OSDN Git Service

docs: add sha256 checksums for 17.0.4
[android-x86/external-mesa.git] / src / gallium / drivers / nouveau / nouveau_buffer.c
1
2 #include "util/u_inlines.h"
3 #include "util/u_memory.h"
4 #include "util/u_math.h"
5 #include "util/u_surface.h"
6
7 #include "nouveau_screen.h"
8 #include "nouveau_context.h"
9 #include "nouveau_winsys.h"
10 #include "nouveau_fence.h"
11 #include "nouveau_buffer.h"
12 #include "nouveau_mm.h"
13
14 #define NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD 192
15
16 struct nouveau_transfer {
17    struct pipe_transfer base;
18
19    uint8_t *map;
20    struct nouveau_bo *bo;
21    struct nouveau_mm_allocation *mm;
22    uint32_t offset;
23 };
24
25 static inline struct nouveau_transfer *
26 nouveau_transfer(struct pipe_transfer *transfer)
27 {
28    return (struct nouveau_transfer *)transfer;
29 }
30
31 static inline bool
32 nouveau_buffer_malloc(struct nv04_resource *buf)
33 {
34    if (!buf->data)
35       buf->data = align_malloc(buf->base.width0, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
36    return !!buf->data;
37 }
38
39 static inline bool
40 nouveau_buffer_allocate(struct nouveau_screen *screen,
41                         struct nv04_resource *buf, unsigned domain)
42 {
43    uint32_t size = align(buf->base.width0, 0x100);
44
45    if (domain == NOUVEAU_BO_VRAM) {
46       buf->mm = nouveau_mm_allocate(screen->mm_VRAM, size,
47                                     &buf->bo, &buf->offset);
48       if (!buf->bo)
49          return nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_GART);
50       NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_vid, buf->base.width0);
51    } else
52    if (domain == NOUVEAU_BO_GART) {
53       buf->mm = nouveau_mm_allocate(screen->mm_GART, size,
54                                     &buf->bo, &buf->offset);
55       if (!buf->bo)
56          return false;
57       NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_sys, buf->base.width0);
58    } else {
59       assert(domain == 0);
60       if (!nouveau_buffer_malloc(buf))
61          return false;
62    }
63    buf->domain = domain;
64    if (buf->bo)
65       buf->address = buf->bo->offset + buf->offset;
66
67    util_range_set_empty(&buf->valid_buffer_range);
68
69    return true;
70 }
71
72 static inline void
73 release_allocation(struct nouveau_mm_allocation **mm,
74                    struct nouveau_fence *fence)
75 {
76    nouveau_fence_work(fence, nouveau_mm_free_work, *mm);
77    (*mm) = NULL;
78 }
79
80 inline void
81 nouveau_buffer_release_gpu_storage(struct nv04_resource *buf)
82 {
83    if (buf->fence && buf->fence->state < NOUVEAU_FENCE_STATE_FLUSHED) {
84       nouveau_fence_work(buf->fence, nouveau_fence_unref_bo, buf->bo);
85       buf->bo = NULL;
86    } else {
87       nouveau_bo_ref(NULL, &buf->bo);
88    }
89
90    if (buf->mm)
91       release_allocation(&buf->mm, buf->fence);
92
93    if (buf->domain == NOUVEAU_BO_VRAM)
94       NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_vid, -(uint64_t)buf->base.width0);
95    if (buf->domain == NOUVEAU_BO_GART)
96       NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_sys, -(uint64_t)buf->base.width0);
97
98    buf->domain = 0;
99 }
100
101 static inline bool
102 nouveau_buffer_reallocate(struct nouveau_screen *screen,
103                           struct nv04_resource *buf, unsigned domain)
104 {
105    nouveau_buffer_release_gpu_storage(buf);
106
107    nouveau_fence_ref(NULL, &buf->fence);
108    nouveau_fence_ref(NULL, &buf->fence_wr);
109
110    buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
111
112    return nouveau_buffer_allocate(screen, buf, domain);
113 }
114
115 static void
116 nouveau_buffer_destroy(struct pipe_screen *pscreen,
117                        struct pipe_resource *presource)
118 {
119    struct nv04_resource *res = nv04_resource(presource);
120
121    nouveau_buffer_release_gpu_storage(res);
122
123    if (res->data && !(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
124       align_free(res->data);
125
126    nouveau_fence_ref(NULL, &res->fence);
127    nouveau_fence_ref(NULL, &res->fence_wr);
128
129    util_range_destroy(&res->valid_buffer_range);
130
131    FREE(res);
132
133    NOUVEAU_DRV_STAT(nouveau_screen(pscreen), buf_obj_current_count, -1);
134 }
135
136 /* Set up a staging area for the transfer. This is either done in "regular"
137  * system memory if the driver supports push_data (nv50+) and the data is
138  * small enough (and permit_pb == true), or in GART memory.
