OSDN Git Service

Verify number of Map entries written to Parcel
[android-x86/frameworks-base.git] / core / java / android / os / Parcel.java
1 /*
2  * Copyright (C) 2006 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 package android.os;
18
19 import android.annotation.Nullable;
20 import android.text.TextUtils;
21 import android.util.ArrayMap;
22 import android.util.ArraySet;
23 import android.util.Log;
24 import android.util.Size;
25 import android.util.SizeF;
26 import android.util.SparseArray;
27 import android.util.SparseBooleanArray;
28 import android.util.SparseIntArray;
29
30 import dalvik.annotation.optimization.CriticalNative;
31 import dalvik.annotation.optimization.FastNative;
32 import dalvik.system.VMRuntime;
33
34 import libcore.util.SneakyThrow;
35
36 import java.io.ByteArrayInputStream;
37 import java.io.ByteArrayOutputStream;
38 import java.io.FileDescriptor;
39 import java.io.FileNotFoundException;
40 import java.io.IOException;
41 import java.io.ObjectInputStream;
42 import java.io.ObjectOutputStream;
43 import java.io.ObjectStreamClass;
44 import java.io.Serializable;
45 import java.lang.reflect.Array;
46 import java.lang.reflect.Field;
47 import java.lang.reflect.Modifier;
48 import java.util.ArrayList;
49 import java.util.Arrays;
50 import java.util.HashMap;
51 import java.util.List;
52 import java.util.Map;
53 import java.util.Set;
54
55 /**
56  * Container for a message (data and object references) that can
57  * be sent through an IBinder.  A Parcel can contain both flattened data
58  * that will be unflattened on the other side of the IPC (using the various
59  * methods here for writing specific types, or the general
60  * {@link Parcelable} interface), and references to live {@link IBinder}
61  * objects that will result in the other side receiving a proxy IBinder
62  * connected with the original IBinder in the Parcel.
63  *
64  * <p class="note">Parcel is <strong>not</strong> a general-purpose
65  * serialization mechanism.  This class (and the corresponding
66  * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
67  * designed as a high-performance IPC transport.  As such, it is not
68  * appropriate to place any Parcel data in to persistent storage: changes
69  * in the underlying implementation of any of the data in the Parcel can
70  * render older data unreadable.</p>
71  *
72  * <p>The bulk of the Parcel API revolves around reading and writing data
73  * of various types.  There are six major classes of such functions available.</p>
74  *
75  * <h3>Primitives</h3>
76  *
77  * <p>The most basic data functions are for writing and reading primitive
78  * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
79  * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
80  * {@link #readInt}, {@link #writeLong}, {@link #readLong},
81  * {@link #writeString}, {@link #readString}.  Most other
82  * data operations are built on top of these.  The given data is written and
83  * read using the endianess of the host CPU.</p>
84  *
85  * <h3>Primitive Arrays</h3>
86  *
87  * <p>There are a variety of methods for reading and writing raw arrays
88  * of primitive objects, which generally result in writing a 4-byte length
89  * followed by the primitive data items.  The methods for reading can either
90  * read the data into an existing array, or create and return a new array.
91  * These available types are:</p>
92  *
93  * <ul>
94  * <li> {@link #writeBooleanArray(boolean[])},
95  * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
96  * <li> {@link #writeByteArray(byte[])},
97  * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
98  * {@link #createByteArray()}
99  * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
100  * {@link #createCharArray()}
101  * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
102  * {@link #createDoubleArray()}
103  * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
104  * {@link #createFloatArray()}
105  * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
106  * {@link #createIntArray()}
107  * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
108  * {@link #createLongArray()}
109  * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
110  * {@link #createStringArray()}.
111  * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
112  * {@link #readSparseBooleanArray()}.
113  * </ul>
114  *
115  * <h3>Parcelables</h3>
116  *
117  * <p>The {@link Parcelable} protocol provides an extremely efficient (but
118  * low-level) protocol for objects to write and read themselves from Parcels.
119  * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
120  * and {@link #readParcelable(ClassLoader)} or
121  * {@link #writeParcelableArray} and
122  * {@link #readParcelableArray(ClassLoader)} to write or read.  These
123  * methods write both the class type and its data to the Parcel, allowing
124  * that class to be reconstructed from the appropriate class loader when
125  * later reading.</p>
126  *
127  * <p>There are also some methods that provide a more efficient way to work
128  * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray},
129  * {@link #writeTypedList}, {@link #readTypedObject},
130  * {@link #createTypedArray} and {@link #createTypedArrayList}.  These methods
131  * do not write the class information of the original object: instead, the
132  * caller of the read function must know what type to expect and pass in the
133  * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
134  * properly construct the new object and read its data.  (To more efficient
135  * write and read a single Parcelable object that is not null, you can directly
136  * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
137  * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
138  * yourself.)</p>
139  *
140  * <h3>Bundles</h3>
141  *
142  * <p>A special type-safe container, called {@link Bundle}, is available
143  * for key/value maps of heterogeneous values.  This has many optimizations
144  * for improved performance when reading and writing data, and its type-safe
145  * API avoids difficult to debug type errors when finally marshalling the
146  * data contents into a Parcel.  The methods to use are
147  * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
148  * {@link #readBundle(ClassLoader)}.
149  *
150  * <h3>Active Objects</h3>
151  *
152  * <p>An unusual feature of Parcel is the ability to read and write active
153  * objects.  For these objects the actual contents of the object is not
154  * written, rather a special token referencing the object is written.  When
155  * reading the object back from the Parcel, you do not get a new instance of
156  * the object, but rather a handle that operates on the exact same object that
157  * was originally written.  There are two forms of active objects available.</p>
158  *
159  * <p>{@link Binder} objects are a core facility of Android's general cross-process
160  * communication system.  The {@link IBinder} interface describes an abstract
161  * protocol with a Binder object.  Any such interface can be written in to
162  * a Parcel, and upon reading you will receive either the original object
163  * implementing that interface or a special proxy implementation
164  * that communicates calls back to the original object.  The methods to use are
165  * {@link #writeStrongBinder(IBinder)},
166  * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
167  * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
168  * {@link #createBinderArray()},
169  * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
170  * {@link #createBinderArrayList()}.</p>
171  *
172  * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
173  * can be written and {@link ParcelFileDescriptor} objects returned to operate
174  * on the original file descriptor.  The returned file descriptor is a dup
175  * of the original file descriptor: the object and fd is different, but
176  * operating on the same underlying file stream, with the same position, etc.
177  * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
178  * {@link #readFileDescriptor()}.
179  *
180  * <h3>Untyped Containers</h3>
181  *
182  * <p>A final class of methods are for writing and reading standard Java
183  * containers of arbitrary types.  These all revolve around the
184  * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
185  * which define the types of objects allowed.  The container methods are
186  * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
187  * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
188  * {@link #readArrayList(ClassLoader)},
189  * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
190  * {@link #writeSparseArray(SparseArray)},
191  * {@link #readSparseArray(ClassLoader)}.
192  */
193 public final class Parcel {
194     private static final boolean DEBUG_RECYCLE = false;
195     private static final boolean DEBUG_ARRAY_MAP = false;
196     private static final String TAG = "Parcel";
197
198     @SuppressWarnings({"UnusedDeclaration"})
199     private long mNativePtr; // used by native code
200
201     /**
202      * Flag indicating if {@link #mNativePtr} was allocated by this object,
203      * indicating that we're responsible for its lifecycle.
204      */
205     private boolean mOwnsNativeParcelObject;
206     private long mNativeSize;
207
208     private ArrayMap<Class, Object> mClassCookies;
209
210     private RuntimeException mStack;
211
212     private static final int POOL_SIZE = 6;
213     private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
214     private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
215
216     // Keep in sync with frameworks/native/include/private/binder/ParcelValTypes.h.
217     private static final int VAL_NULL = -1;
218     private static final int VAL_STRING = 0;
219     private static final int VAL_INTEGER = 1;
220     private static final int VAL_MAP = 2;
221     private static final int VAL_BUNDLE = 3;
222     private static final int VAL_PARCELABLE = 4;
223     private static final int VAL_SHORT = 5;
224     private static final int VAL_LONG = 6;
225     private static final int VAL_FLOAT = 7;
226     private static final int VAL_DOUBLE = 8;
227     private static final int VAL_BOOLEAN = 9;
228     private static final int VAL_CHARSEQUENCE = 10;
229     private static final int VAL_LIST  = 11;
230     private static final int VAL_SPARSEARRAY = 12;
231     private static final int VAL_BYTEARRAY = 13;
232     private static final int VAL_STRINGARRAY = 14;
233     private static final int VAL_IBINDER = 15;
234     private static final int VAL_PARCELABLEARRAY = 16;
235     private static final int VAL_OBJECTARRAY = 17;
236     private static final int VAL_INTARRAY = 18;
237     private static final int VAL_LONGARRAY = 19;
238     private static final int VAL_BYTE = 20;
239     private static final int VAL_SERIALIZABLE = 21;
240     private static final int VAL_SPARSEBOOLEANARRAY = 22;
241     private static final int VAL_BOOLEANARRAY = 23;
242     private static final int VAL_CHARSEQUENCEARRAY = 24;
243     private static final int VAL_PERSISTABLEBUNDLE = 25;
244     private static final int VAL_SIZE = 26;
245     private static final int VAL_SIZEF = 27;
246     private static final int VAL_DOUBLEARRAY = 28;
247
248     // The initial int32 in a Binder call's reply Parcel header:
249     // Keep these in sync with libbinder's binder/Status.h.
250     private static final int EX_SECURITY = -1;
251     private static final int EX_BAD_PARCELABLE = -2;
252     private static final int EX_ILLEGAL_ARGUMENT = -3;
253     private static final int EX_NULL_POINTER = -4;
254     private static final int EX_ILLEGAL_STATE = -5;
255     private static final int EX_NETWORK_MAIN_THREAD = -6;
256     private static final int EX_UNSUPPORTED_OPERATION = -7;
257     private static final int EX_SERVICE_SPECIFIC = -8;
258     private static final int EX_PARCELABLE = -9;
259     private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
260     // EX_TRANSACTION_FAILED is used exclusively in native code.
261     // see libbinder's binder/Status.h
262     private static final int EX_TRANSACTION_FAILED = -129;
263
264     @CriticalNative
265     private static native int nativeDataSize(long nativePtr);
266     @CriticalNative
267     private static native int nativeDataAvail(long nativePtr);
268     @CriticalNative
269     private static native int nativeDataPosition(long nativePtr);
270     @CriticalNative
271     private static native int nativeDataCapacity(long nativePtr);
272     @FastNative
273     private static native long nativeSetDataSize(long nativePtr, int size);
274     @CriticalNative
275     private static native void nativeSetDataPosition(long nativePtr, int pos);
276     @FastNative
277     private static native void nativeSetDataCapacity(long nativePtr, int size);
278
279     @CriticalNative
280     private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
281     @CriticalNative
282     private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
283
284     private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
285     private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
286     @FastNative
287     private static native void nativeWriteInt(long nativePtr, int val);
288     @FastNative
289     private static native void nativeWriteLong(long nativePtr, long val);
290     @FastNative
291     private static native void nativeWriteFloat(long nativePtr, float val);
292     @FastNative
293     private static native void nativeWriteDouble(long nativePtr, double val);
294     static native void nativeWriteString(long nativePtr, String val);
295     private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
296     private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
297
298     private static native byte[] nativeCreateByteArray(long nativePtr);
299     private static native boolean nativeReadByteArray(long nativePtr, byte[] dest, int destLen);
300     private static native byte[] nativeReadBlob(long nativePtr);
301     @CriticalNative
302     private static native int nativeReadInt(long nativePtr);
303     @CriticalNative
304     private static native long nativeReadLong(long nativePtr);
305     @CriticalNative
306     private static native float nativeReadFloat(long nativePtr);
307     @CriticalNative
308     private static native double nativeReadDouble(long nativePtr);
309     static native String nativeReadString(long nativePtr);
310     private static native IBinder nativeReadStrongBinder(long nativePtr);
311     private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
312
313     private static native long nativeCreate();
314     private static native long nativeFreeBuffer(long nativePtr);
315     private static native void nativeDestroy(long nativePtr);
316
317     private static native byte[] nativeMarshall(long nativePtr);
318     private static native long nativeUnmarshall(
319             long nativePtr, byte[] data, int offset, int length);
320     private static native int nativeCompareData(long thisNativePtr, long otherNativePtr);
321     private static native long nativeAppendFrom(
322             long thisNativePtr, long otherNativePtr, int offset, int length);
323     @CriticalNative
324     private static native boolean nativeHasFileDescriptors(long nativePtr);
325     private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
326     private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
327
328     @CriticalNative
329     private static native long nativeGetBlobAshmemSize(long nativePtr);
330
331     public final static Parcelable.Creator<String> STRING_CREATOR
332              = new Parcelable.Creator<String>() {
333         public String createFromParcel(Parcel source) {
334             return source.readString();
335         }
336         public String[] newArray(int size) {
337             return new String[size];
338         }
339     };
340
341     /**
342      * @hide
343      */
344     public static class ReadWriteHelper {
345         public static final ReadWriteHelper DEFAULT = new ReadWriteHelper();
346
347         /**
348          * Called when writing a string to a parcel. Subclasses wanting to write a string
349          * must use {@link #writeStringNoHelper(String)} to avoid
350          * infinity recursive calls.
