OSDN Git Service

Prevent EventHub from adding input device twice
[android-x86/frameworks-native.git] / services / inputflinger / EventHub.cpp
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 #include <assert.h>
18 #include <dirent.h>
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <inttypes.h>
22 #include <memory.h>
23 #include <stdint.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/epoll.h>
28 #include <sys/limits.h>
29 #include <sys/inotify.h>
30 #include <sys/ioctl.h>
31 #include <sys/utsname.h>
32 #include <unistd.h>
33
34 #define LOG_TAG "EventHub"
35
36 // #define LOG_NDEBUG 0
37
38 #include "EventHub.h"
39
40 #include <hardware_legacy/power.h>
41
42 #include <cutils/properties.h>
43 #include <openssl/sha.h>
44 #include <utils/Log.h>
45 #include <utils/Timers.h>
46 #include <utils/threads.h>
47 #include <utils/Errors.h>
48
49 #include <input/KeyLayoutMap.h>
50 #include <input/KeyCharacterMap.h>
51 #include <input/VirtualKeyMap.h>
52
53 /* this macro is used to tell if "bit" is set in "array"
54  * it selects a byte from the array, and does a boolean AND
55  * operation with a byte that only has the relevant bit set.
56  * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57  */
58 #define test_bit(bit, array)    (array[bit/8] & (1<<(bit%8)))
59
60 /* this macro computes the number of bytes needed to represent a bit array of the specified size */
61 #define sizeof_bit_array(bits)  ((bits + 7) / 8)
62
63 #define INDENT "  "
64 #define INDENT2 "    "
65 #define INDENT3 "      "
66
67 namespace android {
68
69 static const char *WAKE_LOCK_ID = "KeyEvents";
70 static const char *DEVICE_PATH = "/dev/input";
71
72 /* return the larger integer */
73 static inline int max(int v1, int v2)
74 {
75     return (v1 > v2) ? v1 : v2;
76 }
77
78 static inline const char* toString(bool value) {
79     return value ? "true" : "false";
80 }
81
82 static String8 sha1(const String8& in) {
83     SHA_CTX ctx;
84     SHA1_Init(&ctx);
85     SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86     u_char digest[SHA_DIGEST_LENGTH];
87     SHA1_Final(digest, &ctx);
88
89     String8 out;
90     for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
91         out.appendFormat("%02x", digest[i]);
92     }
93     return out;
94 }
95
96 static void getLinuxRelease(int* major, int* minor) {
97     struct utsname info;
98     if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
99         *major = 0, *minor = 0;
100         ALOGE("Could not get linux version: %s", strerror(errno));
101     }
102 }
103
104 // --- Global Functions ---
105
106 uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
107     // Touch devices get dibs on touch-related axes.
108     if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
109         switch (axis) {
110         case ABS_X:
111         case ABS_Y:
112         case ABS_PRESSURE:
113         case ABS_TOOL_WIDTH:
114         case ABS_DISTANCE:
115         case ABS_TILT_X:
116         case ABS_TILT_Y:
117         case ABS_MT_SLOT:
118         case ABS_MT_TOUCH_MAJOR:
119         case ABS_MT_TOUCH_MINOR:
120         case ABS_MT_WIDTH_MAJOR:
121         case ABS_MT_WIDTH_MINOR:
122         case ABS_MT_ORIENTATION:
123         case ABS_MT_POSITION_X:
124         case ABS_MT_POSITION_Y:
125         case ABS_MT_TOOL_TYPE:
126         case ABS_MT_BLOB_ID:
127         case ABS_MT_TRACKING_ID:
128         case ABS_MT_PRESSURE:
129         case ABS_MT_DISTANCE:
130             return INPUT_DEVICE_CLASS_TOUCH;
131         }
132     }
133
134     // External stylus gets the pressure axis
135     if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
136         if (axis == ABS_PRESSURE) {
137             return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
138         }
139     }
140
141     // Joystick devices get the rest.
142     return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
143 }
144
145 // --- EventHub::Device ---
146
147 EventHub::Device::Device(int fd, int32_t id, const String8& path,
148         const InputDeviceIdentifier& identifier) :
149         next(NULL),
150         fd(fd), id(id), path(path), identifier(identifier),
151         classes(0), configuration(NULL), virtualKeyMap(NULL),
152         ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
153         timestampOverrideSec(0), timestampOverrideUsec(0) {
154     memset(keyBitmask, 0, sizeof(keyBitmask));
155     memset(absBitmask, 0, sizeof(absBitmask));
156     memset(relBitmask, 0, sizeof(relBitmask));
157     memset(swBitmask, 0, sizeof(swBitmask));
158     memset(ledBitmask, 0, sizeof(ledBitmask));
159     memset(ffBitmask, 0, sizeof(ffBitmask));
160     memset(propBitmask, 0, sizeof(propBitmask));
161 }
162
163 EventHub::Device::~Device() {
164     close();
165     delete configuration;
166     delete virtualKeyMap;
167 }
168
169 void EventHub::Device::close() {
170     if (fd >= 0) {
171         ::close(fd);
172         fd = -1;
173     }
174 }
175
176
177 // --- EventHub ---
178
179 const uint32_t EventHub::EPOLL_ID_INOTIFY;
180 const uint32_t EventHub::EPOLL_ID_WAKE;
181 const int EventHub::EPOLL_SIZE_HINT;
182 const int EventHub::EPOLL_MAX_EVENTS;
183
184 EventHub::EventHub(void) :
185         mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
186         mOpeningDevices(0), mClosingDevices(0),
187         mNeedToSendFinishedDeviceScan(false),
188         mNeedToReopenDevices(false), mNeedToScanDevices(true),
189         mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
190     acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
191
192     mEpollFd = epoll_create(EPOLL_SIZE_HINT);
193     LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
194
195     mINotifyFd = inotify_init();
196     int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
197     LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
198             DEVICE_PATH, errno);
199
200     struct epoll_event eventItem;
201     memset(&eventItem, 0, sizeof(eventItem));
202     eventItem.events = EPOLLIN;
203     eventItem.data.u32 = EPOLL_ID_INOTIFY;
204     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
205     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
206
207     int wakeFds[2];
208     result = pipe(wakeFds);
209     LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
210
211     mWakeReadPipeFd = wakeFds[0];
212     mWakeWritePipeFd = wakeFds[1];
213
214     result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
215     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
216             errno);
217
218     result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
219     LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
220             errno);
221
222     eventItem.data.u32 = EPOLL_ID_WAKE;
223     result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
224     LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
225             errno);
226
227     int major, minor;
228     getLinuxRelease(&major, &minor);
229     // EPOLLWAKEUP was introduced in kernel 3.5
230     mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
231 }
232
233 EventHub::~EventHub(void) {
234     closeAllDevicesLocked();
235
236     while (mClosingDevices) {
237         Device* device = mClosingDevices;
238         mClosingDevices = device->next;
239         delete device;
240     }
241
242     ::close(mEpollFd);
243     ::close(mINotifyFd);
244     ::close(mWakeReadPipeFd);
245     ::close(mWakeWritePipeFd);
246
247     release_wake_lock(WAKE_LOCK_ID);
248 }
249
