OSDN Git Service

Retry when sysfs_write_str fails
[android-x86/hardware-intel-libsensors.git] / enumeration.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <ctype.h>
6 #include <dirent.h>
7 #include <stdlib.h>
8 #include <utils/Log.h>
9 #include <hardware/sensors.h>
10 #include "enumeration.h"
11 #include "description.h"
12 #include "utils.h"
13 #include "transform.h"
14 #include "description.h"
15 #include "control.h"
16 #include "calibration.h"
17 #include "filtering.h"
18
19 /*
20  * This table maps syfs entries in scan_elements directories to sensor types,
21  * and will also be used to determine other sysfs names as well as the iio
22  * device number associated to a specific sensor.
23  */
24
25  /*
26   * We duplicate entries for the uncalibrated types after their respective base
27   * sensor. This is because all sensor entries must have an associated catalog entry
28   * and also because when only the uncal sensor is active it needs to take it's data
29   * from the same iio device as the base one.
30   */
31
32 struct sensor_catalog_entry_t sensor_catalog[] = {
33         DECLARE_SENSOR3("accel",      SENSOR_TYPE_ACCELEROMETER,  "x", "y", "z")
34         DECLARE_SENSOR3("anglvel",    SENSOR_TYPE_GYROSCOPE,      "x", "y", "z")
35         DECLARE_SENSOR3("magn",       SENSOR_TYPE_MAGNETIC_FIELD, "x", "y", "z")
36         DECLARE_SENSOR1("intensity",  SENSOR_TYPE_LIGHT,          "both"       )
37         DECLARE_SENSOR0("illuminance",SENSOR_TYPE_LIGHT                        )
38         DECLARE_SENSOR3("incli",      SENSOR_TYPE_ORIENTATION,    "x", "y", "z")
39         DECLARE_SENSOR4("rot",        SENSOR_TYPE_ROTATION_VECTOR,
40                                          "quat_x", "quat_y", "quat_z", "quat_w")
41         DECLARE_SENSOR0("temp",       SENSOR_TYPE_AMBIENT_TEMPERATURE          )
42         DECLARE_SENSOR0("proximity",  SENSOR_TYPE_PROXIMITY                    )
43         DECLARE_SENSOR3("anglvel",      SENSOR_TYPE_GYROSCOPE_UNCALIBRATED, "x", "y", "z")
44 };
45
46 #define CATALOG_SIZE    ARRAY_SIZE(sensor_catalog)
47
48 /* ACPI PLD (physical location of device) definitions, as used with sensors */
49
50 #define PANEL_FRONT     4
51 #define PANEL_BACK      5
52
53 /* We equate sensor handles to indices in these tables */
54
55 struct sensor_t      sensor_desc[MAX_SENSORS];  /* Android-level descriptors */
56 struct sensor_info_t sensor_info[MAX_SENSORS];  /* Internal descriptors      */
57 int sensor_count;                               /* Detected sensors          */
58
59
60 static void setup_properties_from_pld(int s, int panel, int rotation,
61                                       int num_channels)
62 {
63         /*
64          * Generate suitable order and opt_scale directives from the PLD panel
65          * and rotation codes we got. This can later be superseded by the usual
66          * properties if necessary. Eventually we'll need to replace these
67          * mechanisms by a less convoluted one, such as a 3x3 placement matrix.