351          */
352         public void writeString(Parcel p, String s) {
353             nativeWriteString(p.mNativePtr, s);
354         }
355
356         /**
357          * Called when reading a string to a parcel. Subclasses wanting to read a string
358          * must use {@link #readStringNoHelper()} to avoid
359          * infinity recursive calls.
360          */
361         public String readString(Parcel p) {
362             return nativeReadString(p.mNativePtr);
363         }
364     }
365
366     private ReadWriteHelper mReadWriteHelper = ReadWriteHelper.DEFAULT;
367
368     /**
369      * Retrieve a new Parcel object from the pool.
370      */
371     public static Parcel obtain() {
372         final Parcel[] pool = sOwnedPool;
373         synchronized (pool) {
374             Parcel p;
375             for (int i=0; i<POOL_SIZE; i++) {
376                 p = pool[i];
377                 if (p != null) {
378                     pool[i] = null;
379                     if (DEBUG_RECYCLE) {
380                         p.mStack = new RuntimeException();
381                     }
382                     p.mReadWriteHelper = ReadWriteHelper.DEFAULT;
383                     return p;
384                 }
385             }
386         }
387         return new Parcel(0);
388     }
389
390     /**
391      * Put a Parcel object back into the pool.  You must not touch
392      * the object after this call.
393      */
394     public final void recycle() {
395         if (DEBUG_RECYCLE) mStack = null;
396         freeBuffer();
397
398         final Parcel[] pool;
399         if (mOwnsNativeParcelObject) {
400             pool = sOwnedPool;
401         } else {
402             mNativePtr = 0;
403             pool = sHolderPool;
404         }
405
406         synchronized (pool) {
407             for (int i=0; i<POOL_SIZE; i++) {
408                 if (pool[i] == null) {
409                     pool[i] = this;
410                     return;
411                 }
412             }
413         }
414     }
415
416     /**
417      * Set a {@link ReadWriteHelper}, which can be used to avoid having duplicate strings, for
418      * example.
419      *
420      * @hide
421      */
422     public void setReadWriteHelper(ReadWriteHelper helper) {
423         mReadWriteHelper = helper != null ? helper : ReadWriteHelper.DEFAULT;
424     }
425
426     /**
427      * @return whether this parcel has a {@link ReadWriteHelper}.
428      *
429      * @hide
430      */
431     public boolean hasReadWriteHelper() {
432         return (mReadWriteHelper != null) && (mReadWriteHelper != ReadWriteHelper.DEFAULT);
433     }
434
435     /** @hide */
436     public static native long getGlobalAllocSize();
437
438     /** @hide */
439     public static native long getGlobalAllocCount();
440
441     /**
442      * Returns the total amount of data contained in the parcel.
443      */
444     public final int dataSize() {
445         return nativeDataSize(mNativePtr);
446     }
447
448     /**
449      * Returns the amount of data remaining to be read from the
450      * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
451      */
452     public final int dataAvail() {
453         return nativeDataAvail(mNativePtr);
454     }
455
456     /**
457      * Returns the current position in the parcel data.  Never
458      * more than {@link #dataSize}.
459      */
460     public final int dataPosition() {
461         return nativeDataPosition(mNativePtr);
462     }
463
464     /**
465      * Returns the total amount of space in the parcel.  This is always
466      * >= {@link #dataSize}.  The difference between it and dataSize() is the
467      * amount of room left until the parcel needs to re-allocate its
468      * data buffer.
469      */
470     public final int dataCapacity() {
471         return nativeDataCapacity(mNativePtr);
472     }
473
474     /**
475      * Change the amount of data in the parcel.  Can be either smaller or
476      * larger than the current size.  If larger than the current capacity,
477      * more memory will be allocated.
478      *
479      * @param size The new number of bytes in the Parcel.
480      */
481     public final void setDataSize(int size) {
482         updateNativeSize(nativeSetDataSize(mNativePtr, size));
483     }
484
485     /**
486      * Move the current read/write position in the parcel.
487      * @param pos New offset in the parcel; must be between 0 and
488      * {@link #dataSize}.
489      */
490     public final void setDataPosition(int pos) {
491         nativeSetDataPosition(mNativePtr, pos);
492     }
493
494     /**
495      * Change the capacity (current available space) of the parcel.
496      *
497      * @param size The new capacity of the parcel, in bytes.  Can not be
498      * less than {@link #dataSize} -- that is, you can not drop existing data
499      * with this method.
500      */
501     public final void setDataCapacity(int size) {
502         nativeSetDataCapacity(mNativePtr, size);
503     }
504
505     /** @hide */
506     public final boolean pushAllowFds(boolean allowFds) {
507         return nativePushAllowFds(mNativePtr, allowFds);
508     }
509
510     /** @hide */
511     public final void restoreAllowFds(boolean lastValue) {
512         nativeRestoreAllowFds(mNativePtr, lastValue);
513     }
514
515     /**
516      * Returns the raw bytes of the parcel.
517      *
518      * <p class="note">The data you retrieve here <strong>must not</strong>
519      * be placed in any kind of persistent storage (on local disk, across
520      * a network, etc).  For that, you should use standard serialization
521      * or another kind of general serialization mechanism.  The Parcel
522      * marshalled representation is highly optimized for local IPC, and as
523      * such does not attempt to maintain compatibility with data created
524      * in different versions of the platform.
525      */
526     public final byte[] marshall() {
527         return nativeMarshall(mNativePtr);
528     }
529
530     /**
531      * Set the bytes in data to be the raw bytes of this Parcel.
532      */
533     public final void unmarshall(byte[] data, int offset, int length) {
534         updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length));
535     }
536
537     public final void appendFrom(Parcel parcel, int offset, int length) {
538         updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length));
539     }
540
541     /** @hide */
542     public final int compareData(Parcel other) {
543         return nativeCompareData(mNativePtr, other.mNativePtr);
544     }
545
546     /** @hide */
547     public final void setClassCookie(Class clz, Object cookie) {
548         if (mClassCookies == null) {
549             mClassCookies = new ArrayMap<>();
550         }
551         mClassCookies.put(clz, cookie);
552     }
553
554     /** @hide */
555     public final Object getClassCookie(Class clz) {
556         return mClassCookies != null ? mClassCookies.get(clz) : null;
557     }
558
559     /** @hide */
560     public final void adoptClassCookies(Parcel from) {
561         mClassCookies = from.mClassCookies;
562     }
563
564     /**
565      * Report whether the parcel contains any marshalled file descriptors.
566      */
567     public final boolean hasFileDescriptors() {
568         return nativeHasFileDescriptors(mNativePtr);
569     }
570
571     /**
572      * Store or read an IBinder interface token in the parcel at the current
573      * {@link #dataPosition}.  This is used to validate that the marshalled
574      * transaction is intended for the target interface.
575      */
576     public final void writeInterfaceToken(String interfaceName) {
577         nativeWriteInterfaceToken(mNativePtr, interfaceName);
578     }
579
580     public final void enforceInterface(String interfaceName) {
581         nativeEnforceInterface(mNativePtr, interfaceName);
582     }
583
584     /**
585      * Write a byte array into the parcel at the current {@link #dataPosition},
586      * growing {@link #dataCapacity} if needed.
587      * @param b Bytes to place into the parcel.
588      */
589     public final void writeByteArray(byte[] b) {
590         writeByteArray(b, 0, (b != null) ? b.length : 0);
591     }
592
593     /**
594      * Write a byte array into the parcel at the current {@link #dataPosition},
595      * growing {@link #dataCapacity} if needed.
596      * @param b Bytes to place into the parcel.
597      * @param offset Index of first byte to be written.
598      * @param len Number of bytes to write.
599      */
600     public final void writeByteArray(byte[] b, int offset, int len) {
601         if (b == null) {
602             writeInt(-1);
603             return;
604         }
605         Arrays.checkOffsetAndCount(b.length, offset, len);
606         nativeWriteByteArray(mNativePtr, b, offset, len);
607     }
608
609     /**
610      * Write a blob of data into the parcel at the current {@link #dataPosition},
611      * growing {@link #dataCapacity} if needed.
612      * @param b Bytes to place into the parcel.
613      * {@hide}
614      * {@SystemApi}
615      */
616     public final void writeBlob(byte[] b) {
617         writeBlob(b, 0, (b != null) ? b.length : 0);
618     }
619
620     /**
621      * Write a blob of data into the parcel at the current {@link #dataPosition},
622      * growing {@link #dataCapacity} if needed.
623      * @param b Bytes to place into the parcel.
624      * @param offset Index of first byte to be written.
625      * @param len Number of bytes to write.
626      * {@hide}
627      * {@SystemApi}
628      */
629     public final void writeBlob(byte[] b, int offset, int len) {
630         if (b == null) {
631             writeInt(-1);
632             return;
633         }
634         Arrays.checkOffsetAndCount(b.length, offset, len);
635         nativeWriteBlob(mNativePtr, b, offset, len);
636     }
637
638     /**
639      * Write an integer value into the parcel at the current dataPosition(),
640      * growing dataCapacity() if needed.
641      */
642     public final void writeInt(int val) {
643         nativeWriteInt(mNativePtr, val);
644     }
645
646     /**
647      * Write a long integer value into the parcel at the current dataPosition(),
648      * growing dataCapacity() if needed.
649      */
650     public final void writeLong(long val) {
651         nativeWriteLong(mNativePtr, val);
652     }
653
654     /**
655      * Write a floating point value into the parcel at the current
656      * dataPosition(), growing dataCapacity() if needed.
657      */
658     public final void writeFloat(float val) {
659         nativeWriteFloat(mNativePtr, val);
660     }
661
662     /**
663      * Write a double precision floating point value into the parcel at the
664      * current dataPosition(), growing dataCapacity() if needed.
665      */
666     public final void writeDouble(double val) {
667         nativeWriteDouble(mNativePtr, val);
668     }
669
670     /**
671      * Write a string value into the parcel at the current dataPosition(),
672      * growing dataCapacity() if needed.
673      */
674     public final void writeString(String val) {
675         mReadWriteHelper.writeString(this, val);
676     }
677
678     /**
679      * Write a string without going though a {@link ReadWriteHelper}.  Subclasses of
680      * {@link ReadWriteHelper} must use this method instead of {@link #writeString} to avoid
681      * infinity recursive calls.
682      *
683      * @hide
684      */
685     public void writeStringNoHelper(String val) {
686         nativeWriteString(mNativePtr, val);
687     }
688
689     /** @hide */
690     public final void writeBoolean(boolean val) {
691         writeInt(val ? 1 : 0);
692     }
693
694     /**
695      * Write a CharSequence value into the parcel at the current dataPosition(),
696      * growing dataCapacity() if needed.
697      * @hide
698      */
699     public final void writeCharSequence(CharSequence val) {
700         TextUtils.writeToParcel(val, this, 0);
701     }
702
703     /**
704      * Write an object into the parcel at the current dataPosition(),
705      * growing dataCapacity() if needed.
706      */
707     public final void writeStrongBinder(IBinder val) {
708         nativeWriteStrongBinder(mNativePtr, val);
709     }
710
711     /**
712      * Write an object into the parcel at the current dataPosition(),
713      * growing dataCapacity() if needed.
714      */
715     public final void writeStrongInterface(IInterface val) {
716         writeStrongBinder(val == null ? null : val.asBinder());
717     }
718
719     /**
720      * Write a FileDescriptor into the parcel at the current dataPosition(),
721      * growing dataCapacity() if needed.
722      *
723      * <p class="caution">The file descriptor will not be closed, which may
724      * result in file descriptor leaks when objects are returned from Binder
725      * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
726      * accepts contextual flags and will close the original file descriptor
727      * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
728      */
729     public final void writeFileDescriptor(FileDescriptor val) {
730         updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val));
731     }
732
733     private void updateNativeSize(long newNativeSize) {
734         if (mOwnsNativeParcelObject) {
735             if (newNativeSize > Integer.MAX_VALUE) {
736                 newNativeSize = Integer.MAX_VALUE;
737             }
738             if (newNativeSize != mNativeSize) {
739                 int delta = (int) (newNativeSize - mNativeSize);
740                 if (delta > 0) {
741                     VMRuntime.getRuntime().registerNativeAllocation(delta);
742                 } else {
743                     VMRuntime.getRuntime().registerNativeFree(-delta);
744                 }
745                 mNativeSize = newNativeSize;
746             }
747         }
748     }
749
750     /**
751      * {@hide}
752      * This will be the new name for writeFileDescriptor, for consistency.
