OSDN Git Service

Merge remote-tracking branch 'origin/abt/topic/gmin/kitkat/sensors' into gmin/kitkat...
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12 #include "utils.h"
13 #include "calibration.h"
14
15 /*----------------------------------------------------------------------------*/
16
17 /* Macros related to Intel Sensor Hub */
18
19 #define GRAVITY 9.80665f
20
21 /* 720 LSG = 1G */
22 #define LSG                         (1024.0f)
23 #define NUMOFACCDATA                (8.0f)
24
25 /* conversion of acceleration data to SI units (m/s^2) */
26 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
27 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
28 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
30
31 /* conversion of magnetic data to uT units */
32 #define CONVERT_M                   (1.0f/6.6f)
33 #define CONVERT_M_X                 (-CONVERT_M)
34 #define CONVERT_M_Y                 (-CONVERT_M)
35 #define CONVERT_M_Z                 (CONVERT_M)
36
37 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
38
39 /* conversion of orientation data to degree units */
40 #define CONVERT_O                   (1.0f/64.0f)
41 #define CONVERT_O_A                 (CONVERT_O)
42 #define CONVERT_O_P                 (CONVERT_O)
43 #define CONVERT_O_R                 (-CONVERT_O)
44
45 /*conversion of gyro data to SI units (radian/sec) */
46 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
47 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
48 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
49 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
50
51 #define BIT(x) (1 << (x))
52
53 inline unsigned int set_bit_range(int start, int end)
54 {
55     int i;
56     unsigned int value = 0;
57
58     for (i = start; i < end; ++i)
59         value |= BIT(i);
60     return value;
61 }
62
63 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
64 {
65     int divider=1;
66     int i;
67     float sample;
68     int mul = 1.0;
69
70     value = value & set_bit_range(0, size*8);
71     if (value & BIT(size*8-1)) {
72         value =  ((1LL << (size*8)) - value);
73         mul = -1.0;
74     }
75     sample = value * 1.0;
76     if (exponent < 0) {
77         exponent = abs(exponent);
78         for (i = 0; i < exponent; ++i) {
79             divider = divider*10;
80         }
81         return mul * sample/divider;
82     } else {
83         return mul * sample * pow(10.0, exponent);
84     }
85 }
86
87 // Platform sensor orientation
88 #define DEF_ORIENT_ACCEL_X                   -1
89 #define DEF_ORIENT_ACCEL_Y                   -1
90 #define DEF_ORIENT_ACCEL_Z                   -1
91
92 #define DEF_ORIENT_GYRO_X                   1
93 #define DEF_ORIENT_GYRO_Y                   1
94 #define DEF_ORIENT_GYRO_Z                   1
95
96 // G to m/s2
97 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
98 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
99                                         convert_from_vtf_format(s,d,x)*GRAVITY)
100 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104
105 // Degree/sec to radian/sec
106 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
107                                         convert_from_vtf_format(s,d,x) * \
108                                         ((float)M_PI/180.0f))
109 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
110                                         convert_from_vtf_format(s,d,x) * \
111                                         ((float)M_PI/180.0f))
112 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
113                                         convert_from_vtf_format(s,d,x) * \
114                                         ((float)M_PI/180.0f))
115
116 // Milli gauss to micro tesla
117 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
118 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120
121
122 /*----------------------------------------------------------------------------*/
123
124 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
125 {
126         uint16_t u16;
127         uint32_t u32;
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131
132         u64 = 0;
133
134         if (type->endianness == 'b')
135                 for (i=0; i<type->storagebits/8; i++)
136                         u64 = (u64 << 8) | sample[i];
137         else
138                 for (i=type->storagebits/8 - 1; i>=0; i--)
139                         u64 = (u64 << 8) | sample[i];
140
141         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
142
143         if (type->sign == 'u')
144                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
145
146         switch (type->realbits) {
147                 case 8:
148                         return (int64_t) (int8_t) u64;
149
150                 case 12:
151                         return (int64_t)  (u64 >>  11) ?
