OSDN Git Service

Merge remote-tracking branch 'origin/abt/topic/gmin/l-dev/sensors/master' into mr1
[android-x86/hardware-intel-libsensors.git] / enumeration.c
1 /*
2  * Copyright (C) 2014-2015 Intel Corporation.
3  */
4
5 #include <ctype.h>
6 #include <dirent.h>
7 #include <stdlib.h>
8 #include <fcntl.h>
9 #include <utils/Log.h>
10 #include <hardware/sensors.h>
11 #include "enumeration.h"
12 #include "description.h"
13 #include "utils.h"
14 #include "transform.h"
15 #include "description.h"
16 #include "control.h"
17 #include "calibration.h"
18
19 /*
20  * This table maps syfs entries in scan_elements directories to sensor types,
21  * and will also be used to determine other sysfs names as well as the iio
22  * device number associated to a specific sensor.
23  */
24
25  /*
26   * We duplicate entries for the uncalibrated types after their respective base
27   * sensor. This is because all sensor entries must have an associated catalog entry
28   * and also because when only the uncal sensor is active it needs to take it's data
29   * from the same iio device as the base one.
30   */
31
32 sensor_catalog_entry_t sensor_catalog[] = {
33         {
34                 .tag            = "accel",
35                 .type           = SENSOR_TYPE_ACCELEROMETER,
36                 .num_channels   = 3,
37                 .is_virtual     = 0,
38                 .channel = {
39                         { DECLARE_NAMED_CHANNEL("accel", "x") },
40                         { DECLARE_NAMED_CHANNEL("accel", "y") },
41                         { DECLARE_NAMED_CHANNEL("accel", "z") },
42                 },
43         },
44         {
45                 .tag            = "anglvel",
46                 .type           = SENSOR_TYPE_GYROSCOPE,
47                 .num_channels   = 3,
48                 .is_virtual     = 0,
49                 .channel = {
50                         { DECLARE_NAMED_CHANNEL("anglvel", "x") },
51                         { DECLARE_NAMED_CHANNEL("anglvel", "y") },
52                         { DECLARE_NAMED_CHANNEL("anglvel", "z") },
53                 },
54         },
55         {
56                 .tag            = "magn",
57                 .type           = SENSOR_TYPE_MAGNETIC_FIELD,
58                 .num_channels   = 3,
59                 .is_virtual     = 0,
60                 .channel = {
61                         { DECLARE_NAMED_CHANNEL("magn", "x") },
62                         { DECLARE_NAMED_CHANNEL("magn", "y") },
63                         { DECLARE_NAMED_CHANNEL("magn", "z") },
64                 },
65         },
66         {
67                 .tag            = "intensity",
68                 .type           = SENSOR_TYPE_LIGHT,
69                 .num_channels   = 1,
70                 .is_virtual     = 0,
71                 .channel = {
72                         { DECLARE_NAMED_CHANNEL("intensity", "both") },
73                 },
74         },
75         {
76                 .tag            = "illuminance",
77                 .type           = SENSOR_TYPE_LIGHT,
78                 .num_channels   = 1,
79                 .is_virtual     = 0,
80                 .channel = {
81                         { DECLARE_GENERIC_CHANNEL("illuminance") },
82                 },
83         },
84         {
85                 .tag            = "incli",
86                 .type           = SENSOR_TYPE_ORIENTATION,
87                 .num_channels   = 3,
88                 .is_virtual     = 0,
89                 .channel = {
90                         { DECLARE_NAMED_CHANNEL("incli", "x") },
91                         { DECLARE_NAMED_CHANNEL("incli", "y") },
92                         { DECLARE_NAMED_CHANNEL("incli", "z") },
93                 },
94         },
95         {
96                 .tag            = "rot",
97                 .type           = SENSOR_TYPE_ROTATION_VECTOR,
98                 .num_channels   = 4,
99                 .is_virtual     = 0,
100                 .channel = {
101                         { DECLARE_NAMED_CHANNEL("rot", "quat_x") },
102                         { DECLARE_NAMED_CHANNEL("rot", "quat_y") },
103                         { DECLARE_NAMED_CHANNEL("rot", "quat_z") },
104                         { DECLARE_NAMED_CHANNEL("rot", "quat_w") },
105                 },
106         },
107         {
108                 .tag            = "temp",
109                 .type           = SENSOR_TYPE_AMBIENT_TEMPERATURE,
110                 .num_channels   = 1,
111                 .is_virtual     = 0,
112                 .channel = {
113                         { DECLARE_GENERIC_CHANNEL("temp") },
114                 },
115         },
116         {
117                 .tag            = "proximity",
118                 .type           = SENSOR_TYPE_PROXIMITY,
119                 .num_channels   = 1,
120                 .is_virtual     = 0,
121                 .channel = {
122                         { DECLARE_GENERIC_CHANNEL("proximity") },
123                 },
124         },
