OSDN Git Service

anv: Include the pipeline layout in the shader hash
[android-x86/external-mesa.git] / src / intel / vulkan / anv_pipeline.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "util/mesa-sha1.h"
31 #include "anv_private.h"
32 #include "brw_nir.h"
33 #include "anv_nir.h"
34 #include "spirv/nir_spirv.h"
35
36 /* Needed for SWIZZLE macros */
37 #include "program/prog_instruction.h"
38
39 // Shader functions
40
41 VkResult anv_CreateShaderModule(
42     VkDevice                                    _device,
43     const VkShaderModuleCreateInfo*             pCreateInfo,
44     const VkAllocationCallbacks*                pAllocator,
45     VkShaderModule*                             pShaderModule)
46 {
47    ANV_FROM_HANDLE(anv_device, device, _device);
48    struct anv_shader_module *module;
49
50    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
51    assert(pCreateInfo->flags == 0);
52
53    module = anv_alloc2(&device->alloc, pAllocator,
54                        sizeof(*module) + pCreateInfo->codeSize, 8,
55                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
56    if (module == NULL)
57       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
58
59    module->nir = NULL;
60    module->size = pCreateInfo->codeSize;
61    memcpy(module->data, pCreateInfo->pCode, module->size);
62
63    _mesa_sha1_compute(module->data, module->size, module->sha1);
64
65    *pShaderModule = anv_shader_module_to_handle(module);
66
67    return VK_SUCCESS;
68 }
69
70 void anv_DestroyShaderModule(
71     VkDevice                                    _device,
72     VkShaderModule                              _module,
73     const VkAllocationCallbacks*                pAllocator)
74 {
75    ANV_FROM_HANDLE(anv_device, device, _device);
76    ANV_FROM_HANDLE(anv_shader_module, module, _module);
77
78    anv_free2(&device->alloc, pAllocator, module);
79 }
80
81 #define SPIR_V_MAGIC_NUMBER 0x07230203
82
83 /* Eventually, this will become part of anv_CreateShader.  Unfortunately,
84  * we can't do that yet because we don't have the ability to copy nir.
85  */
86 static nir_shader *
87 anv_shader_compile_to_nir(struct anv_device *device,
88                           struct anv_shader_module *module,
89                           const char *entrypoint_name,
90                           gl_shader_stage stage,
91                           const VkSpecializationInfo *spec_info)
92 {
93    if (strcmp(entrypoint_name, "main") != 0) {
94       anv_finishme("Multiple shaders per module not really supported");
95    }
96
97    const struct brw_compiler *compiler =
98       device->instance->physicalDevice.compiler;
99    const nir_shader_compiler_options *nir_options =
100       compiler->glsl_compiler_options[stage].NirOptions;
101
102    nir_shader *nir;
103    nir_function *entry_point;
104    if (module->nir) {
105       /* Some things such as our meta clear/blit code will give us a NIR
106        * shader directly.  In that case, we just ignore the SPIR-V entirely
107        * and just use the NIR shader */
108       nir = module->nir;
109       nir->options = nir_options;
110       nir_validate_shader(nir);
111
112       assert(exec_list_length(&nir->functions) == 1);
113       struct exec_node *node = exec_list_get_head(&nir->functions);
114       entry_point = exec_node_data(nir_function, node, node);
115    } else {
116       uint32_t *spirv = (uint32_t *) module->data;
117       assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
118       assert(module->size % 4 == 0);
119
120       uint32_t num_spec_entries = 0;
121       struct nir_spirv_specialization *spec_entries = NULL;
122       if (spec_info && spec_info->mapEntryCount > 0) {
123          num_spec_entries = spec_info->mapEntryCount;
124          spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
125          for (uint32_t i = 0; i < num_spec_entries; i++) {
126             VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
127             const void *data = spec_info->pData + entry.offset;
128             assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
129
130             spec_entries[i].id = spec_info->pMapEntries[i].constantID;
131             spec_entries[i].data = *(const uint32_t *)data;
132          }
133       }
134
135       entry_point = spirv_to_nir(spirv, module->size / 4,
136                                  spec_entries, num_spec_entries,
137                                  stage, entrypoint_name, nir_options);
138       nir = entry_point->shader;
139       assert(nir->stage == stage);
140       nir_validate_shader(nir);
141
142       free(spec_entries);
143
144       if (stage == MESA_SHADER_FRAGMENT) {
145          nir_lower_wpos_center(nir);
146          nir_validate_shader(nir);
147       }
148
149       nir_lower_returns(nir);
150       nir_validate_shader(nir);
151
152       nir_inline_functions(nir);
153       nir_validate_shader(nir);
154
155       /* Pick off the single entrypoint that we want */
156       foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
157          if (func != entry_point)
158             exec_node_remove(&func->node);
159       }
160       assert(exec_list_length(&nir->functions) == 1);
161       entry_point->name = ralloc_strdup(entry_point, "main");
162
163       nir_remove_dead_variables(nir, nir_var_shader_in);
164       nir_remove_dead_variables(nir, nir_var_shader_out);
165       nir_remove_dead_variables(nir, nir_var_system_value);
166       nir_validate_shader(nir);
167
168       nir_propagate_invariant(nir);
169       nir_validate_shader(nir);
170
171       nir_lower_io_to_temporaries(entry_point->shader, entry_point, true, false);
172
173       nir_lower_system_values(nir);
174       nir_validate_shader(nir);
175    }
176
177    /* Vulkan uses the separate-shader linking model */
178    nir->info.separate_shader = true;
179
180    nir = brw_preprocess_nir(compiler, nir);
181
182    nir_shader_gather_info(nir, entry_point->impl);
183
184    nir_variable_mode indirect_mask = 0;
185    if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
186       indirect_mask |= nir_var_shader_in;
187    if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
188       indirect_mask |= nir_var_local;
189
190    nir_lower_indirect_derefs(nir, indirect_mask);
191
192    return nir;
193 }
194
195 void anv_DestroyPipeline(
196     VkDevice                                    _device,
197     VkPipeline                                  _pipeline,
