OSDN Git Service

Update aosp/master LLVM for rebase to r256229
[android-x86/external-llvm.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.cpp
1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12 // is common code shared among the LegalizeTypes*.cpp files.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "LegalizeTypes.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/IR/CallingConv.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
24
25 #define DEBUG_TYPE "legalize-types"
26
27 static cl::opt<bool>
28 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
29
30 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
31 void DAGTypeLegalizer::PerformExpensiveChecks() {
32   // If a node is not processed, then none of its values should be mapped by any
33   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
34
35   // If a node is processed, then each value with an illegal type must be mapped
36   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
37   // Values with a legal type may be mapped by ReplacedValues, but not by any of
38   // the other maps.
39
40   // Note that these invariants may not hold momentarily when processing a node:
41   // the node being processed may be put in a map before being marked Processed.
42
43   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
44   // occur in two ways.  Firstly, a node may be created during legalization but
45   // never passed to the legalization core.  This is usually due to the implicit
46   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
47   // node may be passed to the legalization core, but when analyzed may morph
48   // into a different node, leaving the original node as a NewNode in the DAG.
49   // A node may morph if one of its operands changes during analysis.  Whether
50   // it actually morphs or not depends on whether, after updating its operands,
51   // it is equivalent to an existing node: if so, it morphs into that existing
52   // node (CSE).  An operand can change during analysis if the operand is a new
53   // node that morphs, or it is a processed value that was mapped to some other
54   // value (as recorded in ReplacedValues) in which case the operand is turned
55   // into that other value.  If a node morphs then the node it morphed into will
56   // be used instead of it for legalization, however the original node continues
57   // to live on in the DAG.
58   // The conclusion is that though there may be nodes marked NewNode in the DAG,
59   // all uses of such nodes are also marked NewNode: the result is a fungus of
60   // NewNodes growing on top of the useful nodes, and perhaps using them, but
61   // not used by them.
62
63   // If a value is mapped by ReplacedValues, then it must have no uses, except
64   // by nodes marked NewNode (see above).
65
66   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
67   // Note that ReplacedValues should be applied iteratively.
68
69   // Note that the ReplacedValues map may also map deleted nodes (by iterating
70   // over the DAG we never dereference deleted nodes).  This means that it may
71   // also map nodes marked NewNode if the deallocated memory was reallocated as
72   // another node, and that new node was not seen by the LegalizeTypes machinery
73   // (for example because it was created but not used).  In general, we cannot
74   // distinguish between new nodes and deleted nodes.
75   SmallVector<SDNode*, 16> NewNodes;
76   for (SDNode &Node : DAG.allnodes()) {
77     // Remember nodes marked NewNode - they are subject to extra checking below.
78     if (Node.getNodeId() == NewNode)
79       NewNodes.push_back(&Node);
80
81     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
82       SDValue Res(&Node, i);
83       bool Failed = false;
84
85       unsigned Mapped = 0;
86       if (ReplacedValues.find(Res) != ReplacedValues.end()) {
87         Mapped |= 1;
88         // Check that remapped values are only used by nodes marked NewNode.
89         for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
90              UI != UE; ++UI)
91           if (UI.getUse().getResNo() == i)
92             assert(UI->getNodeId() == NewNode &&
93                    "Remapped value has non-trivial use!");
94
95         // Check that the final result of applying ReplacedValues is not
96         // marked NewNode.
97         SDValue NewVal = ReplacedValues[Res];
98         DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
99         while (I != ReplacedValues.end()) {
100           NewVal = I->second;
101           I = ReplacedValues.find(NewVal);
102         }
103         assert(NewVal.getNode()->getNodeId() != NewNode &&
104                "ReplacedValues maps to a new node!");
105       }
106       if (PromotedIntegers.find(Res) != PromotedIntegers.end())
107         Mapped |= 2;
108       if (SoftenedFloats.find(Res) != SoftenedFloats.end())
109         Mapped |= 4;
110       if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
111         Mapped |= 8;
112       if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
113         Mapped |= 16;
114       if (ExpandedFloats.find(Res) != ExpandedFloats.end())
115         Mapped |= 32;
116       if (SplitVectors.find(Res) != SplitVectors.end())
117         Mapped |= 64;
118       if (WidenedVectors.find(Res) != WidenedVectors.end())
119         Mapped |= 128;
120
121       if (Node.getNodeId() != Processed) {
122         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
123         // marked NewNode too, since a deleted node may have been reallocated as
124         // another node that has not been seen by the LegalizeTypes machinery.
