OSDN Git Service

STPK-1429 Minor optimization to poll-mode sensor handling
[android-x86/hardware-intel-libsensors.git] / control.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <fcntl.h>
6 #include <sys/epoll.h>
7 #include <math.h>
8 #include <utils/Log.h>
9 #include <hardware/sensors.h>
10 #include "control.h"
11 #include "enumeration.h"
12 #include "utils.h"
13
14 /* Currently active sensors count, per device */
15 static int poll_sensors_per_dev[MAX_DEVICES];   /* poll-mode sensors */
16 static int trig_sensors_per_dev[MAX_DEVICES];   /* trigger, event based */
17
18 static int device_fd[MAX_DEVICES];   /* fd on the /dev/iio:deviceX file */
19
20 static int poll_fd; /* epoll instance covering all enabled sensors */
21
22 /* Timestamp for the moment when we last exited a poll operation */
23 static int64_t last_poll_exit_ts;
24
25 /* Cap the time between poll operations to this, to counter runaway polls */
26 #define POLL_MIN_INTERVAL 10000 /* uS */
27
28 static int active_poll_sensors; /* Number of enabled poll-mode sensors */
29
30
31 static int enable_buffer(int dev_num, int enabled)
32 {
33         char sysfs_path[PATH_MAX];
34
35         sprintf(sysfs_path, ENABLE_PATH, dev_num);
36
37         /* Low level, non-multiplexed, enable/disable routine */
38         return sysfs_write_int(sysfs_path, enabled);
39 }
40
41
42 static int setup_trigger(int dev_num, const char* trigger_val)
43 {
44         char sysfs_path[PATH_MAX];
45
46         sprintf(sysfs_path, TRIGGER_PATH, dev_num);
47
48         return sysfs_write_str(sysfs_path, trigger_val);
49 }
50
51
52 static void refresh_sensor_report_maps(int dev_num)
53 {
54         /*
55          * Read sysfs files from a iio device's scan_element directory, and
56          * build a couple of tables from that data. These tables will tell, for
57          * each sensor, where to gather relevant data in a device report, i.e.
58          * the structure that we read from the /dev/iio:deviceX file in order to
59          * sensor report, itself being the data that we return to Android when a
60          * sensor poll completes. The mapping should be straightforward in the
61          * case where we have a single sensor active per iio device but, this is
62          * not the general case. In general several sensors can be handled
63          * through a single iio device, and the _en, _index and _type syfs
64          * entries all concur to paint a picture of what the structure of the
65          * device report is.
66          */
67
68         int s;
69         int c;
70         int n;
71         int i;
72         int ch_enabled;
73         int ch_index;
74         char* ch_spec;
75         char spec_buf[MAX_TYPE_SPEC_LEN];
76         struct datum_info_t* ch_info;
77         int size;
78         char sysfs_path[PATH_MAX];
79         int active_channels;
80         int offset;
81         int channel_count;
82         int channel_size_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
83         int sensor_handle_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
84         int channel_number_from_index[MAX_SENSORS * MAX_CHANNELS] = { 0 };
85
86         active_channels = 0;
87
88         /* For each sensor that is linked to this device */
89         for (s=0; s<sensor_count; s++) {
90                 if (sensor_info[s].dev_num != dev_num)
91                         continue;
92
93                 i = sensor_info[s].catalog_index;
94
95                 /* Read channel status through syfs attributes */
96                 for (c=0; c<sensor_info[s].num_channels; c++) {
97
98                         /* Read _en file */
99                         sprintf(sysfs_path, CHANNEL_PATH "%s",
100                                 sensor_info[s].dev_num,
101                                 sensor_catalog[i].channel[c].en_path);
102
103                         n = sysfs_read_int(sysfs_path, &ch_enabled);
104
105                         if (n == -1) {
106                                 ALOGW(  "Failed to read _en flag: %s\n",
107                                 sysfs_path);
108                                 continue;
109                         }
110
111                         if (!ch_enabled != 1) {
112                                 sensor_info[s].channel[c].size = 0;
113                         }
114
115                         /* Read _type file */
116                         sprintf(sysfs_path, CHANNEL_PATH "%s",
117                                 sensor_info[s].dev_num,
118                                 sensor_catalog[i].channel[c].type_path);
119
120                         n = sysfs_read_str(sysfs_path, spec_buf, 
121                                                 sizeof(spec_buf));
122
123                         if (n == -1) {
124                                         ALOGW(  "Failed to read type: %s\n",
125                                         sysfs_path);
126                                         continue;
127                                 }
128
129                         ch_spec = sensor_info[s].channel[c].type_spec;