198     const VkAllocationCallbacks*                pAllocator)
199 {
200    ANV_FROM_HANDLE(anv_device, device, _device);
201    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
202
203    anv_reloc_list_finish(&pipeline->batch_relocs,
204                          pAllocator ? pAllocator : &device->alloc);
205    if (pipeline->blend_state.map)
206       anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
207    anv_free2(&device->alloc, pAllocator, pipeline);
208 }
209
210 static const uint32_t vk_to_gen_primitive_type[] = {
211    [VK_PRIMITIVE_TOPOLOGY_POINT_LIST]                    = _3DPRIM_POINTLIST,
212    [VK_PRIMITIVE_TOPOLOGY_LINE_LIST]                     = _3DPRIM_LINELIST,
213    [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP]                    = _3DPRIM_LINESTRIP,
214    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST]                 = _3DPRIM_TRILIST,
215    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP]                = _3DPRIM_TRISTRIP,
216    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN]                  = _3DPRIM_TRIFAN,
217    [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY]      = _3DPRIM_LINELIST_ADJ,
218    [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY]     = _3DPRIM_LINESTRIP_ADJ,
219    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY]  = _3DPRIM_TRILIST_ADJ,
220    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
221 /*   [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST]                = _3DPRIM_PATCHLIST_1 */
222 };
223
224 static void
225 populate_sampler_prog_key(const struct brw_device_info *devinfo,
226                           struct brw_sampler_prog_key_data *key)
227 {
228    /* XXX: Handle texture swizzle on HSW- */
229    for (int i = 0; i < MAX_SAMPLERS; i++) {
230       /* Assume color sampler, no swizzling. (Works for BDW+) */
231       key->swizzles[i] = SWIZZLE_XYZW;
232    }
233 }
234
235 static void
236 populate_vs_prog_key(const struct brw_device_info *devinfo,
237                      struct brw_vs_prog_key *key)
238 {
239    memset(key, 0, sizeof(*key));
240
241    populate_sampler_prog_key(devinfo, &key->tex);
242
243    /* XXX: Handle vertex input work-arounds */
244
245    /* XXX: Handle sampler_prog_key */
246 }
247
248 static void
249 populate_gs_prog_key(const struct brw_device_info *devinfo,
250                      struct brw_gs_prog_key *key)
251 {
252    memset(key, 0, sizeof(*key));
253
254    populate_sampler_prog_key(devinfo, &key->tex);
255 }
256
257 static void
258 populate_wm_prog_key(const struct brw_device_info *devinfo,
259                      const VkGraphicsPipelineCreateInfo *info,
260                      const struct anv_graphics_pipeline_create_info *extra,
261                      struct brw_wm_prog_key *key)
262 {
263    ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
264
265    memset(key, 0, sizeof(*key));
266
267    populate_sampler_prog_key(devinfo, &key->tex);
268
269    /* TODO: Fill out key->input_slots_valid */
270
271    /* Vulkan doesn't specify a default */
272    key->high_quality_derivatives = false;
273
274    /* XXX Vulkan doesn't appear to specify */
275    key->clamp_fragment_color = false;
276
277    if (extra && extra->color_attachment_count >= 0) {
278       key->nr_color_regions = extra->color_attachment_count;
279    } else {
280       key->nr_color_regions =
281          render_pass->subpasses[info->subpass].color_count;
282    }
283
284    key->replicate_alpha = key->nr_color_regions > 1 &&
285                           info->pMultisampleState &&
286                           info->pMultisampleState->alphaToCoverageEnable;
287
288    if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
289       /* We should probably pull this out of the shader, but it's fairly
290        * harmless to compute it and then let dead-code take care of it.
291        */
292       key->persample_interp =
293          (info->pMultisampleState->minSampleShading *
294           info->pMultisampleState->rasterizationSamples) > 1;
295       key->multisample_fbo = true;
296    }
297 }
298
299 static void
300 populate_cs_prog_key(const struct brw_device_info *devinfo,
301                      struct brw_cs_prog_key *key)
302 {
303    memset(key, 0, sizeof(*key));
304
305    populate_sampler_prog_key(devinfo, &key->tex);
306 }
307
308 static nir_shader *
309 anv_pipeline_compile(struct anv_pipeline *pipeline,
310                      struct anv_shader_module *module,
311                      const char *entrypoint,
312                      gl_shader_stage stage,
313                      const VkSpecializationInfo *spec_info,
314                      struct brw_stage_prog_data *prog_data,
315                      struct anv_pipeline_bind_map *map)
316 {
317    nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
318                                                module, entrypoint, stage,
319                                                spec_info);
320    if (nir == NULL)
321       return NULL;
322
323    anv_nir_lower_push_constants(nir);
324
325    /* Figure out the number of parameters */
326    prog_data->nr_params = 0;
327
328    if (nir->num_uniforms > 0) {
329       /* If the shader uses any push constants at all, we'll just give
330        * them the maximum possible number
331        */
332       prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
333    }
334
335    if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
336       prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
337
338    if (nir->info.num_images > 0) {
339       prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE;
340       pipeline->needs_data_cache = true;
341    }
342
343    if (stage == MESA_SHADER_COMPUTE)
344       ((struct brw_cs_prog_data *)prog_data)->thread_local_id_index =
345          prog_data->nr_params++; /* The CS Thread ID uniform */
346
347    if (nir->info.num_ssbos > 0)
348       pipeline->needs_data_cache = true;
349
350    if (prog_data->nr_params > 0) {
351       /* XXX: I think we're leaking this */
352       prog_data->param = (const union gl_constant_value **)
353          malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
354
355       /* We now set the param values to be offsets into a
356        * anv_push_constant_data structure.  Since the compiler doesn't
357        * actually dereference any of the gl_constant_value pointers in the
358        * params array, it doesn't really matter what we put here.
