OSDN Git Service

Use ARM/t2PseudoInst class from ARM/Thumb2 special adds/subs patterns.
[android-x86/external-llvm.git] / lib / Target / ARM / ARMBaseInstrInfo.cpp
1 //===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMBaseInstrInfo.h"
15 #include "ARM.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMRegisterInfo.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/ADT/STLExtras.h"
39
40 #define GET_INSTRINFO_CTOR
41 #include "ARMGenInstrInfo.inc"
42
43 using namespace llvm;
44
45 static cl::opt<bool>
46 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
47                cl::desc("Enable ARM 2-addr to 3-addr conv"));
48
49 static cl::opt<bool>
50 WidenVMOVS("widen-vmovs", cl::Hidden,
51            cl::desc("Widen ARM vmovs to vmovd when possible"));
52
53 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
54 struct ARM_MLxEntry {
55   unsigned MLxOpc;     // MLA / MLS opcode
56   unsigned MulOpc;     // Expanded multiplication opcode
57   unsigned AddSubOpc;  // Expanded add / sub opcode
58   bool NegAcc;         // True if the acc is negated before the add / sub.
59   bool HasLane;        // True if instruction has an extra "lane" operand.
60 };
61
62 static const ARM_MLxEntry ARM_MLxTable[] = {
63   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
64   // fp scalar ops
65   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
66   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
67   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
68   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
69   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
70   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
71   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
72   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
73
74   // fp SIMD ops
75   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
76   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
77   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
78   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
79   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
80   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
81   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
82   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
83 };
84
85 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
86   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
87     Subtarget(STI) {
88   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
89     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
90       assert(false && "Duplicated entries?");
91     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
92     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
93   }
94 }
95
96 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
97 // currently defaults to no prepass hazard recognizer.
98 ScheduleHazardRecognizer *ARMBaseInstrInfo::
99 CreateTargetHazardRecognizer(const TargetMachine *TM,
100                              const ScheduleDAG *DAG) const {
101   if (usePreRAHazardRecognizer()) {
102     const InstrItineraryData *II = TM->getInstrItineraryData();
103     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
104   }
105   return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
106 }
107
108 ScheduleHazardRecognizer *ARMBaseInstrInfo::
109 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
110                                    const ScheduleDAG *DAG) const {
111   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
112     return (ScheduleHazardRecognizer *)
113       new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
114   return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
115 }
116
117 MachineInstr *
118 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
119                                         MachineBasicBlock::iterator &MBBI,
120                                         LiveVariables *LV) const {
121   // FIXME: Thumb2 support.
122
123   if (!EnableARM3Addr)
124     return NULL;
125
126   MachineInstr *MI = MBBI;
127   MachineFunction &MF = *MI->getParent()->getParent();
128   uint64_t TSFlags = MI->getDesc().TSFlags;
129   bool isPre = false;
130   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
131   default: return NULL;
132   case ARMII::IndexModePre:
133     isPre = true;
134     break;
135   case ARMII::IndexModePost:
136     break;
137   }
138
139   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
140   // operation.
141   unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
142   if (MemOpc == 0)
143     return NULL;
144
145   MachineInstr *UpdateMI = NULL;
146   MachineInstr *MemMI = NULL;
147   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
148   const MCInstrDesc &MCID = MI->getDesc();
149   unsigned NumOps = MCID.getNumOperands();
150   bool isLoad = !MCID.mayStore();
151   const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
152   const MachineOperand &Base = MI->getOperand(2);
153   const MachineOperand &Offset = MI->getOperand(NumOps-3);
154   unsigned WBReg = WB.getReg();
155   unsigned BaseReg = Base.getReg();
156   unsigned OffReg = Offset.getReg();
157   unsigned OffImm = MI->getOperand(NumOps-2).getImm();
158   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
159   switch (AddrMode) {
160   default:
161     assert(false && "Unknown indexed op!");
162     return NULL;
163   case ARMII::AddrMode2: {
164     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
165     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
166     if (OffReg == 0) {
167       if (ARM_AM::getSOImmVal(Amt) == -1)
168         // Can't encode it in a so_imm operand. This transformation will
169         // add more than 1 instruction. Abandon!
170         return NULL;
171       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
172                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
173         .addReg(BaseReg).addImm(Amt)
174         .addImm(Pred).addReg(0).addReg(0);
175     } else if (Amt != 0) {
176       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
177       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
178       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
179                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
180         .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
181         .addImm(Pred).addReg(0).addReg(0);
182     } else
183       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
184                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
185         .addReg(BaseReg).addReg(OffReg)
186         .addImm(Pred).addReg(0).addReg(0);
187     break;
188   }
189   case ARMII::AddrMode3 : {
190     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
191     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
192     if (OffReg == 0)
193       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
194       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
195                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
196         .addReg(BaseReg).addImm(Amt)
197         .addImm(Pred).addReg(0).addReg(0);
198     else
199       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
200                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
201         .addReg(BaseReg).addReg(OffReg)
202         .addImm(Pred).addReg(0).addReg(0);
203     break;
204   }
205   }
206
207   std::vector<MachineInstr*> NewMIs;
208   if (isPre) {
209     if (isLoad)
210       MemMI = BuildMI(MF, MI->getDebugLoc(),
211                       get(MemOpc), MI->getOperand(0).getReg())
212         .addReg(WBReg).addImm(0).addImm(Pred);
213     else
214       MemMI = BuildMI(MF, MI->getDebugLoc(),
215                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
216         .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
217     NewMIs.push_back(MemMI);
218     NewMIs.push_back(UpdateMI);
219   } else {
220     if (isLoad)
221       MemMI = BuildMI(MF, MI->getDebugLoc(),
222                       get(MemOpc), MI->getOperand(0).getReg())
223         .addReg(BaseReg).addImm(0).addImm(Pred);
224     else
225       MemMI = BuildMI(MF, MI->getDebugLoc(),
226                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
227         .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
228     if (WB.isDead())
229       UpdateMI->getOperand(0).setIsDead();
230     NewMIs.push_back(UpdateMI);
231     NewMIs.push_back(MemMI);
232   }
233
234   // Transfer LiveVariables states, kill / dead info.
235   if (LV) {
236     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
237       MachineOperand &MO = MI->getOperand(i);
238       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
239         unsigned Reg = MO.getReg();
240
241         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
242         if (MO.isDef()) {
243           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
244           if (MO.isDead())
245             LV->addVirtualRegisterDead(Reg, NewMI);
246         }
247         if (MO.isUse() && MO.isKill()) {
248           for (unsigned j = 0; j < 2; ++j) {
249             // Look at the two new MI's in reverse order.
250             MachineInstr *NewMI = NewMIs[j];
251             if (!NewMI->readsRegister(Reg))
252               continue;
253             LV->addVirtualRegisterKilled(Reg, NewMI);
254             if (VI.removeKill(MI))
255               VI.Kills.push_back(NewMI);
256             break;
257           }
258         }
259       }
260     }
261   }
262
263   MFI->insert(MBBI, NewMIs[1]);
264   MFI->insert(MBBI, NewMIs[0]);
265   return NewMIs[0];
266 }
267
268 // Branch analysis.
269 bool
270 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
271                                 MachineBasicBlock *&FBB,
272                                 SmallVectorImpl<MachineOperand> &Cond,
273                                 bool AllowModify) const {
274   // If the block has no terminators, it just falls into the block after it.
275   MachineBasicBlock::iterator I = MBB.end();
276   if (I == MBB.begin())
277     return false;
278   --I;
279   while (I->isDebugValue()) {
280     if (I == MBB.begin())
281       return false;
282     --I;
283   }
284   if (!isUnpredicatedTerminator(I))
285     return false;
286
287   // Get the last instruction in the block.
288   MachineInstr *LastInst = I;
289
290   // If there is only one terminator instruction, process it.
291   unsigned LastOpc = LastInst->getOpcode();
292   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
293     if (isUncondBranchOpcode(LastOpc)) {
294       TBB = LastInst->getOperand(0).getMBB();
295       return false;
296     }
297     if (isCondBranchOpcode(LastOpc)) {
298       // Block ends with fall-through condbranch.
299       TBB = LastInst->getOperand(0).getMBB();
300       Cond.push_back(LastInst->getOperand(1));
301       Cond.push_back(LastInst->getOperand(2));
302       return false;
303     }
304     return true;  // Can't handle indirect branch.
305   }
306
307   // Get the instruction before it if it is a terminator.
308   MachineInstr *SecondLastInst = I;
309   unsigned SecondLastOpc = SecondLastInst->getOpcode();
310
311   // If AllowModify is true and the block ends with two or more unconditional
312   // branches, delete all but the first unconditional branch.
313   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
314     while (isUncondBranchOpcode(SecondLastOpc)) {
315       LastInst->eraseFromParent();
316       LastInst = SecondLastInst;
317       LastOpc = LastInst->getOpcode();
318       if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
319         // Return now the only terminator is an unconditional branch.
320         TBB = LastInst->getOperand(0).getMBB();
321         return false;
322       } else {
323         SecondLastInst = I;
324         SecondLastOpc = SecondLastInst->getOpcode();
325       }
326     }
327   }
328
329   // If there are three terminators, we don't know what sort of block this is.
330   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
331     return true;
332
333   // If the block ends with a B and a Bcc, handle it.
334   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
335     TBB =  SecondLastInst->getOperand(0).getMBB();
336     Cond.push_back(SecondLastInst->getOperand(1));
337     Cond.push_back(SecondLastInst->getOperand(2));
338     FBB = LastInst->getOperand(0).getMBB();
339     return false;
340   }
341
342   // If the block ends with two unconditional branches, handle it.  The second
343   // one is not executed, so remove it.
344   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
345     TBB = SecondLastInst->getOperand(0).getMBB();
346     I = LastInst;
347     if (AllowModify)
348       I->eraseFromParent();
349     return false;
350   }
351
352   // ...likewise if it ends with a branch table followed by an unconditional
353   // branch. The branch folder can create these, and we must get rid of them for
354   // correctness of Thumb constant islands.
355   if ((isJumpTableBranchOpcode(SecondLastOpc) ||
356        isIndirectBranchOpcode(SecondLastOpc)) &&
357       isUncondBranchOpcode(LastOpc)) {
358     I = LastInst;
359     if (AllowModify)
360       I->eraseFromParent();
361     return true;
362   }
363
364   // Otherwise, can't handle this.
365   return true;
366 }
367
368
369 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
370   MachineBasicBlock::iterator I = MBB.end();
371   if (I == MBB.begin()) return 0;
372   --I;
373   while (I->isDebugValue()) {
374     if (I == MBB.begin())
375       return 0;
376     --I;
377   }
378   if (!isUncondBranchOpcode(I->getOpcode()) &&
379       !isCondBranchOpcode(I->getOpcode()))
380     return 0;
381
382   // Remove the branch.
383   I->eraseFromParent();
384
385   I = MBB.end();
386
387   if (I == MBB.begin()) return 1;
388   --I;
389   if (!isCondBranchOpcode(I->getOpcode()))
390     return 1;
391
392   // Remove the branch.
393   I->eraseFromParent();
394   return 2;
395 }
396
397 unsigned
398 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
399                                MachineBasicBlock *FBB,
400                                const SmallVectorImpl<MachineOperand> &Cond,
401                                DebugLoc DL) const {
402   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
403   int BOpc   = !AFI->isThumbFunction()
404     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
405   int BccOpc = !AFI->isThumbFunction()
406     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
407   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
408
409   // Shouldn't be a fall through.
410   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
411   assert((Cond.size() == 2 || Cond.size() == 0) &&
412          "ARM branch conditions have two components!");
413
414   if (FBB == 0) {
415     if (Cond.empty()) { // Unconditional branch?
416       if (isThumb)
417         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
418       else
419         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
420     } else
421       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
422         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
423     return 1;
424   }
425
426   // Two-way conditional branch.