125         {
126                 .tag            = "",
127                 .type           = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED,
128                 .num_channels   = 0,
129                 .is_virtual     = 1,
130                 .channel = {
131                         { DECLARE_GENERIC_CHANNEL("") },
132                 },
133
134         },
135         {
136                 .tag            = "",
137                 .type           = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED,
138                 .num_channels   = 0,
139                 .is_virtual     = 1,
140                 .channel = {
141                         { DECLARE_GENERIC_CHANNEL("") },
142                 },
143         },
144         {
145                 .tag            = "steps",
146                 .type           = SENSOR_TYPE_STEP_COUNTER,
147                 .num_channels   = 1,
148                 .is_virtual     = 0,
149                 .channel = {
150                         { DECLARE_GENERIC_CHANNEL("steps") },
151                 },
152         },
153         {
154                 .tag            = "steps",
155                 .type           = SENSOR_TYPE_STEP_DETECTOR,
156                 .num_channels   = 1,
157                 .is_virtual     = 0,
158                 .channel = {
159                         {
160                                 DECLARE_VOID_CHANNEL("steps")
161                                 .num_events = 1,
162                                 .event = {
163                                         { DECLARE_NAMED_EVENT("steps", "change") },
164                                 },
165                         },
166                 },
167         },
168         {
169                 .tag            = "proximity",
170                 .type           = SENSOR_TYPE_PROXIMITY,
171                 .num_channels   = 4,
172                 .is_virtual     = 0,
173                 .channel = {
174                         {
175                                 DECLARE_VOID_CHANNEL("proximity0")
176                                 .num_events = 1,
177                                 .event = {
178                                         { DECLARE_EVENT("proximity0", "_", "", "", "thresh", "_", "either") },
179                                 },
180                         },
181                         {
182                                 DECLARE_VOID_CHANNEL("proximity1")
183                                 .num_events = 1,
184                                 .event = {
185                                         { DECLARE_EVENT("proximity1", "_", "", "", "thresh", "_", "either") },
186                                 },
187                         },
188                         {
189                                 DECLARE_VOID_CHANNEL("proximity2")
190                                 .num_events = 1,
191                                 .event = {
192                                         { DECLARE_EVENT("proximity2", "_", "", "", "thresh", "_", "either") },
193                                 },
194                         },
195                         {
196                                 DECLARE_VOID_CHANNEL("proximity3")
197                                 .num_events = 1,
198                                 .event = {
199                                         { DECLARE_EVENT("proximity3", "_", "", "", "thresh", "_", "either") },
200                                 },
201                         },
202                 },
203         },
204 };
205
206 unsigned int catalog_size = ARRAY_SIZE(sensor_catalog);
207
208 /* ACPI PLD (physical location of device) definitions, as used with sensors */
209
210 #define PANEL_FRONT     4
211 #define PANEL_BACK      5
212
213 /* We equate sensor handles to indices in these tables */
214
215 struct sensor_t sensor_desc[MAX_SENSORS];       /* Android-level descriptors */
216 sensor_info_t   sensor[MAX_SENSORS];            /* Internal descriptors      */
217 int             sensor_count;                   /* Detected sensors          */
218
219
220 /* if the sensor has an _en attribute, we need to enable it */
221 int get_needs_enable(int dev_num, const char *tag)
222 {
223         char sysfs_path[PATH_MAX];
224         int fd;
225
226         sprintf(sysfs_path, SENSOR_ENABLE_PATH, dev_num, tag);
227
228         fd = open(sysfs_path, O_RDWR);
229         if (fd == -1)
230                 return 0;
231
232         close(fd);
233         return 1;
234 }
235
236 static void setup_properties_from_pld (int s, int panel, int rotation,
237                                        int num_channels)
238 {
239         /*
240          * Generate suitable order and opt_scale directives from the PLD panel
241          * and rotation codes we got. This can later be superseded by the usual
242          * properties if necessary. Eventually we'll need to replace these
243          * mechanisms by a less convoluted one, such as a 3x3 placement matrix.