359        */
360       struct anv_push_constants *null_data = NULL;
361       if (nir->num_uniforms > 0) {
362          /* Fill out the push constants section of the param array */
363          for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
364             prog_data->param[i] = (const union gl_constant_value *)
365                &null_data->client_data[i * sizeof(float)];
366       }
367    }
368
369    /* Set up dynamic offsets */
370    anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
371
372    /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
373    if (pipeline->layout)
374       anv_nir_apply_pipeline_layout(pipeline, nir, prog_data, map);
375
376    /* nir_lower_io will only handle the push constants; we need to set this
377     * to the full number of possible uniforms.
378     */
379    nir->num_uniforms = prog_data->nr_params * 4;
380
381    return nir;
382 }
383
384 static void
385 anv_fill_binding_table(struct brw_stage_prog_data *prog_data, unsigned bias)
386 {
387    prog_data->binding_table.size_bytes = 0;
388    prog_data->binding_table.texture_start = bias;
389    prog_data->binding_table.ubo_start = bias;
390    prog_data->binding_table.ssbo_start = bias;
391    prog_data->binding_table.image_start = bias;
392 }
393
394 static void
395 anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
396                                 gl_shader_stage stage,
397                                 const struct brw_stage_prog_data *prog_data,
398                                 struct anv_pipeline_bind_map *map)
399 {
400    pipeline->prog_data[stage] = prog_data;
401    pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
402    pipeline->bindings[stage] = *map;
403 }
404
405 static VkResult
406 anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
407                         struct anv_pipeline_cache *cache,
408                         const VkGraphicsPipelineCreateInfo *info,
409                         struct anv_shader_module *module,
410                         const char *entrypoint,
411                         const VkSpecializationInfo *spec_info)
412 {
413    const struct brw_compiler *compiler =
414       pipeline->device->instance->physicalDevice.compiler;
415    const struct brw_stage_prog_data *stage_prog_data;
416    struct anv_pipeline_bind_map map;
417    struct brw_vs_prog_key key;
418    uint32_t kernel = NO_KERNEL;
419    unsigned char sha1[20];
420
421    populate_vs_prog_key(&pipeline->device->info, &key);
422
423    if (module->size > 0) {
424       anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
425                       pipeline->layout, spec_info);
426       kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data, &map);
427    }
428
429    if (kernel == NO_KERNEL) {
430       struct brw_vs_prog_data prog_data = { 0, };
431       struct anv_pipeline_binding surface_to_descriptor[256];
432       struct anv_pipeline_binding sampler_to_descriptor[256];
433
434       map = (struct anv_pipeline_bind_map) {
435          .surface_to_descriptor = surface_to_descriptor,
436          .sampler_to_descriptor = sampler_to_descriptor
437       };
438
439       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
440                                              MESA_SHADER_VERTEX, spec_info,
441                                              &prog_data.base.base, &map);
442       if (nir == NULL)
443          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
444
445       anv_fill_binding_table(&prog_data.base.base, 0);
446
447       void *mem_ctx = ralloc_context(NULL);
448
449       if (module->nir == NULL)
450          ralloc_steal(mem_ctx, nir);
451
452       prog_data.inputs_read = nir->info.inputs_read;
453
454       brw_compute_vue_map(&pipeline->device->info,
455                           &prog_data.base.vue_map,
456                           nir->info.outputs_written,
457                           nir->info.separate_shader);
458
459       unsigned code_size;
460       const unsigned *shader_code =
461          brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
462                         NULL, false, -1, &code_size, NULL);
463       if (shader_code == NULL) {
464          ralloc_free(mem_ctx);
465          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
466       }
467
468       stage_prog_data = &prog_data.base.base;
469       kernel = anv_pipeline_cache_upload_kernel(cache,
470                                                 module->size > 0 ? sha1 : NULL,
471                                                 shader_code, code_size,
472                                                 &stage_prog_data, sizeof(prog_data),
473                                                 &map);
474       ralloc_free(mem_ctx);
475    }
476
477    const struct brw_vs_prog_data *vs_prog_data =
478       (const struct brw_vs_prog_data *) stage_prog_data;
479
480    if (vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
481       pipeline->vs_simd8 = kernel;
482       pipeline->vs_vec4 = NO_KERNEL;
483    } else {
484       pipeline->vs_simd8 = NO_KERNEL;
485       pipeline->vs_vec4 = kernel;
486    }
487
488    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX,
489                                    stage_prog_data, &map);
490
491    return VK_SUCCESS;
492 }
493
494 static VkResult
495 anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
496                         struct anv_pipeline_cache *cache,
497                         const VkGraphicsPipelineCreateInfo *info,
498                         struct anv_shader_module *module,
499                         const char *entrypoint,
500                         const VkSpecializationInfo *spec_info)
501 {
502    const struct brw_compiler *compiler =
503       pipeline->device->instance->physicalDevice.compiler;
504    const struct brw_stage_prog_data *stage_prog_data;
505    struct anv_pipeline_bind_map map;
506    struct brw_gs_prog_key key;
507    uint32_t kernel = NO_KERNEL;
508    unsigned char sha1[20];
509
510    populate_gs_prog_key(&pipeline->device->info, &key);
511
512    if (module->size > 0) {
513       anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
514                       pipeline->layout, spec_info);
515       kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data, &map);
516    }
517
518    if (kernel == NO_KERNEL) {
519       struct brw_gs_prog_data prog_data = { 0, };
520       struct anv_pipeline_binding surface_to_descriptor[256];
521       struct anv_pipeline_binding sampler_to_descriptor[256];
522
523       map = (struct anv_pipeline_bind_map) {
524          .surface_to_descriptor = surface_to_descriptor,
525          .sampler_to_descriptor = sampler_to_descriptor
526       };
527
528       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