427   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
428     .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
429   if (isThumb)
430     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
431   else
432     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
433   return 2;
434 }
435
436 bool ARMBaseInstrInfo::
437 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
438   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
439   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
440   return false;
441 }
442
443 bool ARMBaseInstrInfo::
444 PredicateInstruction(MachineInstr *MI,
445                      const SmallVectorImpl<MachineOperand> &Pred) const {
446   unsigned Opc = MI->getOpcode();
447   if (isUncondBranchOpcode(Opc)) {
448     MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
449     MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
450     MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
451     return true;
452   }
453
454   int PIdx = MI->findFirstPredOperandIdx();
455   if (PIdx != -1) {
456     MachineOperand &PMO = MI->getOperand(PIdx);
457     PMO.setImm(Pred[0].getImm());
458     MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
459     return true;
460   }
461   return false;
462 }
463
464 bool ARMBaseInstrInfo::
465 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
466                   const SmallVectorImpl<MachineOperand> &Pred2) const {
467   if (Pred1.size() > 2 || Pred2.size() > 2)
468     return false;
469
470   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
471   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
472   if (CC1 == CC2)
473     return true;
474
475   switch (CC1) {
476   default:
477     return false;
478   case ARMCC::AL:
479     return true;
480   case ARMCC::HS:
481     return CC2 == ARMCC::HI;
482   case ARMCC::LS:
483     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
484   case ARMCC::GE:
485     return CC2 == ARMCC::GT;
486   case ARMCC::LE:
487     return CC2 == ARMCC::LT;
488   }
489 }
490
491 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
492                                     std::vector<MachineOperand> &Pred) const {
493   // FIXME: This confuses implicit_def with optional CPSR def.
494   const MCInstrDesc &MCID = MI->getDesc();
495   if (!MCID.getImplicitDefs() && !MCID.hasOptionalDef())
496     return false;
497
498   bool Found = false;
499   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
500     const MachineOperand &MO = MI->getOperand(i);
501     if (MO.isReg() && MO.getReg() == ARM::CPSR) {
502       Pred.push_back(MO);
503       Found = true;
504     }
505   }
506
507   return Found;
508 }
509
510 /// isPredicable - Return true if the specified instruction can be predicated.
511 /// By default, this returns true for every instruction with a
512 /// PredicateOperand.
513 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
514   const MCInstrDesc &MCID = MI->getDesc();
515   if (!MCID.isPredicable())
516     return false;
517
518   if ((MCID.TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
519     ARMFunctionInfo *AFI =
520       MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
521     return AFI->isThumb2Function();
522   }
523   return true;
524 }
525
526 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
527 LLVM_ATTRIBUTE_NOINLINE
528 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
529                                 unsigned JTI);
530 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
531                                 unsigned JTI) {
532   assert(JTI < JT.size());
533   return JT[JTI].MBBs.size();
534 }
535
536 /// GetInstSize - Return the size of the specified MachineInstr.
537 ///
538 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
539   const MachineBasicBlock &MBB = *MI->getParent();
540   const MachineFunction *MF = MBB.getParent();
541   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
542
543   const MCInstrDesc &MCID = MI->getDesc();
544   if (MCID.getSize())
545     return MCID.getSize();
546
547     // If this machine instr is an inline asm, measure it.
548     if (MI->getOpcode() == ARM::INLINEASM)
549       return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
550     if (MI->isLabel())
551       return 0;
552   unsigned Opc = MI->getOpcode();
553     switch (Opc) {
554     case TargetOpcode::IMPLICIT_DEF:
555     case TargetOpcode::KILL:
556     case TargetOpcode::PROLOG_LABEL:
557     case TargetOpcode::EH_LABEL:
558     case TargetOpcode::DBG_VALUE:
559       return 0;
560     case ARM::MOVi16_ga_pcrel:
561     case ARM::MOVTi16_ga_pcrel:
562     case ARM::t2MOVi16_ga_pcrel:
563     case ARM::t2MOVTi16_ga_pcrel:
564       return 4;
565     case ARM::MOVi32imm:
566     case ARM::t2MOVi32imm:
567       return 8;
568     case ARM::CONSTPOOL_ENTRY:
569       // If this machine instr is a constant pool entry, its size is recorded as
570       // operand #2.
571       return MI->getOperand(2).getImm();
572     case ARM::Int_eh_sjlj_longjmp:
573       return 16;
574     case ARM::tInt_eh_sjlj_longjmp:
575       return 10;
576     case ARM::Int_eh_sjlj_setjmp:
577     case ARM::Int_eh_sjlj_setjmp_nofp:
578       return 20;
579     case ARM::tInt_eh_sjlj_setjmp:
580     case ARM::t2Int_eh_sjlj_setjmp:
581     case ARM::t2Int_eh_sjlj_setjmp_nofp:
582       return 12;
583     case ARM::BR_JTr:
584     case ARM::BR_JTm:
585     case ARM::BR_JTadd:
586     case ARM::tBR_JTr:
587     case ARM::t2BR_JT:
588     case ARM::t2TBB_JT:
589     case ARM::t2TBH_JT: {
590       // These are jumptable branches, i.e. a branch followed by an inlined
591       // jumptable. The size is 4 + 4 * number of entries. For TBB, each
592       // entry is one byte; TBH two byte each.
593       unsigned EntrySize = (Opc == ARM::t2TBB_JT)
594         ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
595       unsigned NumOps = MCID.getNumOperands();
596       MachineOperand JTOP =
597         MI->getOperand(NumOps - (MCID.isPredicable() ? 3 : 2));
598       unsigned JTI = JTOP.getIndex();
599       const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
600       assert(MJTI != 0);
601       const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
602       assert(JTI < JT.size());
603       // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
604       // 4 aligned. The assembler / linker may add 2 byte padding just before
605       // the JT entries.  The size does not include this padding; the
606       // constant islands pass does separate bookkeeping for it.
607       // FIXME: If we know the size of the function is less than (1 << 16) *2
608       // bytes, we can use 16-bit entries instead. Then there won't be an
609       // alignment issue.
610       unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
611       unsigned NumEntries = getNumJTEntries(JT, JTI);
612       if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
613         // Make sure the instruction that follows TBB is 2-byte aligned.
614         // FIXME: Constant island pass should insert an "ALIGN" instruction
615         // instead.
616         ++NumEntries;
617       return NumEntries * EntrySize + InstSize;
618     }
619     default:
620       // Otherwise, pseudo-instruction sizes are zero.
621       return 0;
622     }
623   return 0; // Not reached
624 }
625
626 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
627                                    MachineBasicBlock::iterator I, DebugLoc DL,
628                                    unsigned DestReg, unsigned SrcReg,
629                                    bool KillSrc) const {
630   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
631   bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
632
633   if (GPRDest && GPRSrc) {
634     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
635                                   .addReg(SrcReg, getKillRegState(KillSrc))));
636     return;
637   }
638
639   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
640   bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
641
642   unsigned Opc = 0;
643   if (SPRDest && SPRSrc)
644     Opc = ARM::VMOVS;
645   else if (GPRDest && SPRSrc)
646     Opc = ARM::VMOVRS;
647   else if (SPRDest && GPRSrc)
648     Opc = ARM::VMOVSR;
649   else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
650     Opc = ARM::VMOVD;
651   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
652     Opc = ARM::VORRq;
653
654   if (Opc) {
655     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
656     MIB.addReg(SrcReg, getKillRegState(KillSrc));
657     if (Opc == ARM::VORRq)
658       MIB.addReg(SrcReg, getKillRegState(KillSrc));
659     AddDefaultPred(MIB);
660     return;
661   }
662
663   // Generate instructions for VMOVQQ and VMOVQQQQ pseudos in place.
664   if (ARM::QQPRRegClass.contains(DestReg, SrcReg) ||
665       ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
666     const TargetRegisterInfo *TRI = &getRegisterInfo();
667     assert(ARM::qsub_0 + 3 == ARM::qsub_3 && "Expected contiguous enum.");
668     unsigned EndSubReg = ARM::QQPRRegClass.contains(DestReg, SrcReg) ?
669       ARM::qsub_1 : ARM::qsub_3;
670     for (unsigned i = ARM::qsub_0, e = EndSubReg + 1; i != e; ++i) {
671       unsigned Dst = TRI->getSubReg(DestReg, i);
672       unsigned Src = TRI->getSubReg(SrcReg, i);
673       MachineInstrBuilder Mov =
674         AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VORRq))
675                        .addReg(Dst, RegState::Define)
676                        .addReg(Src, getKillRegState(KillSrc))
677                        .addReg(Src, getKillRegState(KillSrc)));
678       if (i == EndSubReg) {
679         Mov->addRegisterDefined(DestReg, TRI);
680         if (KillSrc)
681           Mov->addRegisterKilled(SrcReg, TRI);
682       }
683     }
684     return;
685   }
686   llvm_unreachable("Impossible reg-to-reg copy");
687 }
688
689 static const
690 MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
691                              unsigned Reg, unsigned SubIdx, unsigned State,
692                              const TargetRegisterInfo *TRI) {
693   if (!SubIdx)
694     return MIB.addReg(Reg, State);
695
696   if (TargetRegisterInfo::isPhysicalRegister(Reg))
697     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
698   return MIB.addReg(Reg, State, SubIdx);
699 }
700
701 void ARMBaseInstrInfo::
702 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
703                     unsigned SrcReg, bool isKill, int FI,
704                     const TargetRegisterClass *RC,
705                     const TargetRegisterInfo *TRI) const {
706   DebugLoc DL;
707   if (I != MBB.end()) DL = I->getDebugLoc();
708   MachineFunction &MF = *MBB.getParent();
709   MachineFrameInfo &MFI = *MF.getFrameInfo();
710   unsigned Align = MFI.getObjectAlignment(FI);
711
712   MachineMemOperand *MMO =
713     MF.getMachineMemOperand(MachinePointerInfo(
714                                          PseudoSourceValue::getFixedStack(FI)),
715                             MachineMemOperand::MOStore,
716                             MFI.getObjectSize(FI),
717                             Align);
718
719   switch (RC->getSize()) {
720     case 4:
721       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
722         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
723                    .addReg(SrcReg, getKillRegState(isKill))
724                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
725       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
726         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
727                    .addReg(SrcReg, getKillRegState(isKill))
728                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
729       } else
730         llvm_unreachable("Unknown reg class!");
731       break;
732     case 8:
733       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
734         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
735                    .addReg(SrcReg, getKillRegState(isKill))
736                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
737       } else
738         llvm_unreachable("Unknown reg class!");
739       break;
740     case 16:
741       if (ARM::QPRRegClass.hasSubClassEq(RC)) {
742         if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
743           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
744                      .addFrameIndex(FI).addImm(16)
745                      .addReg(SrcReg, getKillRegState(isKill))
746                      .addMemOperand(MMO));
747         } else {
748           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
749                      .addReg(SrcReg, getKillRegState(isKill))
750                      .addFrameIndex(FI)
751                      .addMemOperand(MMO));
752         }
753       } else
754         llvm_unreachable("Unknown reg class!");
755       break;
756     case 32:
757       if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
758         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
759           // FIXME: It's possible to only store part of the QQ register if the
760           // spilled def has a sub-register index.