753      **/
754     public final void writeRawFileDescriptor(FileDescriptor val) {
755         nativeWriteFileDescriptor(mNativePtr, val);
756     }
757
758     /**
759      * {@hide}
760      * Write an array of FileDescriptor objects into the Parcel.
761      *
762      * @param value The array of objects to be written.
763      */
764     public final void writeRawFileDescriptorArray(FileDescriptor[] value) {
765         if (value != null) {
766             int N = value.length;
767             writeInt(N);
768             for (int i=0; i<N; i++) {
769                 writeRawFileDescriptor(value[i]);
770             }
771         } else {
772             writeInt(-1);
773         }
774     }
775
776     /**
777      * Write a byte value into the parcel at the current dataPosition(),
778      * growing dataCapacity() if needed.
779      */
780     public final void writeByte(byte val) {
781         writeInt(val);
782     }
783
784     /**
785      * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
786      * at the current dataPosition(),
787      * growing dataCapacity() if needed.  The Map keys must be String objects.
788      * The Map values are written using {@link #writeValue} and must follow
789      * the specification there.
790      *
791      * <p>It is strongly recommended to use {@link #writeBundle} instead of
792      * this method, since the Bundle class provides a type-safe API that
793      * allows you to avoid mysterious type errors at the point of marshalling.
794      */
795     public final void writeMap(Map val) {
796         writeMapInternal((Map<String, Object>) val);
797     }
798
799     /**
800      * Flatten a Map into the parcel at the current dataPosition(),
801      * growing dataCapacity() if needed.  The Map keys must be String objects.
802      */
803     /* package */ void writeMapInternal(Map<String,Object> val) {
804         if (val == null) {
805             writeInt(-1);
806             return;
807         }
808         Set<Map.Entry<String,Object>> entries = val.entrySet();
809         int size = entries.size();
810         writeInt(size);
811
812         for (Map.Entry<String,Object> e : entries) {
813             writeValue(e.getKey());
814             writeValue(e.getValue());
815             size--;
816         }
817
818         if (size != 0) {
819             throw new BadParcelableException("Map size does not match number of entries!");
820         }
821
822     }
823
824     /**
825      * Flatten an ArrayMap into the parcel at the current dataPosition(),
826      * growing dataCapacity() if needed.  The Map keys must be String objects.
827      */
828     /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
829         if (val == null) {
830             writeInt(-1);
831             return;
832         }
833         // Keep the format of this Parcel in sync with writeToParcelInner() in
834         // frameworks/native/libs/binder/PersistableBundle.cpp.
835         final int N = val.size();
836         writeInt(N);
837         if (DEBUG_ARRAY_MAP) {
838             RuntimeException here =  new RuntimeException("here");
839             here.fillInStackTrace();
840             Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
841         }
842         int startPos;
843         for (int i=0; i<N; i++) {
844             if (DEBUG_ARRAY_MAP) startPos = dataPosition();
845             writeString(val.keyAt(i));
846             writeValue(val.valueAt(i));
847             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
848                     + (dataPosition()-startPos) + " bytes: key=0x"
849                     + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
850                     + " " + val.keyAt(i));
851         }
852     }
853
854     /**
855      * @hide For testing only.
856      */
857     public void writeArrayMap(ArrayMap<String, Object> val) {
858         writeArrayMapInternal(val);
859     }
860
861     /**
862      * Write an array set to the parcel.
863      *
864      * @param val The array set to write.
865      *
866      * @hide
867      */
868     public void writeArraySet(@Nullable ArraySet<? extends Object> val) {
869         final int size = (val != null) ? val.size() : -1;
870         writeInt(size);
871         for (int i = 0; i < size; i++) {
872             writeValue(val.valueAt(i));
873         }
874     }
875
876     /**
877      * Flatten a Bundle into the parcel at the current dataPosition(),
878      * growing dataCapacity() if needed.
879      */
880     public final void writeBundle(Bundle val) {
881         if (val == null) {
882             writeInt(-1);
883             return;
884         }
885
886         val.writeToParcel(this, 0);
887     }
888
889     /**
890      * Flatten a PersistableBundle into the parcel at the current dataPosition(),
891      * growing dataCapacity() if needed.
892      */
893     public final void writePersistableBundle(PersistableBundle val) {
894         if (val == null) {
895             writeInt(-1);
896             return;
897         }
898
899         val.writeToParcel(this, 0);
900     }
901
902     /**
903      * Flatten a Size into the parcel at the current dataPosition(),
904      * growing dataCapacity() if needed.
905      */
906     public final void writeSize(Size val) {
907         writeInt(val.getWidth());
908         writeInt(val.getHeight());
909     }
910
911     /**
912      * Flatten a SizeF into the parcel at the current dataPosition(),
913      * growing dataCapacity() if needed.
914      */
915     public final void writeSizeF(SizeF val) {
916         writeFloat(val.getWidth());
917         writeFloat(val.getHeight());
918     }
919
920     /**
921      * Flatten a List into the parcel at the current dataPosition(), growing
922      * dataCapacity() if needed.  The List values are written using
923      * {@link #writeValue} and must follow the specification there.
924      */
925     public final void writeList(List val) {
926         if (val == null) {
927             writeInt(-1);
928             return;
929         }
930         int N = val.size();
931         int i=0;
932         writeInt(N);
933         while (i < N) {
934             writeValue(val.get(i));
935             i++;
936         }
937     }
938
939     /**
940      * Flatten an Object array into the parcel at the current dataPosition(),
941      * growing dataCapacity() if needed.  The array values are written using
942      * {@link #writeValue} and must follow the specification there.
943      */
944     public final void writeArray(Object[] val) {
945         if (val == null) {
946             writeInt(-1);
947             return;
948         }
949         int N = val.length;
950         int i=0;
951         writeInt(N);
952         while (i < N) {
953             writeValue(val[i]);
954             i++;
955         }
956     }
957
958     /**
959      * Flatten a generic SparseArray into the parcel at the current
960      * dataPosition(), growing dataCapacity() if needed.  The SparseArray
961      * values are written using {@link #writeValue} and must follow the
962      * specification there.
963      */
964     public final void writeSparseArray(SparseArray<Object> val) {
965         if (val == null) {
966             writeInt(-1);
967             return;
968         }
969         int N = val.size();
970         writeInt(N);
971         int i=0;
972         while (i < N) {
973             writeInt(val.keyAt(i));
974             writeValue(val.valueAt(i));
975             i++;
976         }
977     }
978
979     public final void writeSparseBooleanArray(SparseBooleanArray val) {
980         if (val == null) {
981             writeInt(-1);
982             return;
983         }
984         int N = val.size();
985         writeInt(N);
986         int i=0;
987         while (i < N) {
988             writeInt(val.keyAt(i));
989             writeByte((byte)(val.valueAt(i) ? 1 : 0));
990             i++;
991         }
992     }
993
994     /**
995      * @hide
996      */
997     public final void writeSparseIntArray(SparseIntArray val) {
998         if (val == null) {
999             writeInt(-1);
1000             return;
1001         }
1002         int N = val.size();
1003         writeInt(N);
1004         int i=0;
1005         while (i < N) {
1006             writeInt(val.keyAt(i));
1007             writeInt(val.valueAt(i));
1008             i++;
1009         }
1010     }
1011
1012     public final void writeBooleanArray(boolean[] val) {
1013         if (val != null) {
1014             int N = val.length;
1015             writeInt(N);
1016             for (int i=0; i<N; i++) {
1017                 writeInt(val[i] ? 1 : 0);
1018             }
1019         } else {
1020             writeInt(-1);
1021         }
1022     }
1023
1024     public final boolean[] createBooleanArray() {
1025         int N = readInt();
1026         // >>2 as a fast divide-by-4 works in the create*Array() functions
1027         // because dataAvail() will never return a negative number.  4 is
1028         // the size of a stored boolean in the stream.
1029         if (N >= 0 && N <= (dataAvail() >> 2)) {
1030             boolean[] val = new boolean[N];
1031             for (int i=0; i<N; i++) {
1032                 val[i] = readInt() != 0;
1033             }
1034             return val;
1035         } else {
1036             return null;
1037         }
1038     }
1039
1040     public final void readBooleanArray(boolean[] val) {
1041         int N = readInt();
1042         if (N == val.length) {
1043             for (int i=0; i<N; i++) {
1044                 val[i] = readInt() != 0;
1045             }
1046         } else {
1047             throw new RuntimeException("bad array lengths");
1048         }
1049     }
1050
1051     public final void writeCharArray(char[] val) {
1052         if (val != null) {
1053             int N = val.length;
1054             writeInt(N);
1055             for (int i=0; i<N; i++) {
1056                 writeInt((int)val[i]);
1057             }
1058         } else {
1059             writeInt(-1);
1060         }
1061     }
1062
1063     public final char[] createCharArray() {
1064         int N = readInt();
1065         if (N >= 0 && N <= (dataAvail() >> 2)) {
1066             char[] val = new char[N];
1067             for (int i=0; i<N; i++) {
1068                 val[i] = (char)readInt();
1069             }
1070             return val;
1071         } else {
1072             return null;
1073         }
1074     }
1075
1076     public final void readCharArray(char[] val) {
1077         int N = readInt();
1078         if (N == val.length) {
1079             for (int i=0; i<N; i++) {
1080                 val[i] = (char)readInt();
1081             }
1082         } else {
1083             throw new RuntimeException("bad array lengths");
1084         }
1085     }
1086
1087     public final void writeIntArray(int[] val) {
1088         if (val != null) {
1089             int N = val.length;
1090             writeInt(N);
1091             for (int i=0; i<N; i++) {
1092                 writeInt(val[i]);
1093             }
1094         } else {
1095             writeInt(-1);
1096         }
1097     }
1098
1099     public final int[] createIntArray() {
1100         int N = readInt();
1101         if (N >= 0 && N <= (dataAvail() >> 2)) {
1102             int[] val = new int[N];
1103             for (int i=0; i<N; i++) {
1104                 val[i] = readInt();
1105             }
1106             return val;
1107         } else {
1108             return null;
1109         }
1110     }
1111
1112     public final void readIntArray(int[] val) {
1113         int N = readInt();
1114         if (N == val.length) {
1115             for (int i=0; i<N; i++) {
1116                 val[i] = readInt();
1117             }
1118         } else {
1119             throw new RuntimeException("bad array lengths");
1120         }
1121     }
1122
1123     public final void writeLongArray(long[] val) {
1124         if (val != null) {
1125             int N = val.length;
1126             writeInt(N);
1127             for (int i=0; i<N; i++) {
1128                 writeLong(val[i]);
1129             }
1130         } else {
1131             writeInt(-1);
1132         }
1133     }
1134
1135     public final long[] createLongArray() {
1136         int N = readInt();
1137         // >>3 because stored longs are 64 bits
1138         if (N >= 0 && N <= (dataAvail() >> 3)) {
1139             long[] val = new long[N];
1140             for (int i=0; i<N; i++) {
1141                 val[i] = readLong();
1142             }
1143             return val;
1144         } else {
1145             return null;
1146         }
1147     }
1148
1149     public final void readLongArray(long[] val) {
1150         int N = readInt();
1151         if (N == val.length) {
1152             for (int i=0; i<N; i++) {
1153                 val[i] = readLong();
1154             }
1155         } else {
1156             throw new RuntimeException("bad array lengths");
1157         }
1158     }
1159
1160     public final void writeFloatArray(float[] val) {
1161         if (val != null) {
1162             int N = val.length;
1163             writeInt(N);
1164             for (int i=0; i<N; i++) {
1165                 writeFloat(val[i]);
1166             }
1167         } else {
1168             writeInt(-1);
1169         }
1170     }
1171
1172     public final float[] createFloatArray() {
1173         int N = readInt();
1174         // >>2 because stored floats are 4 bytes
1175         if (N >= 0 && N <= (dataAvail() >> 2)) {
1176             float[] val = new float[N];
1177             for (int i=0; i<N; i++) {
1178                 val[i] = readFloat();
1179             }
1180             return val;
1181         } else {
1182             return null;
1183         }
1184     }
1185
1186     public final void readFloatArray(float[] val) {
1187         int N = readInt();
1188         if (N == val.length) {
1189             for (int i=0; i<N; i++) {
1190                 val[i] = readFloat();
1191             }
1192         } else {
1193             throw new RuntimeException("bad array lengths");
1194         }
1195     }
1196
1197     public final void writeDoubleArray(double[] val) {
1198         if (val != null) {
1199             int N = val.length;
1200             writeInt(N);
1201             for (int i=0; i<N; i++) {
1202                 writeDouble(val[i]);
1203             }
1204         } else {
1205             writeInt(-1);
1206         }
1207     }
1208
1209     public final double[] createDoubleArray() {
1210         int N = readInt();
1211         // >>3 because stored doubles are 8 bytes
1212         if (N >= 0 && N <= (dataAvail() >> 3)) {
1213             double[] val = new double[N];
1214             for (int i=0; i<N; i++) {
1215                 val[i] = readDouble();
1216             }
1217             return val;
1218         } else {
1219             return null;
1220         }
1221     }
1222
1223     public final void readDoubleArray(double[] val) {
1224         int N = readInt();
1225         if (N == val.length) {
1226             for (int i=0; i<N; i++) {
1227                 val[i] = readDouble();
1228             }
1229         } else {
1230             throw new RuntimeException("bad array lengths");
1231         }
1232     }
1233
1234     public final void writeStringArray(String[] val) {
1235         if (val != null) {
1236             int N = val.length;
1237             writeInt(N);
1238             for (int i=0; i<N; i++) {
1239                 writeString(val[i]);
1240             }
1241         } else {
1242             writeInt(-1);
1243         }
1244     }
1245
1246     public final String[] createStringArray() {
1247         int N = readInt();
1248         if (N >= 0) {
1249             String[] val = new String[N];
1250             for (int i=0; i<N; i++) {
1251                 val[i] = readString();
1252             }
1253             return val;
1254         } else {
1255             return null;
1256         }
1257     }
1258
1259     public final void readStringArray(String[] val) {
1260         int N = readInt();
1261         if (N == val.length) {
1262             for (int i=0; i<N; i++) {
1263                 val[i] = readString();
1264             }
1265         } else {
1266             throw new RuntimeException("bad array lengths");
1267         }
1268     }
1269
1270     public final void writeBinderArray(IBinder[] val) {
1271         if (val != null) {
1272             int N = val.length;
1273             writeInt(N);
1274             for (int i=0; i<N; i++) {
1275                 writeStrongBinder(val[i]);
1276             }
1277         } else {
1278             writeInt(-1);
1279         }
1280     }
1281
1282     /**
1283      * @hide
1284      */
1285     public final void writeCharSequenceArray(CharSequence[] val) {
1286         if (val != null) {
1287             int N = val.length;
1288             writeInt(N);
1289             for (int i=0; i<N; i++) {
1290                 writeCharSequence(val[i]);
1291             }
1292         } else {
1293             writeInt(-1);
1294         }
1295     }
1296
1297     /**
1298      * @hide
1299      */
1300     public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1301         if (val != null) {
1302             int N = val.size();
1303             writeInt(N);
1304             for (int i=0; i<N; i++) {
1305                 writeCharSequence(val.get(i));
1306             }
1307         } else {
1308             writeInt(-1);
1309         }
1310     }
1311
1312     public final IBinder[] createBinderArray() {
1313         int N = readInt();
1314         if (N >= 0) {
1315             IBinder[] val = new IBinder[N];
1316             for (int i=0; i<N; i++) {
1317                 val[i] = readStrongBinder();
1318             }
1319             return val;
1320         } else {
1321             return null;
1322         }
1323     }
1324
1325     public final void readBinderArray(IBinder[] val) {
1326         int N = readInt();
1327         if (N == val.length) {
1328             for (int i=0; i<N; i++) {
1329                 val[i] = readStrongBinder();
1330             }
1331         } else {
1332             throw new RuntimeException("bad array lengths");
1333         }
1334     }
1335
1336     /**
1337      * Flatten a List containing a particular object type into the parcel, at
1338      * the current dataPosition() and growing dataCapacity() if needed.  The
1339      * type of the objects in the list must be one that implements Parcelable.