529                                              MESA_SHADER_GEOMETRY, spec_info,
530                                              &prog_data.base.base, &map);
531       if (nir == NULL)
532          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
533
534       anv_fill_binding_table(&prog_data.base.base, 0);
535
536       void *mem_ctx = ralloc_context(NULL);
537
538       if (module->nir == NULL)
539          ralloc_steal(mem_ctx, nir);
540
541       brw_compute_vue_map(&pipeline->device->info,
542                           &prog_data.base.vue_map,
543                           nir->info.outputs_written,
544                           nir->info.separate_shader);
545
546       unsigned code_size;
547       const unsigned *shader_code =
548          brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
549                         NULL, -1, &code_size, NULL);
550       if (shader_code == NULL) {
551          ralloc_free(mem_ctx);
552          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
553       }
554
555       /* TODO: SIMD8 GS */
556       stage_prog_data = &prog_data.base.base;
557       kernel = anv_pipeline_cache_upload_kernel(cache,
558                                                 module->size > 0 ? sha1 : NULL,
559                                                 shader_code, code_size,
560                                                 &stage_prog_data, sizeof(prog_data),
561                                                 &map);
562
563       ralloc_free(mem_ctx);
564    }
565
566    pipeline->gs_kernel = kernel;
567
568    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY,
569                                    stage_prog_data, &map);
570
571    return VK_SUCCESS;
572 }
573
574 static VkResult
575 anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
576                         struct anv_pipeline_cache *cache,
577                         const VkGraphicsPipelineCreateInfo *info,
578                         const struct anv_graphics_pipeline_create_info *extra,
579                         struct anv_shader_module *module,
580                         const char *entrypoint,
581                         const VkSpecializationInfo *spec_info)
582 {
583    const struct brw_compiler *compiler =
584       pipeline->device->instance->physicalDevice.compiler;
585    const struct brw_stage_prog_data *stage_prog_data;
586    struct anv_pipeline_bind_map map;
587    struct brw_wm_prog_key key;
588    unsigned char sha1[20];
589
590    populate_wm_prog_key(&pipeline->device->info, info, extra, &key);
591
592    if (module->size > 0) {
593       anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
594                       pipeline->layout, spec_info);
595       pipeline->ps_ksp0 =
596          anv_pipeline_cache_search(cache, sha1, &stage_prog_data, &map);
597    }
598
599    if (pipeline->ps_ksp0 == NO_KERNEL) {
600       struct brw_wm_prog_data prog_data = { 0, };
601       struct anv_pipeline_binding surface_to_descriptor[256];
602       struct anv_pipeline_binding sampler_to_descriptor[256];
603
604       map = (struct anv_pipeline_bind_map) {
605          .surface_to_descriptor = surface_to_descriptor + 8,
606          .sampler_to_descriptor = sampler_to_descriptor
607       };
608
609       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
610                                              MESA_SHADER_FRAGMENT, spec_info,
611                                              &prog_data.base, &map);
612       if (nir == NULL)
613          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
614
615       unsigned num_rts = 0;
616       struct anv_pipeline_binding rt_bindings[8];
617       nir_function_impl *impl = nir_shader_get_entrypoint(nir)->impl;
618       nir_foreach_variable_safe(var, &nir->outputs) {
619          if (var->data.location < FRAG_RESULT_DATA0)
620             continue;
621
622          unsigned rt = var->data.location - FRAG_RESULT_DATA0;
623          if (rt >= key.nr_color_regions) {
624             /* Out-of-bounds, throw it away */
625             var->data.mode = nir_var_local;
626             exec_node_remove(&var->node);
627             exec_list_push_tail(&impl->locals, &var->node);
628             continue;
629          }
630
631          /* Give it a new, compacted, location */
632          var->data.location = FRAG_RESULT_DATA0 + num_rts;
633
634          unsigned array_len =
635             glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
636          assert(num_rts + array_len <= 8);
637
638          for (unsigned i = 0; i < array_len; i++) {
639             rt_bindings[num_rts] = (struct anv_pipeline_binding) {
640                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
641                .binding = 0,
642                .index = rt + i,
643             };
644          }
645
646          num_rts += array_len;
647       }
648
649       if (pipeline->use_repclear) {
650          assert(num_rts == 1);
651          key.nr_color_regions = 1;
652       }
653
654       if (num_rts == 0) {
655          /* If we have no render targets, we need a null render target */
656          rt_bindings[0] = (struct anv_pipeline_binding) {
657             .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
658             .binding = 0,
659             .index = UINT16_MAX,
660          };
661          num_rts = 1;
662       }
663
664       assert(num_rts <= 8);
665       map.surface_to_descriptor -= num_rts;
666       map.surface_count += num_rts;
667       assert(map.surface_count <= 256);
668       memcpy(map.surface_to_descriptor, rt_bindings,
669              num_rts * sizeof(*rt_bindings));
670
671       anv_fill_binding_table(&prog_data.base, num_rts);
672
673       void *mem_ctx = ralloc_context(NULL);
674
675       if (module->nir == NULL)
676          ralloc_steal(mem_ctx, nir);
677
678       unsigned code_size;
679       const unsigned *shader_code =
680          brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
681                         NULL, -1, -1, true, pipeline->use_repclear,
682                         &code_size, NULL);
683       if (shader_code == NULL) {
684          ralloc_free(mem_ctx);
685          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
686       }
687
688       stage_prog_data = &prog_data.base;
689       pipeline->ps_ksp0 =
690          anv_pipeline_cache_upload_kernel(cache,
691                                           module->size > 0 ? sha1 : NULL,
692                                           shader_code, code_size,
693                                                 &stage_prog_data, sizeof(prog_data),
694                                                 &map);
695
696       ralloc_free(mem_ctx);
697    }
698
699    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT,