244          */
245
246         int x = 1;
247         int y = 1;
248         int z = 1;
249         int xy_swap = 0;
250         int angle = rotation * 45;
251
252         /* Only deal with 3 axis chips for now */
253         if (num_channels < 3)
254                 return;
255
256         if (panel == PANEL_BACK) {
257                 /* Chip placed on the back panel ; negate x and z */
258                 x = -x;
259                 z = -z;
260         }
261
262         switch (angle) {
263                 case 90: /* 90° clockwise: negate y then swap x,y */
264                         xy_swap = 1;
265                         y = -y;
266                         break;
267
268                 case 180: /* Upside down: negate x and y */
269                         x = -x;
270                         y = -y;
271                         break;
272
273                 case 270: /* 90° counter clockwise: negate x then swap x,y */
274                         x = -x;
275                         xy_swap = 1;
276                         break;
277         }
278
279         if (xy_swap) {
280                 sensor[s].order[0] = 1;
281                 sensor[s].order[1] = 0;
282                 sensor[s].order[2] = 2;
283                 sensor[s].quirks |= QUIRK_FIELD_ORDERING;
284         }
285
286         sensor[s].channel[0].opt_scale = x;
287         sensor[s].channel[1].opt_scale = y;
288         sensor[s].channel[2].opt_scale = z;
289 }
290
291
292 static int is_valid_pld (int panel, int rotation)
293 {
294         if (panel != PANEL_FRONT && panel != PANEL_BACK) {
295                 ALOGW("Unhandled PLD panel spec: %d\n", panel);
296                 return 0;
297         }
298
299         /* Only deal with 90° rotations for now */
300         if (rotation < 0 || rotation > 7 || (rotation & 1)) {
301                 ALOGW("Unhandled PLD rotation spec: %d\n", rotation);
302                 return 0;
303         }
304
305         return 1;
306 }
307
308
309 static int read_pld_from_properties (int s, int* panel, int* rotation)
310 {
311         int p, r;
312
313         if (sensor_get_prop(s, "panel", &p))
314                 return -1;
315
316         if (sensor_get_prop(s, "rotation", &r))
317                 return -1;
318
319         if (!is_valid_pld(p, r))
320                 return -1;
321
322         *panel = p;
323         *rotation = r;
324
325         ALOGI("S%d PLD from properties: panel=%d, rotation=%d\n", s, p, r);
326
327         return 0;
328 }
329
330
331 static int read_pld_from_sysfs (int s, int dev_num, int* panel, int* rotation)
332 {
333         char sysfs_path[PATH_MAX];
334         int p,r;
335
336         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/panel", dev_num);
337
338         if (sysfs_read_int(sysfs_path, &p))
339                 return -1;
340
341         sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/rotation", dev_num);
342
343         if (sysfs_read_int(sysfs_path, &r))
344                 return -1;
345
346         if (!is_valid_pld(p, r))
347                 return -1;
348
349         *panel = p;
350         *rotation = r;
351
352         ALOGI("S%d PLD from sysfs: panel=%d, rotation=%d\n", s, p, r);
353
354         return 0;
355 }
356
357
358 static void decode_placement_information (int dev_num, int num_channels, int s)
359 {
360         /*
361          * See if we have optional "physical location of device" ACPI tags.
362          * We're only interested in panel and rotation specifiers. Use the
363          * .panel and .rotation properties in priority, and the actual ACPI
364          * values as a second source.