761           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
762                      .addFrameIndex(FI).addImm(16)
763                      .addReg(SrcReg, getKillRegState(isKill))
764                      .addMemOperand(MMO));
765         } else {
766           MachineInstrBuilder MIB =
767           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
768                        .addFrameIndex(FI))
769                        .addMemOperand(MMO);
770           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
771           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
772           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
773                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
774         }
775       } else
776         llvm_unreachable("Unknown reg class!");
777       break;
778     case 64:
779       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
780         MachineInstrBuilder MIB =
781           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
782                          .addFrameIndex(FI))
783                          .addMemOperand(MMO);
784         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
785         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
786         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
787         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
788         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
789         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
790         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
791               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
792       } else
793         llvm_unreachable("Unknown reg class!");
794       break;
795     default:
796       llvm_unreachable("Unknown reg class!");
797   }
798 }
799
800 unsigned
801 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
802                                      int &FrameIndex) const {
803   switch (MI->getOpcode()) {
804   default: break;
805   case ARM::STRrs:
806   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
807     if (MI->getOperand(1).isFI() &&
808         MI->getOperand(2).isReg() &&
809         MI->getOperand(3).isImm() &&
810         MI->getOperand(2).getReg() == 0 &&
811         MI->getOperand(3).getImm() == 0) {
812       FrameIndex = MI->getOperand(1).getIndex();
813       return MI->getOperand(0).getReg();
814     }
815     break;
816   case ARM::STRi12:
817   case ARM::t2STRi12:
818   case ARM::tSTRspi:
819   case ARM::VSTRD:
820   case ARM::VSTRS:
821     if (MI->getOperand(1).isFI() &&
822         MI->getOperand(2).isImm() &&
823         MI->getOperand(2).getImm() == 0) {
824       FrameIndex = MI->getOperand(1).getIndex();
825       return MI->getOperand(0).getReg();
826     }
827     break;
828   case ARM::VST1q64Pseudo:
829     if (MI->getOperand(0).isFI() &&
830         MI->getOperand(2).getSubReg() == 0) {
831       FrameIndex = MI->getOperand(0).getIndex();
832       return MI->getOperand(2).getReg();
833     }
834     break;
835   case ARM::VSTMQIA:
836     if (MI->getOperand(1).isFI() &&
837         MI->getOperand(0).getSubReg() == 0) {
838       FrameIndex = MI->getOperand(1).getIndex();
839       return MI->getOperand(0).getReg();
840     }
841     break;
842   }
843
844   return 0;
845 }
846
847 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
848                                                     int &FrameIndex) const {
849   const MachineMemOperand *Dummy;
850   return MI->getDesc().mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
851 }
852
853 void ARMBaseInstrInfo::
854 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
855                      unsigned DestReg, int FI,
856                      const TargetRegisterClass *RC,
857                      const TargetRegisterInfo *TRI) const {
858   DebugLoc DL;
859   if (I != MBB.end()) DL = I->getDebugLoc();
860   MachineFunction &MF = *MBB.getParent();
861   MachineFrameInfo &MFI = *MF.getFrameInfo();
862   unsigned Align = MFI.getObjectAlignment(FI);
863   MachineMemOperand *MMO =
864     MF.getMachineMemOperand(
865                     MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
866                             MachineMemOperand::MOLoad,
867                             MFI.getObjectSize(FI),
868                             Align);
869
870   switch (RC->getSize()) {
871   case 4:
872     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
873       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
874                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
875
876     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
877       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
878                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
879     } else
880       llvm_unreachable("Unknown reg class!");
881     break;
882   case 8:
883     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
884       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
885                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
886     } else
887       llvm_unreachable("Unknown reg class!");
888     break;
889   case 16:
890     if (ARM::QPRRegClass.hasSubClassEq(RC)) {
891       if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
892         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
893                      .addFrameIndex(FI).addImm(16)
894                      .addMemOperand(MMO));
895       } else {
896         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
897                        .addFrameIndex(FI)
898                        .addMemOperand(MMO));
899       }
900     } else
901       llvm_unreachable("Unknown reg class!");
902     break;
903   case 32:
904     if (ARM::QQPRRegClass.hasSubClassEq(RC)) {
905       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
906         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
907                      .addFrameIndex(FI).addImm(16)
908                      .addMemOperand(MMO));
909       } else {
910         MachineInstrBuilder MIB =
911         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
912                        .addFrameIndex(FI))
913                        .addMemOperand(MMO);
914         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
915         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
916         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
917         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
918         MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
919       }
920     } else
921       llvm_unreachable("Unknown reg class!");
922     break;
923   case 64:
924     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
925       MachineInstrBuilder MIB =
926       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
927                      .addFrameIndex(FI))
928                      .addMemOperand(MMO);
929       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
930       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
931       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
932       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
933       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
934       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
935       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
936       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
937       MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
938     } else
939       llvm_unreachable("Unknown reg class!");
940     break;
941   default:
942     llvm_unreachable("Unknown regclass!");
943   }
944 }
945
946 unsigned
947 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
948                                       int &FrameIndex) const {
949   switch (MI->getOpcode()) {
950   default: break;
951   case ARM::LDRrs:
952   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
953     if (MI->getOperand(1).isFI() &&
954         MI->getOperand(2).isReg() &&
955         MI->getOperand(3).isImm() &&
956         MI->getOperand(2).getReg() == 0 &&
957         MI->getOperand(3).getImm() == 0) {
958       FrameIndex = MI->getOperand(1).getIndex();
959       return MI->getOperand(0).getReg();
960     }
961     break;
962   case ARM::LDRi12:
963   case ARM::t2LDRi12:
964   case ARM::tLDRspi:
965   case ARM::VLDRD:
966   case ARM::VLDRS:
967     if (MI->getOperand(1).isFI() &&
968         MI->getOperand(2).isImm() &&
969         MI->getOperand(2).getImm() == 0) {
970       FrameIndex = MI->getOperand(1).getIndex();
971       return MI->getOperand(0).getReg();
972     }
973     break;
974   case ARM::VLD1q64Pseudo:
975     if (MI->getOperand(1).isFI() &&
976         MI->getOperand(0).getSubReg() == 0) {
977       FrameIndex = MI->getOperand(1).getIndex();
978       return MI->getOperand(0).getReg();
979     }
980     break;
981   case ARM::VLDMQIA:
982     if (MI->getOperand(1).isFI() &&
983         MI->getOperand(0).getSubReg() == 0) {
984       FrameIndex = MI->getOperand(1).getIndex();
985       return MI->getOperand(0).getReg();
986     }
987     break;
988   }
989
990   return 0;
991 }
992
993 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
994                                              int &FrameIndex) const {
995   const MachineMemOperand *Dummy;
996   return MI->getDesc().mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
997 }
998
999 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
1000   // This hook gets to expand COPY instructions before they become
1001   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1002   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1003   // changed into a VORR that can go down the NEON pipeline.
1004   if (!WidenVMOVS || !MI->isCopy())
1005     return false;
1006
1007   // Look for a copy between even S-registers.  That is where we keep floats
1008   // when using NEON v2f32 instructions for f32 arithmetic.
1009   unsigned DstRegS = MI->getOperand(0).getReg();
1010   unsigned SrcRegS = MI->getOperand(1).getReg();
1011   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1012     return false;
1013
1014   const TargetRegisterInfo *TRI = &getRegisterInfo();
1015   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1016                                               &ARM::DPRRegClass);
1017   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1018                                               &ARM::DPRRegClass);
1019   if (!DstRegD || !SrcRegD)
1020     return false;
1021
1022   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1023   // legal if the COPY already defines the full DstRegD, and it isn't a
1024   // sub-register insertion.
1025   if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1026     return false;
1027
1028   // A dead copy shouldn't show up here, but reject it just in case.
1029   if (MI->getOperand(0).isDead())
1030     return false;
1031
1032   // All clear, widen the COPY.
1033   DEBUG(dbgs() << "widening:    " << *MI);
1034
1035   // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
1036   // or some other super-register.
1037   int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1038   if (ImpDefIdx != -1)
1039     MI->RemoveOperand(ImpDefIdx);
1040
1041   // Change the opcode and operands.
1042   MI->setDesc(get(ARM::VMOVD));
1043   MI->getOperand(0).setReg(DstRegD);
1044   MI->getOperand(1).setReg(SrcRegD);
1045   AddDefaultPred(MachineInstrBuilder(MI));
1046
1047   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1048   // register scavenger and machine verifier, so we need to indicate that we
1049   // are reading an undefined value from SrcRegD, but a proper value from
1050   // SrcRegS.
1051   MI->getOperand(1).setIsUndef();
1052   MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
1053
1054   // SrcRegD may actually contain an unrelated value in the ssub_1
1055   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1056   if (MI->getOperand(1).isKill()) {
1057     MI->getOperand(1).setIsKill(false);
1058     MI->addRegisterKilled(SrcRegS, TRI, true);
1059   }
1060
1061   DEBUG(dbgs() << "replaced by: " << *MI);
1062   return true;
1063 }
1064
1065 MachineInstr*
1066 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
1067                                            int FrameIx, uint64_t Offset,
1068                                            const MDNode *MDPtr,
1069                                            DebugLoc DL) const {
1070   MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
1071     .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
1072   return &*MIB;
1073 }
1074
1075 /// Create a copy of a const pool value. Update CPI to the new index and return
1076 /// the label UID.
1077 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1078   MachineConstantPool *MCP = MF.getConstantPool();
1079   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1080
1081   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1082   assert(MCPE.isMachineConstantPoolEntry() &&
1083          "Expecting a machine constantpool entry!");
1084   ARMConstantPoolValue *ACPV =
1085     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1086
1087   unsigned PCLabelId = AFI->createPICLabelUId();
1088   ARMConstantPoolValue *NewCPV = 0;
1089   // FIXME: The below assumes PIC relocation model and that the function
1090   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1091   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1092   // instructions, so that's probably OK, but is PIC always correct when
1093   // we get here?
1094   if (ACPV->isGlobalValue())
1095     NewCPV = ARMConstantPoolConstant::
1096       Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1097              ARMCP::CPValue, 4);
1098   else if (ACPV->isExtSymbol())
1099     NewCPV = ARMConstantPoolSymbol::
1100       Create(MF.getFunction()->getContext(),
1101              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1102   else if (ACPV->isBlockAddress())
1103     NewCPV = ARMConstantPoolConstant::
1104       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1105              ARMCP::CPBlockAddress, 4);
1106   else if (ACPV->isLSDA())
1107     NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1108                                              ARMCP::CPLSDA, 4);
1109   else if (ACPV->isMachineBasicBlock())
1110     NewCPV = ARMConstantPoolMBB::
1111       Create(MF.getFunction()->getContext(),
1112              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1113   else
1114     llvm_unreachable("Unexpected ARM constantpool value type!!");
1115   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1116   return PCLabelId;
1117 }
1118
1119 void ARMBaseInstrInfo::
1120 reMaterialize(MachineBasicBlock &MBB,
1121               MachineBasicBlock::iterator I,
1122               unsigned DestReg, unsigned SubIdx,
1123               const MachineInstr *Orig,
1124               const TargetRegisterInfo &TRI) const {
1125   unsigned Opcode = Orig->getOpcode();
1126   switch (Opcode) {
1127   default: {
1128     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1129     MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1130     MBB.insert(I, MI);
1131     break;
1132   }
1133   case ARM::tLDRpci_pic:
1134   case ARM::t2LDRpci_pic: {
1135     MachineFunction &MF = *MBB.getParent();
1136     unsigned CPI = Orig->getOperand(1).getIndex();
1137     unsigned PCLabelId = duplicateCPV(MF, CPI);
1138     MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1139                                       DestReg)
1140       .addConstantPoolIndex(CPI).addImm(PCLabelId);
1141     MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1142     break;
1143   }
1144   }
1145 }
1146
1147 MachineInstr *
1148 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1149   MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1150   switch(Orig->getOpcode()) {
1151   case ARM::tLDRpci_pic:
1152   case ARM::t2LDRpci_pic: {
1153     unsigned CPI = Orig->getOperand(1).getIndex();
1154     unsigned PCLabelId = duplicateCPV(MF, CPI);
1155     Orig->getOperand(1).setIndex(CPI);
1156     Orig->getOperand(2).setImm(PCLabelId);
1157     break;
1158   }
1159   }
1160   return MI;
1161 }
1162
1163 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1164                                         const MachineInstr *MI1,
1165                                         const MachineRegisterInfo *MRI) const {
1166   int Opcode = MI0->getOpcode();
1167   if (Opcode == ARM::t2LDRpci ||
1168       Opcode == ARM::t2LDRpci_pic ||
1169       Opcode == ARM::tLDRpci ||
1170       Opcode == ARM::tLDRpci_pic ||
1171       Opcode == ARM::MOV_ga_dyn ||
1172       Opcode == ARM::MOV_ga_pcrel ||
1173       Opcode == ARM::MOV_ga_pcrel_ldr ||
1174       Opcode == ARM::t2MOV_ga_dyn ||
1175       Opcode == ARM::t2MOV_ga_pcrel) {
1176     if (MI1->getOpcode() != Opcode)
1177       return false;
1178     if (MI0->getNumOperands() != MI1->getNumOperands())
1179       return false;
1180
1181     const MachineOperand &MO0 = MI0->getOperand(1);
1182     const MachineOperand &MO1 = MI1->getOperand(1);
1183     if (MO0.getOffset() != MO1.getOffset())
1184       return false;
1185
1186     if (Opcode == ARM::MOV_ga_dyn ||
1187         Opcode == ARM::MOV_ga_pcrel ||
1188         Opcode == ARM::MOV_ga_pcrel_ldr ||
1189         Opcode == ARM::t2MOV_ga_dyn ||
1190         Opcode == ARM::t2MOV_ga_pcrel)
1191       // Ignore the PC labels.