125         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
126             (Node.getNodeId() != NewNode && Mapped != 0)) {
127           dbgs() << "Unprocessed value in a map!";
128           Failed = true;
129         }
130       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
131         if (Mapped > 1) {
132           dbgs() << "Value with legal type was transformed!";
133           Failed = true;
134         }
135       } else {
136         if (Mapped == 0) {
137           dbgs() << "Processed value not in any map!";
138           Failed = true;
139         } else if (Mapped & (Mapped - 1)) {
140           dbgs() << "Value in multiple maps!";
141           Failed = true;
142         }
143       }
144
145       if (Failed) {
146         if (Mapped & 1)
147           dbgs() << " ReplacedValues";
148         if (Mapped & 2)
149           dbgs() << " PromotedIntegers";
150         if (Mapped & 4)
151           dbgs() << " SoftenedFloats";
152         if (Mapped & 8)
153           dbgs() << " ScalarizedVectors";
154         if (Mapped & 16)
155           dbgs() << " ExpandedIntegers";
156         if (Mapped & 32)
157           dbgs() << " ExpandedFloats";
158         if (Mapped & 64)
159           dbgs() << " SplitVectors";
160         if (Mapped & 128)
161           dbgs() << " WidenedVectors";
162         dbgs() << "\n";
163         llvm_unreachable(nullptr);
164       }
165     }
166   }
167
168   // Checked that NewNodes are only used by other NewNodes.
169   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
170     SDNode *N = NewNodes[i];
171     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
172          UI != UE; ++UI)
173       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
174   }
175 }
176
177 /// run - This is the main entry point for the type legalizer.  This does a
178 /// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
179 /// if it made any changes.
180 bool DAGTypeLegalizer::run() {
181   bool Changed = false;
182
183   // Create a dummy node (which is not added to allnodes), that adds a reference
184   // to the root node, preventing it from being deleted, and tracking any
185   // changes of the root.
186   HandleSDNode Dummy(DAG.getRoot());
187   Dummy.setNodeId(Unanalyzed);
188
189   // The root of the dag may dangle to deleted nodes until the type legalizer is
190   // done.  Set it to null to avoid confusion.
191   DAG.setRoot(SDValue());
192
193   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
194   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
195   // non-leaves.
196   for (SDNode &Node : DAG.allnodes()) {
197     if (Node.getNumOperands() == 0) {
198       Node.setNodeId(ReadyToProcess);
199       Worklist.push_back(&Node);
200     } else {
201       Node.setNodeId(Unanalyzed);
202     }
203   }
204
205   // Now that we have a set of nodes to process, handle them all.
206   while (!Worklist.empty()) {
207 #ifndef XDEBUG
208     if (EnableExpensiveChecks)
209 #endif
210       PerformExpensiveChecks();
211
212     SDNode *N = Worklist.back();
213     Worklist.pop_back();
214     assert(N->getNodeId() == ReadyToProcess &&
215            "Node should be ready if on worklist!");
216
217     if (IgnoreNodeResults(N))
218       goto ScanOperands;
219
220     // Scan the values produced by the node, checking to see if any result
221     // types are illegal.
222     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
223       EVT ResultVT = N->getValueType(i);
224       switch (getTypeAction(ResultVT)) {
225       case TargetLowering::TypeLegal:
226         break;
227       // The following calls must take care of *all* of the node's results,
228       // not just the illegal result they were passed (this includes results
229       // with a legal type).  Results can be remapped using ReplaceValueWith,
230       // or their promoted/expanded/etc values registered in PromotedIntegers,
231       // ExpandedIntegers etc.
232       case TargetLowering::TypePromoteInteger:
233         PromoteIntegerResult(N, i);
234         Changed = true;
235         goto NodeDone;
236       case TargetLowering::TypeExpandInteger:
237         ExpandIntegerResult(N, i);
238         Changed = true;
239         goto NodeDone;
240       case TargetLowering::TypeSoftenFloat:
241         Changed = SoftenFloatResult(N, i);
242         if (Changed)
243           goto NodeDone;
244         // If not changed, the result type should be legally in register.
245         assert(isLegalInHWReg(ResultVT) &&
246                "Unchanged SoftenFloatResult should be legal in register!");
247         goto ScanOperands;
248       case TargetLowering::TypeExpandFloat:
249         ExpandFloatResult(N, i);
250         Changed = true;
251         goto NodeDone;
252       case TargetLowering::TypeScalarizeVector:
253         ScalarizeVectorResult(N, i);
254         Changed = true;
255         goto NodeDone;
256       case TargetLowering::TypeSplitVector:
257         SplitVectorResult(N, i);
258         Changed = true;
259         goto NodeDone;
260       case TargetLowering::TypeWidenVector:
261         WidenVectorResult(N, i);
262         Changed = true;
263         goto NodeDone;
264       case TargetLowering::TypePromoteFloat:
265         PromoteFloatResult(N, i);
266         Changed = true;
267         goto NodeDone;
268       }
269     }
270
271 ScanOperands:
272     // Scan the operand list for the node, handling any nodes with operands that
273     // are illegal.
274     {
275     unsigned NumOperands = N->getNumOperands();
276     bool NeedsReanalyzing = false;
277     unsigned i;
278     for (i = 0; i != NumOperands; ++i) {
279       if (IgnoreNodeResults(N->getOperand(i).getNode()))
280         continue;
281
282       EVT OpVT = N->getOperand(i).getValueType();
283       switch (getTypeAction(OpVT)) {
284       case TargetLowering::TypeLegal:
285         continue;
286       // The following calls must either replace all of the node's results
287       // using ReplaceValueWith, and return "false"; or update the node's
288       // operands in place, and return "true".
