408
1409     // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
1410     // won't create extra control flow here, otherwise we need to find the
1411     // dominating predecessor here (or perhaps force the weirder IRTranslators
1412     // to provide a simple boundary).
1413     SmallSet<const BasicBlock *, 4> HandledPreds;
1414
1415     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
1416       auto IRPred = PI->getIncomingBlock(i);
1417       if (HandledPreds.count(IRPred))
1418         continue;
1419
1420       HandledPreds.insert(IRPred);
1421       ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
1422       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
1423         assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) &&
1424                "incorrect CFG at MachineBasicBlock level");
1425         for (unsigned j = 0; j < ValRegs.size(); ++j) {
1426           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
1427           MIB.addUse(ValRegs[j]);
1428           MIB.addMBB(Pred);
1429         }
1430       }
1431     }
1432   }
1433 }
1434
1435 bool IRTranslator::valueIsSplit(const Value &V,
1436                                 SmallVectorImpl<uint64_t> *Offsets) {
1437   SmallVector<LLT, 4> SplitTys;
1438   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
1439   return SplitTys.size() > 1;
1440 }
1441
1442 bool IRTranslator::translate(const Instruction &Inst) {
1443   CurBuilder.setDebugLoc(Inst.getDebugLoc());
1444   switch(Inst.getOpcode()) {
1445 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1446     case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
1447 #include "llvm/IR/Instruction.def"
1448   default:
1449     return false;
1450   }
1451 }
1452
1453 bool IRTranslator::translate(const Constant &C, unsigned Reg) {
1454   if (auto CI = dyn_cast<ConstantInt>(&C))
1455     EntryBuilder.buildConstant(Reg, *CI);
1456   else if (auto CF = dyn_cast<ConstantFP>(&C))
1457     EntryBuilder.buildFConstant(Reg, *CF);
1458   else if (isa<UndefValue>(C))
1459     EntryBuilder.buildUndef(Reg);
1460   else if (isa<ConstantPointerNull>(C)) {
1461     // As we are trying to build a constant val of 0 into a pointer,
1462     // insert a cast to make them correct with respect to types.
1463     unsigned NullSize = DL->getTypeSizeInBits(C.getType());
1464     auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
1465     auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
1466     unsigned ZeroReg = getOrCreateVReg(*ZeroVal);
1467     EntryBuilder.buildCast(Reg, ZeroReg);
1468   } else if (auto GV = dyn_cast<GlobalValue>(&C))
1469     EntryBuilder.buildGlobalValue(Reg, GV);
1470   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
1471     if (!CAZ->getType()->isVectorTy())
1472       return false;
1473     // Return the scalar if it is a <1 x Ty> vector.
1474     if (CAZ->getNumElements() == 1)
1475       return translate(*CAZ->getElementValue(0u), Reg);
1476     std::vector<unsigned> Ops;
1477     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
1478       Constant &Elt = *CAZ->getElementValue(i);
1479       Ops.push_back(getOrCreateVReg(Elt));
1480     }
1481     EntryBuilder.buildMerge(Reg, Ops);
1482   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
1483     // Return the scalar if it is a <1 x Ty> vector.
1484     if (CV->getNumElements() == 1)
1485       return translate(*CV->getElementAsConstant(0), Reg);
1486     std::vector<unsigned> Ops;
1487     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
1488       Constant &Elt = *CV->getElementAsConstant(i);
1489       Ops.push_back(getOrCreateVReg(Elt));
1490     }
1491     EntryBuilder.buildMerge(Reg, Ops);
1492   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
1493     switch(CE->getOpcode()) {
1494 #define HANDLE_INST(NUM, OPCODE, CLASS)                         \
1495       case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
1496 #include "llvm/IR/Instruction.def"
1497     default:
1498       return false;
1499     }
1500   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
1501     if (CV->getNumOperands() == 1)
1502       return translate(*CV->getOperand(0), Reg);
1503     SmallVector<unsigned, 4> Ops;
1504     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
1505       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
1506     }
1507     EntryBuilder.buildMerge(Reg, Ops);
1508   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
1509     EntryBuilder.buildBlockAddress(Reg, BA);
1510   } else
1511     return false;
1512
1513   return true;
1514 }
1515
1516 void IRTranslator::finalizeFunction() {
1517   // Release the memory used by the different maps we
1518   // needed during the translation.
1519   PendingPHIs.clear();
1520   VMap.reset();
1521   FrameIndices.clear();
1522   MachinePreds.clear();
1523   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
1524   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
1525   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
1526   EntryBuilder = MachineIRBuilder();
1527   CurBuilder = MachineIRBuilder();
1528 }
1529
1530 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
1531   MF = &CurMF;
1532   const Function &F = MF->getFunction();
1533   if (F.empty())
1534     return false;
1535   CLI = MF->getSubtarget().getCallLowering();
1536   CurBuilder.setMF(*MF);
1537   EntryBuilder.setMF(*MF);
1538   MRI = &MF->getRegInfo();
1539   DL = &F.getParent()->getDataLayout();
1540   TPC = &getAnalysis<TargetPassConfig>();
1541   ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
1542
1543   assert(PendingPHIs.empty() && "stale PHIs");
1544
1545   if (!DL->isLittleEndian()) {
1546     // Currently we don't properly handle big endian code.