1192       return MO0.getGlobal() == MO1.getGlobal();
1193
1194     const MachineFunction *MF = MI0->getParent()->getParent();
1195     const MachineConstantPool *MCP = MF->getConstantPool();
1196     int CPI0 = MO0.getIndex();
1197     int CPI1 = MO1.getIndex();
1198     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1199     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1200     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1201     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1202     if (isARMCP0 && isARMCP1) {
1203       ARMConstantPoolValue *ACPV0 =
1204         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1205       ARMConstantPoolValue *ACPV1 =
1206         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1207       return ACPV0->hasSameValue(ACPV1);
1208     } else if (!isARMCP0 && !isARMCP1) {
1209       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1210     }
1211     return false;
1212   } else if (Opcode == ARM::PICLDR) {
1213     if (MI1->getOpcode() != Opcode)
1214       return false;
1215     if (MI0->getNumOperands() != MI1->getNumOperands())
1216       return false;
1217
1218     unsigned Addr0 = MI0->getOperand(1).getReg();
1219     unsigned Addr1 = MI1->getOperand(1).getReg();
1220     if (Addr0 != Addr1) {
1221       if (!MRI ||
1222           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1223           !TargetRegisterInfo::isVirtualRegister(Addr1))
1224         return false;
1225
1226       // This assumes SSA form.
1227       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1228       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1229       // Check if the loaded value, e.g. a constantpool of a global address, are
1230       // the same.
1231       if (!produceSameValue(Def0, Def1, MRI))
1232         return false;
1233     }
1234
1235     for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1236       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1237       const MachineOperand &MO0 = MI0->getOperand(i);
1238       const MachineOperand &MO1 = MI1->getOperand(i);
1239       if (!MO0.isIdenticalTo(MO1))
1240         return false;
1241     }
1242     return true;
1243   }
1244
1245   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1246 }
1247
1248 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1249 /// determine if two loads are loading from the same base address. It should
1250 /// only return true if the base pointers are the same and the only differences
1251 /// between the two addresses is the offset. It also returns the offsets by
1252 /// reference.
1253 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1254                                                int64_t &Offset1,
1255                                                int64_t &Offset2) const {
1256   // Don't worry about Thumb: just ARM and Thumb2.
1257   if (Subtarget.isThumb1Only()) return false;
1258
1259   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1260     return false;
1261
1262   switch (Load1->getMachineOpcode()) {
1263   default:
1264     return false;
1265   case ARM::LDRi12:
1266   case ARM::LDRBi12:
1267   case ARM::LDRD:
1268   case ARM::LDRH:
1269   case ARM::LDRSB:
1270   case ARM::LDRSH:
1271   case ARM::VLDRD:
1272   case ARM::VLDRS:
1273   case ARM::t2LDRi8:
1274   case ARM::t2LDRDi8:
1275   case ARM::t2LDRSHi8:
1276   case ARM::t2LDRi12:
1277   case ARM::t2LDRSHi12:
1278     break;
1279   }
1280
1281   switch (Load2->getMachineOpcode()) {
1282   default:
1283     return false;
1284   case ARM::LDRi12:
1285   case ARM::LDRBi12:
1286   case ARM::LDRD:
1287   case ARM::LDRH:
1288   case ARM::LDRSB:
1289   case ARM::LDRSH:
1290   case ARM::VLDRD:
1291   case ARM::VLDRS:
1292   case ARM::t2LDRi8:
1293   case ARM::t2LDRDi8:
1294   case ARM::t2LDRSHi8:
1295   case ARM::t2LDRi12:
1296   case ARM::t2LDRSHi12:
1297     break;
1298   }
1299
1300   // Check if base addresses and chain operands match.
1301   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1302       Load1->getOperand(4) != Load2->getOperand(4))
1303     return false;
1304
1305   // Index should be Reg0.
1306   if (Load1->getOperand(3) != Load2->getOperand(3))
1307     return false;
1308
1309   // Determine the offsets.
1310   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1311       isa<ConstantSDNode>(Load2->getOperand(1))) {
1312     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1313     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1314     return true;
1315   }
1316
1317   return false;
1318 }
1319
1320 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1321 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1322 /// be scheduled togther. On some targets if two loads are loading from
1323 /// addresses in the same cache line, it's better if they are scheduled
1324 /// together. This function takes two integers that represent the load offsets
1325 /// from the common base address. It returns true if it decides it's desirable
1326 /// to schedule the two loads together. "NumLoads" is the number of loads that
1327 /// have already been scheduled after Load1.
1328 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1329                                                int64_t Offset1, int64_t Offset2,
1330                                                unsigned NumLoads) const {
1331   // Don't worry about Thumb: just ARM and Thumb2.
1332   if (Subtarget.isThumb1Only()) return false;
1333
1334   assert(Offset2 > Offset1);
1335
1336   if ((Offset2 - Offset1) / 8 > 64)
1337     return false;
1338
1339   if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1340     return false;  // FIXME: overly conservative?
1341
1342   // Four loads in a row should be sufficient.
1343   if (NumLoads >= 3)
1344     return false;
1345
1346   return true;
1347 }
1348
1349 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1350                                             const MachineBasicBlock *MBB,
1351                                             const MachineFunction &MF) const {
1352   // Debug info is never a scheduling boundary. It's necessary to be explicit
1353   // due to the special treatment of IT instructions below, otherwise a
1354   // dbg_value followed by an IT will result in the IT instruction being
1355   // considered a scheduling hazard, which is wrong. It should be the actual
1356   // instruction preceding the dbg_value instruction(s), just like it is
1357   // when debug info is not present.
1358   if (MI->isDebugValue())
1359     return false;
1360
1361   // Terminators and labels can't be scheduled around.
1362   if (MI->getDesc().isTerminator() || MI->isLabel())
1363     return true;
1364
1365   // Treat the start of the IT block as a scheduling boundary, but schedule
1366   // t2IT along with all instructions following it.
1367   // FIXME: This is a big hammer. But the alternative is to add all potential
1368   // true and anti dependencies to IT block instructions as implicit operands
1369   // to the t2IT instruction. The added compile time and complexity does not
1370   // seem worth it.
1371   MachineBasicBlock::const_iterator I = MI;
1372   // Make sure to skip any dbg_value instructions
1373   while (++I != MBB->end() && I->isDebugValue())
1374     ;
1375   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1376     return true;
1377
1378   // Don't attempt to schedule around any instruction that defines
1379   // a stack-oriented pointer, as it's unlikely to be profitable. This
1380   // saves compile time, because it doesn't require every single
1381   // stack slot reference to depend on the instruction that does the
1382   // modification.
1383   if (MI->definesRegister(ARM::SP))
1384     return true;
1385
1386   return false;
1387 }
1388
1389 bool ARMBaseInstrInfo::
1390 isProfitableToIfCvt(MachineBasicBlock &MBB,
1391                     unsigned NumCycles, unsigned ExtraPredCycles,
1392                     const BranchProbability &Probability) const {
1393   if (!NumCycles)
1394     return false;
1395
1396   // Attempt to estimate the relative costs of predication versus branching.
1397   unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1398   UnpredCost /= Probability.getDenominator();
1399   UnpredCost += 1; // The branch itself
1400   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1401
1402   return (NumCycles + ExtraPredCycles) <= UnpredCost;
1403 }
1404
1405 bool ARMBaseInstrInfo::
1406 isProfitableToIfCvt(MachineBasicBlock &TMBB,
1407                     unsigned TCycles, unsigned TExtra,
1408                     MachineBasicBlock &FMBB,
1409                     unsigned FCycles, unsigned FExtra,
1410                     const BranchProbability &Probability) const {
1411   if (!TCycles || !FCycles)
1412     return false;
1413
1414   // Attempt to estimate the relative costs of predication versus branching.
1415   unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1416   TUnpredCost /= Probability.getDenominator();
1417
1418   uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1419   unsigned FUnpredCost = Comp * FCycles;
1420   FUnpredCost /= Probability.getDenominator();
1421
1422   unsigned UnpredCost = TUnpredCost + FUnpredCost;
1423   UnpredCost += 1; // The branch itself
1424   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1425
1426   return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1427 }
1428
1429 /// getInstrPredicate - If instruction is predicated, returns its predicate
1430 /// condition, otherwise returns AL. It also returns the condition code
1431 /// register by reference.
1432 ARMCC::CondCodes
1433 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1434   int PIdx = MI->findFirstPredOperandIdx();
1435   if (PIdx == -1) {
1436     PredReg = 0;
1437     return ARMCC::AL;
1438   }
1439
1440   PredReg = MI->getOperand(PIdx+1).getReg();
1441   return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1442 }
1443
1444
1445 int llvm::getMatchingCondBranchOpcode(int Opc) {
1446   if (Opc == ARM::B)
1447     return ARM::Bcc;
1448   else if (Opc == ARM::tB)
1449     return ARM::tBcc;
1450   else if (Opc == ARM::t2B)
1451       return ARM::t2Bcc;
1452
1453   llvm_unreachable("Unknown unconditional branch opcode!");
1454   return 0;
1455 }
1456
1457
1458 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1459 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
1460 /// def operand.
1461 ///
1462 /// This will go away once we can teach tblgen how to set the optional CPSR def
1463 /// operand itself.
1464 struct AddSubFlagsOpcodePair {
1465   unsigned PseudoOpc;
1466   unsigned MachineOpc;
1467 };
1468
1469 static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1470   {ARM::ADDSri, ARM::ADDri},
1471   {ARM::ADDSrr, ARM::ADDrr},
1472   {ARM::ADDSrsi, ARM::ADDrsi},
1473   {ARM::ADDSrsr, ARM::ADDrsr},
1474
1475   {ARM::SUBSri, ARM::SUBri},
1476   {ARM::SUBSrr, ARM::SUBrr},
1477   {ARM::SUBSrsi, ARM::SUBrsi},
1478   {ARM::SUBSrsr, ARM::SUBrsr},
1479
1480   {ARM::RSBSri, ARM::RSBri},
1481   {ARM::RSBSrsi, ARM::RSBrsi},
1482   {ARM::RSBSrsr, ARM::RSBrsr},
1483
1484   {ARM::t2ADDSri, ARM::t2ADDri},
1485   {ARM::t2ADDSrr, ARM::t2ADDrr},
1486   {ARM::t2ADDSrs, ARM::t2ADDrs},
1487
1488   {ARM::t2SUBSri, ARM::t2SUBri},
1489   {ARM::t2SUBSrr, ARM::t2SUBrr},
1490   {ARM::t2SUBSrs, ARM::t2SUBrs},
1491
1492   {ARM::t2RSBSri, ARM::t2RSBri},
1493   {ARM::t2RSBSrs, ARM::t2RSBrs},
1494 };
1495
1496 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1497   static const int NPairs =
1498     sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
1499   for (AddSubFlagsOpcodePair *OpcPair = &AddSubFlagsOpcodeMap[0],
1500          *End = &AddSubFlagsOpcodeMap[NPairs]; OpcPair != End; ++OpcPair) {
1501     if (OldOpc == OpcPair->PseudoOpc) {
1502       return OpcPair->MachineOpc;
1503     }
1504   }
1505   return 0;
1506 }
1507
1508 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1509                                MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1510                                unsigned DestReg, unsigned BaseReg, int NumBytes,
1511                                ARMCC::CondCodes Pred, unsigned PredReg,
1512                                const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1513   bool isSub = NumBytes < 0;
1514   if (isSub) NumBytes = -NumBytes;
1515
1516   while (NumBytes) {
1517     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1518     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1519     assert(ThisVal && "Didn't extract field correctly");
1520
1521     // We will handle these bits from offset, clear them.