250 InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
251     AutoMutex _l(mLock);
252     Device* device = getDeviceLocked(deviceId);
253     if (device == NULL) return InputDeviceIdentifier();
254     return device->identifier;
255 }
256
257 uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
258     AutoMutex _l(mLock);
259     Device* device = getDeviceLocked(deviceId);
260     if (device == NULL) return 0;
261     return device->classes;
262 }
263
264 int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
265     AutoMutex _l(mLock);
266     Device* device = getDeviceLocked(deviceId);
267     if (device == NULL) return 0;
268     return device->controllerNumber;
269 }
270
271 void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272     AutoMutex _l(mLock);
273     Device* device = getDeviceLocked(deviceId);
274     if (device && device->configuration) {
275         *outConfiguration = *device->configuration;
276     } else {
277         outConfiguration->clear();
278     }
279 }
280
281 status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282         RawAbsoluteAxisInfo* outAxisInfo) const {
283     outAxisInfo->clear();
284
285     if (axis >= 0 && axis <= ABS_MAX) {
286         AutoMutex _l(mLock);
287
288         Device* device = getDeviceLocked(deviceId);
289         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290             struct input_absinfo info;
291             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293                      axis, device->identifier.name.string(), device->fd, errno);
294                 return -errno;
295             }
296
297             if (info.minimum != info.maximum) {
298                 outAxisInfo->valid = true;
299                 outAxisInfo->minValue = info.minimum;
300                 outAxisInfo->maxValue = info.maximum;
301                 outAxisInfo->flat = info.flat;
302                 outAxisInfo->fuzz = info.fuzz;
303                 outAxisInfo->resolution = info.resolution;
304             }
305             return OK;
306         }
307     }
308     return -1;
309 }
310
311 bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312     if (axis >= 0 && axis <= REL_MAX) {
313         AutoMutex _l(mLock);
314
315         Device* device = getDeviceLocked(deviceId);
316         if (device) {
317             return test_bit(axis, device->relBitmask);
318         }
319     }
320     return false;
321 }
322
323 bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324     if (property >= 0 && property <= INPUT_PROP_MAX) {
325         AutoMutex _l(mLock);
326
327         Device* device = getDeviceLocked(deviceId);
328         if (device) {
329             return test_bit(property, device->propBitmask);
330         }
331     }
332     return false;
333 }
334
335 int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336     if (scanCode >= 0 && scanCode <= KEY_MAX) {
337         AutoMutex _l(mLock);
338
339         Device* device = getDeviceLocked(deviceId);
340         if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342             memset(keyState, 0, sizeof(keyState));
343             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344                 return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345             }
346         }
347     }
348     return AKEY_STATE_UNKNOWN;
349 }
350
351 int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352     AutoMutex _l(mLock);
353
354     Device* device = getDeviceLocked(deviceId);
355     if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356         Vector<int32_t> scanCodes;
357         device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358         if (scanCodes.size() != 0) {
359             uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360             memset(keyState, 0, sizeof(keyState));
361             if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362                 for (size_t i = 0; i < scanCodes.size(); i++) {
363                     int32_t sc = scanCodes.itemAt(i);
364                     if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365                         return AKEY_STATE_DOWN;
366                     }
367                 }
368                 return AKEY_STATE_UP;
369             }
370         }
371     }
372     return AKEY_STATE_UNKNOWN;
373 }
374
375 int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376     if (sw >= 0 && sw <= SW_MAX) {
377         AutoMutex _l(mLock);
378
379         Device* device = getDeviceLocked(deviceId);
380         if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381             uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382             memset(swState, 0, sizeof(swState));
383             if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384                 return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385             }
386         }
387     }
388     return AKEY_STATE_UNKNOWN;
389 }
390
391 status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392     *outValue = 0;
393
394     if (axis >= 0 && axis <= ABS_MAX) {
395         AutoMutex _l(mLock);
396
397         Device* device = getDeviceLocked(deviceId);
398         if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399             struct input_absinfo info;
400             if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401                 ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402                      axis, device->identifier.name.string(), device->fd, errno);
403                 return -errno;
404             }
405
406             *outValue = info.value;
407             return OK;
408         }
409     }
410     return -1;
411 }
412
413 bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414         const int32_t* keyCodes, uint8_t* outFlags) const {
415     AutoMutex _l(mLock);
416
417     Device* device = getDeviceLocked(deviceId);
418     if (device && device->keyMap.haveKeyLayout()) {
419         Vector<int32_t> scanCodes;
420         for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421             scanCodes.clear();
422
423             status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424                     keyCodes[codeIndex], &scanCodes);
425             if (! err) {
426                 // check the possible scan codes identified by the layout map against the
427                 // map of codes actually emitted by the driver
428                 for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429                     if (test_bit(scanCodes[sc], device->keyBitmask)) {
430                         outFlags[codeIndex] = 1;
431                         break;
432                     }
433                 }
434             }
435         }
436         return true;
437     }
438     return false;
439 }
440
441 status_t EventHub::mapKey(int32_t deviceId,
442         int32_t scanCode, int32_t usageCode, int32_t metaState,
443         int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
444     AutoMutex _l(mLock);
445     Device* device = getDeviceLocked(deviceId);
446     status_t status = NAME_NOT_FOUND;
447
448     if (device) {
449         // Check the key character map first.
450         sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
451         if (kcm != NULL) {
452             if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
453                 *outFlags = 0;
454                 status = NO_ERROR;
455             }
456         }
457
458         // Check the key layout next.