1340      * Unlike the generic writeList() method, however, only the raw data of the
1341      * objects is written and not their type, so you must use the corresponding
1342      * readTypedList() to unmarshall them.
1343      *
1344      * @param val The list of objects to be written.
1345      *
1346      * @see #createTypedArrayList
1347      * @see #readTypedList
1348      * @see Parcelable
1349      */
1350     public final <T extends Parcelable> void writeTypedList(List<T> val) {
1351         writeTypedList(val, 0);
1352     }
1353
1354     /**
1355      * @hide
1356      */
1357     public <T extends Parcelable> void writeTypedList(List<T> val, int parcelableFlags) {
1358         if (val == null) {
1359             writeInt(-1);
1360             return;
1361         }
1362         int N = val.size();
1363         int i=0;
1364         writeInt(N);
1365         while (i < N) {
1366             writeTypedObject(val.get(i), parcelableFlags);
1367             i++;
1368         }
1369     }
1370
1371     /**
1372      * Flatten a List containing String objects into the parcel, at
1373      * the current dataPosition() and growing dataCapacity() if needed.  They
1374      * can later be retrieved with {@link #createStringArrayList} or
1375      * {@link #readStringList}.
1376      *
1377      * @param val The list of strings to be written.
1378      *
1379      * @see #createStringArrayList
1380      * @see #readStringList
1381      */
1382     public final void writeStringList(List<String> val) {
1383         if (val == null) {
1384             writeInt(-1);
1385             return;
1386         }
1387         int N = val.size();
1388         int i=0;
1389         writeInt(N);
1390         while (i < N) {
1391             writeString(val.get(i));
1392             i++;
1393         }
1394     }
1395
1396     /**
1397      * Flatten a List containing IBinder objects into the parcel, at
1398      * the current dataPosition() and growing dataCapacity() if needed.  They
1399      * can later be retrieved with {@link #createBinderArrayList} or
1400      * {@link #readBinderList}.
1401      *
1402      * @param val The list of strings to be written.
1403      *
1404      * @see #createBinderArrayList
1405      * @see #readBinderList
1406      */
1407     public final void writeBinderList(List<IBinder> val) {
1408         if (val == null) {
1409             writeInt(-1);
1410             return;
1411         }
1412         int N = val.size();
1413         int i=0;
1414         writeInt(N);
1415         while (i < N) {
1416             writeStrongBinder(val.get(i));
1417             i++;
1418         }
1419     }
1420
1421     /**
1422      * Flatten a {@code List} containing arbitrary {@code Parcelable} objects into this parcel
1423      * at the current position. They can later be retrieved using
1424      * {@link #readParcelableList(List, ClassLoader)} if required.
1425      *
1426      * @see #readParcelableList(List, ClassLoader)
1427      * @hide
1428      */
1429     public final <T extends Parcelable> void writeParcelableList(List<T> val, int flags) {
1430         if (val == null) {
1431             writeInt(-1);
1432             return;
1433         }
1434
1435         int N = val.size();
1436         int i=0;
1437         writeInt(N);
1438         while (i < N) {
1439             writeParcelable(val.get(i), flags);
1440             i++;
1441         }
1442     }
1443
1444     /**
1445      * Flatten a homogeneous array containing a particular object type into
1446      * the parcel, at
1447      * the current dataPosition() and growing dataCapacity() if needed.  The
1448      * type of the objects in the array must be one that implements Parcelable.
1449      * Unlike the {@link #writeParcelableArray} method, however, only the
1450      * raw data of the objects is written and not their type, so you must use
1451      * {@link #readTypedArray} with the correct corresponding
1452      * {@link Parcelable.Creator} implementation to unmarshall them.
1453      *
1454      * @param val The array of objects to be written.
1455      * @param parcelableFlags Contextual flags as per
1456      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1457      *
1458      * @see #readTypedArray
1459      * @see #writeParcelableArray
1460      * @see Parcelable.Creator
1461      */
1462     public final <T extends Parcelable> void writeTypedArray(T[] val,
1463             int parcelableFlags) {
1464         if (val != null) {
1465             int N = val.length;
1466             writeInt(N);
1467             for (int i = 0; i < N; i++) {
1468                 T item = val[i];
1469                 if (item != null) {
1470                     writeInt(1);
1471                     item.writeToParcel(this, parcelableFlags);
1472                 } else {
1473                     writeInt(0);
1474                 }
1475             }
1476         } else {
1477             writeInt(-1);
1478         }
1479     }
1480
1481     /**
1482      * Write a uniform (all items are null or the same class) array list of
1483      * parcelables.
1484      *
1485      * @param list The list to write.
1486      *
1487      * @hide
1488      */
1489     public final <T extends Parcelable> void writeTypedArrayList(@Nullable ArrayList<T> list,
1490             int parcelableFlags) {
1491         if (list != null) {
1492             int N = list.size();
1493             writeInt(N);
1494             boolean wroteCreator = false;
1495             for (int i = 0; i < N; i++) {
1496                 T item = list.get(i);
1497                 if (item != null) {
1498                     writeInt(1);
1499                     if (!wroteCreator) {
1500                         writeParcelableCreator(item);
1501                         wroteCreator = true;
1502                     }
1503                     item.writeToParcel(this, parcelableFlags);
1504                 } else {
1505                     writeInt(0);
1506                 }
1507             }
1508         } else {
1509             writeInt(-1);
1510         }
1511     }
1512
1513     /**
1514      * Reads a uniform (all items are null or the same class) array list of
1515      * parcelables.
1516      *
1517      * @return The list or null.
1518      *
1519      * @hide
1520      */
1521     public final @Nullable <T> ArrayList<T> readTypedArrayList(@Nullable ClassLoader loader) {
1522         int N = readInt();
1523         if (N <= 0) {
1524             return null;
1525         }
1526         Parcelable.Creator<?> creator = null;
1527         ArrayList<T> result = new ArrayList<T>(N);
1528         for (int i = 0; i < N; i++) {
1529             if (readInt() != 0) {
1530                 if (creator == null) {
1531                     creator = readParcelableCreator(loader);
1532                     if (creator == null) {
1533                         return null;
1534                     }
1535                 }
1536                 final T parcelable;
1537                 if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
1538                     Parcelable.ClassLoaderCreator<?> classLoaderCreator =
1539                             (Parcelable.ClassLoaderCreator<?>) creator;
1540                     parcelable = (T) classLoaderCreator.createFromParcel(this, loader);
1541                 } else {
1542                     parcelable = (T) creator.createFromParcel(this);
1543                 }
1544                 result.add(parcelable);
1545             } else {
1546                 result.add(null);
1547             }
1548         }
1549         return result;
1550     }
1551
1552     /**
1553      * Write a uniform (all items are null or the same class) array set of
1554      * parcelables.
1555      *
1556      * @param set The set to write.
1557      *
1558      * @hide
1559      */
1560     public final <T extends Parcelable> void writeTypedArraySet(@Nullable ArraySet<T> set,
1561             int parcelableFlags) {
1562         if (set != null) {
1563             int N = set.size();
1564             writeInt(N);
1565             boolean wroteCreator = false;
1566             for (int i = 0; i < N; i++) {
1567                 T item = set.valueAt(i);
1568                 if (item != null) {
1569                     writeInt(1);
1570                     if (!wroteCreator) {
1571                         writeParcelableCreator(item);
1572                         wroteCreator = true;
1573                     }
1574                     item.writeToParcel(this, parcelableFlags);
1575                 } else {
1576                     writeInt(0);
1577                 }
1578             }
1579         } else {
1580             writeInt(-1);
1581         }
1582     }
1583
1584     /**
1585      * Reads a uniform (all items are null or the same class) array set of
1586      * parcelables.
1587      *
1588      * @return The set or null.
1589      *
1590      * @hide
1591      */
1592     public final @Nullable <T> ArraySet<T> readTypedArraySet(@Nullable ClassLoader loader) {
1593         int N = readInt();
1594         if (N <= 0) {
1595             return null;
1596         }
1597         Parcelable.Creator<?> creator = null;
1598         ArraySet<T> result = new ArraySet<T>(N);
1599         for (int i = 0; i < N; i++) {
1600             T parcelable = null;
1601             if (readInt() != 0) {
1602                 if (creator == null) {
1603                     creator = readParcelableCreator(loader);
1604                     if (creator == null) {
1605                         return null;
1606                     }
1607                 }
1608                 if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
1609                     Parcelable.ClassLoaderCreator<?> classLoaderCreator =
1610                             (Parcelable.ClassLoaderCreator<?>) creator;
1611                     parcelable = (T) classLoaderCreator.createFromParcel(this, loader);
1612                 } else {
1613                     parcelable = (T) creator.createFromParcel(this);
1614                 }
1615             }
1616             result.append(parcelable);
1617         }
1618         return result;
1619     }
1620
1621     /**
1622      * Flatten the Parcelable object into the parcel.
1623      *
1624      * @param val The Parcelable object to be written.
1625      * @param parcelableFlags Contextual flags as per
1626      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1627      *
1628      * @see #readTypedObject
1629      */
1630     public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) {
1631         if (val != null) {
1632             writeInt(1);
1633             val.writeToParcel(this, parcelableFlags);
1634         } else {
1635             writeInt(0);
1636         }
1637     }
1638
1639     /**
1640      * Flatten a generic object in to a parcel.  The given Object value may
1641      * currently be one of the following types:
1642      *
1643      * <ul>
1644      * <li> null
1645      * <li> String
1646      * <li> Byte
1647      * <li> Short
1648      * <li> Integer
1649      * <li> Long
1650      * <li> Float
1651      * <li> Double
1652      * <li> Boolean
1653      * <li> String[]
1654      * <li> boolean[]
1655      * <li> byte[]
1656      * <li> int[]
1657      * <li> long[]
1658      * <li> Object[] (supporting objects of the same type defined here).