365          */
366
367         int panel;
368         int rotation;
369
370         if (read_pld_from_properties(s, &panel, &rotation) &&
371                 read_pld_from_sysfs(s, dev_num, &panel, &rotation))
372                         return; /* No PLD data available */
373
374         /* Map that to field ordering and scaling mechanisms */
375         setup_properties_from_pld(s, panel, rotation, num_channels);
376 }
377
378
379 static void populate_descriptors (int s, int sensor_type)
380 {
381         int32_t         min_delay_us;
382         max_delay_t     max_delay_us;
383
384         /* Initialize Android-visible descriptor */
385         sensor_desc[s].name             = sensor_get_name(s);
386         sensor_desc[s].vendor           = sensor_get_vendor(s);
387         sensor_desc[s].version          = sensor_get_version(s);
388         sensor_desc[s].handle           = s;
389         sensor_desc[s].type             = sensor_type;
390
391         sensor_desc[s].maxRange         = sensor_get_max_range(s);
392         sensor_desc[s].resolution       = sensor_get_resolution(s);
393         sensor_desc[s].power            = sensor_get_power(s);
394         sensor_desc[s].stringType       = sensor_get_string_type(s);
395
396         /* None of our supported sensors requires a special permission */
397         sensor_desc[s].requiredPermission = "";
398
399         sensor_desc[s].flags = sensor_get_flags(s);
400         sensor_desc[s].minDelay = sensor_get_min_delay(s);
401         sensor_desc[s].maxDelay = sensor_get_max_delay(s);
402
403         ALOGV("Sensor %d (%s) type(%d) minD(%d) maxD(%d) flags(%2.2x)\n",
404                 s, sensor[s].friendly_name, sensor_desc[s].type,
405                 sensor_desc[s].minDelay, sensor_desc[s].maxDelay,
406                 sensor_desc[s].flags);
407
408         /* We currently do not implement batching */
409         sensor_desc[s].fifoReservedEventCount = 0;
410         sensor_desc[s].fifoMaxEventCount = 0;
411
412         min_delay_us = sensor_desc[s].minDelay;
413         max_delay_us = sensor_desc[s].maxDelay;
414
415         sensor[s].min_supported_rate = max_delay_us ? 1000000.0 / max_delay_us : 1;
416         sensor[s].max_supported_rate = min_delay_us && min_delay_us != -1 ? 1000000.0 / min_delay_us : 0;
417 }
418
419
420 static void add_virtual_sensor (int catalog_index)
421 {
422         int s;
423         int sensor_type;
424
425         if (sensor_count == MAX_SENSORS) {
426                 ALOGE("Too many sensors!\n");
427                 return;
428         }
429
430         sensor_type = sensor_catalog[catalog_index].type;
431
432         s = sensor_count;
433
434         sensor[s].is_virtual = 1;
435         sensor[s].catalog_index = catalog_index;
436         sensor[s].type          = sensor_type;
437
438         populate_descriptors(s, sensor_type);
439
440         /* Initialize fields related to sysfs reads offloading */
441         sensor[s].thread_data_fd[0]  = -1;
442         sensor[s].thread_data_fd[1]  = -1;
443         sensor[s].acquisition_thread = -1;
444
445         sensor_count++;
446 }
447
448
449 static void add_sensor (int dev_num, int catalog_index, int mode)
450 {
451         int s;
452         int sensor_type;
453         int retval;
454         char sysfs_path[PATH_MAX];
455         const char* prefix;
456         float scale;
457         int c;
458         float opt_scale;
459         const char* ch_name;
460         int num_channels;
461         char suffix[MAX_NAME_SIZE + 8];
462         int calib_bias;
463
464         if (sensor_count == MAX_SENSORS) {
465                 ALOGE("Too many sensors!\n");
466                 return;
467         }
468
469         sensor_type = sensor_catalog[catalog_index].type;
470
471         /*
472          * At this point we could check that the expected sysfs attributes are
473          * present ; that would enable having multiple catalog entries with the
474          * same sensor type, accomodating different sets of sysfs attributes.
475          */
476
477         s = sensor_count;
478
479         sensor[s].dev_num       = dev_num;
480         sensor[s].catalog_index = catalog_index;
481         sensor[s].type          = sensor_type;
482         sensor[s].mode          = mode;
483
484         num_channels = sensor_catalog[catalog_index].num_channels;
485
486         if (mode == MODE_POLL)
487                 sensor[s].num_channels = 0;
488         else
489                 sensor[s].num_channels = num_channels;
490
491         prefix = sensor_catalog[catalog_index].tag;
492
493         /*
494          * receiving the illumination sensor calibration inputs from
495          * the Android properties and setting it within sysfs
496          */
497         if (sensor_type == SENSOR_TYPE_LIGHT) {
498                 retval = sensor_get_illumincalib(s);
499                 if (retval > 0) {
500                         sprintf(sysfs_path, ILLUMINATION_CALIBPATH, dev_num);
501                         sysfs_write_int(sysfs_path, retval);
502                 }
503         }
504
505         /*
506          * See if we have optional calibration biases for each of the channels of this sensor. These would be expressed using properties like
507          * iio.accel.y.calib_bias = -1, or possibly something like iio.temp.calib_bias if the sensor has a single channel. This value gets stored in the
508          * relevant calibbias sysfs file if that file can be located and then used internally by the iio sensor driver.