68          */
69
70         int x = 1;
71         int y = 1;
72         int z = 1;
73         int xy_swap = 0;
74         int angle = rotation * 45;
75
76         /* Only deal with 3 axis chips for now */
77         if (num_channels < 3)
78                 return;
79
80         if (panel == PANEL_BACK) {
81                 /* Chip placed on the back panel ; negate x and z */
82                 x = -x;
83                 z = -z;
84         }
85
86         switch (angle) {
87                 case 90: /* 90° clockwise: negate y then swap x,y */
88                         xy_swap = 1;
89                         y = -y;
90                         break;
91
92                 case 180: /* Upside down: negate x and y */
93                         x = -x;
94                         y = -y;
95                         break;
96
97                 case 270: /* 90° counter clockwise: negate x then swap x,y */
98                         x = -x;
99                         xy_swap = 1;
100                         break;
101         }
102
103         if (xy_swap) {
104                 sensor_info[s].order[0] = 1;
105                 sensor_info[s].order[1] = 0;
106                 sensor_info[s].order[2] = 2;
107                 sensor_info[s].quirks |= QUIRK_FIELD_ORDERING;
108         }
109
110         sensor_info[s].channel[0].opt_scale = x;
111         sensor_info[s].channel[1].opt_scale = y;
112         sensor_info[s].channel[2].opt_scale = z;
113 }
114
115
116 static int is_valid_pld (int panel, int rotation)
117 {
118         if (panel != PANEL_FRONT && panel != PANEL_BACK) {
119                 ALOGW("Unhandled PLD panel spec: %d\n", panel);
120                 return 0;
121         }
122
123         /* Only deal with 90° rotations for now */
124         if (rotation < 0 || rotation > 7 || (rotation & 1)) {
125                 ALOGW("Unhandled PLD rotation spec: %d\n", rotation);
126                 return 0;
127         }
128
129         return 1;
130 }
131
132
133 static int read_pld_from_properties (int s, int* panel, int* rotation)
134 {
135         int p, r;
136
137         if (sensor_get_prop(s, "panel", &p))
138                 return -1;
139
140         if (sensor_get_prop(s, "rotation", &r))
141                 return -1;
142
143         if (!is_valid_pld(p, r))
144                 return -1;
145
146         *panel = p;
147         *rotation = r;
148
149         ALOGI("S%d PLD from properties: panel=%d, rotation=%d\n", s, p, r);
150
151         return 0;
152 }
153
154
155 static int read_pld_from_sysfs (int s, int dev_num, int* panel, int* rotation)
156 {
157         char sysfs_path[PATH_MAX];
158         int p,r;
159
160         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/panel", dev_num);
161
162         if (sysfs_read_int(sysfs_path, &p))
163                 return -1;
164
165         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/rotation", dev_num);
166
167         if (sysfs_read_int(sysfs_path, &r))
168                 return -1;
169
170         if (!is_valid_pld(p, r))
171                 return -1;
172
173         *panel = p;
174         *rotation = r;
175
176         ALOGI("S%d PLD from sysfs: panel=%d, rotation=%d\n", s, p, r);
177
178         return 0;
179 }
180
181
182 static void decode_placement_information (int dev_num, int num_channels, int s)
183 {
184         /*
185          * See if we have optional "physical location of device" ACPI tags.
186          * We're only interested in panel and rotation specifiers. Use the
187          * .panel and .rotation properties in priority, and the actual ACPI
188          * values as a second source.
189          */
190
191         int panel;
192         int rotation;
193
194         if (read_pld_from_properties(s, &panel, &rotation) &&
195                 read_pld_from_sysfs(s, dev_num, &panel, &rotation))
196                         return; /* No PLD data available */
197
198         /* Map that to field ordering and scaling mechanisms */
199         setup_properties_from_pld(s, panel, rotation, num_channels);
200 }
201
202
203 static void add_sensor (int dev_num, int catalog_index, int use_polling)
204 {
205         int s;
206         int sensor_type;
207         int retval;
208         char sysfs_path[PATH_MAX];
209         const char* prefix;
210         float scale;
211         int c;
212         float opt_scale;
213         const char* ch_name;
214         int num_channels;
215         char suffix[MAX_NAME_SIZE + 8];
216
217         if (sensor_count == MAX_SENSORS) {
218                 ALOGE("Too many sensors!\n");
219                 return;
220         }
221
222         sensor_type = sensor_catalog[catalog_index].type;
223
224         /*
225          * At this point we could check that the expected sysfs attributes are
226          * present ; that would enable having multiple catalog entries with the
227          * same sensor type, accomodating different sets of sysfs attributes.
