OSDN Git Service

STPK-1429 Fix a major SNAFU in iio device report handling
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <fcntl.h>
6 #include <sys/epoll.h>
7 #include <math.h>
8 #include <utils/Log.h>
9 #include <hardware/sensors.h>
10 #include "control.h"
11 #include "enumeration.h"
12 #include "utils.h"
13
14 /* Currently active sensors count, per device */
15 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
16 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
17
18 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
19
20 static int poll_fd; /* epoll instance covering all enabled sensors */
21
22 /* Timestamp for the moment when we last exited a poll operation */
23 static int64_t last_poll_exit_ts;
24
25 /* Cap the time between poll operations to this, to counter runaway polls */
26 #define POLL_MIN_INTERVAL 10000 /* uS */
27
28 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
29
30
31 static int enable_buffer(int dev_num, int enabled)
32 {
33         char sysfs_path[PATH_MAX];
34
35         sprintf(sysfs_path, ENABLE_PATH, dev_num);
36
37         /* Low level, non-multiplexed, enable/disable routine */
38         return sysfs_write_int(sysfs_path, enabled);
39 }
40
41
42 static int setup_trigger(int dev_num, const char* trigger_val)
43 {
44         char sysfs_path[PATH_MAX];
45
46         sprintf(sysfs_path, TRIGGER_PATH, dev_num);
47
48         return sysfs_write_str(sysfs_path, trigger_val);
49 }
50
51
52 static void refresh_sensor_report_maps(int dev_num)
53 {
54         /*
55          * Read sysfs files from a iio device's scan_element directory, and
56          * build a couple of tables from that data. These tables will tell, for
57          * each sensor, where to gather relevant data in a device report, i.e.
58          * the structure that we read from the /dev/iio:deviceX file in order to
59          * sensor report, itself being the data that we return to Android when a
60          * sensor poll completes. The mapping should be straightforward in the
61          * case where we have a single sensor active per iio device but, this is
62          * not the general case. In general several sensors can be handled
63          * through a single iio device, and the _en, _index and _type syfs
64          * entries all concur to paint a picture of what the structure of the
65          * device report is.
66          */
67
68         int s;
69         int c;
70         int n;
71         int i;
72         int ch_enabled;
73         int ch_index;
74         char* ch_spec;
75         char spec_buf[MAX_TYPE_SPEC_LEN];
76         struct datum_info_t* ch_info;
77         int size;
78         char sysfs_path[PATH_MAX];
79         int active_channels;
80         int offset;
81         int channel_count;
82         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
83         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
84         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
85
86         active_channels = 0;
87
88         /* For each sensor that is linked to this device */
89         for (s=0; s<sensor_count; s++) {
90                 if (sensor_info[s].dev_num != dev_num)
91                         continue;
92
93                 i = sensor_info[s].catalog_index;
94
95                 /* Read channel status through syfs attributes */
96                 for (c=0; c<sensor_info[s].num_channels; c++) {
97
98                         /* Read _en file */
99                         sprintf(sysfs_path, CHANNEL_PATH "%s",
100                                 sensor_info[s].dev_num,
101                                 sensor_catalog[i].channel[c].en_path);
102
103                         n = sysfs_read_int(sysfs_path, &ch_enabled);
104
105                         if (n == -1) {
106                                 ALOGW(  "Failed to read _en flag: %s\n",
107                                 sysfs_path);
108                                 continue;
109                         }
110
111                         if (!ch_enabled != 1) {
112                                 sensor_info[s].channel[c].size = 0;
113                         }
114
115                         /* Read _type file */
116                         sprintf(sysfs_path, CHANNEL_PATH "%s",
117                                 sensor_info[s].dev_num,
118                                 sensor_catalog[i].channel[c].type_path);
119
120                         n = sysfs_read_str(sysfs_path, spec_buf, 
121                                                 sizeof(spec_buf));
122
123                         if (n == -1) {
124                                         ALOGW(  "Failed to read type: %s\n",
125                                         sysfs_path);
126                                         continue;
127                                 }
128
129                         ch_spec = sensor_info[s].channel[c].type_spec;
130
131                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