289       case TargetLowering::TypePromoteInteger:
290         NeedsReanalyzing = PromoteIntegerOperand(N, i);
291         Changed = true;
292         break;
293       case TargetLowering::TypeExpandInteger:
294         NeedsReanalyzing = ExpandIntegerOperand(N, i);
295         Changed = true;
296         break;
297       case TargetLowering::TypeSoftenFloat:
298         NeedsReanalyzing = SoftenFloatOperand(N, i);
299         Changed = true;
300         break;
301       case TargetLowering::TypeExpandFloat:
302         NeedsReanalyzing = ExpandFloatOperand(N, i);
303         Changed = true;
304         break;
305       case TargetLowering::TypeScalarizeVector:
306         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
307         Changed = true;
308         break;
309       case TargetLowering::TypeSplitVector:
310         NeedsReanalyzing = SplitVectorOperand(N, i);
311         Changed = true;
312         break;
313       case TargetLowering::TypeWidenVector:
314         NeedsReanalyzing = WidenVectorOperand(N, i);
315         Changed = true;
316         break;
317       case TargetLowering::TypePromoteFloat:
318         NeedsReanalyzing = PromoteFloatOperand(N, i);
319         Changed = true;
320         break;
321       }
322       break;
323     }
324
325     // The sub-method updated N in place.  Check to see if any operands are new,
326     // and if so, mark them.  If the node needs revisiting, don't add all users
327     // to the worklist etc.
328     if (NeedsReanalyzing) {
329       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
330       N->setNodeId(NewNode);
331       // Recompute the NodeId and correct processed operands, adding the node to
332       // the worklist if ready.
333       SDNode *M = AnalyzeNewNode(N);
334       if (M == N)
335         // The node didn't morph - nothing special to do, it will be revisited.
336         continue;
337
338       // The node morphed - this is equivalent to legalizing by replacing every
339       // value of N with the corresponding value of M.  So do that now.
340       assert(N->getNumValues() == M->getNumValues() &&
341              "Node morphing changed the number of results!");
342       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
343         // Replacing the value takes care of remapping the new value.
344         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
345       assert(N->getNodeId() == NewNode && "Unexpected node state!");
346       // The node continues to live on as part of the NewNode fungus that
347       // grows on top of the useful nodes.  Nothing more needs to be done
348       // with it - move on to the next node.
349       continue;
350     }
351
352     if (i == NumOperands) {
353       DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
354     }
355     }
356 NodeDone:
357
358     // If we reach here, the node was processed, potentially creating new nodes.
359     // Mark it as processed and add its users to the worklist as appropriate.
360     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
361     N->setNodeId(Processed);
362
363     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
364          UI != E; ++UI) {
365       SDNode *User = *UI;
366       int NodeId = User->getNodeId();
367
368       // This node has two options: it can either be a new node or its Node ID
369       // may be a count of the number of operands it has that are not ready.
370       if (NodeId > 0) {
371         User->setNodeId(NodeId-1);
372
373         // If this was the last use it was waiting on, add it to the ready list.
374         if (NodeId-1 == ReadyToProcess)
375           Worklist.push_back(User);
376         continue;
377       }
378
379       // If this is an unreachable new node, then ignore it.  If it ever becomes
380       // reachable by being used by a newly created node then it will be handled
381       // by AnalyzeNewNode.
382       if (NodeId == NewNode)
383         continue;
384
385       // Otherwise, this node is new: this is the first operand of it that
386       // became ready.  Its new NodeId is the number of operands it has minus 1
387       // (as this node is now processed).
388       assert(NodeId == Unanalyzed && "Unknown node ID!");
389       User->setNodeId(User->getNumOperands() - 1);
390
391       // If the node only has a single operand, it is now ready.
392       if (User->getNumOperands() == 1)
393         Worklist.push_back(User);
394     }
395   }
396
397 #ifndef XDEBUG
398   if (EnableExpensiveChecks)
399 #endif
400     PerformExpensiveChecks();
401
402   // If the root changed (e.g. it was a dead load) update the root.
403   DAG.setRoot(Dummy.getValue());
404
405   // Remove dead nodes.  This is important to do for cleanliness but also before
406   // the checking loop below.  Implicit folding by the DAG.getNode operators and
407   // node morphing can cause unreachable nodes to be around with their flags set
408   // to new.
409   DAG.RemoveDeadNodes();
410
411   // In a debug build, scan all the nodes to make sure we found them all.  This
412   // ensures that there are no cycles and that everything got processed.
413 #ifndef NDEBUG
414   for (SDNode &Node : DAG.allnodes()) {
415     bool Failed = false;
416
417     // Check that all result types are legal.
418     // A value type is illegal if its TypeAction is not TypeLegal,
419     // and TLI.RegClassForVT does not have a register class for this type.
420     // For example, the x86_64 target has f128 that is not TypeLegal,
421     // to have softened operators, but it also has FR128 register class to
422     // pass and return f128 values. Hence a legalized node can have f128 type.