139  */
140 static uint8_t *
141 nouveau_transfer_staging(struct nouveau_context *nv,
142                          struct nouveau_transfer *tx, bool permit_pb)
143 {
144    const unsigned adj = tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK;
145    const unsigned size = align(tx->base.box.width, 4) + adj;
146
147    if (!nv->push_data)
148       permit_pb = false;
149
150    if ((size <= NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD) && permit_pb) {
151       tx->map = align_malloc(size, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
152       if (tx->map)
153          tx->map += adj;
154    } else {
155       tx->mm =
156          nouveau_mm_allocate(nv->screen->mm_GART, size, &tx->bo, &tx->offset);
157       if (tx->bo) {
158          tx->offset += adj;
159          if (!nouveau_bo_map(tx->bo, 0, NULL))
160             tx->map = (uint8_t *)tx->bo->map + tx->offset;
161       }
162    }
163    return tx->map;
164 }
165
166 /* Copies data from the resource into the transfer's temporary GART
167  * buffer. Also updates buf->data if present.
168  *
169  * Maybe just migrate to GART right away if we actually need to do this. */
170 static bool
171 nouveau_transfer_read(struct nouveau_context *nv, struct nouveau_transfer *tx)
172 {
173    struct nv04_resource *buf = nv04_resource(tx->base.resource);
174    const unsigned base = tx->base.box.x;
175    const unsigned size = tx->base.box.width;
176
177    NOUVEAU_DRV_STAT(nv->screen, buf_read_bytes_staging_vid, size);
178
179    nv->copy_data(nv, tx->bo, tx->offset, NOUVEAU_BO_GART,
180                  buf->bo, buf->offset + base, buf->domain, size);
181
182    if (nouveau_bo_wait(tx->bo, NOUVEAU_BO_RD, nv->client))
183       return false;
184
185    if (buf->data)
186       memcpy(buf->data + base, tx->map, size);
187
188    return true;
189 }
190
191 static void
192 nouveau_transfer_write(struct nouveau_context *nv, struct nouveau_transfer *tx,
193                        unsigned offset, unsigned size)
194 {
195    struct nv04_resource *buf = nv04_resource(tx->base.resource);
196    uint8_t *data = tx->map + offset;
197    const unsigned base = tx->base.box.x + offset;
198    const bool can_cb = !((base | size) & 3);
199
200    if (buf->data)
201       memcpy(data, buf->data + base, size);
202    else
203       buf->status |= NOUVEAU_BUFFER_STATUS_DIRTY;
204
205    if (buf->domain == NOUVEAU_BO_VRAM)
206       NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_vid, size);
207    if (buf->domain == NOUVEAU_BO_GART)
208       NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_sys, size);
209
210    if (tx->bo)
211       nv->copy_data(nv, buf->bo, buf->offset + base, buf->domain,
212                     tx->bo, tx->offset + offset, NOUVEAU_BO_GART, size);
213    else
214    if (nv->push_cb && can_cb)
215       nv->push_cb(nv, buf,
216                   base, size / 4, (const uint32_t *)data);
217    else
218       nv->push_data(nv, buf->bo, buf->offset + base, buf->domain, size, data);
219
220    nouveau_fence_ref(nv->screen->fence.current, &buf->fence);
221    nouveau_fence_ref(nv->screen->fence.current, &buf->fence_wr);
222 }
223
224 /* Does a CPU wait for the buffer's backing data to become reliably accessible
225  * for write/read by waiting on the buffer's relevant fences.
226  */
227 static inline bool
228 nouveau_buffer_sync(struct nouveau_context *nv,
229                     struct nv04_resource *buf, unsigned rw)
230 {
231    if (rw == PIPE_TRANSFER_READ) {
232       if (!buf->fence_wr)
233          return true;
234       NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
235                            !nouveau_fence_signalled(buf->fence_wr));
236       if (!nouveau_fence_wait(buf->fence_wr, &nv->debug))
237          return false;
238    } else {
239       if (!buf->fence)
240          return true;
241       NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
242                            !nouveau_fence_signalled(buf->fence));
243       if (!nouveau_fence_wait(buf->fence, &nv->debug))
244          return false;
245
246       nouveau_fence_ref(NULL, &buf->fence);
247    }
248    nouveau_fence_ref(NULL, &buf->fence_wr);
249
250    return true;
251 }
252
253 static inline bool
254 nouveau_buffer_busy(struct nv04_resource *buf, unsigned rw)
255 {
256    if (rw == PIPE_TRANSFER_READ)
257       return (buf->fence_wr && !nouveau_fence_signalled(buf->fence_wr));
258    else
259       return (buf->fence && !nouveau_fence_signalled(buf->fence));
260 }
261
262 static inline void
263 nouveau_buffer_transfer_init(struct nouveau_transfer *tx,
264                              struct pipe_resource *resource,
265                              const struct pipe_box *box,
266                              unsigned usage)
267 {
268    tx->base.resource = resource;
269    tx->base.level = 0;
270    tx->base.usage = usage;
271    tx->base.box.x = box->x;