228          */
229
230         s = sensor_count;
231
232         sensor_info[s].dev_num          = dev_num;
233         sensor_info[s].catalog_index    = catalog_index;
234
235         num_channels = sensor_catalog[catalog_index].num_channels;
236
237         if (use_polling)
238                 sensor_info[s].num_channels = 0;
239         else
240                 sensor_info[s].num_channels = num_channels;
241
242         prefix = sensor_catalog[catalog_index].tag;
243
244         /*
245          * receiving the illumination sensor calibration inputs from
246          * the Android properties and setting it within sysfs
247          */
248         if (sensor_catalog[catalog_index].type == SENSOR_TYPE_LIGHT) {
249                 retval = sensor_get_illumincalib(s);
250                 if (retval > 0) {
251                         sprintf(sysfs_path, ILLUMINATION_CALIBPATH, dev_num);
252                         sysfs_write_int(sysfs_path, retval);
253                 }
254         }
255
256         /* Read name attribute, if available */
257         sprintf(sysfs_path, NAME_PATH, dev_num);
258         sysfs_read_str(sysfs_path, sensor_info[s].internal_name, MAX_NAME_SIZE);
259
260         /* See if we have general offsets and scale values for this sensor */
261
262         sprintf(sysfs_path, SENSOR_OFFSET_PATH, dev_num, prefix);
263         sysfs_read_float(sysfs_path, &sensor_info[s].offset);
264
265         sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
266         if (!sysfs_read_float(sysfs_path, &scale)) {
267                 sensor_info[s].scale = scale;
268                 ALOGI("Scale path:%s scale:%f dev_num:%d\n",
269                                         sysfs_path, scale, dev_num);
270         } else {
271                 sensor_info[s].scale = 1;
272
273                 /* Read channel specific scale if any*/
274                 for (c = 0; c < num_channels; c++)
275                 {
276                         sprintf(sysfs_path, BASE_PATH "%s", dev_num,
277                            sensor_catalog[catalog_index].channel[c].scale_path);
278
279                         if (!sysfs_read_float(sysfs_path, &scale)) {
280                                 sensor_info[s].channel[c].scale = scale;
281                                 sensor_info[s].scale = 0;
282
283                                 ALOGI(  "Scale path:%s "
284                                         "channel scale:%f dev_num:%d\n",
285                                         sysfs_path, scale, dev_num);
286                         }
287                 }
288         }
289
290         /* Set default scaling - if num_channels is zero, we have one channel */
291
292         sensor_info[s].channel[0].opt_scale = 1;
293
294         for (c = 1; c < num_channels; c++)
295                 sensor_info[s].channel[c].opt_scale = 1;
296
297         /* Read ACPI _PLD attributes for this sensor, if there are any */
298         decode_placement_information(dev_num, num_channels, s);
299
300         /*
301          * See if we have optional correction scaling factors for each of the
302          * channels of this sensor. These would be expressed using properties
303          * like iio.accel.y.opt_scale = -1. In case of a single channel we also
304          * support things such as iio.temp.opt_scale = -1. Note that this works
305          * for all types of sensors, and whatever transform is selected, on top
306          * of any previous conversions.
307          */
308
309         if (num_channels) {
310                 for (c = 0; c < num_channels; c++) {
311                         ch_name = sensor_catalog[catalog_index].channel[c].name;
312                         sprintf(suffix, "%s.opt_scale", ch_name);
313                         if (!sensor_get_fl_prop(s, suffix, &opt_scale))
314                                 sensor_info[s].channel[c].opt_scale = opt_scale;
315                 }
316         } else
317                 if (!sensor_get_fl_prop(s, "opt_scale", &opt_scale))
318                         sensor_info[s].channel[0].opt_scale = opt_scale;
319
320         /* Initialize Android-visible descriptor */
321         sensor_desc[s].name             = sensor_get_name(s);
322         sensor_desc[s].vendor           = sensor_get_vendor(s);
323         sensor_desc[s].version          = sensor_get_version(s);
324         sensor_desc[s].handle           = s;
325         sensor_desc[s].type             = sensor_type;
326         sensor_desc[s].maxRange         = sensor_get_max_range(s);
327         sensor_desc[s].resolution       = sensor_get_resolution(s);
328         sensor_desc[s].power            = sensor_get_power(s);
329         sensor_desc[s].stringType = sensor_get_string_type(s);
330
331         /* None of our supported sensors requires a special permission.
332         *  If this will be the case we should implement a sensor_get_perm
333         */
334         sensor_desc[s].requiredPermission = "";
335         sensor_desc[s].flags = sensor_get_flags(s);
336         sensor_desc[s].minDelay = sensor_get_min_delay(s);
337         sensor_desc[s].maxDelay = sensor_get_max_delay(s);
338         ALOGI("Sensor %d (%s) type(%d) minD(%d) maxD(%d) flags(%2.2x)\n",
339                 s, sensor_info[s].friendly_name, sensor_desc[s].type,
340                 sensor_desc[s].minDelay, sensor_desc[s].maxDelay, sensor_desc[s].flags);
341
342         /* We currently do not implement batching when we'll so
343          * these should be overriden appropriately
344          */
345         sensor_desc[s].fifoReservedEventCount = 0;
346         sensor_desc[s].fifoMaxEventCount = 0;
347
348         if (sensor_info[s].internal_name[0] == '\0') {
349                 /*
350                  * In case the kernel-mode driver doesn't expose a name for
351                  * the iio device, use (null)-dev%d as the trigger name...