1522     NumBytes &= ~ThisVal;
1523
1524     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1525
1526     // Build the new ADD / SUB.
1527     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1528     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1529       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1530       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1531       .setMIFlags(MIFlags);
1532     BaseReg = DestReg;
1533   }
1534 }
1535
1536 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1537                                 unsigned FrameReg, int &Offset,
1538                                 const ARMBaseInstrInfo &TII) {
1539   unsigned Opcode = MI.getOpcode();
1540   const MCInstrDesc &Desc = MI.getDesc();
1541   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1542   bool isSub = false;
1543
1544   // Memory operands in inline assembly always use AddrMode2.
1545   if (Opcode == ARM::INLINEASM)
1546     AddrMode = ARMII::AddrMode2;
1547
1548   if (Opcode == ARM::ADDri) {
1549     Offset += MI.getOperand(FrameRegIdx+1).getImm();
1550     if (Offset == 0) {
1551       // Turn it into a move.
1552       MI.setDesc(TII.get(ARM::MOVr));
1553       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1554       MI.RemoveOperand(FrameRegIdx+1);
1555       Offset = 0;
1556       return true;
1557     } else if (Offset < 0) {
1558       Offset = -Offset;
1559       isSub = true;
1560       MI.setDesc(TII.get(ARM::SUBri));
1561     }
1562
1563     // Common case: small offset, fits into instruction.
1564     if (ARM_AM::getSOImmVal(Offset) != -1) {
1565       // Replace the FrameIndex with sp / fp
1566       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1567       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1568       Offset = 0;
1569       return true;
1570     }
1571
1572     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1573     // as possible.
1574     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1575     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1576
1577     // We will handle these bits from offset, clear them.
1578     Offset &= ~ThisImmVal;
1579
1580     // Get the properly encoded SOImmVal field.
1581     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1582            "Bit extraction didn't work?");
1583     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1584  } else {
1585     unsigned ImmIdx = 0;
1586     int InstrOffs = 0;
1587     unsigned NumBits = 0;
1588     unsigned Scale = 1;
1589     switch (AddrMode) {
1590     case ARMII::AddrMode_i12: {
1591       ImmIdx = FrameRegIdx + 1;
1592       InstrOffs = MI.getOperand(ImmIdx).getImm();
1593       NumBits = 12;
1594       break;
1595     }
1596     case ARMII::AddrMode2: {
1597       ImmIdx = FrameRegIdx+2;
1598       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1599       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1600         InstrOffs *= -1;
1601       NumBits = 12;
1602       break;
1603     }
1604     case ARMII::AddrMode3: {
1605       ImmIdx = FrameRegIdx+2;
1606       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1607       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1608         InstrOffs *= -1;
1609       NumBits = 8;
1610       break;
1611     }
1612     case ARMII::AddrMode4:
1613     case ARMII::AddrMode6:
1614       // Can't fold any offset even if it's zero.
1615       return false;
1616     case ARMII::AddrMode5: {
1617       ImmIdx = FrameRegIdx+1;
1618       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1619       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1620         InstrOffs *= -1;
1621       NumBits = 8;
1622       Scale = 4;
1623       break;
1624     }
1625     default:
1626       llvm_unreachable("Unsupported addressing mode!");
1627       break;
1628     }
1629
1630     Offset += InstrOffs * Scale;
1631     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1632     if (Offset < 0) {
1633       Offset = -Offset;
1634       isSub = true;
1635     }
1636
1637     // Attempt to fold address comp. if opcode has offset bits
1638     if (NumBits > 0) {
1639       // Common case: small offset, fits into instruction.
1640       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1641       int ImmedOffset = Offset / Scale;
1642       unsigned Mask = (1 << NumBits) - 1;
1643       if ((unsigned)Offset <= Mask * Scale) {
1644         // Replace the FrameIndex with sp
1645         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1646         // FIXME: When addrmode2 goes away, this will simplify (like the
1647         // T2 version), as the LDR.i12 versions don't need the encoding
1648         // tricks for the offset value.
1649         if (isSub) {
1650           if (AddrMode == ARMII::AddrMode_i12)
1651             ImmedOffset = -ImmedOffset;
1652           else
1653             ImmedOffset |= 1 << NumBits;
1654         }
1655         ImmOp.ChangeToImmediate(ImmedOffset);
1656         Offset = 0;
1657         return true;
1658       }
1659
1660       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1661       ImmedOffset = ImmedOffset & Mask;
1662       if (isSub) {
1663         if (AddrMode == ARMII::AddrMode_i12)
1664           ImmedOffset = -ImmedOffset;
1665         else
1666           ImmedOffset |= 1 << NumBits;
1667       }
1668       ImmOp.ChangeToImmediate(ImmedOffset);
1669       Offset &= ~(Mask*Scale);
1670     }
1671   }
1672
1673   Offset = (isSub) ? -Offset : Offset;
1674   return Offset == 0;
1675 }
1676
1677 bool ARMBaseInstrInfo::
1678 AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
1679                int &CmpValue) const {
1680   switch (MI->getOpcode()) {
1681   default: break;
1682   case ARM::CMPri:
1683   case ARM::t2CMPri:
1684     SrcReg = MI->getOperand(0).getReg();
1685     CmpMask = ~0;
1686     CmpValue = MI->getOperand(1).getImm();
1687     return true;
1688   case ARM::TSTri:
1689   case ARM::t2TSTri:
1690     SrcReg = MI->getOperand(0).getReg();
1691     CmpMask = MI->getOperand(1).getImm();
1692     CmpValue = 0;
1693     return true;
1694   }
1695
1696   return false;
1697 }
1698
1699 /// isSuitableForMask - Identify a suitable 'and' instruction that
1700 /// operates on the given source register and applies the same mask
1701 /// as a 'tst' instruction. Provide a limited look-through for copies.
1702 /// When successful, MI will hold the found instruction.
1703 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1704                               int CmpMask, bool CommonUse) {
1705   switch (MI->getOpcode()) {
1706     case ARM::ANDri:
1707     case ARM::t2ANDri:
1708       if (CmpMask != MI->getOperand(2).getImm())
1709         return false;
1710       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1711         return true;
1712       break;
1713     case ARM::COPY: {
1714       // Walk down one instruction which is potentially an 'and'.
1715       const MachineInstr &Copy = *MI;
1716       MachineBasicBlock::iterator AND(
1717         llvm::next(MachineBasicBlock::iterator(MI)));
1718       if (AND == MI->getParent()->end()) return false;
1719       MI = AND;
1720       return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1721                                CmpMask, true);
1722     }
1723   }
1724
1725   return false;
1726 }
1727
1728 /// OptimizeCompareInstr - Convert the instruction supplying the argument to the
1729 /// comparison into one that sets the zero bit in the flags register.
1730 bool ARMBaseInstrInfo::
1731 OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
1732                      int CmpValue, const MachineRegisterInfo *MRI) const {
1733   if (CmpValue != 0)
1734     return false;
1735
1736   MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg);
1737   if (llvm::next(DI) != MRI->def_end())
1738     // Only support one definition.
1739     return false;
1740
1741   MachineInstr *MI = &*DI;
1742
1743   // Masked compares sometimes use the same register as the corresponding 'and'.
1744   if (CmpMask != ~0) {
1745     if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
1746       MI = 0;
1747       for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
1748            UE = MRI->use_end(); UI != UE; ++UI) {
1749         if (UI->getParent() != CmpInstr->getParent()) continue;
1750         MachineInstr *PotentialAND = &*UI;
1751         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
1752           continue;
1753         MI = PotentialAND;
1754         break;
1755       }
1756       if (!MI) return false;
1757     }
1758   }
1759
1760   // Conservatively refuse to convert an instruction which isn't in the same BB
1761   // as the comparison.
1762   if (MI->getParent() != CmpInstr->getParent())
1763     return false;
1764
1765   // Check that CPSR isn't set between the comparison instruction and the one we
1766   // want to change.
1767   MachineBasicBlock::const_iterator I = CmpInstr, E = MI,
1768     B = MI->getParent()->begin();
1769
1770   // Early exit if CmpInstr is at the beginning of the BB.
1771   if (I == B) return false;
1772
1773   --I;
1774   for (; I != E; --I) {
1775     const MachineInstr &Instr = *I;
1776
1777     for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
1778       const MachineOperand &MO = Instr.getOperand(IO);
1779       if (!MO.isReg()) continue;
1780
1781       // This instruction modifies or uses CPSR after the one we want to
1782       // change. We can't do this transformation.
1783       if (MO.getReg() == ARM::CPSR)
1784         return false;
1785     }
1786
1787     if (I == B)
1788       // The 'and' is below the comparison instruction.
1789       return false;
1790   }
1791
1792   // Set the "zero" bit in CPSR.
1793   switch (MI->getOpcode()) {
1794   default: break;
1795   case ARM::RSBrr:
1796   case ARM::RSBri:
1797   case ARM::RSCrr:
1798   case ARM::RSCri:
1799   case ARM::ADDrr:
1800   case ARM::ADDri:
1801   case ARM::ADCrr:
1802   case ARM::ADCri:
1803   case ARM::SUBrr:
1804   case ARM::SUBri:
1805   case ARM::SBCrr:
1806   case ARM::SBCri:
1807   case ARM::t2RSBri:
1808   case ARM::t2ADDrr:
1809   case ARM::t2ADDri:
1810   case ARM::t2ADCrr:
1811   case ARM::t2ADCri:
1812   case ARM::t2SUBrr:
1813   case ARM::t2SUBri:
1814   case ARM::t2SBCrr:
1815   case ARM::t2SBCri:
1816   case ARM::ANDrr:
1817   case ARM::ANDri:
1818   case ARM::t2ANDrr:
1819   case ARM::t2ANDri:
1820   case ARM::ORRrr:
1821   case ARM::ORRri:
1822   case ARM::t2ORRrr:
1823   case ARM::t2ORRri:
1824   case ARM::EORrr:
1825   case ARM::EORri:
1826   case ARM::t2EORrr:
1827   case ARM::t2EORri: {
1828     // Scan forward for the use of CPSR, if it's a conditional code requires
1829     // checking of V bit, then this is not safe to do. If we can't find the
1830     // CPSR use (i.e. used in another block), then it's not safe to perform
1831     // the optimization.
1832     bool isSafe = false;
1833     I = CmpInstr;
1834     E = MI->getParent()->end();
1835     while (!isSafe && ++I != E) {
1836       const MachineInstr &Instr = *I;
1837       for (unsigned IO = 0, EO = Instr.getNumOperands();
1838            !isSafe && IO != EO; ++IO) {
1839         const MachineOperand &MO = Instr.getOperand(IO);
1840         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
1841           continue;
1842         if (MO.isDef()) {
1843           isSafe = true;
1844           break;
1845         }
1846         // Condition code is after the operand before CPSR.
1847         ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
1848         switch (CC) {
1849         default:
1850           isSafe = true;
1851           break;
1852         case ARMCC::VS:
1853         case ARMCC::VC:
1854         case ARMCC::GE:
1855         case ARMCC::LT:
1856         case ARMCC::GT:
1857         case ARMCC::LE:
1858           return false;
1859         }
1860       }
1861     }
1862
1863     if (!isSafe)
1864       return false;
1865
1866     // Toggle the optional operand to CPSR.