459         if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
460             if (!device->keyMap.keyLayoutMap->mapKey(
461                     scanCode, usageCode, outKeycode, outFlags)) {
462                 status = NO_ERROR;
463             }
464         }
465
466         if (status == NO_ERROR) {
467             if (kcm != NULL) {
468                 kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
469             } else {
470                 *outMetaState = metaState;
471             }
472         }
473     }
474
475     if (status != NO_ERROR) {
476         *outKeycode = 0;
477         *outFlags = 0;
478         *outMetaState = metaState;
479     }
480
481     return status;
482 }
483
484 status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
485     AutoMutex _l(mLock);
486     Device* device = getDeviceLocked(deviceId);
487
488     if (device && device->keyMap.haveKeyLayout()) {
489         status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
490         if (err == NO_ERROR) {
491             return NO_ERROR;
492         }
493     }
494
495     return NAME_NOT_FOUND;
496 }
497
498 void EventHub::setExcludedDevices(const Vector<String8>& devices) {
499     AutoMutex _l(mLock);
500
501     mExcludedDevices = devices;
502 }
503
504 bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
505     AutoMutex _l(mLock);
506     Device* device = getDeviceLocked(deviceId);
507     if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
508         if (test_bit(scanCode, device->keyBitmask)) {
509             return true;
510         }
511     }
512     return false;
513 }
514
515 bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
516     AutoMutex _l(mLock);
517     Device* device = getDeviceLocked(deviceId);
518     int32_t sc;
519     if (device && mapLed(device, led, &sc) == NO_ERROR) {
520         if (test_bit(sc, device->ledBitmask)) {
521             return true;
522         }
523     }
524     return false;
525 }
526
527 void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
528     AutoMutex _l(mLock);
529     Device* device = getDeviceLocked(deviceId);
530     setLedStateLocked(device, led, on);
531 }
532
533 void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
534     int32_t sc;
535     if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
536         struct input_event ev;
537         ev.time.tv_sec = 0;
538         ev.time.tv_usec = 0;
539         ev.type = EV_LED;
540         ev.code = sc;
541         ev.value = on ? 1 : 0;
542
543         ssize_t nWrite;
544         do {
545             nWrite = write(device->fd, &ev, sizeof(struct input_event));
546         } while (nWrite == -1 && errno == EINTR);
547     }
548 }
549
550 void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
551         Vector<VirtualKeyDefinition>& outVirtualKeys) const {
552     outVirtualKeys.clear();
553
554     AutoMutex _l(mLock);
555     Device* device = getDeviceLocked(deviceId);
556     if (device && device->virtualKeyMap) {
557         outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
558     }
559 }
560
561 sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
562     AutoMutex _l(mLock);
563     Device* device = getDeviceLocked(deviceId);
564     if (device) {
565         return device->getKeyCharacterMap();
566     }
567     return NULL;
568 }
569
570 bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
571         const sp<KeyCharacterMap>& map) {
572     AutoMutex _l(mLock);
573     Device* device = getDeviceLocked(deviceId);
574     if (device) {
575         if (map != device->overlayKeyMap) {
576             device->overlayKeyMap = map;
577             device->combinedKeyMap = KeyCharacterMap::combine(
578                     device->keyMap.keyCharacterMap, map);
579             return true;
580         }
581     }
582     return false;
583 }
584
585 static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
586     String8 rawDescriptor;
587     rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
588             identifier.product);
589     // TODO add handling for USB devices to not uniqueify kbs that show up twice
590     if (!identifier.uniqueId.isEmpty()) {
591         rawDescriptor.append("uniqueId:");
592         rawDescriptor.append(identifier.uniqueId);
593     } else if (identifier.nonce != 0) {
594         rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
595     }
596
597     if (identifier.vendor == 0 && identifier.product == 0) {
598         // If we don't know the vendor and product id, then the device is probably
599         // built-in so we need to rely on other information to uniquely identify
600         // the input device.  Usually we try to avoid relying on the device name or
601         // location but for built-in input device, they are unlikely to ever change.
602         if (!identifier.name.isEmpty()) {
603             rawDescriptor.append("name:");
604             rawDescriptor.append(identifier.name);
605         } else if (!identifier.location.isEmpty()) {
606             rawDescriptor.append("location:");
607             rawDescriptor.append(identifier.location);
608         }
609     }
610     identifier.descriptor = sha1(rawDescriptor);
611     return rawDescriptor;
612 }
613
614 void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
615     // Compute a device descriptor that uniquely identifies the device.
616     // The descriptor is assumed to be a stable identifier.  Its value should not
617     // change between reboots, reconnections, firmware updates or new releases
618     // of Android. In practice we sometimes get devices that cannot be uniquely
619     // identified. In this case we enforce uniqueness between connected devices.
620     // Ideally, we also want the descriptor to be short and relatively opaque.
621
622     identifier.nonce = 0;
623     String8 rawDescriptor = generateDescriptor(identifier);
624     if (identifier.uniqueId.isEmpty()) {
625         // If it didn't have a unique id check for conflicts and enforce
626         // uniqueness if necessary.
627         while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
628             identifier.nonce++;
629             rawDescriptor = generateDescriptor(identifier);
630         }
631     }
632     ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
633             identifier.descriptor.string());
634 }
635
636 void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
637     AutoMutex _l(mLock);
638     Device* device = getDeviceLocked(deviceId);
639     if (device && !device->isVirtual()) {
640         ff_effect effect;
641         memset(&effect, 0, sizeof(effect));
642         effect.type = FF_RUMBLE;
643         effect.id = device->ffEffectId;
644         effect.u.rumble.strong_magnitude = 0xc000;
645         effect.u.rumble.weak_magnitude = 0xc000;
646         effect.replay.length = (duration + 999999LL) / 1000000LL;
647         effect.replay.delay = 0;
648         if (ioctl(device->fd, EVIOCSFF, &effect)) {
649             ALOGW("Could not upload force feedback effect to device %s due to error %d.",
650                     device->identifier.name.string(), errno);
651             return;
652         }
653         device->ffEffectId = effect.id;
654
655         struct input_event ev;
656         ev.time.tv_sec = 0;
657         ev.time.tv_usec = 0;
658         ev.type = EV_FF;
659         ev.code = device->ffEffectId;
660         ev.value = 1;
661         if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
662             ALOGW("Could not start force feedback effect on device %s due to error %d.",
663                     device->identifier.name.string(), errno);
664             return;
665         }
666         device->ffEffectPlaying = true;
667     }
668 }
669
670 void EventHub::cancelVibrate(int32_t deviceId) {
671     AutoMutex _l(mLock);
672     Device* device = getDeviceLocked(deviceId);
673     if (device && !device->isVirtual()) {
674         if (device->ffEffectPlaying) {
675             device->ffEffectPlaying = false;
676
677             struct input_event ev;
678             ev.time.tv_sec = 0;
679             ev.time.tv_usec = 0;
680             ev.type = EV_FF;
681             ev.code = device->ffEffectId;
682             ev.value = 0;
683             if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
684                 ALOGW("Could not stop force feedback effect on device %s due to error %d.",
685                         device->identifier.name.string(), errno);
686                 return;
687             }
688         }
689     }
690 }
691
692 EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
693     size_t size = mDevices.size();
694     for (size_t i = 0; i < size; i++) {
695         Device* device = mDevices.valueAt(i);
696         if (descriptor.compare(device->identifier.descriptor) == 0) {
697             return device;
698         }
699     }
700     return NULL;
701 }
702
703 EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
704     if (deviceId == BUILT_IN_KEYBOARD_ID) {
705         deviceId = mBuiltInKeyboardId;
706     }
707     ssize_t index = mDevices.indexOfKey(deviceId);
708     return index >= 0 ? mDevices.valueAt(index) : NULL;
709 }
710
711 EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
712     for (size_t i = 0; i < mDevices.size(); i++) {
713         Device* device = mDevices.valueAt(i);
714         if (device->path == devicePath) {
715             return device;
716         }
717     }
718     return NULL;
719 }
720
721 size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
722     ALOG_ASSERT(bufferSize >= 1);
723
724     AutoMutex _l(mLock);
725
726     struct input_event readBuffer[bufferSize];
727
728     RawEvent* event = buffer;
729     size_t capacity = bufferSize;
730     bool awoken = false;
731     for (;;) {
732         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
733
734         // Reopen input devices if needed.