130
131                         memcpy(ch_spec, spec_buf, sizeof(spec_buf));
132
133                         ch_info = &sensor_info[s].channel[c].type_info;
134
135                         size = decode_type_spec(ch_spec, ch_info);
136
137                         /* Read _index file */
138                         sprintf(sysfs_path, CHANNEL_PATH "%s",
139                                 sensor_info[s].dev_num,
140                                 sensor_catalog[i].channel[c].index_path);
141
142                         n = sysfs_read_int(sysfs_path, &ch_index);
143
144                         if (n == -1) {
145                                         ALOGW(  "Failed to read index: %s\n",
146                                                 sysfs_path);
147                                         continue;
148                                 }
149
150                         if (ch_index >= MAX_SENSORS) {
151                                 ALOGE("Index out of bounds!: %s\n", sysfs_path);
152                                 continue;
153                         }
154
155                         /* Record what this index is about */
156
157                         sensor_handle_from_index [ch_index] = s;
158                         channel_number_from_index[ch_index] = c;
159                         channel_size_from_index  [ch_index] = size;
160
161                         active_channels++;
162                 }
163         }
164
165         ALOGI("Found %d enabled channels for iio device %d\n", active_channels,
166                 dev_num);
167
168         /*
169          * Now that we know which channels are enabled, their sizes and their
170          * ordering, update channels offsets within device report. Note: there
171          * is a possibility that several sensors share the same index, with
172          * their data fields being isolated by masking and shifting as specified
173          * through the real bits and shift values in type attributes. This case
174          * is not currently supported. Also, the code below assumes no hole in
175          * the sequence of indices, so it is dependent on discovery of all
176          * sensors.
177          */
178          offset = 0;
179          for (i=0; i<MAX_SENSORS * MAX_CHANNELS; i++) {
180                 s =     sensor_handle_from_index[i];
181                 c =     channel_number_from_index[i];
182                 size =  channel_size_from_index[i];
183
184                 if (!size)
185                         continue;
186
187                 ALOGI("S%d C%d : offset %d, size %d, type %s\n",
188                       s, c, offset, size, sensor_info[s].channel[c].type_spec);
189
190                 sensor_info[s].channel[c].offset        = offset;
191                 sensor_info[s].channel[c].size          = size;
192
193                 offset += size;
194          }
195 }
196
197
198 int adjust_counters (int s, int enabled)
199 {
200         /*
201          * Adjust counters based on sensor enable action. Return values are:
202          * -1 if there's an inconsistency: abort action in this case
203          *  0 if the operation was completed and we're all set
204          *  1 if we toggled the state of the sensor and there's work left
205          */
206
207         int dev_num = sensor_info[s].dev_num;
208
209         /* Refcount per sensor, in terms of enable count */
210         if (enabled) {
211                 ALOGI("Enabling sensor %d (iio device %d: %s)\n",
212                         s, dev_num, sensor_info[s].internal_name);
213
214                 sensor_info[s].enable_count++;
215
216                 if (sensor_info[s].enable_count != 1)
217                         return 0; /* The sensor was, and remains, in use */
218         } else {
219                 if (sensor_info[s].enable_count == 0)
220                         return -1; /* Spurious disable call */
221
222                 ALOGI("Disabling sensor %d (iio device %d)\n", s, dev_num);
223
224                 sensor_info[s].enable_count--;
225
226                 if (sensor_info[s].enable_count > 0)
227                         return 0; /* The sensor was, and remains, in use */
228
229                 /* Sensor disabled, clear up pending data */
230
231                 sensor_info[s].report_pending = 0;
232                 memset(sensor_info[s].report_buffer, 0, MAX_SENSOR_REPORT_SIZE);
233         }
234
235         /* We changed the state of a sensor - adjust per iio device counters */
236
237         /* If this is a regular event-driven sensor */
238         if (sensor_info[s].num_channels) {
239
240                         if (enabled)
241                                 trig_sensors_per_dev[dev_num]++;
242                         else
243                                 trig_sensors_per_dev[dev_num]--;
244
245                         return 1;
246                 }
247
248         if (enabled) {
249                 active_poll_sensors++;
250                 poll_sensors_per_dev[dev_num]++;
251                 return 1;
252         }