272    tx->base.box.y = 0;
273    tx->base.box.z = 0;
274    tx->base.box.width = box->width;
275    tx->base.box.height = 1;
276    tx->base.box.depth = 1;
277    tx->base.stride = 0;
278    tx->base.layer_stride = 0;
279
280    tx->bo = NULL;
281    tx->map = NULL;
282 }
283
284 static inline void
285 nouveau_buffer_transfer_del(struct nouveau_context *nv,
286                             struct nouveau_transfer *tx)
287 {
288    if (tx->map) {
289       if (likely(tx->bo)) {
290          nouveau_fence_work(nv->screen->fence.current,
291                             nouveau_fence_unref_bo, tx->bo);
292          if (tx->mm)
293             release_allocation(&tx->mm, nv->screen->fence.current);
294       } else {
295          align_free(tx->map -
296                     (tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK));
297       }
298    }
299 }
300
301 /* Creates a cache in system memory of the buffer data. */
302 static bool
303 nouveau_buffer_cache(struct nouveau_context *nv, struct nv04_resource *buf)
304 {
305    struct nouveau_transfer tx;
306    bool ret;
307    tx.base.resource = &buf->base;
308    tx.base.box.x = 0;
309    tx.base.box.width = buf->base.width0;
310    tx.bo = NULL;
311    tx.map = NULL;
312
313    if (!buf->data)
314       if (!nouveau_buffer_malloc(buf))
315          return false;
316    if (!(buf->status & NOUVEAU_BUFFER_STATUS_DIRTY))
317       return true;
318    nv->stats.buf_cache_count++;
319
320    if (!nouveau_transfer_staging(nv, &tx, false))
321       return false;
322
323    ret = nouveau_transfer_read(nv, &tx);
324    if (ret) {
325       buf->status &= ~NOUVEAU_BUFFER_STATUS_DIRTY;
326       memcpy(buf->data, tx.map, buf->base.width0);
327    }
328    nouveau_buffer_transfer_del(nv, &tx);
329    return ret;
330 }
331
332
333 #define NOUVEAU_TRANSFER_DISCARD \
334    (PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
335
336 /* Checks whether it is possible to completely discard the memory backing this
337  * resource. This can be useful if we would otherwise have to wait for a read
338  * operation to complete on this data.
339  */
340 static inline bool
341 nouveau_buffer_should_discard(struct nv04_resource *buf, unsigned usage)
342 {
343    if (!(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE))
344       return false;
345    if (unlikely(buf->base.bind & PIPE_BIND_SHARED))
346       return false;
347    if (unlikely(usage & PIPE_TRANSFER_PERSISTENT))
348       return false;
349    return buf->mm && nouveau_buffer_busy(buf, PIPE_TRANSFER_WRITE);
350 }
351
352 /* Returns a pointer to a memory area representing a window into the
353  * resource's data.
354  *
355  * This may or may not be the _actual_ memory area of the resource. However
356  * when calling nouveau_buffer_transfer_unmap, if it wasn't the actual memory
357  * area, the contents of the returned map are copied over to the resource.
358  *
359  * The usage indicates what the caller plans to do with the map:
360  *
361  *   WRITE means that the user plans to write to it
362  *
363  *   READ means that the user plans on reading from it
364  *
365  *   DISCARD_WHOLE_RESOURCE means that the whole resource is going to be
366  *   potentially overwritten, and even if it isn't, the bits that aren't don't
367  *   need to be maintained.
368  *
369  *   DISCARD_RANGE means that all the data in the specified range is going to
370  *   be overwritten.
371  *
372  * The strategy for determining what kind of memory area to return is complex,
373  * see comments inside of the function.
374  */
375 static void *
376 nouveau_buffer_transfer_map(struct pipe_context *pipe,
377                             struct pipe_resource *resource,
378                             unsigned level, unsigned usage,
379                             const struct pipe_box *box,
380                             struct pipe_transfer **ptransfer)
381 {
382    struct nouveau_context *nv = nouveau_context(pipe);
383    struct nv04_resource *buf = nv04_resource(resource);
384    struct nouveau_transfer *tx = MALLOC_STRUCT(nouveau_transfer);
385    uint8_t *map;
386    int ret;
387
388    if (!tx)
389       return NULL;
390    nouveau_buffer_transfer_init(tx, resource, box, usage);
391    *ptransfer = &tx->base;
392
393    if (usage & PIPE_TRANSFER_READ)
394       NOUVEAU_DRV_STAT(nv->screen, buf_transfers_rd, 1);
395    if (usage & PIPE_TRANSFER_WRITE)
396       NOUVEAU_DRV_STAT(nv->screen, buf_transfers_wr, 1);
397
398    /* If we are trying to write to an uninitialized range, the user shouldn't
399     * care what was there before. So we can treat the write as if the target
400     * range were being discarded. Furthermore, since we know that even if this
401     * buffer is busy due to GPU activity, because the contents were
402     * uninitialized, the GPU can't care what was there, and so we can treat
403     * the write as being unsynchronized.