735         if (mNeedToReopenDevices) {
736             mNeedToReopenDevices = false;
737
738             ALOGI("Reopening all input devices due to a configuration change.");
739
740             closeAllDevicesLocked();
741             mNeedToScanDevices = true;
742             break; // return to the caller before we actually rescan
743         }
744
745         // Report any devices that had last been added/removed.
746         while (mClosingDevices) {
747             Device* device = mClosingDevices;
748             ALOGV("Reporting device closed: id=%d, name=%s\n",
749                  device->id, device->path.string());
750             mClosingDevices = device->next;
751             event->when = now;
752             event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
753             event->type = DEVICE_REMOVED;
754             event += 1;
755             delete device;
756             mNeedToSendFinishedDeviceScan = true;
757             if (--capacity == 0) {
758                 break;
759             }
760         }
761
762         if (mNeedToScanDevices) {
763             mNeedToScanDevices = false;
764             scanDevicesLocked();
765             mNeedToSendFinishedDeviceScan = true;
766         }
767
768         while (mOpeningDevices != NULL) {
769             Device* device = mOpeningDevices;
770             ALOGV("Reporting device opened: id=%d, name=%s\n",
771                  device->id, device->path.string());
772             mOpeningDevices = device->next;
773             event->when = now;
774             event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
775             event->type = DEVICE_ADDED;
776             event += 1;
777             mNeedToSendFinishedDeviceScan = true;
778             if (--capacity == 0) {
779                 break;
780             }
781         }
782
783         if (mNeedToSendFinishedDeviceScan) {
784             mNeedToSendFinishedDeviceScan = false;
785             event->when = now;
786             event->type = FINISHED_DEVICE_SCAN;
787             event += 1;
788             if (--capacity == 0) {
789                 break;
790             }
791         }
792
793         // Grab the next input event.
794         bool deviceChanged = false;
795         while (mPendingEventIndex < mPendingEventCount) {
796             const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
797             if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
798                 if (eventItem.events & EPOLLIN) {
799                     mPendingINotify = true;
800                 } else {
801                     ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
802                 }
803                 continue;
804             }
805
806             if (eventItem.data.u32 == EPOLL_ID_WAKE) {
807                 if (eventItem.events & EPOLLIN) {
808                     ALOGV("awoken after wake()");
809                     awoken = true;
810                     char buffer[16];
811                     ssize_t nRead;
812                     do {
813                         nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
814                     } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
815                 } else {
816                     ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
817                             eventItem.events);
818                 }
819                 continue;
820             }
821
822             ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
823             if (deviceIndex < 0) {
824                 ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
825                         eventItem.events, eventItem.data.u32);
826                 continue;
827             }
828
829             Device* device = mDevices.valueAt(deviceIndex);
830             if (eventItem.events & EPOLLIN) {
831                 int32_t readSize = read(device->fd, readBuffer,
832                         sizeof(struct input_event) * capacity);
833                 if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
834                     // Device was removed before INotify noticed.
835                     ALOGW("could not get event, removed? (fd: %d size: %" PRId32
836                             " bufferSize: %zu capacity: %zu errno: %d)\n",
837                             device->fd, readSize, bufferSize, capacity, errno);
838                     deviceChanged = true;
839                     closeDeviceLocked(device);
840                 } else if (readSize < 0) {
841                     if (errno != EAGAIN && errno != EINTR) {
842                         ALOGW("could not get event (errno=%d)", errno);
843                     }
844                 } else if ((readSize % sizeof(struct input_event)) != 0) {
845                     ALOGE("could not get event (wrong size: %d)", readSize);
846                 } else {
847                     int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
848
849                     size_t count = size_t(readSize) / sizeof(struct input_event);
850                     for (size_t i = 0; i < count; i++) {
851                         struct input_event& iev = readBuffer[i];
852                         ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
853                                 device->path.string(),
854                                 (int) iev.time.tv_sec, (int) iev.time.tv_usec,
855                                 iev.type, iev.code, iev.value);
856
857                         // Some input devices may have a better concept of the time
858                         // when an input event was actually generated than the kernel
859                         // which simply timestamps all events on entry to evdev.
860                         // This is a custom Android extension of the input protocol
861                         // mainly intended for use with uinput based device drivers.
862                         if (iev.type == EV_MSC) {
863                             if (iev.code == MSC_ANDROID_TIME_SEC) {
864                                 device->timestampOverrideSec = iev.value;
865                                 continue;
866                             } else if (iev.code == MSC_ANDROID_TIME_USEC) {
867                                 device->timestampOverrideUsec = iev.value;
868                                 continue;
869                             }
870                         }
871                         if (device->timestampOverrideSec || device->timestampOverrideUsec) {
872                             iev.time.tv_sec = device->timestampOverrideSec;
873                             iev.time.tv_usec = device->timestampOverrideUsec;
874                             if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
875                                 device->timestampOverrideSec = 0;
876                                 device->timestampOverrideUsec = 0;
877                             }
878                             ALOGV("applied override time %d.%06d",
879                                     int(iev.time.tv_sec), int(iev.time.tv_usec));
880                         }
881
882                         // Use the time specified in the event instead of the current time
883                         // so that downstream code can get more accurate estimates of
884                         // event dispatch latency from the time the event is enqueued onto
885                         // the evdev client buffer.