352                  * This can be considered a kernel-mode iio driver bug.
353                  */
354                 ALOGW("Using null trigger on sensor %d (dev %d)\n", s, dev_num);
355                 strcpy(sensor_info[s].internal_name, "(null)");
356         }
357
358         if (sensor_type == SENSOR_TYPE_GYROSCOPE ||
359                 sensor_type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
360                 struct gyro_cal* calibration_data = calloc(1, sizeof(struct gyro_cal));
361                 sensor_info[s].cal_data = calibration_data;
362                 denoise_median_init(s, 7, 3);
363         }
364
365         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD) {
366                 struct compass_cal* calibration_data = calloc(1, sizeof(struct compass_cal));
367                 sensor_info[s].cal_data = calibration_data;
368         }
369
370         /* Select one of the available sensor sample processing styles */
371         select_transform(s);
372
373         /* Initialize fields related to sysfs reads offloading */
374         sensor_info[s].thread_data_fd[0]  = -1;
375         sensor_info[s].thread_data_fd[1]  = -1;
376         sensor_info[s].acquisition_thread = -1;
377
378         sensor_info[s].meta_data_pending = 0;
379
380         /* Check if we have a special ordering property on this sensor */
381         if (sensor_get_order(s, sensor_info[s].order))
382                 sensor_info[s].quirks |= QUIRK_FIELD_ORDERING;
383
384         sensor_count++;
385 }
386
387
388 static void discover_poll_sensors (int dev_num, char map[CATALOG_SIZE])
389 {
390         char base_dir[PATH_MAX];
391         DIR *dir;
392         struct dirent *d;
393         unsigned int i;
394         int c;
395
396         memset(map, 0, CATALOG_SIZE);
397
398         snprintf(base_dir, sizeof(base_dir), BASE_PATH, dev_num);
399
400         dir = opendir(base_dir);
401         if (!dir) {
402                 return;
403         }
404
405         /* Enumerate entries in this iio device's base folder */
406
407         while ((d = readdir(dir))) {
408                 if (!strcmp(d->d_name, ".") || !strcmp(d->d_name, ".."))
409                         continue;
410
411                 /* If the name matches a catalog entry, flag it */
412                 for (i = 0; i<CATALOG_SIZE; i++) {
413                 /* This will be added separately later */
414                 if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
415                         continue;
416                 for (c=0; c<sensor_catalog[i].num_channels; c++)
417                         if (!strcmp(d->d_name,sensor_catalog[i].channel[c].raw_path) ||
418                                 !strcmp(d->d_name, sensor_catalog[i].channel[c].input_path)) {
419                                         map[i] = 1;
420                                         break;
421                         }
422                 }
423         }
424
425         closedir(dir);
426 }
427
428
429 static void discover_trig_sensors (int dev_num, char map[CATALOG_SIZE])
430 {
431         char scan_elem_dir[PATH_MAX];
432         DIR *dir;
433         struct dirent *d;
434         unsigned int i;
435
436         memset(map, 0, CATALOG_SIZE);
437
438         /* Enumerate entries in this iio device's scan_elements folder */
439
440         snprintf(scan_elem_dir, sizeof(scan_elem_dir), CHANNEL_PATH, dev_num);
441
442         dir = opendir(scan_elem_dir);
443         if (!dir) {
444                 return;
445         }
446
447         while ((d = readdir(dir))) {
448                 if (!strcmp(d->d_name, ".") || !strcmp(d->d_name, ".."))
449                         continue;
450
451                 /* Compare en entry to known ones and create matching sensors */
452
453                 for (i = 0; i<CATALOG_SIZE; i++) {
454                         if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED)
455                                 continue;
456                         if (!strcmp(d->d_name,
457                                         sensor_catalog[i].channel[0].en_path)) {
458                                         map[i] = 1;
459                                         break;
460                         }
461                 }
462         }
463
464         closedir(dir);
465 }
466
467
468 static void orientation_sensor_check(void)
469 {
470         /*
471          * If we have accel + gyro + magn but no rotation vector sensor,
472          * SensorService replaces the HAL provided orientation sensor by the
473          * AOSP version... provided we report one. So initialize a virtual
474          * orientation sensor with zero values, which will get replaced. See:
475          * frameworks/native/services/sensorservice/SensorService.cpp, looking
476          * for SENSOR_TYPE_ROTATION_VECTOR; that code should presumably fall
477          * back to mUserSensorList.add instead of replaceAt, but accommodate it.