1659      * <li> {@link Bundle}
1660      * <li> Map (as supported by {@link #writeMap}).
1661      * <li> Any object that implements the {@link Parcelable} protocol.
1662      * <li> Parcelable[]
1663      * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1664      * <li> List (as supported by {@link #writeList}).
1665      * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1666      * <li> {@link IBinder}
1667      * <li> Any object that implements Serializable (but see
1668      *      {@link #writeSerializable} for caveats).  Note that all of the
1669      *      previous types have relatively efficient implementations for
1670      *      writing to a Parcel; having to rely on the generic serialization
1671      *      approach is much less efficient and should be avoided whenever
1672      *      possible.
1673      * </ul>
1674      *
1675      * <p class="caution">{@link Parcelable} objects are written with
1676      * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1677      * serializing objects containing {@link ParcelFileDescriptor}s,
1678      * this may result in file descriptor leaks when they are returned from
1679      * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1680      * should be used).</p>
1681      */
1682     public final void writeValue(Object v) {
1683         if (v == null) {
1684             writeInt(VAL_NULL);
1685         } else if (v instanceof String) {
1686             writeInt(VAL_STRING);
1687             writeString((String) v);
1688         } else if (v instanceof Integer) {
1689             writeInt(VAL_INTEGER);
1690             writeInt((Integer) v);
1691         } else if (v instanceof Map) {
1692             writeInt(VAL_MAP);
1693             writeMap((Map) v);
1694         } else if (v instanceof Bundle) {
1695             // Must be before Parcelable
1696             writeInt(VAL_BUNDLE);
1697             writeBundle((Bundle) v);
1698         } else if (v instanceof PersistableBundle) {
1699             writeInt(VAL_PERSISTABLEBUNDLE);
1700             writePersistableBundle((PersistableBundle) v);
1701         } else if (v instanceof Parcelable) {
1702             // IMPOTANT: cases for classes that implement Parcelable must
1703             // come before the Parcelable case, so that their specific VAL_*
1704             // types will be written.
1705             writeInt(VAL_PARCELABLE);
1706             writeParcelable((Parcelable) v, 0);
1707         } else if (v instanceof Short) {
1708             writeInt(VAL_SHORT);
1709             writeInt(((Short) v).intValue());
1710         } else if (v instanceof Long) {
1711             writeInt(VAL_LONG);
1712             writeLong((Long) v);
1713         } else if (v instanceof Float) {
1714             writeInt(VAL_FLOAT);
1715             writeFloat((Float) v);
1716         } else if (v instanceof Double) {
1717             writeInt(VAL_DOUBLE);
1718             writeDouble((Double) v);
1719         } else if (v instanceof Boolean) {
1720             writeInt(VAL_BOOLEAN);
1721             writeInt((Boolean) v ? 1 : 0);
1722         } else if (v instanceof CharSequence) {
1723             // Must be after String
1724             writeInt(VAL_CHARSEQUENCE);
1725             writeCharSequence((CharSequence) v);
1726         } else if (v instanceof List) {
1727             writeInt(VAL_LIST);
1728             writeList((List) v);
1729         } else if (v instanceof SparseArray) {
1730             writeInt(VAL_SPARSEARRAY);
1731             writeSparseArray((SparseArray) v);
1732         } else if (v instanceof boolean[]) {
1733             writeInt(VAL_BOOLEANARRAY);
1734             writeBooleanArray((boolean[]) v);
1735         } else if (v instanceof byte[]) {
1736             writeInt(VAL_BYTEARRAY);
1737             writeByteArray((byte[]) v);
1738         } else if (v instanceof String[]) {
1739             writeInt(VAL_STRINGARRAY);
1740             writeStringArray((String[]) v);
1741         } else if (v instanceof CharSequence[]) {
1742             // Must be after String[] and before Object[]
1743             writeInt(VAL_CHARSEQUENCEARRAY);
1744             writeCharSequenceArray((CharSequence[]) v);
1745         } else if (v instanceof IBinder) {
1746             writeInt(VAL_IBINDER);
1747             writeStrongBinder((IBinder) v);
1748         } else if (v instanceof Parcelable[]) {
1749             writeInt(VAL_PARCELABLEARRAY);
1750             writeParcelableArray((Parcelable[]) v, 0);
1751         } else if (v instanceof int[]) {
1752             writeInt(VAL_INTARRAY);
1753             writeIntArray((int[]) v);
1754         } else if (v instanceof long[]) {
1755             writeInt(VAL_LONGARRAY);
1756             writeLongArray((long[]) v);
1757         } else if (v instanceof Byte) {
1758             writeInt(VAL_BYTE);
1759             writeInt((Byte) v);
1760         } else if (v instanceof Size) {
1761             writeInt(VAL_SIZE);
1762             writeSize((Size) v);
1763         } else if (v instanceof SizeF) {
1764             writeInt(VAL_SIZEF);
1765             writeSizeF((SizeF) v);
1766         } else if (v instanceof double[]) {
1767             writeInt(VAL_DOUBLEARRAY);
1768             writeDoubleArray((double[]) v);
1769         } else {
1770             Class<?> clazz = v.getClass();
1771             if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1772                 // Only pure Object[] are written here, Other arrays of non-primitive types are
1773                 // handled by serialization as this does not record the component type.
1774                 writeInt(VAL_OBJECTARRAY);
1775                 writeArray((Object[]) v);
1776             } else if (v instanceof Serializable) {
1777                 // Must be last
1778                 writeInt(VAL_SERIALIZABLE);
1779                 writeSerializable((Serializable) v);
1780             } else {
1781                 throw new RuntimeException("Parcel: unable to marshal value " + v);
1782             }
1783         }
1784     }
1785
1786     /**
1787      * Flatten the name of the class of the Parcelable and its contents
1788      * into the parcel.
1789      *
1790      * @param p The Parcelable object to be written.
1791      * @param parcelableFlags Contextual flags as per
1792      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1793      */
1794     public final void writeParcelable(Parcelable p, int parcelableFlags) {
1795         if (p == null) {
1796             writeString(null);
1797             return;
1798         }
1799         writeParcelableCreator(p);
1800         p.writeToParcel(this, parcelableFlags);
1801     }
1802
1803     /** @hide */
1804     public final void writeParcelableCreator(Parcelable p) {
1805         String name = p.getClass().getName();
1806         writeString(name);
1807     }
1808
1809     /**
1810      * Write a generic serializable object in to a Parcel.  It is strongly
1811      * recommended that this method be avoided, since the serialization
1812      * overhead is extremely large, and this approach will be much slower than
1813      * using the other approaches to writing data in to a Parcel.
1814      */
1815     public final void writeSerializable(Serializable s) {
1816         if (s == null) {
1817             writeString(null);
1818             return;
1819         }
1820         String name = s.getClass().getName();
1821         writeString(name);
1822
1823         ByteArrayOutputStream baos = new ByteArrayOutputStream();
1824         try {
1825             ObjectOutputStream oos = new ObjectOutputStream(baos);
1826             oos.writeObject(s);
1827             oos.close();
1828
1829             writeByteArray(baos.toByteArray());
1830         } catch (IOException ioe) {
1831             throw new RuntimeException("Parcelable encountered " +
1832                 "IOException writing serializable object (name = " + name +
1833                 ")", ioe);
1834         }
1835     }
1836
1837     /**
1838      * Special function for writing an exception result at the header of
1839      * a parcel, to be used when returning an exception from a transaction.
1840      * Note that this currently only supports a few exception types; any other
1841      * exception will be re-thrown by this function as a RuntimeException
1842      * (to be caught by the system's last-resort exception handling when
1843      * dispatching a transaction).
1844      *
1845      * <p>The supported exception types are:
1846      * <ul>
1847      * <li>{@link BadParcelableException}
1848      * <li>{@link IllegalArgumentException}
1849      * <li>{@link IllegalStateException}
1850      * <li>{@link NullPointerException}
1851      * <li>{@link SecurityException}
1852      * <li>{@link UnsupportedOperationException}
1853      * <li>{@link NetworkOnMainThreadException}
1854      * </ul>
1855      *
1856      * @param e The Exception to be written.
1857      *
1858      * @see #writeNoException
1859      * @see #readException
1860      */
1861     public final void writeException(Exception e) {
1862         int code = 0;
1863         if (e instanceof Parcelable
1864                 && (e.getClass().getClassLoader() == Parcelable.class.getClassLoader())) {
1865             // We only send Parcelable exceptions that are in the
1866             // BootClassLoader to ensure that the receiver can unpack them
1867             code = EX_PARCELABLE;
1868         } else if (e instanceof SecurityException) {
1869             code = EX_SECURITY;
1870         } else if (e instanceof BadParcelableException) {
1871             code = EX_BAD_PARCELABLE;
1872         } else if (e instanceof IllegalArgumentException) {
1873             code = EX_ILLEGAL_ARGUMENT;
1874         } else if (e instanceof NullPointerException) {
1875             code = EX_NULL_POINTER;
1876         } else if (e instanceof IllegalStateException) {
1877             code = EX_ILLEGAL_STATE;
1878         } else if (e instanceof NetworkOnMainThreadException) {
1879             code = EX_NETWORK_MAIN_THREAD;
1880         } else if (e instanceof UnsupportedOperationException) {
1881             code = EX_UNSUPPORTED_OPERATION;
1882         } else if (e instanceof ServiceSpecificException) {
1883             code = EX_SERVICE_SPECIFIC;
1884         }
1885         writeInt(code);
1886         StrictMode.clearGatheredViolations();
1887         if (code == 0) {
1888             if (e instanceof RuntimeException) {
1889                 throw (RuntimeException) e;
1890             }
1891             throw new RuntimeException(e);
1892         }
1893         writeString(e.getMessage());
1894         switch (code) {
1895             case EX_SERVICE_SPECIFIC:
1896                 writeInt(((ServiceSpecificException) e).errorCode);
1897                 break;
1898             case EX_PARCELABLE:
1899                 // Write parceled exception prefixed by length
1900                 final int sizePosition = dataPosition();
1901                 writeInt(0);
1902                 writeParcelable((Parcelable) e, Parcelable.PARCELABLE_WRITE_RETURN_VALUE);
1903                 final int payloadPosition = dataPosition();
1904                 setDataPosition(sizePosition);
1905                 writeInt(payloadPosition - sizePosition);
1906                 setDataPosition(payloadPosition);
1907                 break;
1908         }
1909     }
1910
1911     /**
1912      * Special function for writing information at the front of the Parcel
1913      * indicating that no exception occurred.
1914      *
1915      * @see #writeException
1916      * @see #readException
1917      */
1918     public final void writeNoException() {
1919         // Despite the name of this function ("write no exception"),
1920         // it should instead be thought of as "write the RPC response
1921         // header", but because this function name is written out by
1922         // the AIDL compiler, we're not going to rename it.
1923         //
1924         // The response header, in the non-exception case (see also
1925         // writeException above, also called by the AIDL compiler), is
1926         // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1927         // StrictMode has gathered up violations that have occurred
1928         // during a Binder call, in which case we write out the number
1929         // of violations and their details, serialized, before the
1930         // actual RPC respons data.  The receiving end of this is
1931         // readException(), below.
1932         if (StrictMode.hasGatheredViolations()) {
1933             writeInt(EX_HAS_REPLY_HEADER);
1934             final int sizePosition = dataPosition();
1935             writeInt(0);  // total size of fat header, to be filled in later
1936             StrictMode.writeGatheredViolationsToParcel(this);
1937             final int payloadPosition = dataPosition();
1938             setDataPosition(sizePosition);
1939             writeInt(payloadPosition - sizePosition);  // header size
1940             setDataPosition(payloadPosition);
1941         } else {
1942             writeInt(0);
1943         }
1944     }
1945
1946     /**
1947      * Special function for reading an exception result from the header of
1948      * a parcel, to be used after receiving the result of a transaction.  This
1949      * will throw the exception for you if it had been written to the Parcel,
1950      * otherwise return and let you read the normal result data from the Parcel.
1951      *
1952      * @see #writeException
1953      * @see #writeNoException
1954      */
1955     public final void readException() {
1956         int code = readExceptionCode();
1957         if (code != 0) {
1958             String msg = readString();
1959             readException(code, msg);
1960         }
1961     }
1962
1963     /**
1964      * Parses the header of a Binder call's response Parcel and
1965      * returns the exception code.  Deals with lite or fat headers.
1966      * In the common successful case, this header is generally zero.
1967      * In less common cases, it's a small negative number and will be
1968      * followed by an error string.
1969      *
1970      * This exists purely for android.database.DatabaseUtils and
1971      * insulating it from having to handle fat headers as returned by
1972      * e.g. StrictMode-induced RPC responses.