509          */
510
511         if (num_channels) {
512                 for (c = 0; c < num_channels; c++) {
513                         ch_name = sensor_catalog[catalog_index].channel[c].name;
514                         sprintf(suffix, "%s.calib_bias", ch_name);
515                         if (!sensor_get_prop(s, suffix, &calib_bias) && calib_bias) {
516                                 sprintf(suffix, "%s_%s", prefix, sensor_catalog[catalog_index].channel[c].name);
517                                 sprintf(sysfs_path, SENSOR_CALIB_BIAS_PATH, dev_num, suffix);
518                                 sysfs_write_int(sysfs_path, calib_bias);
519                         }
520                 }
521         } else
522                 if (!sensor_get_prop(s, "calib_bias", &calib_bias) && calib_bias) {
523                                 sprintf(sysfs_path, SENSOR_CALIB_BIAS_PATH, dev_num, prefix);
524                                 sysfs_write_int(sysfs_path, calib_bias);
525                         }
526
527         /* Read name attribute, if available */
528         sprintf(sysfs_path, NAME_PATH, dev_num);
529         sysfs_read_str(sysfs_path, sensor[s].internal_name, MAX_NAME_SIZE);
530
531         /* See if we have general offsets and scale values for this sensor */
532
533         sprintf(sysfs_path, SENSOR_OFFSET_PATH, dev_num, prefix);
534         sysfs_read_float(sysfs_path, &sensor[s].offset);
535
536         sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
537         if (!sensor_get_fl_prop(s, "scale", &scale)) {
538                 /*
539                  * There is a chip preferred scale specified,
540                  * so try to store it in sensor's scale file
541                  */
542                 if (sysfs_write_float(sysfs_path, scale) == -1 && errno == ENOENT) {
543                         ALOGE("Failed to store scale[%g] into %s - file is missing", scale, sysfs_path);
544                         /* Store failed, try to store the scale into channel specific file */
545                         for (c = 0; c < num_channels; c++)
546                         {
547                                 sprintf(sysfs_path, BASE_PATH "%s", dev_num,
548                                         sensor_catalog[catalog_index].channel[c].scale_path);
549                                 if (sysfs_write_float(sysfs_path, scale) == -1)
550                                         ALOGE("Failed to store scale[%g] into %s", scale, sysfs_path);
551                         }
552                 }
553         }
554
555         sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
556         if (!sysfs_read_float(sysfs_path, &scale)) {
557                 sensor[s].scale = scale;
558                 ALOGV("Scale path:%s scale:%g dev_num:%d\n",
559                                         sysfs_path, scale, dev_num);
560         } else {
561                 sensor[s].scale = 1;
562
563                 /* Read channel specific scale if any*/
564                 for (c = 0; c < num_channels; c++)
565                 {
566                         sprintf(sysfs_path, BASE_PATH "%s", dev_num,
567                            sensor_catalog[catalog_index].channel[c].scale_path);
568
569                         if (!sysfs_read_float(sysfs_path, &scale)) {
570                                 sensor[s].channel[c].scale = scale;
571                                 sensor[s].scale = 0;
572
573                                 ALOGV(  "Scale path:%s "
574                                         "channel scale:%g dev_num:%d\n",
575                                         sysfs_path, scale, dev_num);
576                         }
577                 }
578         }
579
580         /* Set default scaling - if num_channels is zero, we have one channel */
581
582         sensor[s].channel[0].opt_scale = 1;
583
584         for (c = 1; c < num_channels; c++)
585                 sensor[s].channel[c].opt_scale = 1;
586
587         for (c = 0; c < num_channels; c++) {
588                 /* Check the presence of the channel's input_path */
589                 sprintf(sysfs_path, BASE_PATH "%s", dev_num,
590                         sensor_catalog[catalog_index].channel[c].input_path);
591                 sensor[s].channel[c].input_path_present = (access(sysfs_path, R_OK) != -1);
592                 /* Check the presence of the channel's raw_path */
593                 sprintf(sysfs_path, BASE_PATH "%s", dev_num,
594                         sensor_catalog[catalog_index].channel[c].raw_path);
595                 sensor[s].channel[c].raw_path_present = (access(sysfs_path, R_OK) != -1);
596         }
597
598         /* Read ACPI _PLD attributes for this sensor, if there are any */
599         decode_placement_information(dev_num, num_channels, s);
600
601         /*
602          * See if we have optional correction scaling factors for each of the
603          * channels of this sensor. These would be expressed using properties
604          * like iio.accel.y.opt_scale = -1. In case of a single channel we also
605          * support things such as iio.temp.opt_scale = -1. Note that this works
606          * for all types of sensors, and whatever transform is selected, on top
607          * of any previous conversions.