886                         //
887                         // The event's timestamp fortuitously uses the same monotonic clock
888                         // time base as the rest of Android.  The kernel event device driver
889                         // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
890                         // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
891                         // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
892                         // system call that also queries ktime_get_ts().
893                         event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
894                                 + nsecs_t(iev.time.tv_usec) * 1000LL;
895                         ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
896
897                         // Bug 7291243: Add a guard in case the kernel generates timestamps
898                         // that appear to be far into the future because they were generated
899                         // using the wrong clock source.
900                         //
901                         // This can happen because when the input device is initially opened
902                         // it has a default clock source of CLOCK_REALTIME.  Any input events
903                         // enqueued right after the device is opened will have timestamps
904                         // generated using CLOCK_REALTIME.  We later set the clock source
905                         // to CLOCK_MONOTONIC but it is already too late.
906                         //
907                         // Invalid input event timestamps can result in ANRs, crashes and
908                         // and other issues that are hard to track down.  We must not let them
909                         // propagate through the system.
910                         //
911                         // Log a warning so that we notice the problem and recover gracefully.
912                         if (event->when >= now + 10 * 1000000000LL) {
913                             // Double-check.  Time may have moved on.
914                             nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
915                             if (event->when > time) {
916                                 ALOGW("An input event from %s has a timestamp that appears to "
917                                         "have been generated using the wrong clock source "
918                                         "(expected CLOCK_MONOTONIC): "
919                                         "event time %" PRId64 ", current time %" PRId64
920                                         ", call time %" PRId64 ".  "
921                                         "Using current time instead.",
922                                         device->path.string(), event->when, time, now);
923                                 event->when = time;
924                             } else {
925                                 ALOGV("Event time is ok but failed the fast path and required "
926                                         "an extra call to systemTime: "
927                                         "event time %" PRId64 ", current time %" PRId64
928                                         ", call time %" PRId64 ".",
929                                         event->when, time, now);
930                             }
931                         }
932                         event->deviceId = deviceId;
933                         event->type = iev.type;
934                         event->code = iev.code;
935                         event->value = iev.value;
936                         event += 1;
937                         capacity -= 1;
938                     }
939                     if (capacity == 0) {
940                         // The result buffer is full.  Reset the pending event index
941                         // so we will try to read the device again on the next iteration.
942                         mPendingEventIndex -= 1;
943                         break;
944                     }
945                 }
946             } else if (eventItem.events & EPOLLHUP) {
947                 ALOGI("Removing device %s due to epoll hang-up event.",
948                         device->identifier.name.string());
949                 deviceChanged = true;
950                 closeDeviceLocked(device);
951             } else {
952                 ALOGW("Received unexpected epoll event 0x%08x for device %s.",
953                         eventItem.events, device->identifier.name.string());
954             }
955         }
956
957         // readNotify() will modify the list of devices so this must be done after
958         // processing all other events to ensure that we read all remaining events
959         // before closing the devices.
960         if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
961             mPendingINotify = false;
962             readNotifyLocked();
963             deviceChanged = true;
964         }
965
966         // Report added or removed devices immediately.
967         if (deviceChanged) {
968             continue;
969         }
970
971         // Return now if we have collected any events or if we were explicitly awoken.
972         if (event != buffer || awoken) {
973             break;
974         }
975
976         // Poll for events.  Mind the wake lock dance!
977         // We hold a wake lock at all times except during epoll_wait().  This works due to some
978         // subtle choreography.  When a device driver has pending (unread) events, it acquires
979         // a kernel wake lock.  However, once the last pending event has been read, the device
980         // driver will release the kernel wake lock.  To prevent the system from going to sleep
981         // when this happens, the EventHub holds onto its own user wake lock while the client
982         // is processing events.  Thus the system can only sleep if there are no events
983         // pending or currently being processed.
984         //
985         // The timeout is advisory only.  If the device is asleep, it will not wake just to
986         // service the timeout.
987         mPendingEventIndex = 0;
988
989         mLock.unlock(); // release lock before poll, must be before release_wake_lock
990         release_wake_lock(WAKE_LOCK_ID);
991
992         int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
993
994         acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
995         mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
996
997         if (pollResult == 0) {
998             // Timed out.
999             mPendingEventCount = 0;
1000             break;
1001         }
1002
1003         if (pollResult < 0) {
1004             // An error occurred.
1005             mPendingEventCount = 0;
1006
1007             // Sleep after errors to avoid locking up the system.
1008             // Hopefully the error is transient.
1009             if (errno != EINTR) {
1010                 ALOGW("poll failed (errno=%d)\n", errno);
1011                 usleep(100000);
1012             }
1013         } else {
1014             // Some events occurred.
1015             mPendingEventCount = size_t(pollResult);
1016         }
1017     }
1018
1019     // All done, return the number of events we read.
1020     return event - buffer;
1021 }
1022
1023 void EventHub::wake() {
1024     ALOGV("wake() called");
1025
1026     ssize_t nWrite;
1027     do {
1028         nWrite = write(mWakeWritePipeFd, "W", 1);
1029     } while (nWrite == -1 && errno == EINTR);
1030
1031     if (nWrite != 1 && errno != EAGAIN) {
1032         ALOGW("Could not write wake signal, errno=%d", errno);
1033     }
1034 }
1035
1036 void EventHub::scanDevicesLocked() {
1037     status_t res = scanDirLocked(DEVICE_PATH);
1038     if(res < 0) {
1039         ALOGE("scan dir failed for %s\n", DEVICE_PATH);
1040     }
1041     if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
1042         createVirtualKeyboardLocked();
1043     }
1044 }
1045
1046 // ----------------------------------------------------------------------------
1047
1048 static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
1049     const uint8_t* end = array + endIndex;
1050     array += startIndex;
1051     while (array != end) {
1052         if (*(array++) != 0) {
1053             return true;
1054         }
1055     }
1056     return false;
1057 }
1058
1059 static const int32_t GAMEPAD_KEYCODES[] = {
1060         AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
1061         AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
1062         AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
1063         AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
1064         AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
1065         AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
1066 };
1067
1068 status_t EventHub::openDeviceLocked(const char *devicePath) {
1069     return openDeviceLocked(devicePath, false);
1070 }
1071
1072 status_t EventHub::openDeviceLocked(const char *devicePath, bool ignoreAlreadyOpened) {
1073     char buffer[80];
1074
1075     if (ignoreAlreadyOpened && (getDeviceByPathLocked(devicePath) != 0)) {
1076         ALOGV("Ignoring device '%s' that has already been opened.", devicePath);
1077         return 0;
1078     }
1079
1080     ALOGV("Opening device: %s", devicePath);
1081
1082     int fd = open(devicePath, O_RDWR | O_CLOEXEC);
1083     if(fd < 0) {
1084         ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1085         return -1;
1086     }
1087
1088     InputDeviceIdentifier identifier;
1089
1090     // Get device name.