478          */
479
480         int i;
481         int has_acc = 0;
482         int has_gyr = 0;
483         int has_mag = 0;
484         int has_rot = 0;
485         int has_ori = 0;
486         int catalog_size = CATALOG_SIZE;
487
488         for (i=0; i<sensor_count; i++)
489                 switch (sensor_catalog[sensor_info[i].catalog_index].type) {
490                         case SENSOR_TYPE_ACCELEROMETER:
491                                 has_acc = 1;
492                                 break;
493                         case SENSOR_TYPE_GYROSCOPE:
494                                 has_gyr = 1;
495                                 break;
496                         case SENSOR_TYPE_MAGNETIC_FIELD:
497                                 has_mag = 1;
498                                 break;
499                         case SENSOR_TYPE_ORIENTATION:
500                                 has_ori = 1;
501                                 break;
502                         case SENSOR_TYPE_ROTATION_VECTOR:
503                                 has_rot = 1;
504                                 break;
505                 }
506
507         if (has_acc && has_gyr && has_mag && !has_rot && !has_ori)
508                 for (i=0; i<catalog_size; i++)
509                         if (sensor_catalog[i].type == SENSOR_TYPE_ORIENTATION) {
510                                 ALOGI("Adding placeholder orientation sensor");
511                                 add_sensor(0, i, 1);
512                                 break;
513                         }
514 }
515
516 static int is_continuous (int s)
517 {
518         /* Is sensor s of the continous trigger type kind? */
519
520         int catalog_index = sensor_info[s].catalog_index;
521         int sensor_type = sensor_catalog[catalog_index].type;
522
523         switch (sensor_type) {
524                 case SENSOR_TYPE_ACCELEROMETER:
525                 case SENSOR_TYPE_MAGNETIC_FIELD:
526                 case SENSOR_TYPE_ORIENTATION:
527                 case SENSOR_TYPE_GYROSCOPE:
528                 case SENSOR_TYPE_PRESSURE:
529                 case SENSOR_TYPE_GRAVITY:
530                 case SENSOR_TYPE_LINEAR_ACCELERATION:
531                 case SENSOR_TYPE_ROTATION_VECTOR:
532                 case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
533                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
534                 case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
535                         return 1;
536
537                 default:
538                         return 0;
539         }
540 }
541
542
543 static void propose_new_trigger (int s, char trigger_name[MAX_NAME_SIZE],
544                                  int sensor_name_len)
545 {
546         /*
547          * A new trigger has been enumerated for this sensor. Check if it makes
548          * sense to use it over the currently selected one, and select it if it
549          * is so. The format is something like sensor_name-dev0.
550          */
551
552         const char *suffix = trigger_name + sensor_name_len + 1;
553
554         /* dev is the default, and lowest priority; no need to update */
555         if (!memcmp(suffix, "dev", 3))
556                 return;
557
558         /*
559          * If we found any-motion trigger, record it and force the sensor to
560          * automatic intermediate event generation mode, at least if it is of a
561          * continuously firing sensor type.
562          */
563
564         if (!memcmp(suffix, "any-motion-", 11) && is_continuous(s)) {
565                 /* Update the any-motion trigger name to use for this sensor */
566                 strcpy(sensor_info[s].motion_trigger_name, trigger_name);
567                 return;
568         }
569
570         /* Update the initial trigger name to use for this sensor */
571         strcpy(sensor_info[s].init_trigger_name, trigger_name);
572 }
573
574
575 static void update_sensor_matching_trigger_name (char name[MAX_NAME_SIZE])
576 {
577         /*
578          * Check if we have a sensor matching the specified trigger name,
579          * which should then begin with the sensor name, and end with a number
580          * equal to the iio device number the sensor is associated to. If so,
581          * update the string we're going to write to trigger/current_trigger
582          * when enabling this sensor.