608          */
609
610         if (num_channels) {
611                 for (c = 0; c < num_channels; c++) {
612                         ch_name = sensor_catalog[catalog_index].channel[c].name;
613                         sprintf(suffix, "%s.opt_scale", ch_name);
614                         if (!sensor_get_fl_prop(s, suffix, &opt_scale))
615                                 sensor[s].channel[c].opt_scale = opt_scale;
616                 }
617         } else
618                 if (!sensor_get_fl_prop(s, "opt_scale", &opt_scale))
619                         sensor[s].channel[0].opt_scale = opt_scale;
620
621         populate_descriptors(s, sensor_type);
622
623         /* Populate the quirks array */
624         sensor_get_quirks(s);
625
626         if (sensor[s].internal_name[0] == '\0') {
627                 /*
628                  * In case the kernel-mode driver doesn't expose a name for
629                  * the iio device, use (null)-dev%d as the trigger name...
630                  * This can be considered a kernel-mode iio driver bug.
631                  */
632                 ALOGW("Using null trigger on sensor %d (dev %d)\n", s, dev_num);
633                 strcpy(sensor[s].internal_name, "(null)");
634         }
635
636         switch (sensor_type) {
637                 case SENSOR_TYPE_ACCELEROMETER:
638                         /* Only engage accelerometer bias compensation if really needed */
639                         if (sensor_get_quirks(s) & QUIRK_BIASED)
640                                 sensor[s].cal_data = calloc(1, sizeof(accel_cal_t));
641                         break;
642
643                         case SENSOR_TYPE_GYROSCOPE:
644                         sensor[s].cal_data = malloc(sizeof(gyro_cal_t));
645                         break;
646
647                 case SENSOR_TYPE_MAGNETIC_FIELD:
648                         sensor[s].cal_data = malloc(sizeof(compass_cal_t));
649                         break;
650         }
651
652         sensor[s].max_cal_level = sensor_get_cal_steps(s);
653
654         /* Select one of the available sensor sample processing styles */
655         select_transform(s);
656
657         /* Initialize fields related to sysfs reads offloading */
658         sensor[s].thread_data_fd[0]  = -1;
659         sensor[s].thread_data_fd[1]  = -1;
660         sensor[s].acquisition_thread = -1;
661
662         /* Check if we have a special ordering property on this sensor */
663         if (sensor_get_order(s, sensor[s].order))
664                 sensor[s].quirks |= QUIRK_FIELD_ORDERING;
665
666         sensor[s].needs_enable = get_needs_enable(dev_num, sensor_catalog[catalog_index].tag);
667
668         sensor_count++;
669 }
670
671 static void virtual_sensors_check (void)
672 {
673         int i;
674         int has_acc = 0;
675         int has_gyr = 0;
676         int has_mag = 0;
677         int has_rot = 0;
678         int has_ori = 0;
679         int gyro_cal_idx = 0;
680         int magn_cal_idx = 0;
681         unsigned int j;
682
683         for (i=0; i<sensor_count; i++)
684                 switch (sensor[i].type) {
685                         case SENSOR_TYPE_ACCELEROMETER:
686                                 has_acc = 1;
687                                 break;
688                         case SENSOR_TYPE_GYROSCOPE:
689                                 has_gyr = 1;
690                                 gyro_cal_idx = i;
691                                 break;
692                         case SENSOR_TYPE_MAGNETIC_FIELD:
693                                 has_mag = 1;
694                                 magn_cal_idx = i;
695                                 break;
696                         case SENSOR_TYPE_ORIENTATION:
697                                 has_ori = 1;
698                                 break;
699                         case SENSOR_TYPE_ROTATION_VECTOR:
700                                 has_rot = 1;
701                                 break;
702                 }
703
704         for (j=0; j<catalog_size; j++)
705                 switch (sensor_catalog[j].type) {
706                         /*
707                          * If we have accel + gyro + magn but no rotation vector sensor,
708                          * SensorService replaces the HAL provided orientation sensor by the
709                          * AOSP version... provided we report one. So initialize a virtual
710                          * orientation sensor with zero values, which will get replaced. See:
711                          * frameworks/native/services/sensorservice/SensorService.cpp, looking
712                          * for SENSOR_TYPE_ROTATION_VECTOR; that code should presumably fall
713                          * back to mUserSensorList.add instead of replaceAt, but accommodate it.