423     if (!IgnoreNodeResults(&Node))
424       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
425         if (!isTypeLegal(Node.getValueType(i)) &&
426             !TLI.isTypeLegal(Node.getValueType(i))) {
427           dbgs() << "Result type " << i << " illegal: ";
428           Node.dump();
429           Failed = true;
430         }
431
432     // Check that all operand types are legal.
433     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
434       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
435           !isTypeLegal(Node.getOperand(i).getValueType()) &&
436           !TLI.isTypeLegal(Node.getOperand(i).getValueType())) {
437         dbgs() << "Operand type " << i << " illegal: ";
438         Node.getOperand(i).dump();
439         Failed = true;
440       }
441
442     if (Node.getNodeId() != Processed) {
443        if (Node.getNodeId() == NewNode)
444          dbgs() << "New node not analyzed?\n";
445        else if (Node.getNodeId() == Unanalyzed)
446          dbgs() << "Unanalyzed node not noticed?\n";
447        else if (Node.getNodeId() > 0)
448          dbgs() << "Operand not processed?\n";
449        else if (Node.getNodeId() == ReadyToProcess)
450          dbgs() << "Not added to worklist?\n";
451        Failed = true;
452     }
453
454     if (Failed) {
455       Node.dump(&DAG); dbgs() << "\n";
456       llvm_unreachable(nullptr);
457     }
458   }
459 #endif
460
461   return Changed;
462 }
463
464 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
465 /// new nodes.  Correct any processed operands (this may change the node) and
466 /// calculate the NodeId.  If the node itself changes to a processed node, it
467 /// is not remapped - the caller needs to take care of this.
468 /// Returns the potentially changed node.
469 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
470   // If this was an existing node that is already done, we're done.
471   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
472     return N;
473
474   // Remove any stale map entries.
475   ExpungeNode(N);
476
477   // Okay, we know that this node is new.  Recursively walk all of its operands
478   // to see if they are new also.  The depth of this walk is bounded by the size
479   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
480   // about revisiting of nodes.
481   //
482   // As we walk the operands, keep track of the number of nodes that are
483   // processed.  If non-zero, this will become the new nodeid of this node.
484   // Operands may morph when they are analyzed.  If so, the node will be
485   // updated after all operands have been analyzed.  Since this is rare,
486   // the code tries to minimize overhead in the non-morphing case.
487
488   SmallVector<SDValue, 8> NewOps;
489   unsigned NumProcessed = 0;
490   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
491     SDValue OrigOp = N->getOperand(i);
492     SDValue Op = OrigOp;
493
494     AnalyzeNewValue(Op); // Op may morph.
495
496     if (Op.getNode()->getNodeId() == Processed)
497       ++NumProcessed;
498
499     if (!NewOps.empty()) {
500       // Some previous operand changed.  Add this one to the list.
501       NewOps.push_back(Op);
502     } else if (Op != OrigOp) {
503       // This is the first operand to change - add all operands so far.
504       NewOps.append(N->op_begin(), N->op_begin() + i);
505       NewOps.push_back(Op);
506     }
507   }
508
509   // Some operands changed - update the node.
510   if (!NewOps.empty()) {
511     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
512     if (M != N) {
513       // The node morphed into a different node.  Normally for this to happen
514       // the original node would have to be marked NewNode.  However this can
515       // in theory momentarily not be the case while ReplaceValueWith is doing
516       // its stuff.  Mark the original node NewNode to help sanity checking.
517       N->setNodeId(NewNode);
518       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
519         // It morphed into a previously analyzed node - nothing more to do.
520         return M;
521
522       // It morphed into a different new node.  Do the equivalent of passing
523       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
524       // to remap the operands, since they are the same as the operands we
525       // remapped above.
526       N = M;
527       ExpungeNode(N);
528     }
529   }
530
531   // Calculate the NodeId.
532   N->setNodeId(N->getNumOperands() - NumProcessed);
533   if (N->getNodeId() == ReadyToProcess)
534     Worklist.push_back(N);
535
536   return N;
537 }
538
539 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
540 /// If the node changes to a processed node, then remap it.
541 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
542   Val.setNode(AnalyzeNewNode(Val.getNode()));
543   if (Val.getNode()->getNodeId() == Processed)
544     // We were passed a processed node, or it morphed into one - remap it.
545     RemapValue(Val);
546 }
547
548 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
549 /// This can occur when a node is deleted then reallocated as a new node -
550 /// the mapping in ReplacedValues applies to the deleted node, not the new
551 /// one.
552 /// The only map that can have a deleted node as a source is ReplacedValues.
553 /// Other maps can have deleted nodes as targets, but since their looked-up
554 /// values are always immediately remapped using RemapValue, resulting in a
555 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
556 /// always performs correct mappings.  In order to keep the mapping correct,
557 /// ExpungeNode should be called on any new nodes *before* adding them as
558 /// either source or target to ReplacedValues (which typically means calling
559 /// Expunge when a new node is first seen, since it may no longer be marked
560 /// NewNode by the time it is added to ReplacedValues).