700                                    stage_prog_data, &map);
701
702    return VK_SUCCESS;
703 }
704
705 VkResult
706 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
707                         struct anv_pipeline_cache *cache,
708                         const VkComputePipelineCreateInfo *info,
709                         struct anv_shader_module *module,
710                         const char *entrypoint,
711                         const VkSpecializationInfo *spec_info)
712 {
713    const struct brw_compiler *compiler =
714       pipeline->device->instance->physicalDevice.compiler;
715    const struct brw_stage_prog_data *stage_prog_data;
716    struct anv_pipeline_bind_map map;
717    struct brw_cs_prog_key key;
718    uint32_t kernel = NO_KERNEL;
719    unsigned char sha1[20];
720
721    populate_cs_prog_key(&pipeline->device->info, &key);
722
723    if (module->size > 0) {
724       anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint,
725                       pipeline->layout, spec_info);
726       kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data, &map);
727    }
728
729    if (module->size == 0 || kernel == NO_KERNEL) {
730       struct brw_cs_prog_data prog_data = { 0, };
731       struct anv_pipeline_binding surface_to_descriptor[256];
732       struct anv_pipeline_binding sampler_to_descriptor[256];
733
734       map = (struct anv_pipeline_bind_map) {
735          .surface_to_descriptor = surface_to_descriptor,
736          .sampler_to_descriptor = sampler_to_descriptor
737       };
738
739       nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
740                                              MESA_SHADER_COMPUTE, spec_info,
741                                              &prog_data.base, &map);
742       if (nir == NULL)
743          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
744
745       anv_fill_binding_table(&prog_data.base, 1);
746
747       void *mem_ctx = ralloc_context(NULL);
748
749       if (module->nir == NULL)
750          ralloc_steal(mem_ctx, nir);
751
752       unsigned code_size;
753       const unsigned *shader_code =
754          brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
755                         -1, &code_size, NULL);
756       if (shader_code == NULL) {
757          ralloc_free(mem_ctx);
758          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
759       }
760
761       stage_prog_data = &prog_data.base;
762       kernel = anv_pipeline_cache_upload_kernel(cache,
763                                                 module->size > 0 ? sha1 : NULL,
764                                                 shader_code, code_size,
765                                                 &stage_prog_data, sizeof(prog_data),
766                                                 &map);
767
768       ralloc_free(mem_ctx);
769    }
770
771    pipeline->cs_simd = kernel;
772
773    anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE,
774                                    stage_prog_data, &map);
775
776    return VK_SUCCESS;
777 }
778
779
780 void
781 anv_setup_pipeline_l3_config(struct anv_pipeline *pipeline)
782 {
783    const struct brw_device_info *devinfo = &pipeline->device->info;
784    switch (devinfo->gen) {
785    case 7:
786       if (devinfo->is_haswell)
787          gen75_setup_pipeline_l3_config(pipeline);
788       else
789          gen7_setup_pipeline_l3_config(pipeline);
790       break;
791    case 8:
792       gen8_setup_pipeline_l3_config(pipeline);
793       break;
794    case 9:
795       gen9_setup_pipeline_l3_config(pipeline);
796       break;
797    default:
798       unreachable("unsupported gen\n");
799    }
800 }
801
802 void
803 anv_compute_urb_partition(struct anv_pipeline *pipeline)
804 {
805    const struct brw_device_info *devinfo = &pipeline->device->info;
806
807    bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
808    unsigned vs_size = vs_present ?
809       get_vs_prog_data(pipeline)->base.urb_entry_size : 1;
810    unsigned vs_entry_size_bytes = vs_size * 64;
811    bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
812    unsigned gs_size = gs_present ?
813       get_gs_prog_data(pipeline)->base.urb_entry_size : 1;
814    unsigned gs_entry_size_bytes = gs_size * 64;
815
816    /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
817     *
818     *     VS Number of URB Entries must be divisible by 8 if the VS URB Entry
819     *     Allocation Size is less than 9 512-bit URB entries.
820     *
821     * Similar text exists for GS.
822     */
823    unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
824    unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
825
826    /* URB allocations must be done in 8k chunks. */
827    unsigned chunk_size_bytes = 8192;
828
829    /* Determine the size of the URB in chunks. */
830    unsigned urb_chunks = pipeline->urb.total_size * 1024 / chunk_size_bytes;
831
832    /* Reserve space for push constants */
833    unsigned push_constant_kb;
834    if (pipeline->device->info.gen >= 8)
835       push_constant_kb = 32;
836    else if (pipeline->device->info.is_haswell)
837       push_constant_kb = pipeline->device->info.gt == 3 ? 32 : 16;
838    else
839       push_constant_kb = 16;
840
841    unsigned push_constant_bytes = push_constant_kb * 1024;
842    unsigned push_constant_chunks =
843       push_constant_bytes / chunk_size_bytes;
844
845    /* Initially, assign each stage the minimum amount of URB space it needs,
846     * and make a note of how much additional space it "wants" (the amount of
847     * additional space it could actually make use of).
848     */
849
850    /* VS has a lower limit on the number of URB entries */
851    unsigned vs_chunks =
852       ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
853             chunk_size_bytes) / chunk_size_bytes;
854    unsigned vs_wants =
855       ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
856             chunk_size_bytes) / chunk_size_bytes - vs_chunks;
857
858    unsigned gs_chunks = 0;
859    unsigned gs_wants = 0;
860    if (gs_present) {
861       /* There are two constraints on the minimum amount of URB space we can
862        * allocate:
863        *
864        * (1) We need room for at least 2 URB entries, since we always operate
865        * the GS in DUAL_OBJECT mode.
866        *
867        * (2) We can't allocate less than nr_gs_entries_granularity.
868        */
869       gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
870                         chunk_size_bytes) / chunk_size_bytes;
871       gs_wants =
872          ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
873                chunk_size_bytes) / chunk_size_bytes - gs_chunks;
874    }
875
876    /* There should always be enough URB space to satisfy the minimum
877     * requirements of each stage.