714                          */
715
716                         case SENSOR_TYPE_ORIENTATION:
717                                 if (has_acc && has_gyr && has_mag && !has_rot && !has_ori)
718                                         add_sensor(0, j, MODE_POLL);
719                                 break;
720                         case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
721                                 if (has_gyr) {
722                                         sensor[sensor_count].base_count = 1;
723                                         sensor[sensor_count].base[0] = gyro_cal_idx;
724                                         add_virtual_sensor(j);
725                                 }
726                                 break;
727                         case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
728                                 if (has_mag) {
729                                         sensor[sensor_count].base_count = 1;
730                                         sensor[sensor_count].base[0] = magn_cal_idx;
731                                         add_virtual_sensor(j);
732                                 }
733                                 break;
734                         default:
735                                 break;
736                 }
737 }
738
739
740 static void propose_new_trigger (int s, char trigger_name[MAX_NAME_SIZE],
741                                  int sensor_name_len)
742 {
743         /*
744          * A new trigger has been enumerated for this sensor. Check if it makes sense to use it over the currently selected one,
745          *  and select it if it is so. The format is something like sensor_name-dev0.
746          */
747
748         const char *suffix = trigger_name + sensor_name_len + 1;
749
750         /* dev is the default, and lowest priority; no need to update */
751         if (!memcmp(suffix, "dev", 3))
752                 return;
753
754         /* If we found any-motion trigger, record it */
755
756         if (!memcmp(suffix, "any-motion-", 11)) {
757                 strcpy(sensor[s].motion_trigger_name, trigger_name);
758                 return;
759         }
760
761         /*
762          * It's neither the default "dev" nor an "any-motion" one. Make sure we use this though, as we may not have any other indication of the name
763          * of the trigger to use with this sensor.
764          */
765         strcpy(sensor[s].init_trigger_name, trigger_name);
766 }
767
768
769 static void update_sensor_matching_trigger_name (char name[MAX_NAME_SIZE])
770 {
771         /*
772          * Check if we have a sensor matching the specified trigger name, which should then begin with the sensor name, and end with a number
773          * equal to the iio device number the sensor is associated to. If so, update the string we're going to write to trigger/current_trigger
774          * when enabling this sensor.
775          */
776
777         int s;
778         int dev_num;
779         int len;
780         char* cursor;
781         int sensor_name_len;
782
783         /*
784          * First determine the iio device number this trigger refers to. We expect the last few characters (typically one) of the trigger name
785          * to be this number, so perform a few checks.