132
133                         ch_info = &sensor_info[s].channel[c].type_info;
134
135                         size = decode_type_spec(ch_spec, ch_info);
136
137                         /* Read _index file */
138                         sprintf(sysfs_path, CHANNEL_PATH "%s",
139                                 sensor_info[s].dev_num,
140                                 sensor_catalog[i].channel[c].index_path);
141
142                         n = sysfs_read_int(sysfs_path, &ch_index);
143
144                         if (n == -1) {
145                                         ALOGW(  "Failed to read index: %s\n",
146                                                 sysfs_path);
147                                         continue;
148                                 }
149
150                         /* Record what this index is about */
151
152                         sensor_handle_from_index [ch_index] = s;
153                         channel_number_from_index[ch_index] = c;
154                         channel_size_from_index  [ch_index] = size;
155
156                         active_channels++;
157                 }
158         }
159
160         ALOGI("Found %d enabled channels for iio device %d\n", active_channels,
161                 dev_num);
162
163         /*
164          * Now that we know which channels are enabled, their sizes and their
165          * ordering, update channels offsets within device report. Note: there
166          * is a possibility that several sensors share the same index, with
167          * their data fields being isolated by masking and shifting as specified
168          * through the real bits and shift values in type attributes. This case
169          * is not currently supported. Also, the code below assumes no hole in
170          * the sequence of indices, so it is dependent on discovery of all
171          * sensors.
172          */
173          offset = 0;
174          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
175                 s =     sensor_handle_from_index[i];
176                 c =     channel_number_from_index[i];
177                 size =  channel_size_from_index[i];
178
179                 if (!size)
180                         continue;
181
182                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
183                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
184
185                 sensor_info[s].channel[c].offset        = offset;
186                 sensor_info[s].channel[c].size          = size;
187
188                 offset += size;
189          }
190 }
191
192
193 int adjust_counters (int s, int enabled)
194 {
195         /*
196          * Adjust counters based on sensor enable action. Return values are:
197          * -1 if there's an inconsistency: abort action in this case
198          *  0 if the operation was completed and we're all set
199          *  1 if we toggled the state of the sensor and there's work left
200          */
201
202         int dev_num = sensor_info[s].dev_num;
203
204         /* Refcount per sensor, in terms of enable count */
205         if (enabled) {
206                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
207                         s, dev_num, sensor_info[s].internal_name);
208
209                 sensor_info[s].enable_count++;
210
211                 if (sensor_info[s].enable_count != 1)
212                         return 0; /* The sensor was, and remains, in use */
213         } else {
214                 if (sensor_info[s].enable_count == 0)
215                         return -1; /* Spurious disable call */
216
217                 ALOGI("Disabling sensor %d (iio device %d)\n", s, dev_num);
218
219                 sensor_info[s].enable_count--;
220
221                 if (sensor_info[s].enable_count > 0)
222                         return 0; /* The sensor was, and remains, in use */
223
224                 /* Sensor disabled, clear up pending data */
225
226                 sensor_info[s].report_pending = 0;
227                 memset(sensor_info[s].report_buffer, 0, MAX_SENSOR_REPORT_SIZE);
228         }
229
230         /* We changed the state of a sensor - adjust per iio device counters */
231
232         /* If this is a regular event-driven sensor */
233         if (sensor_info[s].num_channels) {
234
235                         if (enabled)
236                                 trig_sensors_per_dev[dev_num]++;
237                         else
238                                 trig_sensors_per_dev[dev_num]--;
239
240                         return 1;
241                 }
242
243         if (enabled) {
244                 active_poll_sensors++;
245                 poll_sensors_per_dev[dev_num]++;
246                 return 1;
247         }
248
249         active_poll_sensors--;
250         poll_sensors_per_dev[dev_num]--;
251         return 1;
252 }
253
254
255 int sensor_activate(int s, int enabled)
256 {