878     */
879    unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
880    assert(total_needs <= urb_chunks);
881
882    /* Mete out remaining space (if any) in proportion to "wants". */
883    unsigned total_wants = vs_wants + gs_wants;
884    unsigned remaining_space = urb_chunks - total_needs;
885    if (remaining_space > total_wants)
886       remaining_space = total_wants;
887    if (remaining_space > 0) {
888       unsigned vs_additional = (unsigned)
889          round(vs_wants * (((double) remaining_space) / total_wants));
890       vs_chunks += vs_additional;
891       remaining_space -= vs_additional;
892       gs_chunks += remaining_space;
893    }
894
895    /* Sanity check that we haven't over-allocated. */
896    assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
897
898    /* Finally, compute the number of entries that can fit in the space
899     * allocated to each stage.
900     */
901    unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
902    unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
903
904    /* Since we rounded up when computing *_wants, this may be slightly more
905     * than the maximum allowed amount, so correct for that.
906     */
907    nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
908    nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
909
910    /* Ensure that we program a multiple of the granularity. */
911    nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
912    nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
913
914    /* Finally, sanity check to make sure we have at least the minimum number
915     * of entries needed for each stage.
916     */
917    assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
918    if (gs_present)
919       assert(nr_gs_entries >= 2);
920
921    /* Lay out the URB in the following order:
922     * - push constants
923     * - VS
924     * - GS
925     */
926    pipeline->urb.start[MESA_SHADER_VERTEX] = push_constant_chunks;
927    pipeline->urb.size[MESA_SHADER_VERTEX] = vs_size;
928    pipeline->urb.entries[MESA_SHADER_VERTEX] = nr_vs_entries;
929
930    pipeline->urb.start[MESA_SHADER_GEOMETRY] = push_constant_chunks + vs_chunks;
931    pipeline->urb.size[MESA_SHADER_GEOMETRY] = gs_size;
932    pipeline->urb.entries[MESA_SHADER_GEOMETRY] = nr_gs_entries;
933
934    pipeline->urb.start[MESA_SHADER_TESS_CTRL] = push_constant_chunks;
935    pipeline->urb.size[MESA_SHADER_TESS_CTRL] = 1;
936    pipeline->urb.entries[MESA_SHADER_TESS_CTRL] = 0;
937
938    pipeline->urb.start[MESA_SHADER_TESS_EVAL] = push_constant_chunks;
939    pipeline->urb.size[MESA_SHADER_TESS_EVAL] = 1;
940    pipeline->urb.entries[MESA_SHADER_TESS_EVAL] = 0;
941 }
942
943 /**
944  * Copy pipeline state not marked as dynamic.
945  * Dynamic state is pipeline state which hasn't been provided at pipeline
946  * creation time, but is dynamically provided afterwards using various
947  * vkCmdSet* functions.
948  *
949  * The set of state considered "non_dynamic" is determined by the pieces of
950  * state that have their corresponding VkDynamicState enums omitted from
951  * VkPipelineDynamicStateCreateInfo::pDynamicStates.
952  *
953  * @param[out] pipeline    Destination non_dynamic state.
954  * @param[in]  pCreateInfo Source of non_dynamic state to be copied.
955  */
956 static void
957 copy_non_dynamic_state(struct anv_pipeline *pipeline,
958                        const VkGraphicsPipelineCreateInfo *pCreateInfo)
959 {
960    anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
961    ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
962    struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
963
964    pipeline->dynamic_state = default_dynamic_state;
965
966    if (pCreateInfo->pDynamicState) {
967       /* Remove all of the states that are marked as dynamic */
968       uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
969       for (uint32_t s = 0; s < count; s++)
970          states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
971    }
972
973    struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
974
975    /* Section 9.2 of the Vulkan 1.0.15 spec says:
976     *
977     *    pViewportState is [...] NULL if the pipeline
978     *    has rasterization disabled.
979     */
980    if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
981       assert(pCreateInfo->pViewportState);
982
983       dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
984       if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
985          typed_memcpy(dynamic->viewport.viewports,
986                      pCreateInfo->pViewportState->pViewports,
987                      pCreateInfo->pViewportState->viewportCount);
988       }
989
990       dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
991       if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
992          typed_memcpy(dynamic->scissor.scissors,
993                      pCreateInfo->pViewportState->pScissors,
994                      pCreateInfo->pViewportState->scissorCount);
995       }
996    }
997
998    if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
999       assert(pCreateInfo->pRasterizationState);
1000       dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1001    }
1002
1003    if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
1004       assert(pCreateInfo->pRasterizationState);
1005       dynamic->depth_bias.bias =
1006          pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1007       dynamic->depth_bias.clamp =
1008          pCreateInfo->pRasterizationState->depthBiasClamp;
1009       dynamic->depth_bias.slope =
1010          pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1011    }
1012
1013    /* Section 9.2 of the Vulkan 1.0.15 spec says:
1014     *
1015     *    pColorBlendState is [...] NULL if the pipeline has rasterization
1016     *    disabled or if the subpass of the render pass the pipeline is
1017     *    created against does not use any color attachments.
1018     */
1019    bool uses_color_att = false;
1020    for (unsigned i = 0; i < subpass->color_count; ++i) {
1021       if (subpass->color_attachments[i] != VK_ATTACHMENT_UNUSED) {
1022          uses_color_att = true;
1023          break;
1024       }
1025    }
1026
1027    if (uses_color_att &&
1028        !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1029       assert(pCreateInfo->pColorBlendState);
1030
1031       if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
1032          typed_memcpy(dynamic->blend_constants,
1033                      pCreateInfo->pColorBlendState->blendConstants, 4);
1034    }
1035
1036    /* If there is no depthstencil attachment, then don't read
1037     * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1038     * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1039     * no need to override the depthstencil defaults in
1040     * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1041     *
1042     * Section 9.2 of the Vulkan 1.0.15 spec says:
1043     *
1044     *    pDepthStencilState is [...] NULL if the pipeline has rasterization
1045     *    disabled or if the subpass of the render pass the pipeline is created
1046     *    against does not use a depth/stencil attachment.