583          */
584
585         int s;
586         int dev_num;
587         int len;
588         char* cursor;
589         int sensor_name_len;
590
591         /*
592          * First determine the iio device number this trigger refers to. We
593          * expect the last few characters (typically one) of the trigger name
594          * to be this number, so perform a few checks.
595          */
596         len = strnlen(name, MAX_NAME_SIZE);
597
598         if (len < 2)
599                 return;
600
601         cursor = name + len - 1;
602
603         if (!isdigit(*cursor))
604                 return;
605
606         while (len && isdigit(*cursor)) {
607                 len--;
608                 cursor--;
609         }
610
611         dev_num = atoi(cursor+1);
612
613         /* See if that matches a sensor */
614         for (s=0; s<sensor_count; s++)
615                 if (sensor_info[s].dev_num == dev_num) {
616
617                         sensor_name_len = strlen(sensor_info[s].internal_name);
618
619                         if (!strncmp(name,
620                                      sensor_info[s].internal_name,
621                                      sensor_name_len))
622                                 /* Switch to new trigger if appropriate */
623                                 propose_new_trigger(s, name, sensor_name_len);
624                 }
625 }
626
627
628 static void setup_trigger_names (void)
629 {
630         char filename[PATH_MAX];
631         char buf[MAX_NAME_SIZE];
632         int len;
633         int s;
634         int trigger;
635         int ret;
636
637         /* By default, use the name-dev convention that most drivers use */
638         for (s=0; s<sensor_count; s++)
639                 snprintf(sensor_info[s].init_trigger_name,
640                          MAX_NAME_SIZE, "%s-dev%d",
641                          sensor_info[s].internal_name, sensor_info[s].dev_num);
642
643         /* Now have a look to /sys/bus/iio/devices/triggerX entries */
644
645         for (trigger=0; trigger<MAX_TRIGGERS; trigger++) {
646
647                 snprintf(filename, sizeof(filename), TRIGGER_FILE_PATH,trigger);
648
649                 ret = sysfs_read_str(filename, buf, sizeof(buf));
650
651                 if (ret < 0)
652                         break;
653
654                 /* Record initial and any-motion triggers names */
655                 update_sensor_matching_trigger_name(buf);
656         }
657
658         for (s=0; s<sensor_count; s++)
659                 if (sensor_info[s].num_channels) {
660                         ALOGI(  "Sensor %d (%s) default trigger: %s\n", s,
661                                 sensor_info[s].friendly_name,
662                                 sensor_info[s].init_trigger_name);
663                         if (sensor_info[s].motion_trigger_name[0])
664                                 ALOGI(  "Sensor %d (%s) motion trigger: %s\n",
665                                 s, sensor_info[s].friendly_name,
666                                 sensor_info[s].motion_trigger_name);
667                 }
668 }
669
670 static void uncalibrated_gyro_check (void)
671 {
672         unsigned int has_gyr = 0;
673         unsigned int dev_num;
674         int i, c;
675         unsigned int is_poll_sensor;
676         char buf[MAX_NAME_SIZE];
677
678         int cal_idx = 0;
679         int uncal_idx = 0;
680         int catalog_size = CATALOG_SIZE; /* Avoid GCC sign comparison warning */
681
682         /* Checking to see if we have a gyroscope - we can only have uncal if we have the base sensor */
683         for (i=0; i < sensor_count; i++)
684                 if(sensor_catalog[sensor_info[i].catalog_index].type == SENSOR_TYPE_GYROSCOPE)
685                 {
686                         has_gyr=1;
687                         dev_num = sensor_info[i].dev_num;
688                         is_poll_sensor = !sensor_info[i].num_channels;
689                         cal_idx = i;
690                         break;
691                 }
692
693         /*
694          * If we have a gyro we can add the uncalibrated sensor of the same type and
695          * on the same dev_num. We will save indexes for easy finding and also save the
696          * channel specific information.