404     */
405    if ((usage & PIPE_TRANSFER_WRITE) &&
406        !util_ranges_intersect(&buf->valid_buffer_range, box->x, box->x + box->width))
407       usage |= PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_UNSYNCHRONIZED;
408
409    if (buf->domain == NOUVEAU_BO_VRAM) {
410       if (usage & NOUVEAU_TRANSFER_DISCARD) {
411          /* Set up a staging area for the user to write to. It will be copied
412           * back into VRAM on unmap. */
413          if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
414             buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
415          nouveau_transfer_staging(nv, tx, true);
416       } else {
417          if (buf->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) {
418             /* The GPU is currently writing to this buffer. Copy its current
419              * contents to a staging area in the GART. This is necessary since
420              * not the whole area being mapped is being discarded.
421              */
422             if (buf->data) {
423                align_free(buf->data);
424                buf->data = NULL;
425             }
426             nouveau_transfer_staging(nv, tx, false);
427             nouveau_transfer_read(nv, tx);
428          } else {
429             /* The buffer is currently idle. Create a staging area for writes,
430              * and make sure that the cached data is up-to-date. */
431             if (usage & PIPE_TRANSFER_WRITE)
432                nouveau_transfer_staging(nv, tx, true);
433             if (!buf->data)
434                nouveau_buffer_cache(nv, buf);
435          }
436       }
437       return buf->data ? (buf->data + box->x) : tx->map;
438    } else
439    if (unlikely(buf->domain == 0)) {
440       return buf->data + box->x;
441    }
442
443    /* At this point, buf->domain == GART */
444
445    if (nouveau_buffer_should_discard(buf, usage)) {
446       int ref = buf->base.reference.count - 1;
447       nouveau_buffer_reallocate(nv->screen, buf, buf->domain);
448       if (ref > 0) /* any references inside context possible ? */
449          nv->invalidate_resource_storage(nv, &buf->base, ref);
450    }
451
452    /* Note that nouveau_bo_map ends up doing a nouveau_bo_wait with the
453     * relevant flags. If buf->mm is set, that means this resource is part of a
454     * larger slab bo that holds multiple resources. So in that case, don't
455     * wait on the whole slab and instead use the logic below to return a
456     * reasonable buffer for that case.
457     */
458    ret = nouveau_bo_map(buf->bo,
459                         buf->mm ? 0 : nouveau_screen_transfer_flags(usage),
460                         nv->client);
461    if (ret) {
462       FREE(tx);
463       return NULL;
464    }
465    map = (uint8_t *)buf->bo->map + buf->offset + box->x;
466
467    /* using kernel fences only if !buf->mm */
468    if ((usage & PIPE_TRANSFER_UNSYNCHRONIZED) || !buf->mm)
469       return map;
470
471    /* If the GPU is currently reading/writing this buffer, we shouldn't
472     * interfere with its progress. So instead we either wait for the GPU to
473     * complete its operation, or set up a staging area to perform our work in.
474     */
475    if (nouveau_buffer_busy(buf, usage & PIPE_TRANSFER_READ_WRITE)) {
476       if (unlikely(usage & (PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
477                             PIPE_TRANSFER_PERSISTENT))) {
478          /* Discarding was not possible, must sync because
479           * subsequent transfers might use UNSYNCHRONIZED. */
480          nouveau_buffer_sync(nv, buf, usage & PIPE_TRANSFER_READ_WRITE);
481       } else
482       if (usage & PIPE_TRANSFER_DISCARD_RANGE) {
483          /* The whole range is being discarded, so it doesn't matter what was
484           * there before. No need to copy anything over. */
485          nouveau_transfer_staging(nv, tx, true);
486          map = tx->map;
487       } else
488       if (nouveau_buffer_busy(buf, PIPE_TRANSFER_READ)) {
489          if (usage & PIPE_TRANSFER_DONTBLOCK)
490             map = NULL;
491          else
492             nouveau_buffer_sync(nv, buf, usage & PIPE_TRANSFER_READ_WRITE);
493       } else {
494          /* It is expected that the returned buffer be a representation of the
495           * data in question, so we must copy it over from the buffer. */
496          nouveau_transfer_staging(nv, tx, true);
497          if (tx->map)
498             memcpy(tx->map, map, box->width);
499          map = tx->map;
500       }
501    }
502    if (!map)
503       FREE(tx);
504    return map;
505 }
506
507
508
509 static void
510 nouveau_buffer_transfer_flush_region(struct pipe_context *pipe,
511                                      struct pipe_transfer *transfer,
512                                      const struct pipe_box *box)
513 {
514    struct nouveau_transfer *tx = nouveau_transfer(transfer);
515    struct nv04_resource *buf = nv04_resource(transfer->resource);
516
517    if (tx->map)
518       nouveau_transfer_write(nouveau_context(pipe), tx, box->x, box->width);
519
520    util_range_add(&buf->valid_buffer_range,
521                   tx->base.box.x + box->x,
522                   tx->base.box.x + box->x + box->width);
523 }
524
525 /* Unmap stage of the transfer. If it was a WRITE transfer and the map that
526  * was returned was not the real resource's data, this needs to transfer the
527  * data back to the resource.