1047     */
1048    if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1049        subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
1050       assert(pCreateInfo->pDepthStencilState);
1051
1052       if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
1053          dynamic->depth_bounds.min =
1054             pCreateInfo->pDepthStencilState->minDepthBounds;
1055          dynamic->depth_bounds.max =
1056             pCreateInfo->pDepthStencilState->maxDepthBounds;
1057       }
1058
1059       if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
1060          dynamic->stencil_compare_mask.front =
1061             pCreateInfo->pDepthStencilState->front.compareMask;
1062          dynamic->stencil_compare_mask.back =
1063             pCreateInfo->pDepthStencilState->back.compareMask;
1064       }
1065
1066       if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
1067          dynamic->stencil_write_mask.front =
1068             pCreateInfo->pDepthStencilState->front.writeMask;
1069          dynamic->stencil_write_mask.back =
1070             pCreateInfo->pDepthStencilState->back.writeMask;
1071       }
1072
1073       if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
1074          dynamic->stencil_reference.front =
1075             pCreateInfo->pDepthStencilState->front.reference;
1076          dynamic->stencil_reference.back =
1077             pCreateInfo->pDepthStencilState->back.reference;
1078       }
1079    }
1080
1081    pipeline->dynamic_state_mask = states;
1082 }
1083
1084 static void
1085 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
1086 {
1087    struct anv_render_pass *renderpass = NULL;
1088    struct anv_subpass *subpass = NULL;
1089
1090    /* Assert that all required members of VkGraphicsPipelineCreateInfo are
1091     * present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
1092     * 4.2 Graphics Pipeline.
1093     */
1094    assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1095
1096    renderpass = anv_render_pass_from_handle(info->renderPass);
1097    assert(renderpass);
1098
1099    if (renderpass != &anv_meta_dummy_renderpass) {
1100       assert(info->subpass < renderpass->subpass_count);
1101       subpass = &renderpass->subpasses[info->subpass];
1102    }
1103
1104    assert(info->stageCount >= 1);
1105    assert(info->pVertexInputState);
1106    assert(info->pInputAssemblyState);
1107    assert(info->pViewportState);
1108    assert(info->pRasterizationState);
1109
1110    if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
1111       assert(info->pDepthStencilState);
1112
1113    if (subpass && subpass->color_count > 0)
1114       assert(info->pColorBlendState);
1115
1116    for (uint32_t i = 0; i < info->stageCount; ++i) {
1117       switch (info->pStages[i].stage) {
1118       case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
1119       case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
1120          assert(info->pTessellationState);
1121          break;
1122       default:
1123          break;
1124       }
1125    }
1126 }
1127
1128 VkResult
1129 anv_pipeline_init(struct anv_pipeline *pipeline,
1130                   struct anv_device *device,
1131                   struct anv_pipeline_cache *cache,
1132                   const VkGraphicsPipelineCreateInfo *pCreateInfo,
1133                   const struct anv_graphics_pipeline_create_info *extra,
1134                   const VkAllocationCallbacks *alloc)
1135 {
1136    VkResult result;
1137
1138    anv_validate {
1139       anv_pipeline_validate_create_info(pCreateInfo);
1140    }
1141
1142    if (alloc == NULL)
1143       alloc = &device->alloc;
1144
1145    pipeline->device = device;
1146    pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
1147
1148    result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
1149    if (result != VK_SUCCESS)
1150       return result;
1151
1152    pipeline->batch.alloc = alloc;
1153    pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1154    pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1155    pipeline->batch.relocs = &pipeline->batch_relocs;
1156
1157    copy_non_dynamic_state(pipeline, pCreateInfo);
1158    pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
1159                                   pCreateInfo->pRasterizationState->depthClampEnable;
1160
1161    pipeline->use_repclear = extra && extra->use_repclear;
1162
1163    pipeline->needs_data_cache = false;
1164
1165    /* When we free the pipeline, we detect stages based on the NULL status
1166     * of various prog_data pointers.  Make them NULL by default.
1167     */
1168    memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
1169    memset(pipeline->bindings, 0, sizeof(pipeline->bindings));
1170
1171    pipeline->vs_simd8 = NO_KERNEL;
1172    pipeline->vs_vec4 = NO_KERNEL;
1173    pipeline->gs_kernel = NO_KERNEL;
1174    pipeline->ps_ksp0 = NO_KERNEL;
1175
1176    pipeline->active_stages = 0;
1177
1178    const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
1179    struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
1180    for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1181       gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
1182       pStages[stage] = &pCreateInfo->pStages[i];
1183       modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
1184    }
1185
1186    if (modules[MESA_SHADER_VERTEX]) {
1187       anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
1188                               modules[MESA_SHADER_VERTEX],
1189                               pStages[MESA_SHADER_VERTEX]->pName,
1190                               pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
1191    }
1192
1193    if (modules[MESA_SHADER_TESS_CTRL] || modules[MESA_SHADER_TESS_EVAL])
1194       anv_finishme("no tessellation support");
1195
1196    if (modules[MESA_SHADER_GEOMETRY]) {
1197       anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
1198                               modules[MESA_SHADER_GEOMETRY],
1199                               pStages[MESA_SHADER_GEOMETRY]->pName,
1200                               pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
1201    }
1202
1203    if (modules[MESA_SHADER_FRAGMENT]) {
1204       anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, extra,
1205                               modules[MESA_SHADER_FRAGMENT],
1206                               pStages[MESA_SHADER_FRAGMENT]->pName,
1207                               pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
1208    }
1209
1210    if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
1211       /* Vertex is only optional if disable_vs is set */
1212       assert(extra->disable_vs);
1213    }
1214
1215    anv_setup_pipeline_l3_config(pipeline);
1216    anv_compute_urb_partition(pipeline);
1217
1218    const VkPipelineVertexInputStateCreateInfo *vi_info =
1219       pCreateInfo->pVertexInputState;
1220
1221    uint64_t inputs_read;
1222    if (extra && extra->disable_vs) {
1223       /* If the VS is disabled, just assume the user knows what they're
1224        * doing and apply the layout blindly.  This can only come from
1225        * meta, so this *should* be safe.