561 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
562   if (N->getNodeId() != NewNode)
563     return;
564
565   // If N is not remapped by ReplacedValues then there is nothing to do.
566   unsigned i, e;
567   for (i = 0, e = N->getNumValues(); i != e; ++i)
568     if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
569       break;
570
571   if (i == e)
572     return;
573
574   // Remove N from all maps - this is expensive but rare.
575
576   for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
577        E = PromotedIntegers.end(); I != E; ++I) {
578     assert(I->first.getNode() != N);
579     RemapValue(I->second);
580   }
581
582   for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
583        E = SoftenedFloats.end(); I != E; ++I) {
584     assert(I->first.getNode() != N);
585     RemapValue(I->second);
586   }
587
588   for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
589        E = ScalarizedVectors.end(); I != E; ++I) {
590     assert(I->first.getNode() != N);
591     RemapValue(I->second);
592   }
593
594   for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
595        E = WidenedVectors.end(); I != E; ++I) {
596     assert(I->first.getNode() != N);
597     RemapValue(I->second);
598   }
599
600   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
601        I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
602     assert(I->first.getNode() != N);
603     RemapValue(I->second.first);
604     RemapValue(I->second.second);
605   }
606
607   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
608        I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
609     assert(I->first.getNode() != N);
610     RemapValue(I->second.first);
611     RemapValue(I->second.second);
612   }
613
614   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
615        I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
616     assert(I->first.getNode() != N);
617     RemapValue(I->second.first);
618     RemapValue(I->second.second);
619   }
620
621   for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
622        E = ReplacedValues.end(); I != E; ++I)
623     RemapValue(I->second);
624
625   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
626     ReplacedValues.erase(SDValue(N, i));
627 }
628
629 /// RemapValue - If the specified value was already legalized to another value,
630 /// replace it by that value.
631 void DAGTypeLegalizer::RemapValue(SDValue &N) {
632   DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
633   if (I != ReplacedValues.end()) {
634     // Use path compression to speed up future lookups if values get multiply
635     // replaced with other values.
636     RemapValue(I->second);
637     N = I->second;
638
639     // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
640     // this point because it is possible for a node to be put in the map before
641     // being processed.
642   }
643 }
644
645 namespace {
646   /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
647   /// updates to nodes and recomputes their ready state.
648   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
649     DAGTypeLegalizer &DTL;
650     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
651   public:
652     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
653                                 SmallSetVector<SDNode*, 16> &nta)
654       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
655         DTL(dtl), NodesToAnalyze(nta) {}
656
657     void NodeDeleted(SDNode *N, SDNode *E) override {
658       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
659              N->getNodeId() != DAGTypeLegalizer::Processed &&
660              "Invalid node ID for RAUW deletion!");
661       // It is possible, though rare, for the deleted node N to occur as a
662       // target in a map, so note the replacement N -> E in ReplacedValues.
663       assert(E && "Node not replaced?");
664       DTL.NoteDeletion(N, E);
665
666       // In theory the deleted node could also have been scheduled for analysis.
667       // So remove it from the set of nodes which will be analyzed.
668       NodesToAnalyze.remove(N);
669
670       // In general nothing needs to be done for E, since it didn't change but
671       // only gained new uses.  However N -> E was just added to ReplacedValues,
672       // and the result of a ReplacedValues mapping is not allowed to be marked
673       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
674       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
675         NodesToAnalyze.insert(E);
676     }
677
678     void NodeUpdated(SDNode *N) override {
679       // Node updates can mean pretty much anything.  It is possible that an
680       // operand was set to something already processed (f.e.) in which case
681       // this node could become ready.  Recompute its flags.
682       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
683              N->getNodeId() != DAGTypeLegalizer::Processed &&
684              "Invalid node ID for RAUW deletion!");
685       N->setNodeId(DAGTypeLegalizer::NewNode);
686       NodesToAnalyze.insert(N);
687     }
688   };
689 }
690
691
692 /// ReplaceValueWith - The specified value was legalized to the specified other
693 /// value.  Update the DAG and NodeIds replacing any uses of From to use To
694 /// instead.
695 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
696   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
697
698   // If expansion produced new nodes, make sure they are properly marked.
699   ExpungeNode(From.getNode());
700   AnalyzeNewValue(To); // Expunges To.
701
702   // Anything that used the old node should now use the new one.  Note that this
703   // can potentially cause recursive merging.
704   SmallSetVector<SDNode*, 16> NodesToAnalyze;
705   NodeUpdateListener NUL(*this, NodesToAnalyze);
706   do {
707     DAG.ReplaceAllUsesOfValueWith(From, To);
708
709     // The old node may still be present in a map like ExpandedIntegers or
710     // PromotedIntegers.  Inform maps about the replacement.
711     ReplacedValues[From] = To;
712
713     // Process the list of nodes that need to be reanalyzed.
714     while (!NodesToAnalyze.empty()) {
715       SDNode *N = NodesToAnalyze.back();
716       NodesToAnalyze.pop_back();
717       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
718         // The node was analyzed while reanalyzing an earlier node - it is safe
719         // to skip.  Note that this is not a morphing node - otherwise it would
720         // still be marked NewNode.