528  *
529  * Also marks vbo dirty based on the buffer's binding
530  */
531 static void
532 nouveau_buffer_transfer_unmap(struct pipe_context *pipe,
533                               struct pipe_transfer *transfer)
534 {
535    struct nouveau_context *nv = nouveau_context(pipe);
536    struct nouveau_transfer *tx = nouveau_transfer(transfer);
537    struct nv04_resource *buf = nv04_resource(transfer->resource);
538
539    if (tx->base.usage & PIPE_TRANSFER_WRITE) {
540       if (!(tx->base.usage & PIPE_TRANSFER_FLUSH_EXPLICIT)) {
541          if (tx->map)
542             nouveau_transfer_write(nv, tx, 0, tx->base.box.width);
543
544          util_range_add(&buf->valid_buffer_range,
545                         tx->base.box.x, tx->base.box.x + tx->base.box.width);
546       }
547
548       if (likely(buf->domain)) {
549          const uint8_t bind = buf->base.bind;
550          /* make sure we invalidate dedicated caches */
551          if (bind & (PIPE_BIND_VERTEX_BUFFER | PIPE_BIND_INDEX_BUFFER))
552             nv->vbo_dirty = true;
553       }
554    }
555
556    if (!tx->bo && (tx->base.usage & PIPE_TRANSFER_WRITE))
557       NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_direct, tx->base.box.width);
558
559    nouveau_buffer_transfer_del(nv, tx);
560    FREE(tx);
561 }
562
563
564 void
565 nouveau_copy_buffer(struct nouveau_context *nv,
566                     struct nv04_resource *dst, unsigned dstx,
567                     struct nv04_resource *src, unsigned srcx, unsigned size)
568 {
569    assert(dst->base.target == PIPE_BUFFER && src->base.target == PIPE_BUFFER);
570
571    if (likely(dst->domain) && likely(src->domain)) {
572       nv->copy_data(nv,
573                     dst->bo, dst->offset + dstx, dst->domain,
574                     src->bo, src->offset + srcx, src->domain, size);
575
576       dst->status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
577       nouveau_fence_ref(nv->screen->fence.current, &dst->fence);
578       nouveau_fence_ref(nv->screen->fence.current, &dst->fence_wr);
579
580       src->status |= NOUVEAU_BUFFER_STATUS_GPU_READING;
581       nouveau_fence_ref(nv->screen->fence.current, &src->fence);
582    } else {
583       struct pipe_box src_box;
584       src_box.x = srcx;
585       src_box.y = 0;
586       src_box.z = 0;
587       src_box.width = size;
588       src_box.height = 1;
589       src_box.depth = 1;
590       util_resource_copy_region(&nv->pipe,
591                                 &dst->base, 0, dstx, 0, 0,
592                                 &src->base, 0, &src_box);
593    }
594
595    util_range_add(&dst->valid_buffer_range, dstx, dstx + size);
596 }
597
598
599 void *
600 nouveau_resource_map_offset(struct nouveau_context *nv,
601                             struct nv04_resource *res, uint32_t offset,
602                             uint32_t flags)
603 {
604    if (unlikely(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
605       return res->data + offset;
606
607    if (res->domain == NOUVEAU_BO_VRAM) {
608       if (!res->data || (res->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING))
609          nouveau_buffer_cache(nv, res);
610    }
611    if (res->domain != NOUVEAU_BO_GART)
612       return res->data + offset;
613
614    if (res->mm) {
615       unsigned rw;
616       rw = (flags & NOUVEAU_BO_WR) ? PIPE_TRANSFER_WRITE : PIPE_TRANSFER_READ;
617       nouveau_buffer_sync(nv, res, rw);
618       if (nouveau_bo_map(res->bo, 0, NULL))
619          return NULL;
620    } else {
621       if (nouveau_bo_map(res->bo, flags, nv->client))
622          return NULL;
623    }
624    return (uint8_t *)res->bo->map + res->offset + offset;
625 }
626
627
628 const struct u_resource_vtbl nouveau_buffer_vtbl =
629 {
630    u_default_resource_get_handle,     /* get_handle */
631    nouveau_buffer_destroy,               /* resource_destroy */
632    nouveau_buffer_transfer_map,          /* transfer_map */
633    nouveau_buffer_transfer_flush_region, /* transfer_flush_region */
634    nouveau_buffer_transfer_unmap,        /* transfer_unmap */
635 };
636
637 struct pipe_resource *
638 nouveau_buffer_create(struct pipe_screen *pscreen,
639                       const struct pipe_resource *templ)
640 {
641    struct nouveau_screen *screen = nouveau_screen(pscreen);
642    struct nv04_resource *buffer;
643    bool ret;
644
645    buffer = CALLOC_STRUCT(nv04_resource);
646    if (!buffer)
647       return NULL;
648
649    buffer->base = *templ;
650    buffer->vtbl = &nouveau_buffer_vtbl;
651    pipe_reference_init(&buffer->base.reference, 1);
652    buffer->base.screen = pscreen;
653
654    if (buffer->base.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
655                              PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
656       buffer->domain = NOUVEAU_BO_GART;
657    } else if (buffer->base.bind == 0 || (buffer->base.bind &
658               (screen->vidmem_bindings & screen->sysmem_bindings))) {
659       switch (buffer->base.usage) {
660       case PIPE_USAGE_DEFAULT:
661       case PIPE_USAGE_IMMUTABLE:
662          buffer->domain = NV_VRAM_DOMAIN(screen);
663          break;
664       case PIPE_USAGE_DYNAMIC:
665          /* For most apps, we'd have to do staging transfers to avoid sync
666           * with this usage, and GART -> GART copies would be suboptimal.