1091     if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1092         //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1093     } else {
1094         buffer[sizeof(buffer) - 1] = '\0';
1095         identifier.name.setTo(buffer);
1096     }
1097
1098     // Check to see if the device is on our excluded list
1099     for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1100         const String8& item = mExcludedDevices.itemAt(i);
1101         if (identifier.name == item) {
1102             ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1103             close(fd);
1104             return -1;
1105         }
1106     }
1107
1108     // Get device driver version.
1109     int driverVersion;
1110     if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1111         ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1112         close(fd);
1113         return -1;
1114     }
1115
1116     // Get device identifier.
1117     struct input_id inputId;
1118     if(ioctl(fd, EVIOCGID, &inputId)) {
1119         ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1120         close(fd);
1121         return -1;
1122     }
1123     identifier.bus = inputId.bustype;
1124     identifier.product = inputId.product;
1125     identifier.vendor = inputId.vendor;
1126     identifier.version = inputId.version;
1127
1128     // Get device physical location.
1129     if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1130         //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1131     } else {
1132         buffer[sizeof(buffer) - 1] = '\0';
1133         identifier.location.setTo(buffer);
1134     }
1135
1136     // Get device unique id.
1137     if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1138         //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1139     } else {
1140         buffer[sizeof(buffer) - 1] = '\0';
1141         identifier.uniqueId.setTo(buffer);
1142     }
1143
1144     // Fill in the descriptor.
1145     assignDescriptorLocked(identifier);
1146
1147     // Make file descriptor non-blocking for use with poll().
1148     if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1149         ALOGE("Error %d making device file descriptor non-blocking.", errno);
1150         close(fd);
1151         return -1;
1152     }
1153
1154     // Allocate device.  (The device object takes ownership of the fd at this point.)
1155     int32_t deviceId = mNextDeviceId++;
1156     Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1157
1158     ALOGV("add device %d: %s\n", deviceId, devicePath);
1159     ALOGV("  bus:        %04x\n"
1160          "  vendor      %04x\n"
1161          "  product     %04x\n"
1162          "  version     %04x\n",
1163         identifier.bus, identifier.vendor, identifier.product, identifier.version);
1164     ALOGV("  name:       \"%s\"\n", identifier.name.string());
1165     ALOGV("  location:   \"%s\"\n", identifier.location.string());
1166     ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1167     ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1168     ALOGV("  driver:     v%d.%d.%d\n",
1169         driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1170
1171     // Load the configuration file for the device.
1172     loadConfigurationLocked(device);
1173
1174     // Figure out the kinds of events the device reports.
1175     ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1176     ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1177     ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1178     ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1179     ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1180     ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1181     ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1182
1183     // See if this is a keyboard.  Ignore everything in the button range except for
1184     // joystick and gamepad buttons which are handled like keyboards for the most part.
1185     bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1186             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1187                     sizeof_bit_array(KEY_MAX + 1));
1188     bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1189                     sizeof_bit_array(BTN_MOUSE))
1190             || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1191                     sizeof_bit_array(BTN_DIGI));
1192     if (haveKeyboardKeys || haveGamepadButtons) {
1193         device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1194     }
1195
1196     // See if this is a cursor device such as a trackball or mouse.
1197     if (test_bit(BTN_MOUSE, device->keyBitmask)
1198             && test_bit(REL_X, device->relBitmask)
1199             && test_bit(REL_Y, device->relBitmask)) {
1200         device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1201     }
1202
1203     // See if this is a touch pad.
1204     // Is this a new modern multi-touch driver?
1205     if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1206             && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1207         // Some joysticks such as the PS3 controller report axes that conflict
1208         // with the ABS_MT range.  Try to confirm that the device really is
1209         // a touch screen.
1210         if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1211             device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1212         }
1213     // Is this an old style single-touch driver?
1214     } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1215             && test_bit(ABS_X, device->absBitmask)
1216             && test_bit(ABS_Y, device->absBitmask)) {
1217         device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1218     // Is this a BT stylus?
1219     } else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
1220                 test_bit(BTN_TOUCH, device->keyBitmask))
1221             && !test_bit(ABS_X, device->absBitmask)
1222             && !test_bit(ABS_Y, device->absBitmask)) {
1223         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
1224         // Keyboard will try to claim some of the buttons but we really want to reserve those so we
1225         // can fuse it with the touch screen data, so just take them back. Note this means an
1226         // external stylus cannot also be a keyboard device.
1227         device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
1228     }
1229
1230     // See if this device is a joystick.
1231     // Assumes that joysticks always have gamepad buttons in order to distinguish them
1232     // from other devices such as accelerometers that also have absolute axes.
1233     if (haveGamepadButtons) {
1234         uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1235         for (int i = 0; i <= ABS_MAX; i++) {
1236             if (test_bit(i, device->absBitmask)
1237                     && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1238                 device->classes = assumedClasses;
1239                 break;
1240             }
1241         }
1242     }
1243
1244     // Check whether this device has switches.
1245     for (int i = 0; i <= SW_MAX; i++) {
1246         if (test_bit(i, device->swBitmask)) {
1247             device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1248             break;
1249         }
1250     }
1251
1252     // Check whether this device supports the vibrator.
1253     if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1254         device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1255     }
1256
1257     // Configure virtual keys.
1258     if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1259         // Load the virtual keys for the touch screen, if any.
1260         // We do this now so that we can make sure to load the keymap if necessary.
1261         status_t status = loadVirtualKeyMapLocked(device);
1262         if (!status) {
1263             device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1264         }
1265     }
1266
1267     // Load the key map.
1268     // We need to do this for joysticks too because the key layout may specify axes.
1269     status_t keyMapStatus = NAME_NOT_FOUND;
1270     if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1271         // Load the keymap for the device.
1272         keyMapStatus = loadKeyMapLocked(device);
1273     }
1274
1275     // Configure the keyboard, gamepad or virtual keyboard.
1276     if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1277         // Register the keyboard as a built-in keyboard if it is eligible.