721         continue;
722
723       // Analyze the node's operands and recalculate the node ID.
724       SDNode *M = AnalyzeNewNode(N);
725       if (M != N) {
726         // The node morphed into a different node.  Make everyone use the new
727         // node instead.
728         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
729         assert(N->getNumValues() == M->getNumValues() &&
730                "Node morphing changed the number of results!");
731         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
732           SDValue OldVal(N, i);
733           SDValue NewVal(M, i);
734           if (M->getNodeId() == Processed)
735             RemapValue(NewVal);
736           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
737           // OldVal may be a target of the ReplacedValues map which was marked
738           // NewNode to force reanalysis because it was updated.  Ensure that
739           // anything that ReplacedValues mapped to OldVal will now be mapped
740           // all the way to NewVal.
741           ReplacedValues[OldVal] = NewVal;
742         }
743         // The original node continues to exist in the DAG, marked NewNode.
744       }
745     }
746     // When recursively update nodes with new nodes, it is possible to have
747     // new uses of From due to CSE. If this happens, replace the new uses of
748     // From with To.
749   } while (!From.use_empty());
750 }
751
752 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
753   assert(Result.getValueType() ==
754          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
755          "Invalid type for promoted integer");
756   AnalyzeNewValue(Result);
757
758   SDValue &OpEntry = PromotedIntegers[Op];
759   assert(!OpEntry.getNode() && "Node is already promoted!");
760   OpEntry = Result;
761 }
762
763 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
764   // f128 of x86_64 could be kept in SSE registers,
765   // but sometimes softened to i128.
766   assert((Result.getValueType() ==
767           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) ||
768           Op.getValueType() ==
769           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
770          "Invalid type for softened float");
771   AnalyzeNewValue(Result);
772
773   SDValue &OpEntry = SoftenedFloats[Op];
774   // Allow repeated calls to save f128 type nodes
775   // or any node with type that transforms to itself.
776   // Many operations on these types are not softened.
777   assert((!OpEntry.getNode()||
778           Op.getValueType() ==
779           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
780          "Node is already converted to integer!");
781   OpEntry = Result;
782 }
783
784 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
785   assert(Result.getValueType() ==
786          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
787          "Invalid type for promoted float");
788   AnalyzeNewValue(Result);
789
790   SDValue &OpEntry = PromotedFloats[Op];
791   assert(!OpEntry.getNode() && "Node is already promoted!");
792   OpEntry = Result;
793 }
794
795 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
796   // Note that in some cases vector operation operands may be greater than
797   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
798   // a constant i8 operand.
799   assert(Result.getValueType().getSizeInBits() >=
800          Op.getValueType().getVectorElementType().getSizeInBits() &&
801          "Invalid type for scalarized vector");
802   AnalyzeNewValue(Result);
803
804   SDValue &OpEntry = ScalarizedVectors[Op];
805   assert(!OpEntry.getNode() && "Node is already scalarized!");
806   OpEntry = Result;
807 }
808
809 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
810                                           SDValue &Hi) {
811   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
812   RemapValue(Entry.first);
813   RemapValue(Entry.second);
814   assert(Entry.first.getNode() && "Operand isn't expanded");
815   Lo = Entry.first;
816   Hi = Entry.second;
817 }
818
819 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
820                                           SDValue Hi) {
821   assert(Lo.getValueType() ==
822          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
823          Hi.getValueType() == Lo.getValueType() &&
824          "Invalid type for expanded integer");
825   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
826   AnalyzeNewValue(Lo);
827   AnalyzeNewValue(Hi);
828
829   // Remember that this is the result of the node.
830   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
831   assert(!Entry.first.getNode() && "Node already expanded");
832   Entry.first = Lo;
833   Entry.second = Hi;
834 }
835
836 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
837                                         SDValue &Hi) {
838   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
839   RemapValue(Entry.first);
840   RemapValue(Entry.second);
841   assert(Entry.first.getNode() && "Operand isn't expanded");
842   Lo = Entry.first;
843   Hi = Entry.second;
844 }
845
846 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
847                                         SDValue Hi) {
848   assert(Lo.getValueType() ==
849          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
850          Hi.getValueType() == Lo.getValueType() &&
851          "Invalid type for expanded float");
852   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
853   AnalyzeNewValue(Lo);
854   AnalyzeNewValue(Hi);
855
856   // Remember that this is the result of the node.
857   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
858   assert(!Entry.first.getNode() && "Node already expanded");
859   Entry.first = Lo;
860   Entry.second = Hi;
861 }
862
863 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
864                                       SDValue &Hi) {
865   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
866   RemapValue(Entry.first);
867   RemapValue(Entry.second);
868   assert(Entry.first.getNode() && "Operand isn't split");
869   Lo = Entry.first;
870   Hi = Entry.second;
871 }
872
873 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
874                                       SDValue Hi) {
875   assert(Lo.getValueType().getVectorElementType() ==
876          Op.getValueType().getVectorElementType() &&
877          2*Lo.getValueType().getVectorNumElements() ==
878          Op.getValueType().getVectorNumElements() &&
879          Hi.getValueType() == Lo.getValueType() &&
880          "Invalid type for split vector");
881   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
882   AnalyzeNewValue(Lo);
883   AnalyzeNewValue(Hi);
884
885   // Remember that this is the result of the node.