667           */
668          buffer->domain = NV_VRAM_DOMAIN(screen);
669          break;
670       case PIPE_USAGE_STAGING:
671       case PIPE_USAGE_STREAM:
672          buffer->domain = NOUVEAU_BO_GART;
673          break;
674       default:
675          assert(0);
676          break;
677       }
678    } else {
679       if (buffer->base.bind & screen->vidmem_bindings)
680          buffer->domain = NV_VRAM_DOMAIN(screen);
681       else
682       if (buffer->base.bind & screen->sysmem_bindings)
683          buffer->domain = NOUVEAU_BO_GART;
684    }
685
686    ret = nouveau_buffer_allocate(screen, buffer, buffer->domain);
687
688    if (ret == false)
689       goto fail;
690
691    if (buffer->domain == NOUVEAU_BO_VRAM && screen->hint_buf_keep_sysmem_copy)
692       nouveau_buffer_cache(NULL, buffer);
693
694    NOUVEAU_DRV_STAT(screen, buf_obj_current_count, 1);
695
696    util_range_init(&buffer->valid_buffer_range);
697
698    return &buffer->base;
699
700 fail:
701    FREE(buffer);
702    return NULL;
703 }
704
705
706 struct pipe_resource *
707 nouveau_user_buffer_create(struct pipe_screen *pscreen, void *ptr,
708                            unsigned bytes, unsigned bind)
709 {
710    struct nv04_resource *buffer;
711
712    buffer = CALLOC_STRUCT(nv04_resource);
713    if (!buffer)
714       return NULL;
715
716    pipe_reference_init(&buffer->base.reference, 1);
717    buffer->vtbl = &nouveau_buffer_vtbl;
718    buffer->base.screen = pscreen;
719    buffer->base.format = PIPE_FORMAT_R8_UNORM;
720    buffer->base.usage = PIPE_USAGE_IMMUTABLE;
721    buffer->base.bind = bind;
722    buffer->base.width0 = bytes;
723    buffer->base.height0 = 1;
724    buffer->base.depth0 = 1;
725
726    buffer->data = ptr;
727    buffer->status = NOUVEAU_BUFFER_STATUS_USER_MEMORY;
728
729    util_range_init(&buffer->valid_buffer_range);
730    util_range_add(&buffer->valid_buffer_range, 0, bytes);
731
732    return &buffer->base;
733 }
734
735 static inline bool
736 nouveau_buffer_data_fetch(struct nouveau_context *nv, struct nv04_resource *buf,
737                           struct nouveau_bo *bo, unsigned offset, unsigned size)
738 {
739    if (!nouveau_buffer_malloc(buf))
740       return false;
741    if (nouveau_bo_map(bo, NOUVEAU_BO_RD, nv->client))
742       return false;
743    memcpy(buf->data, (uint8_t *)bo->map + offset, size);
744    return true;
745 }
746
747 /* Migrate a linear buffer (vertex, index, constants) USER -> GART -> VRAM. */
748 bool
749 nouveau_buffer_migrate(struct nouveau_context *nv,
750                        struct nv04_resource *buf, const unsigned new_domain)
751 {
752    struct nouveau_screen *screen = nv->screen;
753    struct nouveau_bo *bo;
754    const unsigned old_domain = buf->domain;
755    unsigned size = buf->base.width0;
756    unsigned offset;
757    int ret;
758
759    assert(new_domain != old_domain);
760
761    if (new_domain == NOUVEAU_BO_GART && old_domain == 0) {
762       if (!nouveau_buffer_allocate(screen, buf, new_domain))
763          return false;
764       ret = nouveau_bo_map(buf->bo, 0, nv->client);
765       if (ret)
766          return ret;
767       memcpy((uint8_t *)buf->bo->map + buf->offset, buf->data, size);
768       align_free(buf->data);
769    } else
770    if (old_domain != 0 && new_domain != 0) {
771       struct nouveau_mm_allocation *mm = buf->mm;
772
773       if (new_domain == NOUVEAU_BO_VRAM) {
774          /* keep a system memory copy of our data in case we hit a fallback */
775          if (!nouveau_buffer_data_fetch(nv, buf, buf->bo, buf->offset, size))
776             return false;
777          if (nouveau_mesa_debug)
778             debug_printf("migrating %u KiB to VRAM\n", size / 1024);
779       }
780
781       offset = buf->offset;
782       bo = buf->bo;
783       buf->bo = NULL;
784       buf->mm = NULL;
785       nouveau_buffer_allocate(screen, buf, new_domain);
786
787       nv->copy_data(nv, buf->bo, buf->offset, new_domain,
788                     bo, offset, old_domain, buf->base.width0);
789