1547     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1548                                F.getSubprogram(), &F.getEntryBlock());
1549     R << "unable to translate in big endian mode";
1550     reportTranslationError(*MF, *TPC, *ORE, R);
1551   }
1552
1553   // Release the per-function state when we return, whether we succeeded or not.
1554   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
1555
1556   // Setup a separate basic-block for the arguments and constants
1557   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
1558   MF->push_back(EntryBB);
1559   EntryBuilder.setMBB(*EntryBB);
1560
1561   // Create all blocks, in IR order, to preserve the layout.
1562   for (const BasicBlock &BB: F) {
1563     auto *&MBB = BBToMBB[&BB];
1564
1565     MBB = MF->CreateMachineBasicBlock(&BB);
1566     MF->push_back(MBB);
1567
1568     if (BB.hasAddressTaken())
1569       MBB->setHasAddressTaken();
1570   }
1571
1572   // Make our arguments/constants entry block fallthrough to the IR entry block.
1573   EntryBB->addSuccessor(&getMBB(F.front()));
1574
1575   // Lower the actual args into this basic block.
1576   SmallVector<unsigned, 8> VRegArgs;
1577   for (const Argument &Arg: F.args()) {
1578     if (DL->getTypeStoreSize(Arg.getType()) == 0)
1579       continue; // Don't handle zero sized types.
1580     VRegArgs.push_back(
1581         MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL)));
1582   }
1583
1584   // We don't currently support translating swifterror or swiftself functions.
1585   for (auto &Arg : F.args()) {
1586     if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) {
1587       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1588                                  F.getSubprogram(), &F.getEntryBlock());
1589       R << "unable to lower arguments due to swifterror/swiftself: "
1590         << ore::NV("Prototype", F.getType());
1591       reportTranslationError(*MF, *TPC, *ORE, R);
1592       return false;
1593     }
1594   }
1595
1596   if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
1597     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1598                                F.getSubprogram(), &F.getEntryBlock());
1599     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
1600     reportTranslationError(*MF, *TPC, *ORE, R);
1601     return false;
1602   }
1603
1604   auto ArgIt = F.arg_begin();
1605   for (auto &VArg : VRegArgs) {
1606     // If the argument is an unsplit scalar then don't use unpackRegs to avoid
1607     // creating redundant copies.
1608     if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) {
1609       auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt));
1610       assert(VRegs.empty() && "VRegs already populated?");
1611       VRegs.push_back(VArg);
1612     } else {
1613       unpackRegs(*ArgIt, VArg, EntryBuilder);
1614     }
1615     ArgIt++;
1616   }
1617
1618   // Need to visit defs before uses when translating instructions.
1619   ReversePostOrderTraversal<const Function *> RPOT(&F);
1620   for (const BasicBlock *BB : RPOT) {
1621     MachineBasicBlock &MBB = getMBB(*BB);
1622     // Set the insertion point of all the following translations to
1623     // the end of this basic block.
1624     CurBuilder.setMBB(MBB);
1625
1626     for (const Instruction &Inst : *BB) {
1627       if (translate(Inst))
1628         continue;
1629
1630       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1631                                  Inst.getDebugLoc(), BB);
1632       R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
1633
1634       if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
1635         std::string InstStrStorage;
1636         raw_string_ostream InstStr(InstStrStorage);
1637         InstStr << Inst;
1638
1639         R << ": '" << InstStr.str() << "'";
1640       }
1641
1642       reportTranslationError(*MF, *TPC, *ORE, R);
1643       return false;
1644     }
1645   }
1646
1647   finishPendingPhis();
1648
1649   // Merge the argument lowering and constants block with its single
1650   // successor, the LLVM-IR entry block.  We want the basic block to
1651   // be maximal.
1652   assert(EntryBB->succ_size() == 1 &&
1653          "Custom BB used for lowering should have only one successor");
1654   // Get the successor of the current entry block.
1655   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
1656   assert(NewEntryBB.pred_size() == 1 &&
1657          "LLVM-IR entry block has a predecessor!?");
1658   // Move all the instruction from the current entry block to the
1659   // new entry block.
1660   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
1661                     EntryBB->end());
1662
1663   // Update the live-in information for the new entry block.
1664   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
1665     NewEntryBB.addLiveIn(LiveIn);
1666   NewEntryBB.sortUniqueLiveIns();
1667
1668   // Get rid of the now empty basic block.
1669   EntryBB->removeSuccessor(&NewEntryBB);
1670   MF->remove(EntryBB);
1671   MF->DeleteMachineBasicBlock(EntryBB);
1672
1673   assert(&MF->front() == &NewEntryBB &&
1674          "New entry wasn't next in the list of basic block!");
1675
1676   // Initialize stack protector information.
1677   StackProtector &SP = getAnalysis<StackProtector>();
1678   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1679
1680   return false;
1681 }