1278         if (!keyMapStatus
1279                 && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1280                 && isEligibleBuiltInKeyboard(device->identifier,
1281                         device->configuration, &device->keyMap)) {
1282             mBuiltInKeyboardId = device->id;
1283         }
1284
1285         // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1286         if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1287             device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1288         }
1289
1290         // See if this device has a DPAD.
1291         if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1292                 hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1293                 hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1294                 hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1295                 hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1296             device->classes |= INPUT_DEVICE_CLASS_DPAD;
1297         }
1298
1299         // See if this device has a gamepad.
1300         for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1301             if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1302                 device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1303                 break;
1304             }
1305         }
1306
1307         // Disable kernel key repeat since we handle it ourselves
1308         unsigned int repeatRate[] = {0,0};
1309         if (ioctl(fd, EVIOCSREP, repeatRate)) {
1310             ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
1311         }
1312     }
1313
1314     // If the device isn't recognized as something we handle, don't monitor it.
1315     if (device->classes == 0) {
1316         ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1317                 deviceId, devicePath, device->identifier.name.string());
1318         delete device;
1319         return -1;
1320     }
1321
1322     // Determine whether the device has a mic.
1323     if (deviceHasMicLocked(device)) {
1324         device->classes |= INPUT_DEVICE_CLASS_MIC;
1325     }
1326
1327     // Determine whether the device is external or internal.
1328     if (isExternalDeviceLocked(device)) {
1329         device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1330     }
1331
1332     if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
1333             && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
1334         device->controllerNumber = getNextControllerNumberLocked(device);
1335         setLedForController(device);
1336     }
1337
1338     // Register with epoll.
1339     struct epoll_event eventItem;
1340     memset(&eventItem, 0, sizeof(eventItem));
1341     eventItem.events = EPOLLIN;
1342     if (mUsingEpollWakeup) {
1343         eventItem.events |= EPOLLWAKEUP;
1344     }
1345     eventItem.data.u32 = deviceId;
1346     if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1347         ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1348         delete device;
1349         return -1;
1350     }
1351
1352     String8 wakeMechanism("EPOLLWAKEUP");
1353     if (!mUsingEpollWakeup) {
1354 #ifndef EVIOCSSUSPENDBLOCK
1355         // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
1356         // will use an epoll flag instead, so as long as we want to support
1357         // this feature, we need to be prepared to define the ioctl ourselves.
1358 #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
1359 #endif
1360         if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) {
1361             wakeMechanism = "<none>";
1362         } else {
1363             wakeMechanism = "EVIOCSSUSPENDBLOCK";
1364         }
1365     }
1366
1367     // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1368     // associated with input events.  This is important because the input system
1369     // uses the timestamps extensively and assumes they were recorded using the monotonic
1370     // clock.
1371     //
1372     // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1373     // clock to use to input event timestamps.  The standard kernel behavior was to
1374     // record a real time timestamp, which isn't what we want.  Android kernels therefore
1375     // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1376     // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1377     // clock to be used instead of the real time clock.
1378     //
1379     // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1380     // Therefore, we no longer require the Android-specific kernel patch described above
1381     // as long as we make sure to set select the monotonic clock.  We do that here.
1382     int clockId = CLOCK_MONOTONIC;
1383     bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1384
1385     ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1386             "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1387             "wakeMechanism=%s, usingClockIoctl=%s",
1388          deviceId, fd, devicePath, device->identifier.name.string(),
1389          device->classes,
1390          device->configurationFile.string(),
1391          device->keyMap.keyLayoutFile.string(),
1392          device->keyMap.keyCharacterMapFile.string(),
1393          toString(mBuiltInKeyboardId == deviceId),
1394          wakeMechanism.string(), toString(usingClockIoctl));
1395
1396     addDeviceLocked(device);
1397     return 0;
1398 }
1399
1400 void EventHub::createVirtualKeyboardLocked() {
1401     InputDeviceIdentifier identifier;
1402     identifier.name = "Virtual";
1403     identifier.uniqueId = "<virtual>";
1404     assignDescriptorLocked(identifier);
1405
1406     Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1407     device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1408             | INPUT_DEVICE_CLASS_ALPHAKEY
1409             | INPUT_DEVICE_CLASS_DPAD
1410             | INPUT_DEVICE_CLASS_VIRTUAL;
1411     loadKeyMapLocked(device);
1412     addDeviceLocked(device);
1413 }
1414
1415 void EventHub::addDeviceLocked(Device* device) {
1416     mDevices.add(device->id, device);
1417     device->next = mOpeningDevices;
1418     mOpeningDevices = device;
1419 }
1420
1421 void EventHub::loadConfigurationLocked(Device* device) {
1422     device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1423             device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1424     if (device->configurationFile.isEmpty()) {
1425         ALOGD("No input device configuration file found for device '%s'.",
1426                 device->identifier.name.string());
1427     } else {
1428         status_t status = PropertyMap::load(device->configurationFile,
1429                 &device->configuration);
1430         if (status) {
1431             ALOGE("Error loading input device configuration file for device '%s'.  "
1432                     "Using default configuration.",
1433                     device->identifier.name.string());
1434         }
1435     }
1436 }
1437
1438 status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1439     // The virtual key map is supplied by the kernel as a system board property file.