257         char sysfs_path[PATH_MAX];
258         char device_name[PATH_MAX];
259         char trigger_name[MAX_NAME_SIZE + 16];
260         int c;
261         struct epoll_event ev = {0};
262         int dev_fd;
263         int ret;
264         int dev_num = sensor_info[s].dev_num;
265         int i = sensor_info[s].catalog_index;
266         int is_poll_sensor = !sensor_info[s].num_channels;
267
268         ret = adjust_counters(s, enabled);
269
270         /* If the operation was neutral in terms of state, we're done */
271         if (ret <= 0)
272                 return ret;
273
274         if (!is_poll_sensor) {
275                 /* Changes have to be made while the buffer is turned off */
276                 enable_buffer(dev_num, 0);
277
278                 /* Configure trigger */
279                 switch (trig_sensors_per_dev[dev_num]) {
280                         case 0:
281                                 setup_trigger(dev_num, "none");
282                                 break;
283
284                         case 1:
285                                 sprintf(trigger_name, "%s-dev%d",
286                                         sensor_info[s].internal_name, dev_num);
287
288                                 setup_trigger(dev_num, trigger_name);
289                                 break;
290
291                         default:
292                                 /* The trigger is already set */
293                                 break;
294                 }
295
296                 /*
297                  * Turn channels associated to this sensor on or off, and update
298                  * the channels maps for all sensors associated to this device.
299                  */
300                 for (c=0;c<sensor_info[s].num_channels; c++) {
301                         sprintf(sysfs_path, CHANNEL_PATH "%s",
302                                 sensor_info[s].dev_num,
303                                 sensor_catalog[i].channel[c].en_path);
304
305                         sysfs_write_int(sysfs_path, enabled);
306                 }
307
308                 /* If there's at least one sensor left */
309                 if (trig_sensors_per_dev[dev_num]) {
310                         refresh_sensor_report_maps(dev_num);
311                         enable_buffer(dev_num, 1);
312                 }
313         }
314
315         /*
316          * Make sure we have a fd on the character device ; conversely, close
317          * the fd if no one is using associated sensor anymore. The assumption
318          * here is that the underlying driver will power on the relevant
319          * hardware block while someone hold a fd on the device.
320          */
321         dev_fd = device_fd[dev_num];
322
323         switch (poll_sensors_per_dev[dev_num] + trig_sensors_per_dev[dev_num]) {
324
325                 case 0:
326                         if (dev_fd != -1) {
327                                 /*
328                                  * Stop watching this fd. This should be a no-op
329                                  * in case this fd was not in the poll set.
330                                  */
331                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
332
333                                 close(dev_fd);
334                                 device_fd[dev_num] = -1;
335                         }
336                         return 0;
337
338                 case 1:
339                         /* First enabled sensor on this iio device */
340                         sprintf(device_name, DEV_FILE_PATH, dev_num);
341                         dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
342
343                         if (dev_fd == -1) {
344                                 ALOGE("Could not open fd on %s (%s)\n",
345                                       device_name, strerror(errno));
346                                 return -1;
347                         }
348
349                         ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
350
351                         device_fd[dev_num] = dev_fd;
352                         break;
353
354                 default:
355                         break;
356         }
357
358         if (!is_poll_sensor && trig_sensors_per_dev[dev_num] == 1) {
359
360                 /* Add this iio device fd to the set of watched fds */
361                 ev.events = EPOLLIN;
362                 ev.data.u32 = dev_num;
363
364                 ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
365
366                 if (ret == -1) {
367                         ALOGE("Failed adding %d to poll set (%s)\n", dev_fd,
368                               strerror(errno));
369                         return -1;
370                 }
371
372                 /* Note: poll-mode fds are not readable */
373         }
374
375         return 0;
376 }
377
378
379 static int integrate_device_report(int dev_num)
380 {