1973      *
1974      * @hide
1975      */
1976     public final int readExceptionCode() {
1977         int code = readInt();
1978         if (code == EX_HAS_REPLY_HEADER) {
1979             int headerSize = readInt();
1980             if (headerSize == 0) {
1981                 Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1982             } else {
1983                 // Currently the only thing in the header is StrictMode stacks,
1984                 // but discussions around event/RPC tracing suggest we might
1985                 // put that here too.  If so, switch on sub-header tags here.
1986                 // But for now, just parse out the StrictMode stuff.
1987                 StrictMode.readAndHandleBinderCallViolations(this);
1988             }
1989             // And fat response headers are currently only used when
1990             // there are no exceptions, so return no error:
1991             return 0;
1992         }
1993         return code;
1994     }
1995
1996     /**
1997      * Throw an exception with the given message. Not intended for use
1998      * outside the Parcel class.
1999      *
2000      * @param code Used to determine which exception class to throw.
2001      * @param msg The exception message.
2002      */
2003     public final void readException(int code, String msg) {
2004         switch (code) {
2005             case EX_PARCELABLE:
2006                 if (readInt() > 0) {
2007                     SneakyThrow.sneakyThrow(
2008                             (Exception) readParcelable(Parcelable.class.getClassLoader()));
2009                 } else {
2010                     throw new RuntimeException(msg + " [missing Parcelable]");
2011                 }
2012             case EX_SECURITY:
2013                 throw new SecurityException(msg);
2014             case EX_BAD_PARCELABLE:
2015                 throw new BadParcelableException(msg);
2016             case EX_ILLEGAL_ARGUMENT:
2017                 throw new IllegalArgumentException(msg);
2018             case EX_NULL_POINTER:
2019                 throw new NullPointerException(msg);
2020             case EX_ILLEGAL_STATE:
2021                 throw new IllegalStateException(msg);
2022             case EX_NETWORK_MAIN_THREAD:
2023                 throw new NetworkOnMainThreadException();
2024             case EX_UNSUPPORTED_OPERATION:
2025                 throw new UnsupportedOperationException(msg);
2026             case EX_SERVICE_SPECIFIC:
2027                 throw new ServiceSpecificException(readInt(), msg);
2028         }
2029         throw new RuntimeException("Unknown exception code: " + code
2030                 + " msg " + msg);
2031     }
2032
2033     /**
2034      * Read an integer value from the parcel at the current dataPosition().
2035      */
2036     public final int readInt() {
2037         return nativeReadInt(mNativePtr);
2038     }
2039
2040     /**
2041      * Read a long integer value from the parcel at the current dataPosition().
2042      */
2043     public final long readLong() {
2044         return nativeReadLong(mNativePtr);
2045     }
2046
2047     /**
2048      * Read a floating point value from the parcel at the current
2049      * dataPosition().
2050      */
2051     public final float readFloat() {
2052         return nativeReadFloat(mNativePtr);
2053     }
2054
2055     /**
2056      * Read a double precision floating point value from the parcel at the
2057      * current dataPosition().
2058      */
2059     public final double readDouble() {
2060         return nativeReadDouble(mNativePtr);
2061     }
2062
2063     /**
2064      * Read a string value from the parcel at the current dataPosition().
2065      */
2066     public final String readString() {
2067         return mReadWriteHelper.readString(this);
2068     }
2069
2070     /**
2071      * Read a string without going though a {@link ReadWriteHelper}.  Subclasses of
2072      * {@link ReadWriteHelper} must use this method instead of {@link #readString} to avoid
2073      * infinity recursive calls.
2074      *
2075      * @hide
2076      */
2077     public String readStringNoHelper() {
2078         return nativeReadString(mNativePtr);
2079     }
2080
2081     /** @hide */
2082     public final boolean readBoolean() {
2083         return readInt() != 0;
2084     }
2085
2086     /**
2087      * Read a CharSequence value from the parcel at the current dataPosition().
2088      * @hide
2089      */
2090     public final CharSequence readCharSequence() {
2091         return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
2092     }
2093
2094     /**
2095      * Read an object from the parcel at the current dataPosition().
2096      */
2097     public final IBinder readStrongBinder() {
2098         return nativeReadStrongBinder(mNativePtr);
2099     }
2100
2101     /**
2102      * Read a FileDescriptor from the parcel at the current dataPosition().
2103      */
2104     public final ParcelFileDescriptor readFileDescriptor() {
2105         FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
2106         return fd != null ? new ParcelFileDescriptor(fd) : null;
2107     }
2108
2109     /** {@hide} */
2110     public final FileDescriptor readRawFileDescriptor() {
2111         return nativeReadFileDescriptor(mNativePtr);
2112     }
2113
2114     /**
2115      * {@hide}
2116      * Read and return a new array of FileDescriptors from the parcel.
2117      * @return the FileDescriptor array, or null if the array is null.
2118      **/
2119     public final FileDescriptor[] createRawFileDescriptorArray() {
2120         int N = readInt();
2121         if (N < 0) {
2122             return null;
2123         }
2124         FileDescriptor[] f = new FileDescriptor[N];
2125         for (int i = 0; i < N; i++) {
2126             f[i] = readRawFileDescriptor();
2127         }
2128         return f;
2129     }
2130
2131     /**
2132      * {@hide}
2133      * Read an array of FileDescriptors from a parcel.
2134      * The passed array must be exactly the length of the array in the parcel.
2135      * @return the FileDescriptor array, or null if the array is null.
2136      **/
2137     public final void readRawFileDescriptorArray(FileDescriptor[] val) {
2138         int N = readInt();
2139         if (N == val.length) {
2140             for (int i=0; i<N; i++) {
2141                 val[i] = readRawFileDescriptor();
2142             }
2143         } else {
2144             throw new RuntimeException("bad array lengths");
2145         }
2146     }
2147
2148     /** @deprecated use {@link android.system.Os#open(String, int, int)} */
2149     @Deprecated
2150     static native FileDescriptor openFileDescriptor(String file, int mode)
2151             throws FileNotFoundException;
2152
2153     /** @deprecated use {@link android.system.Os#dup(FileDescriptor)} */
2154     @Deprecated
2155     static native FileDescriptor dupFileDescriptor(FileDescriptor orig) throws IOException;
2156
2157     /** @deprecated use {@link android.system.Os#close(FileDescriptor)} */
2158     @Deprecated
2159     static native void closeFileDescriptor(FileDescriptor desc) throws IOException;
2160
2161     static native void clearFileDescriptor(FileDescriptor desc);
2162
2163     /**
2164      * Read a byte value from the parcel at the current dataPosition().
2165      */
2166     public final byte readByte() {
2167         return (byte)(readInt() & 0xff);
2168     }
2169
2170     /**
2171      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
2172      * been written with {@link #writeBundle}.  Read into an existing Map object
2173      * from the parcel at the current dataPosition().
2174      */
2175     public final void readMap(Map outVal, ClassLoader loader) {
2176         int N = readInt();
2177         readMapInternal(outVal, N, loader);
2178     }
2179
2180     /**
2181      * Read into an existing List object from the parcel at the current
2182      * dataPosition(), using the given class loader to load any enclosed
2183      * Parcelables.  If it is null, the default class loader is used.
2184      */
2185     public final void readList(List outVal, ClassLoader loader) {
2186         int N = readInt();
2187         readListInternal(outVal, N, loader);
2188     }
2189
2190     /**
2191      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
2192      * been written with {@link #writeBundle}.  Read and return a new HashMap
2193      * object from the parcel at the current dataPosition(), using the given
2194      * class loader to load any enclosed Parcelables.  Returns null if
2195      * the previously written map object was null.
2196      */
2197     public final HashMap readHashMap(ClassLoader loader)
2198     {
2199         int N = readInt();
2200         if (N < 0) {
2201             return null;
2202         }
2203         HashMap m = new HashMap(N);
2204         readMapInternal(m, N, loader);
2205         return m;
2206     }
2207
2208     /**
2209      * Read and return a new Bundle object from the parcel at the current
2210      * dataPosition().  Returns null if the previously written Bundle object was
2211      * null.
2212      */
2213     public final Bundle readBundle() {
2214         return readBundle(null);
2215     }
2216
2217     /**
2218      * Read and return a new Bundle object from the parcel at the current
2219      * dataPosition(), using the given class loader to initialize the class
2220      * loader of the Bundle for later retrieval of Parcelable objects.
2221      * Returns null if the previously written Bundle object was null.
2222      */
2223     public final Bundle readBundle(ClassLoader loader) {
2224         int length = readInt();
2225         if (length < 0) {
2226             if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
2227             return null;
2228         }
2229
2230         final Bundle bundle = new Bundle(this, length);
2231         if (loader != null) {
2232             bundle.setClassLoader(loader);
2233         }
2234         return bundle;
2235     }
2236
2237     /**
2238      * Read and return a new Bundle object from the parcel at the current
2239      * dataPosition().  Returns null if the previously written Bundle object was
2240      * null.
2241      */
2242     public final PersistableBundle readPersistableBundle() {
2243         return readPersistableBundle(null);
2244     }
2245
2246     /**
2247      * Read and return a new Bundle object from the parcel at the current
2248      * dataPosition(), using the given class loader to initialize the class
2249      * loader of the Bundle for later retrieval of Parcelable objects.
2250      * Returns null if the previously written Bundle object was null.
2251      */
2252     public final PersistableBundle readPersistableBundle(ClassLoader loader) {
2253         int length = readInt();
2254         if (length < 0) {
2255             if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
2256             return null;
2257         }
2258
2259         final PersistableBundle bundle = new PersistableBundle(this, length);
2260         if (loader != null) {
2261             bundle.setClassLoader(loader);
2262         }
2263         return bundle;
2264     }
2265
2266     /**
2267      * Read a Size from the parcel at the current dataPosition().
2268      */
2269     public final Size readSize() {
2270         final int width = readInt();
2271         final int height = readInt();
2272         return new Size(width, height);
2273     }
2274
2275     /**
2276      * Read a SizeF from the parcel at the current dataPosition().
2277      */
2278     public final SizeF readSizeF() {
2279         final float width = readFloat();
2280         final float height = readFloat();
2281         return new SizeF(width, height);
2282     }
2283
2284     /**
2285      * Read and return a byte[] object from the parcel.
2286      */
2287     public final byte[] createByteArray() {
2288         return nativeCreateByteArray(mNativePtr);
2289     }
2290
2291     /**
2292      * Read a byte[] object from the parcel and copy it into the
2293      * given byte array.
2294      */
2295     public final void readByteArray(byte[] val) {
2296         boolean valid = nativeReadByteArray(mNativePtr, val, (val != null) ? val.length : 0);
2297         if (!valid) {
2298             throw new RuntimeException("bad array lengths");
2299         }
2300     }
2301
2302     /**
2303      * Read a blob of data from the parcel and return it as a byte array.
2304      * {@hide}
2305      * {@SystemApi}
2306      */
2307     public final byte[] readBlob() {
2308         return nativeReadBlob(mNativePtr);
2309     }
2310
2311     /**
2312      * Read and return a String[] object from the parcel.
2313      * {@hide}
2314      */
2315     public final String[] readStringArray() {
2316         String[] array = null;
2317
2318         int length = readInt();
2319         if (length >= 0)
2320         {
2321             array = new String[length];
2322
2323             for (int i = 0 ; i < length ; i++)
2324             {
2325                 array[i] = readString();
2326             }
2327         }
2328
2329         return array;
2330     }
2331
2332     /**
2333      * Read and return a CharSequence[] object from the parcel.
2334      * {@hide}
2335      */
2336     public final CharSequence[] readCharSequenceArray() {
2337         CharSequence[] array = null;
2338
2339         int length = readInt();
2340         if (length >= 0)
2341         {
2342             array = new CharSequence[length];
2343
2344             for (int i = 0 ; i < length ; i++)
2345             {
2346                 array[i] = readCharSequence();
2347             }
2348         }
2349
2350         return array;
2351     }
2352
2353     /**
2354      * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
2355      * {@hide}
2356      */
2357     public final ArrayList<CharSequence> readCharSequenceList() {
2358         ArrayList<CharSequence> array = null;
2359
2360         int length = readInt();
2361         if (length >= 0) {
2362             array = new ArrayList<CharSequence>(length);
2363
2364             for (int i = 0 ; i < length ; i++) {
2365                 array.add(readCharSequence());
2366             }
2367         }
2368
2369         return array;
2370     }
2371
2372     /**
2373      * Read and return a new ArrayList object from the parcel at the current
2374      * dataPosition().  Returns null if the previously written list object was
2375      * null.  The given class loader will be used to load any enclosed
2376      * Parcelables.