1867     MI->getOperand(5).setReg(ARM::CPSR);
1868     MI->getOperand(5).setIsDef(true);
1869     CmpInstr->eraseFromParent();
1870     return true;
1871   }
1872   }
1873
1874   return false;
1875 }
1876
1877 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
1878                                      MachineInstr *DefMI, unsigned Reg,
1879                                      MachineRegisterInfo *MRI) const {
1880   // Fold large immediates into add, sub, or, xor.
1881   unsigned DefOpc = DefMI->getOpcode();
1882   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
1883     return false;
1884   if (!DefMI->getOperand(1).isImm())
1885     // Could be t2MOVi32imm <ga:xx>
1886     return false;
1887
1888   if (!MRI->hasOneNonDBGUse(Reg))
1889     return false;
1890
1891   unsigned UseOpc = UseMI->getOpcode();
1892   unsigned NewUseOpc = 0;
1893   uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
1894   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
1895   bool Commute = false;
1896   switch (UseOpc) {
1897   default: return false;
1898   case ARM::SUBrr:
1899   case ARM::ADDrr:
1900   case ARM::ORRrr:
1901   case ARM::EORrr:
1902   case ARM::t2SUBrr:
1903   case ARM::t2ADDrr:
1904   case ARM::t2ORRrr:
1905   case ARM::t2EORrr: {
1906     Commute = UseMI->getOperand(2).getReg() != Reg;
1907     switch (UseOpc) {
1908     default: break;
1909     case ARM::SUBrr: {
1910       if (Commute)
1911         return false;
1912       ImmVal = -ImmVal;
1913       NewUseOpc = ARM::SUBri;
1914       // Fallthrough
1915     }
1916     case ARM::ADDrr:
1917     case ARM::ORRrr:
1918     case ARM::EORrr: {
1919       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
1920         return false;
1921       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
1922       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
1923       switch (UseOpc) {
1924       default: break;
1925       case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
1926       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
1927       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
1928       }
1929       break;
1930     }
1931     case ARM::t2SUBrr: {
1932       if (Commute)
1933         return false;
1934       ImmVal = -ImmVal;
1935       NewUseOpc = ARM::t2SUBri;
1936       // Fallthrough
1937     }
1938     case ARM::t2ADDrr:
1939     case ARM::t2ORRrr:
1940     case ARM::t2EORrr: {
1941       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
1942         return false;
1943       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
1944       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
1945       switch (UseOpc) {
1946       default: break;
1947       case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
1948       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
1949       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
1950       }
1951       break;
1952     }
1953     }
1954   }
1955   }
1956
1957   unsigned OpIdx = Commute ? 2 : 1;
1958   unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
1959   bool isKill = UseMI->getOperand(OpIdx).isKill();
1960   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
1961   AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
1962                                       *UseMI, UseMI->getDebugLoc(),
1963                                       get(NewUseOpc), NewReg)
1964                               .addReg(Reg1, getKillRegState(isKill))
1965                               .addImm(SOImmValV1)));
1966   UseMI->setDesc(get(NewUseOpc));
1967   UseMI->getOperand(1).setReg(NewReg);
1968   UseMI->getOperand(1).setIsKill();
1969   UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
1970   DefMI->eraseFromParent();
1971   return true;
1972 }
1973
1974 unsigned
1975 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1976                                  const MachineInstr *MI) const {
1977   if (!ItinData || ItinData->isEmpty())
1978     return 1;
1979
1980   const MCInstrDesc &Desc = MI->getDesc();
1981   unsigned Class = Desc.getSchedClass();
1982   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
1983   if (UOps)
1984     return UOps;
1985
1986   unsigned Opc = MI->getOpcode();
1987   switch (Opc) {
1988   default:
1989     llvm_unreachable("Unexpected multi-uops instruction!");
1990     break;
1991   case ARM::VLDMQIA:
1992   case ARM::VSTMQIA:
1993     return 2;
1994
1995   // The number of uOps for load / store multiple are determined by the number
1996   // registers.
1997   //
1998   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
1999   // same cycle. The scheduling for the first load / store must be done
2000   // separately by assuming the the address is not 64-bit aligned.
2001   //
2002   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
2003   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
2004   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
2005   case ARM::VLDMDIA:
2006   case ARM::VLDMDIA_UPD:
2007   case ARM::VLDMDDB_UPD:
2008   case ARM::VLDMSIA:
2009   case ARM::VLDMSIA_UPD:
2010   case ARM::VLDMSDB_UPD:
2011   case ARM::VSTMDIA:
2012   case ARM::VSTMDIA_UPD:
2013   case ARM::VSTMDDB_UPD:
2014   case ARM::VSTMSIA:
2015   case ARM::VSTMSIA_UPD:
2016   case ARM::VSTMSDB_UPD: {
2017     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
2018     return (NumRegs / 2) + (NumRegs % 2) + 1;
2019   }
2020
2021   case ARM::LDMIA_RET:
2022   case ARM::LDMIA:
2023   case ARM::LDMDA:
2024   case ARM::LDMDB:
2025   case ARM::LDMIB:
2026   case ARM::LDMIA_UPD:
2027   case ARM::LDMDA_UPD:
2028   case ARM::LDMDB_UPD:
2029   case ARM::LDMIB_UPD:
2030   case ARM::STMIA:
2031   case ARM::STMDA:
2032   case ARM::STMDB:
2033   case ARM::STMIB:
2034   case ARM::STMIA_UPD:
2035   case ARM::STMDA_UPD:
2036   case ARM::STMDB_UPD:
2037   case ARM::STMIB_UPD:
2038   case ARM::tLDMIA:
2039   case ARM::tLDMIA_UPD:
2040   case ARM::tSTMIA_UPD:
2041   case ARM::tPOP_RET:
2042   case ARM::tPOP:
2043   case ARM::tPUSH:
2044   case ARM::t2LDMIA_RET:
2045   case ARM::t2LDMIA:
2046   case ARM::t2LDMDB:
2047   case ARM::t2LDMIA_UPD:
2048   case ARM::t2LDMDB_UPD:
2049   case ARM::t2STMIA:
2050   case ARM::t2STMDB:
2051   case ARM::t2STMIA_UPD:
2052   case ARM::t2STMDB_UPD: {
2053     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
2054     if (Subtarget.isCortexA8()) {
2055       if (NumRegs < 4)
2056         return 2;
2057       // 4 registers would be issued: 2, 2.
2058       // 5 registers would be issued: 2, 2, 1.
2059       UOps = (NumRegs / 2);
2060       if (NumRegs % 2)
2061         ++UOps;
2062       return UOps;
2063     } else if (Subtarget.isCortexA9()) {
2064       UOps = (NumRegs / 2);
2065       // If there are odd number of registers or if it's not 64-bit aligned,
2066       // then it takes an extra AGU (Address Generation Unit) cycle.
2067       if ((NumRegs % 2) ||
2068           !MI->hasOneMemOperand() ||
2069           (*MI->memoperands_begin())->getAlignment() < 8)
2070         ++UOps;
2071       return UOps;
2072     } else {
2073       // Assume the worst.
2074       return NumRegs;
2075     }
2076   }
2077   }
2078 }
2079
2080 int
2081 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
2082                                   const MCInstrDesc &DefMCID,
2083                                   unsigned DefClass,
2084                                   unsigned DefIdx, unsigned DefAlign) const {
2085   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2086   if (RegNo <= 0)
2087     // Def is the address writeback.
2088     return ItinData->getOperandCycle(DefClass, DefIdx);
2089
2090   int DefCycle;
2091   if (Subtarget.isCortexA8()) {
2092     // (regno / 2) + (regno % 2) + 1
2093     DefCycle = RegNo / 2 + 1;
2094     if (RegNo % 2)
2095       ++DefCycle;
2096   } else if (Subtarget.isCortexA9()) {
2097     DefCycle = RegNo;
2098     bool isSLoad = false;
2099
2100     switch (DefMCID.getOpcode()) {
2101     default: break;
2102     case ARM::VLDMSIA:
2103     case ARM::VLDMSIA_UPD:
2104     case ARM::VLDMSDB_UPD:
2105       isSLoad = true;
2106       break;
2107     }
2108
2109     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2110     // then it takes an extra cycle.
2111     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
2112       ++DefCycle;
2113   } else {
2114     // Assume the worst.
2115     DefCycle = RegNo + 2;
2116   }
2117
2118   return DefCycle;
2119 }
2120
2121 int
2122 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
2123                                  const MCInstrDesc &DefMCID,
2124                                  unsigned DefClass,
2125                                  unsigned DefIdx, unsigned DefAlign) const {
2126   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
2127   if (RegNo <= 0)
2128     // Def is the address writeback.
2129     return ItinData->getOperandCycle(DefClass, DefIdx);
2130
2131   int DefCycle;
2132   if (Subtarget.isCortexA8()) {
2133     // 4 registers would be issued: 1, 2, 1.
2134     // 5 registers would be issued: 1, 2, 2.
2135     DefCycle = RegNo / 2;
2136     if (DefCycle < 1)
2137       DefCycle = 1;
2138     // Result latency is issue cycle + 2: E2.
2139     DefCycle += 2;
2140   } else if (Subtarget.isCortexA9()) {
2141     DefCycle = (RegNo / 2);
2142     // If there are odd number of registers or if it's not 64-bit aligned,
2143     // then it takes an extra AGU (Address Generation Unit) cycle.
2144     if ((RegNo % 2) || DefAlign < 8)
2145       ++DefCycle;
2146     // Result latency is AGU cycles + 2.
2147     DefCycle += 2;
2148   } else {
2149     // Assume the worst.
2150     DefCycle = RegNo + 2;
2151   }
2152
2153   return DefCycle;
2154 }
2155
2156 int
2157 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
2158                                   const MCInstrDesc &UseMCID,
2159                                   unsigned UseClass,
2160                                   unsigned UseIdx, unsigned UseAlign) const {
2161   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2162   if (RegNo <= 0)
2163     return ItinData->getOperandCycle(UseClass, UseIdx);
2164
2165   int UseCycle;
2166   if (Subtarget.isCortexA8()) {
2167     // (regno / 2) + (regno % 2) + 1
2168     UseCycle = RegNo / 2 + 1;
2169     if (RegNo % 2)
2170       ++UseCycle;
2171   } else if (Subtarget.isCortexA9()) {
2172     UseCycle = RegNo;
2173     bool isSStore = false;
2174
2175     switch (UseMCID.getOpcode()) {
2176     default: break;
2177     case ARM::VSTMSIA:
2178     case ARM::VSTMSIA_UPD:
2179     case ARM::VSTMSDB_UPD:
2180       isSStore = true;
2181       break;
2182     }
2183
2184     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
2185     // then it takes an extra cycle.
2186     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
2187       ++UseCycle;
2188   } else {
2189     // Assume the worst.
2190     UseCycle = RegNo + 2;
2191   }
2192
2193   return UseCycle;
2194 }
2195
2196 int
2197 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
2198                                  const MCInstrDesc &UseMCID,
2199                                  unsigned UseClass,
2200                                  unsigned UseIdx, unsigned UseAlign) const {
2201   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
2202   if (RegNo <= 0)
2203     return ItinData->getOperandCycle(UseClass, UseIdx);
2204
2205   int UseCycle;
2206   if (Subtarget.isCortexA8()) {
2207     UseCycle = RegNo / 2;
2208     if (UseCycle < 2)
2209       UseCycle = 2;
2210     // Read in E3.
2211     UseCycle += 2;
2212   } else if (Subtarget.isCortexA9()) {
2213     UseCycle = (RegNo / 2);
2214     // If there are odd number of registers or if it's not 64-bit aligned,
2215     // then it takes an extra AGU (Address Generation Unit) cycle.
2216     if ((RegNo % 2) || UseAlign < 8)
2217       ++UseCycle;
2218   } else {
2219     // Assume the worst.