253
254         active_poll_sensors--;
255         poll_sensors_per_dev[dev_num]--;
256         return 1;
257 }
258
259
260 int sensor_activate(int s, int enabled)
261 {
262         char sysfs_path[PATH_MAX];
263         char device_name[PATH_MAX];
264         char trigger_name[MAX_NAME_SIZE + 16];
265         int c;
266         struct epoll_event ev = {0};
267         int dev_fd;
268         int ret;
269         int dev_num = sensor_info[s].dev_num;
270         int i = sensor_info[s].catalog_index;
271         int is_poll_sensor = !sensor_info[s].num_channels;
272
273         ret = adjust_counters(s, enabled);
274
275         /* If the operation was neutral in terms of state, we're done */
276         if (ret <= 0)
277                 return ret;
278
279         if (!is_poll_sensor) {
280                 /* Changes have to be made while the buffer is turned off */
281                 enable_buffer(dev_num, 0);
282
283                 /* Configure trigger */
284                 switch (trig_sensors_per_dev[dev_num]) {
285                         case 0:
286                                 setup_trigger(dev_num, "none");
287                                 break;
288
289                         case 1:
290                                 sprintf(trigger_name, "%s-dev%d",
291                                         sensor_info[s].internal_name, dev_num);
292
293                                 setup_trigger(dev_num, trigger_name);
294                                 break;
295
296                         default:
297                                 /* The trigger is already set */
298                                 break;
299                 }
300
301                 /*
302                  * Turn channels associated to this sensor on or off, and update
303                  * the channels maps for all sensors associated to this device.
304                  */
305                 for (c=0;c<sensor_info[s].num_channels; c++) {
306                         sprintf(sysfs_path, CHANNEL_PATH "%s",
307                                 sensor_info[s].dev_num,
308                                 sensor_catalog[i].channel[c].en_path);
309
310                         sysfs_write_int(sysfs_path, enabled);
311                 }
312
313                 /* If there's at least one sensor left */
314                 if (trig_sensors_per_dev[dev_num]) {
315                         refresh_sensor_report_maps(dev_num);
316                         enable_buffer(dev_num, 1);
317                 }
318         }
319
320         /*
321          * Make sure we have a fd on the character device ; conversely, close
322          * the fd if no one is using associated sensor anymore. The assumption
323          * here is that the underlying driver will power on the relevant
324          * hardware block while someone hold a fd on the device.
325          */
326         dev_fd = device_fd[dev_num];
327
328         switch (poll_sensors_per_dev[dev_num] + trig_sensors_per_dev[dev_num]) {
329
330                 case 0:
331                         if (dev_fd != -1) {
332                                 /*
333                                  * Stop watching this fd. This should be a no-op
334                                  * in case this fd was not in the poll set.
335                                  */
336                                 epoll_ctl(poll_fd, EPOLL_CTL_DEL, dev_fd, NULL);
337
338                                 close(dev_fd);
339                                 device_fd[dev_num] = -1;
340                         }
341                         return 0;
342
343                 case 1:
344                         /* First enabled sensor on this iio device */
345                         sprintf(device_name, DEV_FILE_PATH, dev_num);
346                         dev_fd = open(device_name, O_RDONLY | O_NONBLOCK);
347
348                         if (dev_fd == -1) {
349                                 ALOGE("Could not open fd on %s (%s)\n",
350                                       device_name, strerror(errno));
351                                 return -1;
352                         }
353
354                         ALOGV("Opened %s: fd=%d\n", device_name, dev_fd);
355
356                         device_fd[dev_num] = dev_fd;
357                         break;
358
359                 default:
360                         break;
361         }
362
363         if (!is_poll_sensor && trig_sensors_per_dev[dev_num] == 1) {
364
365                 /* Add this iio device fd to the set of watched fds */
366                 ev.events = EPOLLIN;
367                 ev.data.u32 = dev_num;
368
369                 ret = epoll_ctl(poll_fd, EPOLL_CTL_ADD, dev_fd, &ev);
370
371                 if (ret == -1) {
372                         ALOGE("Failed adding %d to poll set (%s)\n", dev_fd,
373                               strerror(errno));
374                         return -1;
375                 }
376
377                 /* Note: poll-mode fds are not readable */
378         }
379
380         return 0;
381 }
382
383