886   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
887   assert(!Entry.first.getNode() && "Node already split");
888   Entry.first = Lo;
889   Entry.second = Hi;
890 }
891
892 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
893   assert(Result.getValueType() ==
894          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
895          "Invalid type for widened vector");
896   AnalyzeNewValue(Result);
897
898   SDValue &OpEntry = WidenedVectors[Op];
899   assert(!OpEntry.getNode() && "Node already widened!");
900   OpEntry = Result;
901 }
902
903
904 //===----------------------------------------------------------------------===//
905 // Utilities.
906 //===----------------------------------------------------------------------===//
907
908 /// BitConvertToInteger - Convert to an integer of the same size.
909 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
910   unsigned BitWidth = Op.getValueType().getSizeInBits();
911   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
912                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
913 }
914
915 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
916 /// same size.
917 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
918   assert(Op.getValueType().isVector() && "Only applies to vectors!");
919   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
920   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
921   unsigned NumElts = Op.getValueType().getVectorNumElements();
922   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
923                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
924 }
925
926 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
927                                                EVT DestVT) {
928   SDLoc dl(Op);
929   // Create the stack frame object.  Make sure it is aligned for both
930   // the source and destination types.
931   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
932   // Emit a store to the stack slot.
933   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
934                                MachinePointerInfo(), false, false, 0);
935   // Result is a load from the stack slot.
936   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
937                      false, false, false, 0);
938 }
939
940 /// CustomLowerNode - Replace the node's results with custom code provided
941 /// by the target and return "true", or do nothing and return "false".
942 /// The last parameter is FALSE if we are dealing with a node with legal
943 /// result types and illegal operand. The second parameter denotes the type of
944 /// illegal OperandNo in that case.
945 /// The last parameter being TRUE means we are dealing with a
946 /// node with illegal result types. The second parameter denotes the type of
947 /// illegal ResNo in that case.
948 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
949   // See if the target wants to custom lower this node.
950   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
951     return false;
952
953   SmallVector<SDValue, 8> Results;
954   if (LegalizeResult)
955     TLI.ReplaceNodeResults(N, Results, DAG);
956   else
957     TLI.LowerOperationWrapper(N, Results, DAG);
958
959   if (Results.empty())
960     // The target didn't want to custom lower it after all.
961     return false;
962
963   // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
964   // provide the same kind of custom splitting behavior.
965   if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
966     // We've legalized a return type by splitting it. If there is a chain,
967     // replace that too.
968     SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
969     if (N->getNumValues() > 1)
970       ReplaceValueWith(SDValue(N, 1), Results[2]);
971     return true;
972   }
973
974   // Make everything that once used N's values now use those in Results instead.
975   assert(Results.size() == N->getNumValues() &&
976          "Custom lowering returned the wrong number of results!");
977   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
978     ReplaceValueWith(SDValue(N, i), Results[i]);
979   }
980   return true;
981 }
982
983
984 /// CustomWidenLowerNode - Widen the node's results with custom code provided
985 /// by the target and return "true", or do nothing and return "false".
986 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
987   // See if the target wants to custom lower this node.
988   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
989     return false;
990
991   SmallVector<SDValue, 8> Results;
992   TLI.ReplaceNodeResults(N, Results, DAG);
993
994   if (Results.empty())
995     // The target didn't want to custom widen lower its result  after all.
996     return false;
997
998   // Update the widening map.
999   assert(Results.size() == N->getNumValues() &&
1000          "Custom lowering returned the wrong number of results!");
1001   for (unsigned i = 0, e = Results.size(); i != e; ++i)
1002     SetWidenedVector(SDValue(N, i), Results[i]);
1003   return true;
1004 }
1005
1006 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
1007   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
1008     if (i != ResNo)
1009       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
1010   return SDValue(N->getOperand(ResNo));
1011 }
1012
1013 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
1014 /// high parts of the given value.
1015 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
1016                                        SDValue &Lo, SDValue &Hi) {
1017   SDLoc dl(Pair);
1018   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
1019   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
1020                    DAG.getIntPtrConstant(0, dl));
1021   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
1022                    DAG.getIntPtrConstant(1, dl));
1023 }
1024
1025 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
1026                                                   SDValue Index) {
1027   SDLoc dl(Index);
1028   // Make sure the index type is big enough to compute in.
1029   Index = DAG.getZExtOrTrunc(Index, dl, TLI.getPointerTy(DAG.getDataLayout()));
1030
1031   // Calculate the element offset and add it to the pointer.