1226        */
1227       inputs_read = ~0ull;
1228    } else {
1229       inputs_read = get_vs_prog_data(pipeline)->inputs_read;
1230    }
1231
1232    pipeline->vb_used = 0;
1233    for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
1234       const VkVertexInputAttributeDescription *desc =
1235          &vi_info->pVertexAttributeDescriptions[i];
1236
1237       if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
1238          pipeline->vb_used |= 1 << desc->binding;
1239    }
1240
1241    for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
1242       const VkVertexInputBindingDescription *desc =
1243          &vi_info->pVertexBindingDescriptions[i];
1244
1245       pipeline->binding_stride[desc->binding] = desc->stride;
1246
1247       /* Step rate is programmed per vertex element (attribute), not
1248        * binding. Set up a map of which bindings step per instance, for
1249        * reference by vertex element setup. */
1250       switch (desc->inputRate) {
1251       default:
1252       case VK_VERTEX_INPUT_RATE_VERTEX:
1253          pipeline->instancing_enable[desc->binding] = false;
1254          break;
1255       case VK_VERTEX_INPUT_RATE_INSTANCE:
1256          pipeline->instancing_enable[desc->binding] = true;
1257          break;
1258       }
1259    }
1260
1261    const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1262       pCreateInfo->pInputAssemblyState;
1263    pipeline->primitive_restart = ia_info->primitiveRestartEnable;
1264    pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
1265
1266    if (extra && extra->use_rectlist)
1267       pipeline->topology = _3DPRIM_RECTLIST;
1268
1269    return VK_SUCCESS;
1270 }
1271
1272 VkResult
1273 anv_graphics_pipeline_create(
1274    VkDevice _device,
1275    VkPipelineCache _cache,
1276    const VkGraphicsPipelineCreateInfo *pCreateInfo,
1277    const struct anv_graphics_pipeline_create_info *extra,
1278    const VkAllocationCallbacks *pAllocator,
1279    VkPipeline *pPipeline)
1280 {
1281    ANV_FROM_HANDLE(anv_device, device, _device);
1282    ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1283
1284    if (cache == NULL)
1285       cache = &device->default_pipeline_cache;
1286
1287    switch (device->info.gen) {
1288    case 7:
1289       if (device->info.is_haswell)
1290          return gen75_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1291       else
1292          return gen7_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1293    case 8:
1294       return gen8_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1295    case 9:
1296       return gen9_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
1297    default:
1298       unreachable("unsupported gen\n");
1299    }
1300 }
1301
1302 VkResult anv_CreateGraphicsPipelines(
1303     VkDevice                                    _device,
1304     VkPipelineCache                             pipelineCache,
1305     uint32_t                                    count,
1306     const VkGraphicsPipelineCreateInfo*         pCreateInfos,
1307     const VkAllocationCallbacks*                pAllocator,
1308     VkPipeline*                                 pPipelines)
1309 {
1310    VkResult result = VK_SUCCESS;
1311
1312    unsigned i = 0;
1313    for (; i < count; i++) {
1314       result = anv_graphics_pipeline_create(_device,
1315                                             pipelineCache,
1316                                             &pCreateInfos[i],
1317                                             NULL, pAllocator, &pPipelines[i]);
1318       if (result != VK_SUCCESS) {
1319          for (unsigned j = 0; j < i; j++) {
1320             anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1321          }
1322
1323          return result;
1324       }
1325    }
1326
1327    return VK_SUCCESS;
1328 }
1329
1330 static VkResult anv_compute_pipeline_create(
1331     VkDevice                                    _device,
1332     VkPipelineCache                             _cache,
1333     const VkComputePipelineCreateInfo*          pCreateInfo,
1334     const VkAllocationCallbacks*                pAllocator,
1335     VkPipeline*                                 pPipeline)
1336 {
1337    ANV_FROM_HANDLE(anv_device, device, _device);
1338    ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
1339
1340    if (cache == NULL)
1341       cache = &device->default_pipeline_cache;
1342
1343    switch (device->info.gen) {
1344    case 7:
1345       if (device->info.is_haswell)
1346          return gen75_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1347       else
1348          return gen7_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1349    case 8:
1350       return gen8_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1351    case 9:
1352       return gen9_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
1353    default:
1354       unreachable("unsupported gen\n");
1355    }
1356 }
1357
1358 VkResult anv_CreateComputePipelines(
1359     VkDevice                                    _device,
1360     VkPipelineCache                             pipelineCache,
1361     uint32_t                                    count,
1362     const VkComputePipelineCreateInfo*          pCreateInfos,
1363     const VkAllocationCallbacks*                pAllocator,
1364     VkPipeline*                                 pPipelines)
1365 {
1366    VkResult result = VK_SUCCESS;
1367
1368    unsigned i = 0;
1369    for (; i < count; i++) {
1370       result = anv_compute_pipeline_create(_device, pipelineCache,
1371                                            &pCreateInfos[i],
1372                                            pAllocator, &pPipelines[i]);
1373       if (result != VK_SUCCESS) {
1374          for (unsigned j = 0; j < i; j++) {
1375             anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
1376          }
1377
1378          return result;
1379       }
1380    }
1381
1382    return VK_SUCCESS;
1383 }