384 static int integrate_device_report(int dev_num)
385 {
386         int len;
387         int s,c;
388         unsigned char buf[MAX_SENSOR_REPORT_SIZE * MAX_SENSORS] = { 0 };
389         int sr_offset;
390         unsigned char *target;
391         unsigned char *source;
392         int size;
393         int expected_size = 0;
394
395         /* There's an incoming report on the specified fd */
396
397         if (dev_num < 0 || dev_num >= MAX_DEVICES ||
398                 !trig_sensors_per_dev[dev_num]) {
399                 ALOGE("Event reported on unexpected iio device %d\n", dev_num);
400                 return -1;
401         }
402
403         for (s=0; s<MAX_SENSORS; s++)
404                 if (sensor_info[s].dev_num == dev_num)
405                         for (c=0; c<sensor_info[s].num_channels; c++)
406                                 expected_size += sensor_info[s].channel[c].size;
407
408         len = read(device_fd[dev_num], buf, expected_size);
409
410         if (len == -1) {
411                 ALOGE("Could not read report from iio device %d (%s)\n",
412                       dev_num, strerror(errno));
413                 return -1;
414         }
415
416         ALOGV("Read %d bytes from iio device %d\n", len, dev_num);
417
418         for (s=0; s<MAX_SENSORS; s++)
419                 if (sensor_info[s].dev_num == dev_num) {
420                         sr_offset = 0;
421
422                         /* Copy data from device to sensor report buffer */
423                         for (c=0; c<sensor_info[s].num_channels; c++) {
424
425                                 target = sensor_info[s].report_buffer +
426                                         sr_offset;
427
428                                 source = buf + sensor_info[s].channel[c].offset;
429
430                                 size = sensor_info[s].channel[c].size;
431
432                                 memcpy(target, source, size);
433
434                                 sr_offset += size;
435                         }
436
437                         if (sensor_info[s].enable_count) {
438                                 ALOGV("Sensor %d report available (%d bytes)\n",
439                                       s, sr_offset);
440
441                                 sensor_info[s].report_pending = 1;
442                         }
443                 }
444
445         return 0;
446 }
447
448
449 static float acquire_immediate_value(int s, int c)
450 {
451         char sysfs_path[PATH_MAX];
452         float val;
453         int ret;
454         int dev_num = sensor_info[s].dev_num;
455         int i = sensor_info[s].catalog_index;
456         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
457         const char* input_path = sensor_catalog[i].channel[c].input_path;
458         float scale = sensor_info[s].scale;
459         float offset = sensor_info[s].offset;
460
461         /* Acquire a sample value for sensor s / channel c through sysfs */
462
463         if (input_path[0]) {
464                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
465                 ret = sysfs_read_float(sysfs_path, &val);
466
467                 if (!ret) {
468                         return val;
469                 }
470         };
471
472         if (!raw_path[0])
473                 return 0;
474
475         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
476         ret = sysfs_read_float(sysfs_path, &val);
477
478         if (ret == -1)
479                 return 0;
480
481         return (val + offset) * scale;
482 }
483
484
485 static void propagate_sensor_report(int s, struct sensors_event_t* data)
486 {
487         /* There's a sensor report pending for this sensor ; transmit it */
488
489         int catalog_index = sensor_info[s].catalog_index;
490         int sensor_type = sensor_catalog[catalog_index].type;
491         int num_fields;
492         int c;
493         unsigned char* current_sample;
494         int sample_size;
495         struct datum_info_t* sample_type;
496         int64_t s64;
497         float val;
498
499         memset(data, 0, sizeof(sensors_event_t));
500
501         data->version = sizeof(sensors_event_t);
502         data->sensor = s;
503         data->type = sensor_type;
504         data->timestamp = get_timestamp();
505
506         switch (sensor_type) {
507                 case SENSOR_TYPE_ACCELEROMETER:         /* m/s^2        */
508                 case SENSOR_TYPE_MAGNETIC_FIELD:        /* micro-tesla  */
509                 case SENSOR_TYPE_ORIENTATION:           /* degrees      */
510                 case SENSOR_TYPE_GYROSCOPE:             /* radians/s    */
511                         num_fields = 3;
512                         break;
513
514                 case SENSOR_TYPE_LIGHT:                 /* SI lux units */
515                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:   /* °C          */
516                 case SENSOR_TYPE_TEMPERATURE:           /* °C          */
517                 case SENSOR_TYPE_PROXIMITY:             /* centimeters  */