2377      */
2378     public final ArrayList readArrayList(ClassLoader loader) {
2379         int N = readInt();
2380         if (N < 0) {
2381             return null;
2382         }
2383         ArrayList l = new ArrayList(N);
2384         readListInternal(l, N, loader);
2385         return l;
2386     }
2387
2388     /**
2389      * Read and return a new Object array from the parcel at the current
2390      * dataPosition().  Returns null if the previously written array was
2391      * null.  The given class loader will be used to load any enclosed
2392      * Parcelables.
2393      */
2394     public final Object[] readArray(ClassLoader loader) {
2395         int N = readInt();
2396         if (N < 0) {
2397             return null;
2398         }
2399         Object[] l = new Object[N];
2400         readArrayInternal(l, N, loader);
2401         return l;
2402     }
2403
2404     /**
2405      * Read and return a new SparseArray object from the parcel at the current
2406      * dataPosition().  Returns null if the previously written list object was
2407      * null.  The given class loader will be used to load any enclosed
2408      * Parcelables.
2409      */
2410     public final SparseArray readSparseArray(ClassLoader loader) {
2411         int N = readInt();
2412         if (N < 0) {
2413             return null;
2414         }
2415         SparseArray sa = new SparseArray(N);
2416         readSparseArrayInternal(sa, N, loader);
2417         return sa;
2418     }
2419
2420     /**
2421      * Read and return a new SparseBooleanArray object from the parcel at the current
2422      * dataPosition().  Returns null if the previously written list object was
2423      * null.
2424      */
2425     public final SparseBooleanArray readSparseBooleanArray() {
2426         int N = readInt();
2427         if (N < 0) {
2428             return null;
2429         }
2430         SparseBooleanArray sa = new SparseBooleanArray(N);
2431         readSparseBooleanArrayInternal(sa, N);
2432         return sa;
2433     }
2434
2435     /**
2436      * Read and return a new SparseIntArray object from the parcel at the current
2437      * dataPosition(). Returns null if the previously written array object was null.
2438      * @hide
2439      */
2440     public final SparseIntArray readSparseIntArray() {
2441         int N = readInt();
2442         if (N < 0) {
2443             return null;
2444         }
2445         SparseIntArray sa = new SparseIntArray(N);
2446         readSparseIntArrayInternal(sa, N);
2447         return sa;
2448     }
2449
2450     /**
2451      * Read and return a new ArrayList containing a particular object type from
2452      * the parcel that was written with {@link #writeTypedList} at the
2453      * current dataPosition().  Returns null if the
2454      * previously written list object was null.  The list <em>must</em> have
2455      * previously been written via {@link #writeTypedList} with the same object
2456      * type.
2457      *
2458      * @return A newly created ArrayList containing objects with the same data
2459      *         as those that were previously written.
2460      *
2461      * @see #writeTypedList
2462      */
2463     public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
2464         int N = readInt();
2465         if (N < 0) {
2466             return null;
2467         }
2468         ArrayList<T> l = new ArrayList<T>(N);
2469         while (N > 0) {
2470             if (readInt() != 0) {
2471                 l.add(c.createFromParcel(this));
2472             } else {
2473                 l.add(null);
2474             }
2475             N--;
2476         }
2477         return l;
2478     }
2479
2480     /**
2481      * Read into the given List items containing a particular object type
2482      * that were written with {@link #writeTypedList} at the
2483      * current dataPosition().  The list <em>must</em> have
2484      * previously been written via {@link #writeTypedList} with the same object
2485      * type.
2486      *
2487      * @return A newly created ArrayList containing objects with the same data
2488      *         as those that were previously written.
2489      *
2490      * @see #writeTypedList
2491      */
2492     public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
2493         int M = list.size();
2494         int N = readInt();
2495         int i = 0;
2496         for (; i < M && i < N; i++) {
2497             if (readInt() != 0) {
2498                 list.set(i, c.createFromParcel(this));
2499             } else {
2500                 list.set(i, null);
2501             }
2502         }
2503         for (; i<N; i++) {
2504             if (readInt() != 0) {
2505                 list.add(c.createFromParcel(this));
2506             } else {
2507                 list.add(null);
2508             }
2509         }
2510         for (; i<M; i++) {
2511             list.remove(N);
2512         }
2513     }
2514
2515     /**
2516      * Read and return a new ArrayList containing String objects from
2517      * the parcel that was written with {@link #writeStringList} at the
2518      * current dataPosition().  Returns null if the
2519      * previously written list object was null.
2520      *
2521      * @return A newly created ArrayList containing strings with the same data
2522      *         as those that were previously written.
2523      *
2524      * @see #writeStringList
2525      */
2526     public final ArrayList<String> createStringArrayList() {
2527         int N = readInt();
2528         if (N < 0) {
2529             return null;
2530         }
2531         ArrayList<String> l = new ArrayList<String>(N);
2532         while (N > 0) {
2533             l.add(readString());
2534             N--;
2535         }
2536         return l;
2537     }
2538
2539     /**
2540      * Read and return a new ArrayList containing IBinder objects from
2541      * the parcel that was written with {@link #writeBinderList} at the
2542      * current dataPosition().  Returns null if the
2543      * previously written list object was null.
2544      *
2545      * @return A newly created ArrayList containing strings with the same data
2546      *         as those that were previously written.
2547      *
2548      * @see #writeBinderList
2549      */
2550     public final ArrayList<IBinder> createBinderArrayList() {
2551         int N = readInt();
2552         if (N < 0) {
2553             return null;
2554         }
2555         ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2556         while (N > 0) {
2557             l.add(readStrongBinder());
2558             N--;
2559         }
2560         return l;
2561     }
2562
2563     /**
2564      * Read into the given List items String objects that were written with
2565      * {@link #writeStringList} at the current dataPosition().
2566      *
2567      * @return A newly created ArrayList containing strings with the same data
2568      *         as those that were previously written.
2569      *
2570      * @see #writeStringList
2571      */
2572     public final void readStringList(List<String> list) {
2573         int M = list.size();
2574         int N = readInt();
2575         int i = 0;
2576         for (; i < M && i < N; i++) {
2577             list.set(i, readString());
2578         }
2579         for (; i<N; i++) {
2580             list.add(readString());
2581         }
2582         for (; i<M; i++) {
2583             list.remove(N);
2584         }
2585     }
2586
2587     /**
2588      * Read into the given List items IBinder objects that were written with
2589      * {@link #writeBinderList} at the current dataPosition().
2590      *
2591      * @see #writeBinderList
2592      */
2593     public final void readBinderList(List<IBinder> list) {
2594         int M = list.size();
2595         int N = readInt();
2596         int i = 0;
2597         for (; i < M && i < N; i++) {
2598             list.set(i, readStrongBinder());
2599         }
2600         for (; i<N; i++) {
2601             list.add(readStrongBinder());
2602         }
2603         for (; i<M; i++) {
2604             list.remove(N);
2605         }
2606     }
2607
2608     /**
2609      * Read the list of {@code Parcelable} objects at the current data position into the
2610      * given {@code list}. The contents of the {@code list} are replaced. If the serialized
2611      * list was {@code null}, {@code list} is cleared.
2612      *
2613      * @see #writeParcelableList(List, int)
2614      * @hide
2615      */
2616     public final <T extends Parcelable> List<T> readParcelableList(List<T> list, ClassLoader cl) {
2617         final int N = readInt();
2618         if (N == -1) {
2619             list.clear();
2620             return list;
2621         }
2622
2623         final int M = list.size();
2624         int i = 0;
2625         for (; i < M && i < N; i++) {
2626             list.set(i, (T) readParcelable(cl));
2627         }
2628         for (; i<N; i++) {
2629             list.add((T) readParcelable(cl));
2630         }
2631         for (; i<M; i++) {
2632             list.remove(N);
2633         }
2634         return list;
2635     }
2636
2637     /**
2638      * Read and return a new array containing a particular object type from
2639      * the parcel at the current dataPosition().  Returns null if the
2640      * previously written array was null.  The array <em>must</em> have
2641      * previously been written via {@link #writeTypedArray} with the same
2642      * object type.
2643      *
2644      * @return A newly created array containing objects with the same data
2645      *         as those that were previously written.
2646      *
2647      * @see #writeTypedArray
2648      */
2649     public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2650         int N = readInt();
2651         if (N < 0) {
2652             return null;
2653         }
2654         T[] l = c.newArray(N);
2655         for (int i=0; i<N; i++) {
2656             if (readInt() != 0) {
2657                 l[i] = c.createFromParcel(this);
2658             }
2659         }
2660         return l;
2661     }
2662
2663     public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2664         int N = readInt();
2665         if (N == val.length) {
2666             for (int i=0; i<N; i++) {
2667                 if (readInt() != 0) {
2668                     val[i] = c.createFromParcel(this);
2669                 } else {
2670                     val[i] = null;
2671                 }
2672             }
2673         } else {
2674             throw new RuntimeException("bad array lengths");
2675         }
2676     }
2677
2678     /**
2679      * @deprecated
2680      * @hide
2681      */
2682     @Deprecated
2683     public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2684         return createTypedArray(c);
2685     }
2686
2687     /**
2688      * Read and return a typed Parcelable object from a parcel.
2689      * Returns null if the previous written object was null.
2690      * The object <em>must</em> have previous been written via
2691      * {@link #writeTypedObject} with the same object type.
2692      *
2693      * @return A newly created object of the type that was previously
2694      *         written.
2695      *
2696      * @see #writeTypedObject
2697      */
2698     public final <T> T readTypedObject(Parcelable.Creator<T> c) {
2699         if (readInt() != 0) {
2700             return c.createFromParcel(this);
2701         } else {
2702             return null;
2703         }
2704     }
2705
2706     /**
2707      * Write a heterogeneous array of Parcelable objects into the Parcel.
2708      * Each object in the array is written along with its class name, so
2709      * that the correct class can later be instantiated.  As a result, this
2710      * has significantly more overhead than {@link #writeTypedArray}, but will
2711      * correctly handle an array containing more than one type of object.
2712      *
2713      * @param value The array of objects to be written.
2714      * @param parcelableFlags Contextual flags as per
2715      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2716      *
2717      * @see #writeTypedArray
2718      */
2719     public final <T extends Parcelable> void writeParcelableArray(T[] value,
2720             int parcelableFlags) {
2721         if (value != null) {
2722             int N = value.length;
2723             writeInt(N);
2724             for (int i=0; i<N; i++) {
2725                 writeParcelable(value[i], parcelableFlags);
2726             }
2727         } else {
2728             writeInt(-1);
2729         }
2730     }
2731
2732     /**
2733      * Read a typed object from a parcel.  The given class loader will be
2734      * used to load any enclosed Parcelables.  If it is null, the default class
2735      * loader will be used.
2736      */
2737     public final Object readValue(ClassLoader loader) {
2738         int type = readInt();
2739
2740         switch (type) {
2741         case VAL_NULL:
2742             return null;
2743
2744         case VAL_STRING:
2745             return readString();
2746
2747         case VAL_INTEGER:
2748             return readInt();
2749
2750         case VAL_MAP:
2751             return readHashMap(loader);
2752
2753         case VAL_PARCELABLE:
2754             return readParcelable(loader);
2755
2756         case VAL_SHORT:
2757             return (short) readInt();
2758
2759         case VAL_LONG:
2760             return readLong();
2761
2762         case VAL_FLOAT:
2763             return readFloat();
2764
2765         case VAL_DOUBLE:
2766             return readDouble();
2767
2768         case VAL_BOOLEAN:
2769             return readInt() == 1;
2770
2771         case VAL_CHARSEQUENCE:
2772             return readCharSequence();
2773
2774         case VAL_LIST:
2775             return readArrayList(loader);
2776
2777         case VAL_BOOLEANARRAY:
2778             return createBooleanArray();
2779
2780         case VAL_BYTEARRAY:
2781             return createByteArray();
2782
2783         case VAL_STRINGARRAY:
2784             return readStringArray();
2785
2786         case VAL_CHARSEQUENCEARRAY:
2787             return readCharSequenceArray();
2788
2789         case VAL_IBINDER:
2790             return readStrongBinder();
2791
2792         case VAL_OBJECTARRAY:
2793             return readArray(loader);
2794
2795         case VAL_INTARRAY:
2796             return createIntArray();
2797
2798         case VAL_LONGARRAY:
2799             return createLongArray();
2800
2801         case VAL_BYTE:
2802             return readByte();
2803
2804         case VAL_SERIALIZABLE:
2805             return readSerializable(loader);
2806
2807         case VAL_PARCELABLEARRAY:
2808             return readParcelableArray(loader);
2809
2810         case VAL_SPARSEARRAY:
2811             return readSparseArray(loader);
2812
2813         case VAL_SPARSEBOOLEANARRAY:
2814             return readSparseBooleanArray();
2815
2816         case VAL_BUNDLE:
2817             return readBundle(loader); // loading will be deferred
2818
2819         case VAL_PERSISTABLEBUNDLE:
2820             return readPersistableBundle(loader);
2821
2822         case VAL_SIZE:
2823             return readSize();
2824
2825         case VAL_SIZEF:
2826             return readSizeF();
2827
2828         case VAL_DOUBLEARRAY:
2829             return createDoubleArray();
2830
2831         default:
2832             int off = dataPosition() - 4;
2833             throw new RuntimeException(
2834                 "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2835         }
2836     }
2837
2838     /**
2839      * Read and return a new Parcelable from the parcel.  The given class loader
2840      * will be used to load any enclosed Parcelables.  If it is null, the default
2841      * class loader will be used.