2220     UseCycle = 1;
2221   }
2222   return UseCycle;
2223 }
2224
2225 int
2226 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2227                                     const MCInstrDesc &DefMCID,
2228                                     unsigned DefIdx, unsigned DefAlign,
2229                                     const MCInstrDesc &UseMCID,
2230                                     unsigned UseIdx, unsigned UseAlign) const {
2231   unsigned DefClass = DefMCID.getSchedClass();
2232   unsigned UseClass = UseMCID.getSchedClass();
2233
2234   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
2235     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
2236
2237   // This may be a def / use of a variable_ops instruction, the operand
2238   // latency might be determinable dynamically. Let the target try to
2239   // figure it out.
2240   int DefCycle = -1;
2241   bool LdmBypass = false;
2242   switch (DefMCID.getOpcode()) {
2243   default:
2244     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2245     break;
2246
2247   case ARM::VLDMDIA:
2248   case ARM::VLDMDIA_UPD:
2249   case ARM::VLDMDDB_UPD:
2250   case ARM::VLDMSIA:
2251   case ARM::VLDMSIA_UPD:
2252   case ARM::VLDMSDB_UPD:
2253     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2254     break;
2255
2256   case ARM::LDMIA_RET:
2257   case ARM::LDMIA:
2258   case ARM::LDMDA:
2259   case ARM::LDMDB:
2260   case ARM::LDMIB:
2261   case ARM::LDMIA_UPD:
2262   case ARM::LDMDA_UPD:
2263   case ARM::LDMDB_UPD:
2264   case ARM::LDMIB_UPD:
2265   case ARM::tLDMIA:
2266   case ARM::tLDMIA_UPD:
2267   case ARM::tPUSH:
2268   case ARM::t2LDMIA_RET:
2269   case ARM::t2LDMIA:
2270   case ARM::t2LDMDB:
2271   case ARM::t2LDMIA_UPD:
2272   case ARM::t2LDMDB_UPD:
2273     LdmBypass = 1;
2274     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
2275     break;
2276   }
2277
2278   if (DefCycle == -1)
2279     // We can't seem to determine the result latency of the def, assume it's 2.
2280     DefCycle = 2;
2281
2282   int UseCycle = -1;
2283   switch (UseMCID.getOpcode()) {
2284   default:
2285     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
2286     break;
2287
2288   case ARM::VSTMDIA:
2289   case ARM::VSTMDIA_UPD:
2290   case ARM::VSTMDDB_UPD:
2291   case ARM::VSTMSIA:
2292   case ARM::VSTMSIA_UPD:
2293   case ARM::VSTMSDB_UPD:
2294     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2295     break;
2296
2297   case ARM::STMIA:
2298   case ARM::STMDA:
2299   case ARM::STMDB:
2300   case ARM::STMIB:
2301   case ARM::STMIA_UPD:
2302   case ARM::STMDA_UPD:
2303   case ARM::STMDB_UPD:
2304   case ARM::STMIB_UPD:
2305   case ARM::tSTMIA_UPD:
2306   case ARM::tPOP_RET:
2307   case ARM::tPOP:
2308   case ARM::t2STMIA:
2309   case ARM::t2STMDB:
2310   case ARM::t2STMIA_UPD:
2311   case ARM::t2STMDB_UPD:
2312     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
2313     break;
2314   }
2315
2316   if (UseCycle == -1)
2317     // Assume it's read in the first stage.
2318     UseCycle = 1;
2319
2320   UseCycle = DefCycle - UseCycle + 1;
2321   if (UseCycle > 0) {
2322     if (LdmBypass) {
2323       // It's a variable_ops instruction so we can't use DefIdx here. Just use
2324       // first def operand.
2325       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
2326                                           UseClass, UseIdx))
2327         --UseCycle;
2328     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
2329                                                UseClass, UseIdx)) {
2330       --UseCycle;
2331     }
2332   }
2333
2334   return UseCycle;
2335 }
2336
2337 int
2338 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2339                              const MachineInstr *DefMI, unsigned DefIdx,
2340                              const MachineInstr *UseMI, unsigned UseIdx) const {
2341   if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
2342       DefMI->isRegSequence() || DefMI->isImplicitDef())
2343     return 1;
2344
2345   const MCInstrDesc &DefMCID = DefMI->getDesc();
2346   if (!ItinData || ItinData->isEmpty())
2347     return DefMCID.mayLoad() ? 3 : 1;
2348
2349   const MCInstrDesc &UseMCID = UseMI->getDesc();
2350   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
2351   if (DefMO.getReg() == ARM::CPSR) {
2352     if (DefMI->getOpcode() == ARM::FMSTAT) {
2353       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
2354       return Subtarget.isCortexA9() ? 1 : 20;
2355     }
2356
2357     // CPSR set and branch can be paired in the same cycle.
2358     if (UseMCID.isBranch())
2359       return 0;
2360   }
2361
2362   unsigned DefAlign = DefMI->hasOneMemOperand()
2363     ? (*DefMI->memoperands_begin())->getAlignment() : 0;
2364   unsigned UseAlign = UseMI->hasOneMemOperand()
2365     ? (*UseMI->memoperands_begin())->getAlignment() : 0;
2366   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2367                                   UseMCID, UseIdx, UseAlign);
2368
2369   if (Latency > 1 &&
2370       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2371     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2372     // variants are one cycle cheaper.
2373     switch (DefMCID.getOpcode()) {
2374     default: break;
2375     case ARM::LDRrs:
2376     case ARM::LDRBrs: {
2377       unsigned ShOpVal = DefMI->getOperand(3).getImm();
2378       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2379       if (ShImm == 0 ||
2380           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2381         --Latency;
2382       break;
2383     }
2384     case ARM::t2LDRs:
2385     case ARM::t2LDRBs:
2386     case ARM::t2LDRHs:
2387     case ARM::t2LDRSHs: {
2388       // Thumb2 mode: lsl only.
2389       unsigned ShAmt = DefMI->getOperand(3).getImm();
2390       if (ShAmt == 0 || ShAmt == 2)
2391         --Latency;
2392       break;
2393     }
2394     }
2395   }
2396
2397   if (DefAlign < 8 && Subtarget.isCortexA9())
2398     switch (DefMCID.getOpcode()) {
2399     default: break;
2400     case ARM::VLD1q8:
2401     case ARM::VLD1q16:
2402     case ARM::VLD1q32:
2403     case ARM::VLD1q64:
2404     case ARM::VLD1q8_UPD:
2405     case ARM::VLD1q16_UPD:
2406     case ARM::VLD1q32_UPD:
2407     case ARM::VLD1q64_UPD:
2408     case ARM::VLD2d8:
2409     case ARM::VLD2d16:
2410     case ARM::VLD2d32:
2411     case ARM::VLD2q8:
2412     case ARM::VLD2q16:
2413     case ARM::VLD2q32:
2414     case ARM::VLD2d8_UPD:
2415     case ARM::VLD2d16_UPD:
2416     case ARM::VLD2d32_UPD:
2417     case ARM::VLD2q8_UPD:
2418     case ARM::VLD2q16_UPD:
2419     case ARM::VLD2q32_UPD:
2420     case ARM::VLD3d8:
2421     case ARM::VLD3d16:
2422     case ARM::VLD3d32:
2423     case ARM::VLD1d64T:
2424     case ARM::VLD3d8_UPD:
2425     case ARM::VLD3d16_UPD:
2426     case ARM::VLD3d32_UPD:
2427     case ARM::VLD1d64T_UPD:
2428     case ARM::VLD3q8_UPD:
2429     case ARM::VLD3q16_UPD:
2430     case ARM::VLD3q32_UPD:
2431     case ARM::VLD4d8:
2432     case ARM::VLD4d16:
2433     case ARM::VLD4d32:
2434     case ARM::VLD1d64Q:
2435     case ARM::VLD4d8_UPD:
2436     case ARM::VLD4d16_UPD:
2437     case ARM::VLD4d32_UPD:
2438     case ARM::VLD1d64Q_UPD:
2439     case ARM::VLD4q8_UPD:
2440     case ARM::VLD4q16_UPD:
2441     case ARM::VLD4q32_UPD:
2442     case ARM::VLD1DUPq8:
2443     case ARM::VLD1DUPq16:
2444     case ARM::VLD1DUPq32:
2445     case ARM::VLD1DUPq8_UPD:
2446     case ARM::VLD1DUPq16_UPD:
2447     case ARM::VLD1DUPq32_UPD:
2448     case ARM::VLD2DUPd8:
2449     case ARM::VLD2DUPd16:
2450     case ARM::VLD2DUPd32:
2451     case ARM::VLD2DUPd8_UPD:
2452     case ARM::VLD2DUPd16_UPD:
2453     case ARM::VLD2DUPd32_UPD:
2454     case ARM::VLD4DUPd8:
2455     case ARM::VLD4DUPd16:
2456     case ARM::VLD4DUPd32:
2457     case ARM::VLD4DUPd8_UPD:
2458     case ARM::VLD4DUPd16_UPD:
2459     case ARM::VLD4DUPd32_UPD:
2460     case ARM::VLD1LNd8:
2461     case ARM::VLD1LNd16:
2462     case ARM::VLD1LNd32:
2463     case ARM::VLD1LNd8_UPD:
2464     case ARM::VLD1LNd16_UPD:
2465     case ARM::VLD1LNd32_UPD:
2466     case ARM::VLD2LNd8:
2467     case ARM::VLD2LNd16:
2468     case ARM::VLD2LNd32:
2469     case ARM::VLD2LNq16:
2470     case ARM::VLD2LNq32:
2471     case ARM::VLD2LNd8_UPD:
2472     case ARM::VLD2LNd16_UPD:
2473     case ARM::VLD2LNd32_UPD:
2474     case ARM::VLD2LNq16_UPD:
2475     case ARM::VLD2LNq32_UPD:
2476     case ARM::VLD4LNd8:
2477     case ARM::VLD4LNd16:
2478     case ARM::VLD4LNd32:
2479     case ARM::VLD4LNq16:
2480     case ARM::VLD4LNq32:
2481     case ARM::VLD4LNd8_UPD:
2482     case ARM::VLD4LNd16_UPD:
2483     case ARM::VLD4LNd32_UPD:
2484     case ARM::VLD4LNq16_UPD:
2485     case ARM::VLD4LNq32_UPD:
2486       // If the address is not 64-bit aligned, the latencies of these
2487       // instructions increases by one.
2488       ++Latency;
2489       break;
2490     }
2491
2492   return Latency;
2493 }
2494
2495 int
2496 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
2497                                     SDNode *DefNode, unsigned DefIdx,
2498                                     SDNode *UseNode, unsigned UseIdx) const {
2499   if (!DefNode->isMachineOpcode())
2500     return 1;
2501
2502   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
2503
2504   if (isZeroCost(DefMCID.Opcode))
2505     return 0;
2506
2507   if (!ItinData || ItinData->isEmpty())
2508     return DefMCID.mayLoad() ? 3 : 1;
2509
2510   if (!UseNode->isMachineOpcode()) {
2511     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
2512     if (Subtarget.isCortexA9())
2513       return Latency <= 2 ? 1 : Latency - 1;
2514     else
2515       return Latency <= 3 ? 1 : Latency - 2;
2516   }
2517
2518   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
2519   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
2520   unsigned DefAlign = !DefMN->memoperands_empty()
2521     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
2522   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
2523   unsigned UseAlign = !UseMN->memoperands_empty()
2524     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
2525   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
2526                                   UseMCID, UseIdx, UseAlign);
2527
2528   if (Latency > 1 &&
2529       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
2530     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
2531     // variants are one cycle cheaper.