697          */
698         if (has_gyr)
699                 for (i=0; i<catalog_size; i++)
700                         if (sensor_catalog[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
701                                 add_sensor(dev_num, i, is_poll_sensor);
702
703                                 uncal_idx = sensor_count - 1; /* Just added uncalibrated sensor */
704
705                                 /* Similar to build_sensor_report_maps */
706                                 for (c = 0; c < sensor_info[uncal_idx].num_channels; c++)
707                                 {
708                                         memcpy( &(sensor_info[uncal_idx].channel[c].type_spec),
709                                                 &(sensor_info[cal_idx].channel[c].type_spec),
710                                                 sizeof(sensor_info[uncal_idx].channel[c].type_spec));
711                                         sensor_info[uncal_idx].channel[c].type_info = sensor_info[cal_idx].channel[c].type_info;
712                                         sensor_info[uncal_idx].channel[c].offset    = sensor_info[cal_idx].channel[c].offset;
713                                         sensor_info[uncal_idx].channel[c].size      = sensor_info[cal_idx].channel[c].size;
714                                 }
715                                 sensor_info[uncal_idx].pair_idx = cal_idx;
716                                 sensor_info[cal_idx].pair_idx = uncal_idx;
717                                 strncpy(sensor_info[uncal_idx].init_trigger_name,
718                                         sensor_info[cal_idx].init_trigger_name,
719                                         MAX_NAME_SIZE);
720                                 strncpy(sensor_info[uncal_idx].motion_trigger_name,
721                                         sensor_info[cal_idx].motion_trigger_name,
722                                         MAX_NAME_SIZE);
723
724                                 /* Add "Uncalibrated " prefix to sensor name */
725                                 strcpy(buf, sensor_info[cal_idx].friendly_name);
726                                 snprintf(sensor_info[uncal_idx].friendly_name,
727                                          MAX_NAME_SIZE,
728                                          "%s %s", "Uncalibrated", buf);
729                                 break;
730                         }
731 }
732
733 void enumerate_sensors (void)
734 {
735         /*
736          * Discover supported sensors and allocate control structures for them.
737          * Multiple sensors can potentially rely on a single iio device (each
738          * using their own channels). We can't have multiple sensors of the same
739          * type on the same device. In case of detection as both a poll-mode
740          * and trigger-based sensor, use the trigger usage mode.
741          */
742         char poll_sensors[CATALOG_SIZE];
743         char trig_sensors[CATALOG_SIZE];
744         int dev_num;
745         unsigned int i;
746         int trig_found;
747
748         for (dev_num=0; dev_num<MAX_DEVICES; dev_num++) {
749                 trig_found = 0;
750
751                 discover_poll_sensors(dev_num, poll_sensors);
752                 discover_trig_sensors(dev_num, trig_sensors);
753
754                 for (i=0; i<CATALOG_SIZE; i++)
755                         if (trig_sensors[i]) {
756                                 add_sensor(dev_num, i, 0);
757                                 trig_found = 1;
758                         }
759                         else
760                                 if (poll_sensors[i])
761                                         add_sensor(dev_num, i, 1);
762
763                 if (trig_found) {
764                         build_sensor_report_maps(dev_num);
765                 }
766         }
767
768         ALOGI("Discovered %d sensors\n", sensor_count);
769
770         /* Set up default - as well as custom - trigger names */
771         setup_trigger_names();
772
773         /* Make sure Android fall backs to its own orientation sensor */
774         orientation_sensor_check();
775
776         /*
777          * Create the uncalibrated counterpart to the compensated gyroscope.
778          * This is is a new sensor type in Android 4.4.
779          */
780         uncalibrated_gyro_check();
781 }
782
783
784 void delete_enumeration_data (void)
785 {
786
787         int i;
788         for (i = 0; i < sensor_count; i++)
789         switch (sensor_catalog[sensor_info[i].catalog_index].type) {
790                 case SENSOR_TYPE_MAGNETIC_FIELD:
791                         if (sensor_info[i].cal_data != NULL) {
792                                 free(sensor_info[i].cal_data);
793                                 sensor_info[i].cal_data = NULL;
794                                 sensor_info[i].cal_level = 0;
795                         }
796                         break;
797                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
798                 case SENSOR_TYPE_GYROSCOPE:
799                         if (sensor_info[i].cal_data != NULL) {
800                                 free(sensor_info[i].cal_data);
801                                 sensor_info[i].cal_data = NULL;
802                                 sensor_info[i].cal_level = 0;
803                         }
804                         break;
805                         if (sensor_info[i].filter != NULL) {
806                                 denoise_median_release(i);
807                         }
808                 default:
809                         break;
810         }
811         /* Reset sensor count */
812         sensor_count = 0;
813 }
814
815
816 int get_sensors_list(   struct sensors_module_t* module,
817                         struct sensor_t const** list)
818 {
819         *list = sensor_desc;
820         return sensor_count;
821 }
822