790       nouveau_fence_work(screen->fence.current, nouveau_fence_unref_bo, bo);
791       if (mm)
792          release_allocation(&mm, screen->fence.current);
793    } else
794    if (new_domain == NOUVEAU_BO_VRAM && old_domain == 0) {
795       struct nouveau_transfer tx;
796       if (!nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_VRAM))
797          return false;
798       tx.base.resource = &buf->base;
799       tx.base.box.x = 0;
800       tx.base.box.width = buf->base.width0;
801       tx.bo = NULL;
802       tx.map = NULL;
803       if (!nouveau_transfer_staging(nv, &tx, false))
804          return false;
805       nouveau_transfer_write(nv, &tx, 0, tx.base.box.width);
806       nouveau_buffer_transfer_del(nv, &tx);
807    } else
808       return false;
809
810    assert(buf->domain == new_domain);
811    return true;
812 }
813
814 /* Migrate data from glVertexAttribPointer(non-VBO) user buffers to GART.
815  * We'd like to only allocate @size bytes here, but then we'd have to rebase
816  * the vertex indices ...
817  */
818 bool
819 nouveau_user_buffer_upload(struct nouveau_context *nv,
820                            struct nv04_resource *buf,
821                            unsigned base, unsigned size)
822 {
823    struct nouveau_screen *screen = nouveau_screen(buf->base.screen);
824    int ret;
825
826    assert(buf->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY);
827
828    buf->base.width0 = base + size;
829    if (!nouveau_buffer_reallocate(screen, buf, NOUVEAU_BO_GART))
830       return false;
831
832    ret = nouveau_bo_map(buf->bo, 0, nv->client);
833    if (ret)
834       return false;
835    memcpy((uint8_t *)buf->bo->map + buf->offset + base, buf->data + base, size);
836
837    return true;
838 }
839
840 /* Invalidate underlying buffer storage, reset fences, reallocate to non-busy
841  * buffer.
842  */
843 void
844 nouveau_buffer_invalidate(struct pipe_context *pipe,
845                           struct pipe_resource *resource)
846 {
847    struct nouveau_context *nv = nouveau_context(pipe);
848    struct nv04_resource *buf = nv04_resource(resource);
849    int ref = buf->base.reference.count - 1;
850
851    /* Shared buffers shouldn't get reallocated */
852    if (unlikely(buf->base.bind & PIPE_BIND_SHARED))
853       return;
854
855    /* We can't touch persistent/coherent buffers */
856    if (buf->base.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
857                           PIPE_RESOURCE_FLAG_MAP_COHERENT))
858       return;
859
860    /* If the buffer is sub-allocated and not currently being written, just
861     * wipe the valid buffer range. Otherwise we have to create fresh
862     * storage. (We don't keep track of fences for non-sub-allocated BO's.)
863     */
864    if (buf->mm && !nouveau_buffer_busy(buf, PIPE_TRANSFER_WRITE)) {
865       util_range_set_empty(&buf->valid_buffer_range);
866    } else {
867       nouveau_buffer_reallocate(nv->screen, buf, buf->domain);
868       if (ref > 0) /* any references inside context possible ? */
869          nv->invalidate_resource_storage(nv, &buf->base, ref);
870    }
871 }
872
873
874 /* Scratch data allocation. */
875
876 static inline int
877 nouveau_scratch_bo_alloc(struct nouveau_context *nv, struct nouveau_bo **pbo,
878                          unsigned size)
879 {
880    return nouveau_bo_new(nv->screen->device, NOUVEAU_BO_GART | NOUVEAU_BO_MAP,
881                          4096, size, NULL, pbo);
882 }
883
884 static void
885 nouveau_scratch_unref_bos(void *d)
886 {
887    struct runout *b = d;
888    int i;
889
890    for (i = 0; i < b->nr; ++i)
891       nouveau_bo_ref(NULL, &b->bo[i]);
892
893    FREE(b);
894 }
895
896 void
897 nouveau_scratch_runout_release(struct nouveau_context *nv)
898 {
899    if (!nv->scratch.runout)
900       return;
901
902    if (!nouveau_fence_work(nv->screen->fence.current, nouveau_scratch_unref_bos,
903          nv->scratch.runout))
904       return;
905
906    nv->scratch.end = 0;
907    nv->scratch.runout = NULL;
908 }
909
910 /* Allocate an extra bo if we can't fit everything we need simultaneously.