2532     switch (DefMCID.getOpcode()) {
2533     default: break;
2534     case ARM::LDRrs:
2535     case ARM::LDRBrs: {
2536       unsigned ShOpVal =
2537         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2538       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2539       if (ShImm == 0 ||
2540           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
2541         --Latency;
2542       break;
2543     }
2544     case ARM::t2LDRs:
2545     case ARM::t2LDRBs:
2546     case ARM::t2LDRHs:
2547     case ARM::t2LDRSHs: {
2548       // Thumb2 mode: lsl only.
2549       unsigned ShAmt =
2550         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
2551       if (ShAmt == 0 || ShAmt == 2)
2552         --Latency;
2553       break;
2554     }
2555     }
2556   }
2557
2558   if (DefAlign < 8 && Subtarget.isCortexA9())
2559     switch (DefMCID.getOpcode()) {
2560     default: break;
2561     case ARM::VLD1q8Pseudo:
2562     case ARM::VLD1q16Pseudo:
2563     case ARM::VLD1q32Pseudo:
2564     case ARM::VLD1q64Pseudo:
2565     case ARM::VLD1q8Pseudo_UPD:
2566     case ARM::VLD1q16Pseudo_UPD:
2567     case ARM::VLD1q32Pseudo_UPD:
2568     case ARM::VLD1q64Pseudo_UPD:
2569     case ARM::VLD2d8Pseudo:
2570     case ARM::VLD2d16Pseudo:
2571     case ARM::VLD2d32Pseudo:
2572     case ARM::VLD2q8Pseudo:
2573     case ARM::VLD2q16Pseudo:
2574     case ARM::VLD2q32Pseudo:
2575     case ARM::VLD2d8Pseudo_UPD:
2576     case ARM::VLD2d16Pseudo_UPD:
2577     case ARM::VLD2d32Pseudo_UPD:
2578     case ARM::VLD2q8Pseudo_UPD:
2579     case ARM::VLD2q16Pseudo_UPD:
2580     case ARM::VLD2q32Pseudo_UPD:
2581     case ARM::VLD3d8Pseudo:
2582     case ARM::VLD3d16Pseudo:
2583     case ARM::VLD3d32Pseudo:
2584     case ARM::VLD1d64TPseudo:
2585     case ARM::VLD3d8Pseudo_UPD:
2586     case ARM::VLD3d16Pseudo_UPD:
2587     case ARM::VLD3d32Pseudo_UPD:
2588     case ARM::VLD1d64TPseudo_UPD:
2589     case ARM::VLD3q8Pseudo_UPD:
2590     case ARM::VLD3q16Pseudo_UPD:
2591     case ARM::VLD3q32Pseudo_UPD:
2592     case ARM::VLD3q8oddPseudo:
2593     case ARM::VLD3q16oddPseudo:
2594     case ARM::VLD3q32oddPseudo:
2595     case ARM::VLD3q8oddPseudo_UPD:
2596     case ARM::VLD3q16oddPseudo_UPD:
2597     case ARM::VLD3q32oddPseudo_UPD:
2598     case ARM::VLD4d8Pseudo:
2599     case ARM::VLD4d16Pseudo:
2600     case ARM::VLD4d32Pseudo:
2601     case ARM::VLD1d64QPseudo:
2602     case ARM::VLD4d8Pseudo_UPD:
2603     case ARM::VLD4d16Pseudo_UPD:
2604     case ARM::VLD4d32Pseudo_UPD:
2605     case ARM::VLD1d64QPseudo_UPD:
2606     case ARM::VLD4q8Pseudo_UPD:
2607     case ARM::VLD4q16Pseudo_UPD:
2608     case ARM::VLD4q32Pseudo_UPD:
2609     case ARM::VLD4q8oddPseudo:
2610     case ARM::VLD4q16oddPseudo:
2611     case ARM::VLD4q32oddPseudo:
2612     case ARM::VLD4q8oddPseudo_UPD:
2613     case ARM::VLD4q16oddPseudo_UPD:
2614     case ARM::VLD4q32oddPseudo_UPD:
2615     case ARM::VLD1DUPq8Pseudo:
2616     case ARM::VLD1DUPq16Pseudo:
2617     case ARM::VLD1DUPq32Pseudo:
2618     case ARM::VLD1DUPq8Pseudo_UPD:
2619     case ARM::VLD1DUPq16Pseudo_UPD:
2620     case ARM::VLD1DUPq32Pseudo_UPD:
2621     case ARM::VLD2DUPd8Pseudo:
2622     case ARM::VLD2DUPd16Pseudo:
2623     case ARM::VLD2DUPd32Pseudo:
2624     case ARM::VLD2DUPd8Pseudo_UPD:
2625     case ARM::VLD2DUPd16Pseudo_UPD:
2626     case ARM::VLD2DUPd32Pseudo_UPD:
2627     case ARM::VLD4DUPd8Pseudo:
2628     case ARM::VLD4DUPd16Pseudo:
2629     case ARM::VLD4DUPd32Pseudo:
2630     case ARM::VLD4DUPd8Pseudo_UPD:
2631     case ARM::VLD4DUPd16Pseudo_UPD:
2632     case ARM::VLD4DUPd32Pseudo_UPD:
2633     case ARM::VLD1LNq8Pseudo:
2634     case ARM::VLD1LNq16Pseudo:
2635     case ARM::VLD1LNq32Pseudo:
2636     case ARM::VLD1LNq8Pseudo_UPD:
2637     case ARM::VLD1LNq16Pseudo_UPD:
2638     case ARM::VLD1LNq32Pseudo_UPD:
2639     case ARM::VLD2LNd8Pseudo:
2640     case ARM::VLD2LNd16Pseudo:
2641     case ARM::VLD2LNd32Pseudo:
2642     case ARM::VLD2LNq16Pseudo:
2643     case ARM::VLD2LNq32Pseudo:
2644     case ARM::VLD2LNd8Pseudo_UPD:
2645     case ARM::VLD2LNd16Pseudo_UPD:
2646     case ARM::VLD2LNd32Pseudo_UPD:
2647     case ARM::VLD2LNq16Pseudo_UPD:
2648     case ARM::VLD2LNq32Pseudo_UPD:
2649     case ARM::VLD4LNd8Pseudo:
2650     case ARM::VLD4LNd16Pseudo:
2651     case ARM::VLD4LNd32Pseudo:
2652     case ARM::VLD4LNq16Pseudo:
2653     case ARM::VLD4LNq32Pseudo:
2654     case ARM::VLD4LNd8Pseudo_UPD:
2655     case ARM::VLD4LNd16Pseudo_UPD:
2656     case ARM::VLD4LNd32Pseudo_UPD:
2657     case ARM::VLD4LNq16Pseudo_UPD:
2658     case ARM::VLD4LNq32Pseudo_UPD:
2659       // If the address is not 64-bit aligned, the latencies of these
2660       // instructions increases by one.
2661       ++Latency;
2662       break;
2663     }
2664
2665   return Latency;
2666 }
2667
2668 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2669                                       const MachineInstr *MI,
2670                                       unsigned *PredCost) const {
2671   if (MI->isCopyLike() || MI->isInsertSubreg() ||
2672       MI->isRegSequence() || MI->isImplicitDef())
2673     return 1;
2674
2675   if (!ItinData || ItinData->isEmpty())
2676     return 1;
2677
2678   const MCInstrDesc &MCID = MI->getDesc();
2679   unsigned Class = MCID.getSchedClass();
2680   unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
2681   if (PredCost && MCID.hasImplicitDefOfPhysReg(ARM::CPSR))
2682     // When predicated, CPSR is an additional source operand for CPSR updating
2683     // instructions, this apparently increases their latencies.
2684     *PredCost = 1;
2685   if (UOps)
2686     return ItinData->getStageLatency(Class);
2687   return getNumMicroOps(ItinData, MI);
2688 }
2689
2690 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
2691                                       SDNode *Node) const {
2692   if (!Node->isMachineOpcode())
2693     return 1;
2694
2695   if (!ItinData || ItinData->isEmpty())
2696     return 1;
2697
2698   unsigned Opcode = Node->getMachineOpcode();
2699   switch (Opcode) {
2700   default:
2701     return ItinData->getStageLatency(get(Opcode).getSchedClass());
2702   case ARM::VLDMQIA:
2703   case ARM::VSTMQIA:
2704     return 2;
2705   }
2706 }
2707
2708 bool ARMBaseInstrInfo::
2709 hasHighOperandLatency(const InstrItineraryData *ItinData,
2710                       const MachineRegisterInfo *MRI,
2711                       const MachineInstr *DefMI, unsigned DefIdx,
2712                       const MachineInstr *UseMI, unsigned UseIdx) const {
2713   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2714   unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
2715   if (Subtarget.isCortexA8() &&
2716       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
2717     // CortexA8 VFP instructions are not pipelined.
2718     return true;
2719
2720   // Hoist VFP / NEON instructions with 4 or higher latency.
2721   int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
2722   if (Latency <= 3)
2723     return false;
2724   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
2725          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
2726 }
2727
2728 bool ARMBaseInstrInfo::
2729 hasLowDefLatency(const InstrItineraryData *ItinData,
2730                  const MachineInstr *DefMI, unsigned DefIdx) const {
2731   if (!ItinData || ItinData->isEmpty())
2732     return false;
2733
2734   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
2735   if (DDomain == ARMII::DomainGeneral) {
2736     unsigned DefClass = DefMI->getDesc().getSchedClass();
2737     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
2738     return (DefCycle != -1 && DefCycle <= 2);
2739   }
2740   return false;
2741 }
2742
2743 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
2744                                          StringRef &ErrInfo) const {
2745   if (convertAddSubFlagsOpcode(MI->getOpcode())) {
2746     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
2747     return false;
2748   }
2749   return true;
2750 }
2751
2752 bool
2753 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
2754                                      unsigned &AddSubOpc,
2755                                      bool &NegAcc, bool &HasLane) const {
2756   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
2757   if (I == MLxEntryMap.end())
2758     return false;
2759
2760   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
2761   MulOpc = Entry.MulOpc;
2762   AddSubOpc = Entry.AddSubOpc;
2763   NegAcc = Entry.NegAcc;
2764   HasLane = Entry.HasLane;
2765   return true;
2766 }
2767
2768 //===----------------------------------------------------------------------===//
2769 // Execution domains.
2770 //===----------------------------------------------------------------------===//
2771 //
2772 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
2773 // and some can go down both.  The vmov instructions go down the VFP pipeline,
2774 // but they can be changed to vorr equivalents that are executed by the NEON
2775 // pipeline.
2776 //
2777 // We use the following execution domain numbering:
2778 //
2779 enum ARMExeDomain {
2780   ExeGeneric = 0,
2781   ExeVFP = 1,
2782   ExeNEON = 2
2783 };
2784 //
2785 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
2786 //
2787 std::pair<uint16_t, uint16_t>
2788 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
2789   // VMOVD is a VFP instruction, but can be changed to NEON if it isn't
2790   // predicated.
2791   if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
2792     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
2793
2794   // No other instructions can be swizzled, so just determine their domain.
2795   unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
2796
2797   if (Domain & ARMII::DomainNEON)
2798     return std::make_pair(ExeNEON, 0);
2799
2800   // Certain instructions can go either way on Cortex-A8.
2801   // Treat them as NEON instructions.
2802   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
2803     return std::make_pair(ExeNEON, 0);
2804
2805   if (Domain & ARMII::DomainVFP)
2806     return std::make_pair(ExeVFP, 0);
2807
2808   return std::make_pair(ExeGeneric, 0);
2809 }
2810
2811 void
2812 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
2813   // We only know how to change VMOVD into VORR.
2814   assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD");
2815   if (Domain != ExeNEON)
2816     return;
2817
2818   // Zap the predicate operands.
2819   assert(!isPredicated(MI) && "Cannot predicate a VORRd");
2820   MI->RemoveOperand(3);
2821   MI->RemoveOperand(2);
2822
2823   // Change to a VORRd which requires two identical use operands.
2824   MI->setDesc(get(ARM::VORRd));
2825
2826   // Add the extra source operand and new predicates.
2827   // This will go before any implicit ops.
2828   AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1)));
2829 }