2842      * @param loader A ClassLoader from which to instantiate the Parcelable
2843      * object, or null for the default class loader.
2844      * @return Returns the newly created Parcelable, or null if a null
2845      * object has been written.
2846      * @throws BadParcelableException Throws BadParcelableException if there
2847      * was an error trying to instantiate the Parcelable.
2848      */
2849     @SuppressWarnings("unchecked")
2850     public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2851         Parcelable.Creator<?> creator = readParcelableCreator(loader);
2852         if (creator == null) {
2853             return null;
2854         }
2855         if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2856           Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2857               (Parcelable.ClassLoaderCreator<?>) creator;
2858           return (T) classLoaderCreator.createFromParcel(this, loader);
2859         }
2860         return (T) creator.createFromParcel(this);
2861     }
2862
2863     /** @hide */
2864     @SuppressWarnings("unchecked")
2865     public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2866             ClassLoader loader) {
2867         if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2868           Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2869               (Parcelable.ClassLoaderCreator<?>) creator;
2870           return (T) classLoaderCreator.createFromParcel(this, loader);
2871         }
2872         return (T) creator.createFromParcel(this);
2873     }
2874
2875     /** @hide */
2876     public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2877         String name = readString();
2878         if (name == null) {
2879             return null;
2880         }
2881         Parcelable.Creator<?> creator;
2882         synchronized (mCreators) {
2883             HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2884             if (map == null) {
2885                 map = new HashMap<>();
2886                 mCreators.put(loader, map);
2887             }
2888             creator = map.get(name);
2889             if (creator == null) {
2890                 try {
2891                     // If loader == null, explicitly emulate Class.forName(String) "caller
2892                     // classloader" behavior.
2893                     ClassLoader parcelableClassLoader =
2894                             (loader == null ? getClass().getClassLoader() : loader);
2895                     // Avoid initializing the Parcelable class until we know it implements
2896                     // Parcelable and has the necessary CREATOR field. http://b/1171613.
2897                     Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2898                             parcelableClassLoader);
2899                     if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2900                         throw new BadParcelableException("Parcelable protocol requires that the "
2901                                 + "class implements Parcelable");
2902                     }
2903                     Field f = parcelableClass.getField("CREATOR");
2904                     if ((f.getModifiers() & Modifier.STATIC) == 0) {
2905                         throw new BadParcelableException("Parcelable protocol requires "
2906                                 + "the CREATOR object to be static on class " + name);
2907                     }
2908                     Class<?> creatorType = f.getType();
2909                     if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2910                         // Fail before calling Field.get(), not after, to avoid initializing
2911                         // parcelableClass unnecessarily.
2912                         throw new BadParcelableException("Parcelable protocol requires a "
2913                                 + "Parcelable.Creator object called "
2914                                 + "CREATOR on class " + name);
2915                     }
2916                     creator = (Parcelable.Creator<?>) f.get(null);
2917                 }
2918                 catch (IllegalAccessException e) {
2919                     Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2920                     throw new BadParcelableException(
2921                             "IllegalAccessException when unmarshalling: " + name);
2922                 }
2923                 catch (ClassNotFoundException e) {
2924                     Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2925                     throw new BadParcelableException(
2926                             "ClassNotFoundException when unmarshalling: " + name);
2927                 }
2928                 catch (NoSuchFieldException e) {
2929                     throw new BadParcelableException("Parcelable protocol requires a "
2930                             + "Parcelable.Creator object called "
2931                             + "CREATOR on class " + name);
2932                 }
2933                 if (creator == null) {
2934                     throw new BadParcelableException("Parcelable protocol requires a "
2935                             + "non-null Parcelable.Creator object called "
2936                             + "CREATOR on class " + name);
2937                 }
2938
2939                 map.put(name, creator);
2940             }
2941         }
2942
2943         return creator;
2944     }
2945
2946     /**
2947      * Read and return a new Parcelable array from the parcel.
2948      * The given class loader will be used to load any enclosed
2949      * Parcelables.
2950      * @return the Parcelable array, or null if the array is null
2951      */
2952     public final Parcelable[] readParcelableArray(ClassLoader loader) {
2953         int N = readInt();
2954         if (N < 0) {
2955             return null;
2956         }
2957         Parcelable[] p = new Parcelable[N];
2958         for (int i = 0; i < N; i++) {
2959             p[i] = readParcelable(loader);
2960         }
2961         return p;
2962     }
2963
2964     /** @hide */
2965     public final <T extends Parcelable> T[] readParcelableArray(ClassLoader loader,
2966             Class<T> clazz) {
2967         int N = readInt();
2968         if (N < 0) {
2969             return null;
2970         }
2971         T[] p = (T[]) Array.newInstance(clazz, N);
2972         for (int i = 0; i < N; i++) {
2973             p[i] = readParcelable(loader);
2974         }
2975         return p;
2976     }
2977
2978     /**
2979      * Read and return a new Serializable object from the parcel.
2980      * @return the Serializable object, or null if the Serializable name
2981      * wasn't found in the parcel.
2982      */
2983     public final Serializable readSerializable() {
2984         return readSerializable(null);
2985     }
2986
2987     private final Serializable readSerializable(final ClassLoader loader) {
2988         String name = readString();
2989         if (name == null) {
2990             // For some reason we were unable to read the name of the Serializable (either there
2991             // is nothing left in the Parcel to read, or the next value wasn't a String), so
2992             // return null, which indicates that the name wasn't found in the parcel.
2993             return null;
2994         }
2995
2996         byte[] serializedData = createByteArray();
2997         ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2998         try {
2999             ObjectInputStream ois = new ObjectInputStream(bais) {
3000                 @Override
3001                 protected Class<?> resolveClass(ObjectStreamClass osClass)
3002                         throws IOException, ClassNotFoundException {
3003                     // try the custom classloader if provided
3004                     if (loader != null) {
3005                         Class<?> c = Class.forName(osClass.getName(), false, loader);
3006                         if (c != null) {
3007                             return c;
3008                         }
3009                     }
3010                     return super.resolveClass(osClass);
3011                 }
3012             };
3013             return (Serializable) ois.readObject();
3014         } catch (IOException ioe) {
3015             throw new RuntimeException("Parcelable encountered " +
3016                 "IOException reading a Serializable object (name = " + name +
3017                 ")", ioe);
3018         } catch (ClassNotFoundException cnfe) {
3019             throw new RuntimeException("Parcelable encountered " +
3020                 "ClassNotFoundException reading a Serializable object (name = "
3021                 + name + ")", cnfe);
3022         }
3023     }
3024
3025     // Cache of previously looked up CREATOR.createFromParcel() methods for
3026     // particular classes.  Keys are the names of the classes, values are
3027     // Method objects.
3028     private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
3029         mCreators = new HashMap<>();
3030
3031     /** @hide for internal use only. */
3032     static protected final Parcel obtain(int obj) {
3033         throw new UnsupportedOperationException();
3034     }
3035
3036     /** @hide */
3037     static protected final Parcel obtain(long obj) {
3038         final Parcel[] pool = sHolderPool;
3039         synchronized (pool) {
3040             Parcel p;
3041             for (int i=0; i<POOL_SIZE; i++) {
3042                 p = pool[i];
3043                 if (p != null) {
3044                     pool[i] = null;
3045                     if (DEBUG_RECYCLE) {
3046                         p.mStack = new RuntimeException();
3047                     }
3048                     p.init(obj);
3049                     return p;
3050                 }
3051             }
3052         }
3053         return new Parcel(obj);
3054     }
3055
3056     private Parcel(long nativePtr) {
3057         if (DEBUG_RECYCLE) {
3058             mStack = new RuntimeException();
3059         }
3060         //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
3061         init(nativePtr);
3062     }
3063
3064     private void init(long nativePtr) {
3065         if (nativePtr != 0) {
3066             mNativePtr = nativePtr;
3067             mOwnsNativeParcelObject = false;
3068         } else {
3069             mNativePtr = nativeCreate();
3070             mOwnsNativeParcelObject = true;
3071         }
3072     }
3073
3074     private void freeBuffer() {
3075         if (mOwnsNativeParcelObject) {
3076             updateNativeSize(nativeFreeBuffer(mNativePtr));
3077         }
3078         mReadWriteHelper = ReadWriteHelper.DEFAULT;
3079     }
3080
3081     private void destroy() {
3082         if (mNativePtr != 0) {
3083             if (mOwnsNativeParcelObject) {
3084                 nativeDestroy(mNativePtr);
3085                 updateNativeSize(0);
3086             }
3087             mNativePtr = 0;
3088         }
3089         mReadWriteHelper = null;
3090     }
3091
3092     @Override
3093     protected void finalize() throws Throwable {
3094         if (DEBUG_RECYCLE) {
3095             if (mStack != null) {
3096                 Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
3097             }
3098         }
3099         destroy();
3100     }
3101
3102     /* package */ void readMapInternal(Map outVal, int N,
3103         ClassLoader loader) {
3104         while (N > 0) {
3105             Object key = readValue(loader);
3106             Object value = readValue(loader);
3107             outVal.put(key, value);
3108             N--;
3109         }
3110     }
3111
3112     /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
3113         ClassLoader loader) {
3114         if (DEBUG_ARRAY_MAP) {
3115             RuntimeException here =  new RuntimeException("here");
3116             here.fillInStackTrace();
3117             Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
3118         }
3119         int startPos;
3120         while (N > 0) {
3121             if (DEBUG_ARRAY_MAP) startPos = dataPosition();
3122             String key = readString();
3123             Object value = readValue(loader);
3124             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
3125                     + (dataPosition()-startPos) + " bytes: key=0x"
3126                     + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
3127             outVal.append(key, value);
3128             N--;
3129         }
3130         outVal.validate();
3131     }
3132
3133     /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
3134         ClassLoader loader) {
3135         if (DEBUG_ARRAY_MAP) {
3136             RuntimeException here =  new RuntimeException("here");
3137             here.fillInStackTrace();
3138             Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
3139         }
3140         while (N > 0) {
3141             String key = readString();
3142             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
3143                     + (key != null ? key.hashCode() : 0) + " " + key);
3144             Object value = readValue(loader);
3145             outVal.put(key, value);
3146             N--;
3147         }
3148     }
3149
3150     /**
3151      * @hide For testing only.
3152      */
3153     public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
3154         final int N = readInt();
3155         if (N < 0) {
3156             return;
3157         }
3158         readArrayMapInternal(outVal, N, loader);
3159     }
3160
3161     /**
3162      * Reads an array set.
3163      *
3164      * @param loader The class loader to use.
3165      *
3166      * @hide
3167      */
3168     public @Nullable ArraySet<? extends Object> readArraySet(ClassLoader loader) {
3169         final int size = readInt();
3170         if (size < 0) {
3171             return null;
3172         }
3173         ArraySet<Object> result = new ArraySet<>(size);
3174         for (int i = 0; i < size; i++) {
3175             Object value = readValue(loader);
3176             result.append(value);
3177         }
3178         return result;
3179     }
3180
3181     private void readListInternal(List outVal, int N,
3182         ClassLoader loader) {
3183         while (N > 0) {
3184             Object value = readValue(loader);
3185             //Log.d(TAG, "Unmarshalling value=" + value);
3186             outVal.add(value);
3187             N--;
3188         }
3189     }
3190
3191     private void readArrayInternal(Object[] outVal, int N,
3192         ClassLoader loader) {
3193         for (int i = 0; i < N; i++) {
3194             Object value = readValue(loader);
3195             //Log.d(TAG, "Unmarshalling value=" + value);
3196             outVal[i] = value;
3197         }
3198     }
3199
3200     private void readSparseArrayInternal(SparseArray outVal, int N,
3201         ClassLoader loader) {
3202         while (N > 0) {
3203             int key = readInt();
3204             Object value = readValue(loader);
3205             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
3206             outVal.append(key, value);
3207             N--;
3208         }
3209     }
3210
3211
3212     private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
3213         while (N > 0) {
3214             int key = readInt();
3215             boolean value = this.readByte() == 1;
3216             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
3217             outVal.append(key, value);
3218             N--;
3219         }
3220     }
3221
3222     private void readSparseIntArrayInternal(SparseIntArray outVal, int N) {
3223         while (N > 0) {
3224             int key = readInt();
3225             int value = readInt();
3226             outVal.append(key, value);
3227             N--;
3228         }
3229     }
3230
3231     /**
3232      * @hide For testing
3233      */
3234     public long getBlobAshmemSize() {
3235         return nativeGetBlobAshmemSize(mNativePtr);
3236     }
3237 }