911  * (Could happen for very large user arrays.)
912  */
913 static inline bool
914 nouveau_scratch_runout(struct nouveau_context *nv, unsigned size)
915 {
916    int ret;
917    unsigned n;
918
919    if (nv->scratch.runout)
920       n = nv->scratch.runout->nr;
921    else
922       n = 0;
923    nv->scratch.runout = REALLOC(nv->scratch.runout, n == 0 ? 0 :
924                                 (sizeof(*nv->scratch.runout) + (n + 0) * sizeof(void *)),
925                                  sizeof(*nv->scratch.runout) + (n + 1) * sizeof(void *));
926    nv->scratch.runout->nr = n + 1;
927    nv->scratch.runout->bo[n] = NULL;
928
929    ret = nouveau_scratch_bo_alloc(nv, &nv->scratch.runout->bo[n], size);
930    if (!ret) {
931       ret = nouveau_bo_map(nv->scratch.runout->bo[n], 0, NULL);
932       if (ret)
933          nouveau_bo_ref(NULL, &nv->scratch.runout->bo[--nv->scratch.runout->nr]);
934    }
935    if (!ret) {
936       nv->scratch.current = nv->scratch.runout->bo[n];
937       nv->scratch.offset = 0;
938       nv->scratch.end = size;
939       nv->scratch.map = nv->scratch.current->map;
940    }
941    return !ret;
942 }
943
944 /* Continue to next scratch buffer, if available (no wrapping, large enough).
945  * Allocate it if it has not yet been created.
946  */
947 static inline bool
948 nouveau_scratch_next(struct nouveau_context *nv, unsigned size)
949 {
950    struct nouveau_bo *bo;
951    int ret;
952    const unsigned i = (nv->scratch.id + 1) % NOUVEAU_MAX_SCRATCH_BUFS;
953
954    if ((size > nv->scratch.bo_size) || (i == nv->scratch.wrap))
955       return false;
956    nv->scratch.id = i;
957
958    bo = nv->scratch.bo[i];
959    if (!bo) {
960       ret = nouveau_scratch_bo_alloc(nv, &bo, nv->scratch.bo_size);
961       if (ret)
962          return false;
963       nv->scratch.bo[i] = bo;
964    }
965    nv->scratch.current = bo;
966    nv->scratch.offset = 0;
967    nv->scratch.end = nv->scratch.bo_size;
968
969    ret = nouveau_bo_map(bo, NOUVEAU_BO_WR, nv->client);
970    if (!ret)
971       nv->scratch.map = bo->map;
972    return !ret;
973 }
974
975 static bool
976 nouveau_scratch_more(struct nouveau_context *nv, unsigned min_size)
977 {
978    bool ret;
979
980    ret = nouveau_scratch_next(nv, min_size);
981    if (!ret)
982       ret = nouveau_scratch_runout(nv, min_size);
983    return ret;
984 }
985
986
987 /* Copy data to a scratch buffer and return address & bo the data resides in. */
988 uint64_t
989 nouveau_scratch_data(struct nouveau_context *nv,
990                      const void *data, unsigned base, unsigned size,
991                      struct nouveau_bo **bo)
992 {
993    unsigned bgn = MAX2(base, nv->scratch.offset);
994    unsigned end = bgn + size;
995
996    if (end >= nv->scratch.end) {
997       end = base + size;
998       if (!nouveau_scratch_more(nv, end))
999          return 0;
1000       bgn = base;
1001    }
1002    nv->scratch.offset = align(end, 4);
1003
1004    memcpy(nv->scratch.map + bgn, (const uint8_t *)data + base, size);
1005
1006    *bo = nv->scratch.current;
1007    return (*bo)->offset + (bgn - base);
1008 }
1009
1010 void *
1011 nouveau_scratch_get(struct nouveau_context *nv,
1012                     unsigned size, uint64_t *gpu_addr, struct nouveau_bo **pbo)
1013 {
1014    unsigned bgn = nv->scratch.offset;
1015    unsigned end = nv->scratch.offset + size;
1016
1017    if (end >= nv->scratch.end) {
1018       end = size;
1019       if (!nouveau_scratch_more(nv, end))
1020          return NULL;
1021       bgn = 0;
1022    }
1023    nv->scratch.offset = align(end, 4);
1024
1025    *pbo = nv->scratch.current;
1026    *gpu_addr = nv->scratch.current->offset + bgn;
1027    return nv->scratch.map + bgn;
1028 }