381         int len;
382         int s,c;
383         unsigned char buf[MAX_SENSOR_REPORT_SIZE * MAX_SENSORS] = { 0 };
384         int sr_offset;
385         unsigned char *target;
386         unsigned char *source;
387         int size;
388         int expected_size = 0;
389
390         /* There's an incoming report on the specified fd */
391
392         if (dev_num < 0 || dev_num >= MAX_DEVICES ||
393                 !trig_sensors_per_dev[dev_num]) {
394                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
395                 return -1;
396         }
397
398         for (s=0; s<MAX_SENSORS; s++)
399                 if (sensor_info[s].dev_num == dev_num)
400                         for (c=0; c<sensor_info[s].num_channels; c++)
401                                 expected_size += sensor_info[s].channel[c].size;
402
403         len = read(device_fd[dev_num], buf, expected_size);
404
405         if (len == -1) {
406                 ALOGE("Could not read report from iio device %d (%s)\n",
407                       dev_num, strerror(errno));
408                 return -1;
409         }
410
411         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
412
413         for (s=0; s<MAX_SENSORS; s++)
414                 if (sensor_info[s].dev_num == dev_num) {
415                         sr_offset = 0;
416
417                         /* Copy data from device to sensor report buffer */
418                         for (c=0; c<sensor_info[s].num_channels; c++) {
419
420                                 target = sensor_info[s].report_buffer +
421                                         sr_offset;
422
423                                 source = buf + sensor_info[s].channel[c].offset;
424
425                                 size = sensor_info[s].channel[c].size;
426
427                                 memcpy(target, source, size);
428
429                                 sr_offset += size;
430                         }
431
432                         if (sensor_info[s].enable_count) {
433                                 ALOGV("Sensor %d report available (%d bytes)\n",
434                                       s, sr_offset);
435
436                                 sensor_info[s].report_pending = 1;
437                         }
438                 }
439
440         return 0;
441 }
442
443
444 static float acquire_immediate_value(int s, int c)
445 {
446         char sysfs_path[PATH_MAX];
447         float val;
448         int ret;
449         int dev_num = sensor_info[s].dev_num;
450         int i = sensor_info[s].catalog_index;
451         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
452         const char* input_path = sensor_catalog[i].channel[c].input_path;
453         float scale = sensor_info[s].scale;
454         float offset = sensor_info[s].offset;
455
456         /* Acquire a sample value for sensor s / channel c through sysfs */
457
458         if (input_path[0]) {
459                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
460                 ret = sysfs_read_float(sysfs_path, &val);
461
462                 if (!ret) {
463                         return val;
464                 }
465         };
466
467         if (!raw_path[0])
468                 return 0;
469
470         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
471         ret = sysfs_read_float(sysfs_path, &val);
472
473         if (ret == -1)
474                 return 0;
475
476         return (val + offset) * scale;
477 }
478
479
480 static void propagate_sensor_report(int s, struct sensors_event_t* data)
481 {
482         /* There's a sensor report pending for this sensor ; transmit it */
483
484         int catalog_index = sensor_info[s].catalog_index;
485         int sensor_type = sensor_catalog[catalog_index].type;
486         int num_fields;
487         int c;
488         unsigned char* current_sample;
489         int sample_size;
490         struct datum_info_t* sample_type;
491         int64_t s64;
492         float val;
493
494         memset(data, 0, sizeof(sensors_event_t));
495
496         data->version = sizeof(sensors_event_t);
497         data->sensor = s;
498         data->type = sensor_type;
499         data->timestamp = get_timestamp();
500
501         switch (sensor_type) {
502                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
503                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
504                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
505                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
506                         num_fields = 3;
507                         break;
508
509                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
510                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* °C          */
511                 case SENSOR_TYPE_TEMPERATURE:           /* °C          */
512                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