1032   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
1033   assert(EltSize * 8 == EltVT.getSizeInBits() &&
1034          "Converting bits to bytes lost precision");
1035
1036   Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
1037                       DAG.getConstant(EltSize, dl, Index.getValueType()));
1038   return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
1039 }
1040
1041 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
1042 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
1043   // Arbitrarily use dlHi for result SDLoc
1044   SDLoc dlHi(Hi);
1045   SDLoc dlLo(Lo);
1046   EVT LVT = Lo.getValueType();
1047   EVT HVT = Hi.getValueType();
1048   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1049                               LVT.getSizeInBits() + HVT.getSizeInBits());
1050
1051   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1052   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1053   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1054                    DAG.getConstant(LVT.getSizeInBits(), dlHi,
1055                                    TLI.getPointerTy(DAG.getDataLayout())));
1056   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1057 }
1058
1059 /// LibCallify - Convert the node into a libcall with the same prototype.
1060 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1061                                      bool isSigned) {
1062   unsigned NumOps = N->getNumOperands();
1063   SDLoc dl(N);
1064   if (NumOps == 0) {
1065     return TLI.makeLibCall(DAG, LC, N->getValueType(0), None, isSigned,
1066                            dl).first;
1067   } else if (NumOps == 1) {
1068     SDValue Op = N->getOperand(0);
1069     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, isSigned,
1070                            dl).first;
1071   } else if (NumOps == 2) {
1072     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1073     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned,
1074                            dl).first;
1075   }
1076   SmallVector<SDValue, 8> Ops(NumOps);
1077   for (unsigned i = 0; i < NumOps; ++i)
1078     Ops[i] = N->getOperand(i);
1079
1080   return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, dl).first;
1081 }
1082
1083 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1084 // ExpandLibCall except that the first operand is the in-chain.
1085 std::pair<SDValue, SDValue>
1086 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
1087                                          SDNode *Node,
1088                                          bool isSigned) {
1089   SDValue InChain = Node->getOperand(0);
1090
1091   TargetLowering::ArgListTy Args;
1092   TargetLowering::ArgListEntry Entry;
1093   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1094     EVT ArgVT = Node->getOperand(i).getValueType();
1095     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1096     Entry.Node = Node->getOperand(i);
1097     Entry.Ty = ArgTy;
1098     Entry.isSExt = isSigned;
1099     Entry.isZExt = !isSigned;
1100     Args.push_back(Entry);
1101   }
1102   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1103                                          TLI.getPointerTy(DAG.getDataLayout()));
1104
1105   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1106
1107   TargetLowering::CallLoweringInfo CLI(DAG);
1108   CLI.setDebugLoc(SDLoc(Node)).setChain(InChain)
1109     .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
1110     .setSExtResult(isSigned).setZExtResult(!isSigned);
1111
1112   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1113
1114   return CallInfo;
1115 }
1116
1117 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1118 /// of the given type.  A target boolean is an integer value, not necessarily of
1119 /// type i1, the bits of which conform to getBooleanContents.
1120 ///
1121 /// ValVT is the type of values that produced the boolean.
1122 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1123   SDLoc dl(Bool);
1124   EVT BoolVT = getSetCCResultType(ValVT);
1125   ISD::NodeType ExtendCode =
1126       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
1127   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1128 }
1129
1130 /// WidenTargetBoolean - Widen the given target boolean to a target boolean
1131 /// of the given type. The boolean vector is widened and then promoted to match
1132 /// the target boolean type of the given ValVT.
1133 SDValue DAGTypeLegalizer::WidenTargetBoolean(SDValue Bool, EVT ValVT,
1134                                              bool WithZeroes) {
1135   SDLoc dl(Bool);
1136   EVT BoolVT = Bool.getValueType();
1137
1138   assert(ValVT.getVectorNumElements() > BoolVT.getVectorNumElements() &&
1139          TLI.isTypeLegal(ValVT) &&
1140          "Unexpected types in WidenTargetBoolean");
1141   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), BoolVT.getScalarType(),
1142                                 ValVT.getVectorNumElements());
1143   Bool = ModifyToType(Bool, WideVT, WithZeroes);
1144   return PromoteTargetBoolean(Bool, ValVT);
1145 }
1146
1147 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1148 /// bits in Hi.
1149 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1150                                     EVT LoVT, EVT HiVT,
1151                                     SDValue &Lo, SDValue &Hi) {
1152   SDLoc dl(Op);
1153   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1154          Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1155   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1156   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1157                    DAG.getConstant(LoVT.getSizeInBits(), dl,
1158                                    TLI.getPointerTy(DAG.getDataLayout())));
1159   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1160 }
1161
1162 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
1163 /// type half the size of Op's.
1164 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1165                                     SDValue &Lo, SDValue &Hi) {
1166   EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
1167                                  Op.getValueType().getSizeInBits()/2);
1168   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1169 }
1170
1171
1172 //===----------------------------------------------------------------------===//
1173 //  Entry Point
1174 //===----------------------------------------------------------------------===//
1175
1176 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1177 /// only uses types natively supported by the target.  Returns "true" if it made
1178 /// any changes.
1179 ///
1180 /// Note that this is an involved process that may invalidate pointers into
1181 /// the graph.
1182 bool SelectionDAG::LegalizeTypes() {
1183   return DAGTypeLegalizer(*this).run();
1184 }