518                 case SENSOR_TYPE_PRESSURE:              /* hecto-pascal */
519                 case SENSOR_TYPE_RELATIVE_HUMIDITY:     /* percent */
520                         num_fields = 1;
521                         break;
522
523                 case SENSOR_TYPE_ROTATION_VECTOR:
524                         num_fields = 4;
525                         break;
526
527                 case SENSOR_TYPE_DEVICE_PRIVATE_BASE:   /* hidden for now */
528                         num_fields = 0;
529                         break;
530
531                 default:
532                         ALOGE("Unknown sensor type!\n");
533                         num_fields = 0;
534                         break;
535         }
536
537         ALOGV("Sample on sensor %d (type %d):\n", s, sensor_type);
538
539         /* If we're dealing with a poll-mode sensor */
540         if (!sensor_info[s].num_channels) {
541
542                 /* Read values through sysfs rather than from a report buffer */
543                 for (c=0; c<num_fields; c++) {
544                         val = acquire_immediate_value(s, c);
545
546                         data->data[c] = transform_sample(sensor_type, c, val);
547
548                         ALOGV("\tfield %d: %f\n", c, data->data[c]);
549                 }
550                 return;
551         }
552
553         /* Convert the data into the expected Android-level format */
554
555         current_sample = sensor_info[s].report_buffer;
556
557         for (c=0; c<num_fields; c++) {
558                 sample_size     =  sensor_info[s].channel[c].size;
559                 sample_type     = &sensor_info[s].channel[c].type_info;
560
561                 s64 = sample_as_int64(current_sample, sample_type);
562
563                 val = (sensor_info[s].offset + s64) * sensor_info[s].scale;
564
565                 data->data[c] = transform_sample(sensor_type, c, val);
566
567                 ALOGV("\tfield %d: %f\n", c, data->data[c]);
568                 current_sample += sample_size;
569         }
570 }
571
572
573 static int get_poll_time (void)
574 {
575         if (!active_poll_sensors)
576                 return -1;      /* Infinite wait */
577
578         return 100;     /* ms ... this needs to be dynamic */
579 }
580
581
582 int sensor_poll(struct sensors_event_t* data, int count)
583 {
584         int s;
585         int i;
586         int nfds;
587         int delta;
588         struct epoll_event ev[MAX_DEVICES];
589
590         /* Get one or more events from our collection of sensors */
591
592 return_first_available_sensor_report:
593
594         /* If there's at least one available report */
595         for (s=0; s<sensor_count; s++)
596                 if (sensor_info[s].report_pending) {
597
598                         /* Return that up */
599                         propagate_sensor_report(s, data);
600                         sensor_info[s].report_pending = 0;
601                         ALOGV("Report on sensor %d\n", s);
602                         return 1;
603                 }
604
605         /* Keep a minimum time interval between poll operations */
606         delta = (get_timestamp() - last_poll_exit_ts)/1000;
607
608         if (delta > 0 && delta < POLL_MIN_INTERVAL)
609                 usleep(POLL_MIN_INTERVAL - delta);
610
611         ALOGV("Awaiting sensor data\n");
612
613         nfds = epoll_wait(poll_fd, ev, MAX_DEVICES, get_poll_time());
614
615         last_poll_exit_ts = get_timestamp();
616
617         ALOGV("%d fds signalled\n", nfds);
618
619         /* For each of the devices for which a report is available */
620         for (i=0; i<nfds; i++)
621                 if (ev[i].events == EPOLLIN)
622                         /* Read report */
623                         integrate_device_report(ev[i].data.u32);
624
625         /* It's a good time to invalidate poll-mode sensor values */
626         if (active_poll_sensors)
627                 for (s=0; s<sensor_count; s++)
628                         if (sensor_info[s].enable_count &&
629                                 !sensor_info[s].num_channels)
630                                         sensor_info[s].report_pending = 1;
631
632         goto return_first_available_sensor_report;
633 }
634
635
636 int sensor_set_delay(int handle, int64_t ns)
637 {
638         /* Set the rate at which a specific sensor should report events */
639         /* Continuous reports: accelerometer, gyroscope */
640         /* On change with minimum delay between events: ALS, proximity */
641         /* See sensors.h for indication on sensor trigger modes */
642         return -1;
643 }
644
645
646 int allocate_control_data (void)
647 {
648         int i;
649
650         for (i=0; i<MAX_DEVICES; i++)
651                 device_fd[i] = -1;
652
653         poll_fd = epoll_create(MAX_DEVICES);
654
655         if (poll_fd == -1) {
656                 ALOGE("Can't create epoll instance for iio sensors!\n");
657         }
658
659         return poll_fd;
660 }
661
662
663 void delete_control_data (void)
664 {
665 }