1440     String8 path;
1441     path.append("/sys/board_properties/virtualkeys.");
1442     path.append(device->identifier.name);
1443     if (access(path.string(), R_OK)) {
1444         return NAME_NOT_FOUND;
1445     }
1446     return VirtualKeyMap::load(path, &device->virtualKeyMap);
1447 }
1448
1449 status_t EventHub::loadKeyMapLocked(Device* device) {
1450     return device->keyMap.load(device->identifier, device->configuration);
1451 }
1452
1453 bool EventHub::isExternalDeviceLocked(Device* device) {
1454     if (device->configuration) {
1455         bool value;
1456         if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1457             return !value;
1458         }
1459     }
1460     return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1461 }
1462
1463 bool EventHub::deviceHasMicLocked(Device* device) {
1464     if (device->configuration) {
1465         bool value;
1466         if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
1467             return value;
1468         }
1469     }
1470     return false;
1471 }
1472
1473 int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1474     if (mControllerNumbers.isFull()) {
1475         ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1476                 device->identifier.name.string());
1477         return 0;
1478     }
1479     // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1480     // one
1481     return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1482 }
1483
1484 void EventHub::releaseControllerNumberLocked(Device* device) {
1485     int32_t num = device->controllerNumber;
1486     device->controllerNumber= 0;
1487     if (num == 0) {
1488         return;
1489     }
1490     mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1491 }
1492
1493 void EventHub::setLedForController(Device* device) {
1494     for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
1495         setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
1496     }
1497 }
1498
1499 bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1500     if (!device->keyMap.haveKeyLayout()) {
1501         return false;
1502     }
1503     
1504     Vector<int32_t> scanCodes;
1505     device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1506     const size_t N = scanCodes.size();
1507     for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1508         int32_t sc = scanCodes.itemAt(i);
1509         if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1510             return true;
1511         }
1512     }
1513     
1514     return false;
1515 }
1516
1517 status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
1518     if (!device->keyMap.haveKeyLayout()) {
1519         return NAME_NOT_FOUND;
1520     }
1521
1522     int32_t scanCode;
1523     if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
1524         if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
1525             *outScanCode = scanCode;
1526             return NO_ERROR;
1527         }
1528     }
1529     return NAME_NOT_FOUND;
1530 }
1531
1532 status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1533     Device* device = getDeviceByPathLocked(devicePath);
1534     if (device) {
1535         closeDeviceLocked(device);
1536         return 0;
1537     }
1538     ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1539     return -1;
1540 }
1541
1542 void EventHub::closeAllDevicesLocked() {
1543     while (mDevices.size() > 0) {
1544         closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1545     }
1546 }
1547
1548 void EventHub::closeDeviceLocked(Device* device) {
1549     ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1550          device->path.string(), device->identifier.name.string(), device->id,
1551          device->fd, device->classes);
1552
1553     if (device->id == mBuiltInKeyboardId) {
1554         ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1555                 device->path.string(), mBuiltInKeyboardId);
1556         mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1557     }
1558
1559     if (!device->isVirtual()) {
1560         if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1561             ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1562         }
1563     }
1564
1565     releaseControllerNumberLocked(device);
1566
1567     mDevices.removeItem(device->id);
1568     device->close();
1569
1570     // Unlink for opening devices list if it is present.
1571     Device* pred = NULL;
1572     bool found = false;
1573     for (Device* entry = mOpeningDevices; entry != NULL; ) {
1574         if (entry == device) {
1575             found = true;
1576             break;
1577         }
1578         pred = entry;
1579         entry = entry->next;
1580     }
1581     if (found) {
1582         // Unlink the device from the opening devices list then delete it.
1583         // We don't need to tell the client that the device was closed because
1584         // it does not even know it was opened in the first place.
1585         ALOGI("Device %s was immediately closed after opening.", device->path.string());
1586         if (pred) {
1587             pred->next = device->next;
1588         } else {
1589             mOpeningDevices = device->next;
1590         }
1591         delete device;
1592     } else {
1593         // Link into closing devices list.
1594         // The device will be deleted later after we have informed the client.
1595         device->next = mClosingDevices;
1596         mClosingDevices = device;
1597     }
1598 }
1599
1600 status_t EventHub::readNotifyLocked() {
1601     int res;
1602     char devname[PATH_MAX];
1603     char *filename;
1604     char event_buf[512];
1605     int event_size;
1606     int event_pos = 0;
1607     struct inotify_event *event;
1608
1609     ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1610     res = read(mINotifyFd, event_buf, sizeof(event_buf));
1611     if(res < (int)sizeof(*event)) {
1612         if(errno == EINTR)
1613             return 0;
1614         ALOGW("could not get event, %s\n", strerror(errno));
1615         return -1;
1616     }
1617     //printf("got %d bytes of event information\n", res);
1618
1619     strcpy(devname, DEVICE_PATH);
1620     filename = devname + strlen(devname);
1621     *filename++ = '/';
1622
1623     while(res >= (int)sizeof(*event)) {
1624         event = (struct inotify_event *)(event_buf + event_pos);
1625         //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1626         if(event->len) {
1627             strcpy(filename, event->name);
1628             if(event->mask & IN_CREATE) {
1629                 openDeviceLocked(devname, true);
1630             } else {
1631                 ALOGI("Removing device '%s' due to inotify event\n", devname);
1632                 closeDeviceByPathLocked(devname);
1633             }
1634         }
1635         event_size = sizeof(*event) + event->len;
1636         res -= event_size;
1637         event_pos += event_size;
1638     }
1639     return 0;
1640 }
1641
1642 status_t EventHub::scanDirLocked(const char *dirname)
1643 {
1644     char devname[PATH_MAX];
1645     char *filename;
1646     DIR *dir;
1647     struct dirent *de;
1648     dir = opendir(dirname);
1649     if(dir == NULL)
1650         return -1;
1651     strcpy(devname, dirname);
1652     filename = devname + strlen(devname);
1653     *filename++ = '/';
1654     while((de = readdir(dir))) {
1655         if(de->d_name[0] == '.' &&
1656            (de->d_name[1] == '\0' ||
1657             (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1658             continue;
1659         strcpy(filename, de->d_name);
1660         openDeviceLocked(devname);
1661     }
1662     closedir(dir);
1663     return 0;
1664 }
1665
1666 void EventHub::requestReopenDevices() {
1667     ALOGV("requestReopenDevices() called");
1668
1669     AutoMutex _l(mLock);
1670     mNeedToReopenDevices = true;
1671 }
1672
1673 void EventHub::dump(String8& dump) {
1674     dump.append("Event Hub State:\n");
1675
1676     { // acquire lock
1677         AutoMutex _l(mLock);
1678
1679         dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1680
1681         dump.append(INDENT "Devices:\n");
1682
1683         for (size_t i = 0; i < mDevices.size(); i++) {
1684             const Device* device = mDevices.valueAt(i);
1685             if (mBuiltInKeyboardId == device->id) {
1686                 dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1687                         device->id, device->identifier.name.string());
1688             } else {
1689                 dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1690                         device->identifier.name.string());
1691             }
1692             dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1693             dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1694             dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1695             dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1696             dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1697             dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1698             dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1699                     "product=0x%04x, version=0x%04x\n",
1700                     device->identifier.bus, device->identifier.vendor,
1701                     device->identifier.product, device->identifier.version);
1702             dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1703                     device->keyMap.keyLayoutFile.string());
1704             dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1705                     device->keyMap.keyCharacterMapFile.string());
1706             dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1707                     device->configurationFile.string());
1708             dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1709                     toString(device->overlayKeyMap != NULL));
1710         }
1711     } // release lock
1712 }
1713
1714 void EventHub::monitor() {
1715     // Acquire and release the lock to ensure that the event hub has not deadlocked.
1716     mLock.lock();
1717     mLock.unlock();
1718 }
1719
1720
1721 }; // namespace android