513                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
514                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
515                         num_fields = 1;
516                         break;
517
518                 case SENSOR_TYPE_ROTATION_VECTOR:
519                         num_fields = 4;
520                         break;
521
522                 case SENSOR_TYPE_DEVICE_PRIVATE_BASE:   /* hidden for now */
523                         num_fields = 0;
524                         break;
525
526                 default:
527                         ALOGE("Unknown sensor type!\n");
528                         num_fields = 0;
529                         break;
530         }
531
532         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
533
534         /* If we're dealing with a poll-mode sensor */
535         if (!sensor_info[s].num_channels) {
536
537                 /* Read values through sysfs rather than from a report buffer */
538                 for (c=0; c<num_fields; c++) {
539                         val = acquire_immediate_value(s, c);
540
541                         data->data[c] = transform_sample(sensor_type, c, val);
542
543                         ALOGV("\tfield %d: %f\n", c, data->data[c]);
544                 }
545                 return;
546         }
547
548         /* Convert the data into the expected Android-level format */
549
550         current_sample = sensor_info[s].report_buffer;
551
552         for (c=0; c<num_fields; c++) {
553                 sample_size     =  sensor_info[s].channel[c].size;
554                 sample_type     = &sensor_info[s].channel[c].type_info;
555
556                 s64 = sample_as_int64(current_sample, sample_type);
557
558                 val = (sensor_info[s].offset + s64) * sensor_info[s].scale;
559
560                 data->data[c] = transform_sample(sensor_type, c, val);
561
562                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
563                 current_sample += sample_size;
564         }
565 }
566
567
568 static int get_poll_time (void)
569 {
570         if (!active_poll_sensors)
571                 return -1;      /* Infinite wait */
572
573         return 100;     /* ms ... this needs to be dynamic */
574 }
575
576
577 int sensor_poll(struct sensors_event_t* data, int count)
578 {
579         int s;
580         int i;
581         int nfds;
582         int delta;
583         struct epoll_event ev[MAX_DEVICES];
584
585         /* Get one or more events from our collection of sensors */
586
587 return_first_available_sensor_report:
588
589         /* If there's at least one available report */
590         for (s=0; s<sensor_count; s++)
591                 if (sensor_info[s].report_pending) {
592
593                         /* Return that up */
594                         propagate_sensor_report(s, data);
595                         sensor_info[s].report_pending = 0;
596                         ALOGV("Report on sensor %d\n", s);
597                         return 1;
598                 }
599
600         /* Keep a minimum time interval between poll operations */
601         delta = (get_timestamp() - last_poll_exit_ts)/1000;
602
603         if (delta > 0 && delta < POLL_MIN_INTERVAL)
604                 usleep(POLL_MIN_INTERVAL - delta);
605
606         ALOGV("Awaiting sensor data\n");
607
608         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_time());
609
610         last_poll_exit_ts = get_timestamp();
611
612         ALOGV("%d fds signalled\n", nfds);
613
614         /* For each of the devices for which a report is available */
615         for (i=0; i<nfds; i++)
616                 if (ev[i].events == EPOLLIN)
617                         /* Read report */
618                         integrate_device_report(ev[i].data.u32);
619
620         /* It's a good time to invalidate poll-mode sensor values */
621         for (s=0; s<sensor_count; s++)
622                 if (!sensor_info[s].num_channels && sensor_info[s].enable_count)
623                         sensor_info[s].report_pending = 1;
624
625         goto return_first_available_sensor_report;
626 }
627
628
629 int sensor_set_delay(int handle, int64_t ns)
630 {
631         /* Set the rate at which a specific sensor should report events */
632         /* Continuous reports: accelerometer, gyroscope */
633         /* On change with minimum delay between events: ALS, proximity */
634         /* See sensors.h for indication on sensor trigger modes */
635         return -1;
636 }
637
638
639 int allocate_control_data (void)
640 {
641         int i;
642
643         for (i=0; i<MAX_DEVICES; i++)
644                 device_fd[i] = -1;
645
646         poll_fd = epoll_create(MAX_DEVICES);
647
648         if (poll_fd == -1) {
649                 ALOGE("Can't create epoll instance for iio sensors!\n");
650         }
651
652         return poll_fd;
653 }
654
655
656 void delete_control_data (void)
657 {
658 }