786          */
787         len = strnlen(name, MAX_NAME_SIZE);
788
789         if (len < 2)
790                 return;
791
792         cursor = name + len - 1;
793
794         if (!isdigit(*cursor))
795                 return;
796
797         while (len && isdigit(*cursor)) {
798                 len--;
799                 cursor--;
800         }
801
802         dev_num = atoi(cursor+1);
803
804         /* See if that matches a sensor */
805         for (s=0; s<sensor_count; s++)
806                 if (sensor[s].dev_num == dev_num) {
807
808                         sensor_name_len = strlen(sensor[s].internal_name);
809
810                         if (!strncmp(name, sensor[s].internal_name, sensor_name_len))
811                                 /* Switch to new trigger if appropriate */
812                                 propose_new_trigger(s, name, sensor_name_len);
813                 }
814 }
815
816
817 static void setup_trigger_names (void)
818 {
819         char filename[PATH_MAX];
820         char buf[MAX_NAME_SIZE];
821         int s;
822         int trigger;
823         int ret;
824
825         /* By default, use the name-dev convention that most drivers use */
826         for (s=0; s<sensor_count; s++)
827                 snprintf(sensor[s].init_trigger_name, MAX_NAME_SIZE, "%s-dev%d", sensor[s].internal_name, sensor[s].dev_num);
828
829         /* Now have a look to /sys/bus/iio/devices/triggerX entries */
830
831         for (trigger=0; trigger<MAX_TRIGGERS; trigger++) {
832
833                 snprintf(filename, sizeof(filename), TRIGGER_FILE_PATH,trigger);
834
835                 ret = sysfs_read_str(filename, buf, sizeof(buf));
836
837                 if (ret < 0)
838                         break;
839
840                 /* Record initial and any-motion triggers names */
841                 update_sensor_matching_trigger_name(buf);
842         }
843
844         /*
845          * Certain drivers expose only motion triggers even though they should be continous. For these, use the default trigger name as the motion
846          * trigger. The code generating intermediate events is dependent on motion_trigger_name being set to a non empty string.
847          */
848
849         for (s=0; s<sensor_count; s++)
850                 if ((sensor[s].quirks & QUIRK_TERSE_DRIVER) && sensor[s].motion_trigger_name[0] == '\0')
851                         strcpy(sensor[s].motion_trigger_name, sensor[s].init_trigger_name);
852
853         for (s=0; s<sensor_count; s++)
854                 if (sensor[s].mode == MODE_TRIGGER) {
855                         ALOGI("Sensor %d (%s) default trigger: %s\n", s, sensor[s].friendly_name, sensor[s].init_trigger_name);
856                         if (sensor[s].motion_trigger_name[0])
857                                 ALOGI("Sensor %d (%s) motion trigger: %s\n", s, sensor[s].friendly_name, sensor[s].motion_trigger_name);
858                 }
859 }
860
861 void enumerate_sensors (void)
862 {
863         /*
864          * Discover supported sensors and allocate control structures for them. Multiple sensors can potentially rely on a single iio device (each
865          * using their own channels). We can't have multiple sensors of the same type on the same device. In case of detection as both a poll-mode
866          * and trigger-based sensor, use the trigger usage mode.
867          */
868         char poll_sensors[catalog_size];
869         char trig_sensors[catalog_size];
870         char event_sensors[catalog_size];
871         int dev_num;
872         unsigned int i;
873         int trig_found;
874
875         for (dev_num=0; dev_num<MAX_DEVICES; dev_num++) {
876                 trig_found = 0;
877
878                 discover_sensors(dev_num, BASE_PATH, poll_sensors, check_poll_sensors);
879                 discover_sensors(dev_num, CHANNEL_PATH, trig_sensors, check_trig_sensors);
880                 discover_sensors(dev_num, EVENTS_PATH, event_sensors, check_event_sensors);
881
882                 for (i=0; i<catalog_size; i++) {
883                         if (event_sensors[i]) {
884                                 add_sensor(dev_num, i, MODE_EVENT);
885                                 continue;
886                         }
887                         if (trig_sensors[i]) {
888                                 add_sensor(dev_num, i, MODE_TRIGGER);
889                                 trig_found = 1;
890                                 continue;
891                         }
892                         if (poll_sensors[i]) {
893                                 add_sensor(dev_num, i, MODE_POLL);
894                                 continue;
895                         }
896                 }
897
898                 if (trig_found)
899                         build_sensor_report_maps(dev_num);
900         }
901
902         ALOGI("Discovered %d sensors\n", sensor_count);
903
904         /* Set up default - as well as custom - trigger names */
905         setup_trigger_names();
906
907         virtual_sensors_check();
908 }
909
910
911 void delete_enumeration_data (void)
912 {
913         int i;
914         for (i = 0; i < sensor_count; i++)
915                 if (sensor[i].cal_data) {
916                         free(sensor[i].cal_data);
917                         sensor[i].cal_data = NULL;
918                         sensor[i].cal_level = 0;
919                 }
920
921         /* Reset sensor count */
922         sensor_count = 0;
923 }
924
925
926 int get_sensors_list (__attribute__((unused)) struct sensors_module_t* module,
927                       struct sensor_t const** list)
928 {
929         *list = sensor_desc;
930         return sensor_count;
931 }
932