152                                         (((int64_t)-1) ^ 0xfff) | u64 : u64;
153
154                 case 16:
155                         return (int64_t) (int16_t) u64;
156
157                 case 32:
158                         return (int64_t) (int32_t) u64;
159
160                 case 64:
161                         return (int64_t) u64;
162         }
163
164         ALOGE("Unhandled sample storage size\n");
165         return 0;
166 }
167
168
169 static void finalize_sample_default(int s, struct sensors_event_t* data)
170 {
171         int i           = sensor_info[s].catalog_index;
172         int sensor_type = sensor_catalog[i].type;
173
174         switch (sensor_type) {
175                 case SENSOR_TYPE_ACCELEROMETER:
176                         break;
177
178                 case SENSOR_TYPE_MAGNETIC_FIELD:
179                         calibrate_compass (data, &sensor_info[s], get_timestamp());
180                         break;
181
182                 case SENSOR_TYPE_GYROSCOPE:
183                         calibrate_gyro(data, &sensor_info[s]);
184                         break;
185
186                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
187                 case SENSOR_TYPE_TEMPERATURE:
188                         /* Only keep two decimals for temperature readings */
189                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
190                         break;
191
192         }
193 }
194
195
196 static float transform_sample_default(int s, int c, unsigned char* sample_data)
197 {
198         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
199         int64_t              s64 = sample_as_int64(sample_data, sample_type);
200         float scale = sensor_info[s].scale ?
201                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
202
203         /* In case correction has been requested using properties, apply it */
204         scale *= sensor_info[s].channel[c].opt_scale;
205
206         /* Apply default scaling rules */
207         return (sensor_info[s].offset + s64) * scale;
208 }
209
210
211 static void finalize_sample_ISH(int s, struct sensors_event_t* data)
212 {
213         int i           = sensor_info[s].catalog_index;
214         int sensor_type = sensor_catalog[i].type;
215         float pitch, roll, yaw;
216
217         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
218
219                 pitch = data->data[0];
220                 roll = data->data[1];
221                 yaw = data->data[2];
222
223                 data->data[0] = 360.0 - yaw;
224                 data->data[1] = -pitch;
225                 data->data[2] = -roll;
226         }
227 }
228
229
230 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
231 {
232         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
233         int val         = (int) sample_as_int64(sample_data, sample_type);
234         int i           = sensor_info[s].catalog_index;
235         int sensor_type = sensor_catalog[i].type;
236         float correction;
237         int data_bytes  = (sample_type->realbits)/8;
238         int exponent    = sensor_info[s].offset;
239
240         /* In case correction has been requested using properties, apply it */
241         correction = sensor_info[s].channel[c].opt_scale;
242
243         switch (sensor_type) {
244                 case SENSOR_TYPE_ACCELEROMETER:
245                         switch (c) {
246                                 case 0:
247                                         return  correction *
248                                                 CONVERT_A_G_VTF16E14_X(
249                                                 data_bytes, exponent, val);
250
251                                 case 1:
252                                         return  correction *
253                                                 CONVERT_A_G_VTF16E14_Y(
254                                                 data_bytes, exponent, val);
255
256                                 case 2:
257                                         return  correction *
258                                                 CONVERT_A_G_VTF16E14_Z(
259                                                 data_bytes, exponent, val);
260                         }
261                         break;
262
263
264                 case SENSOR_TYPE_GYROSCOPE:
265                         switch (c) {
266                                 case 0:
267                                         return  correction *
268                                                 CONVERT_G_D_VTF16E14_X(
269                                                 data_bytes, exponent, val);
270
271                                 case 1:
272                                         return  correction *
273                                                 CONVERT_G_D_VTF16E14_Y(
274                                                 data_bytes, exponent, val);
275
276                                 case 2:
277                                         return  correction *
278                                                 CONVERT_G_D_VTF16E14_Z(
279                                                 data_bytes, exponent, val);
280                         }
281                         break;
282
283                 case SENSOR_TYPE_MAGNETIC_FIELD:
284                         switch (c) {
285                                 case 0:
286                                         return  correction *
287                                                 CONVERT_M_MG_VTF16E14_X(
288                                                 data_bytes, exponent, val);
289
290                                 case 1:
291                                         return  correction *
292                                                 CONVERT_M_MG_VTF16E14_Y(
293                                                 data_bytes, exponent, val);
294
295                                 case 2:
296                                         return  correction *
297                                                 CONVERT_M_MG_VTF16E14_Z(
298                                                 data_bytes, exponent, val);
299                         }
300                         break;
301
302                 case SENSOR_TYPE_LIGHT:
303                                 return (float) val;
304
305                 case SENSOR_TYPE_ORIENTATION:
306                         return  correction * convert_from_vtf_format(
307                                                 data_bytes, exponent, val);
308
309                 case SENSOR_TYPE_ROTATION_VECTOR:
310                         return  correction * convert_from_vtf_format(
311                                                 data_bytes, exponent, val);
312         }
313
314         return 0;
315 }
316
317
318 void select_transform (int s)
319 {
320         char prop_name[PROP_NAME_MAX];
321         char prop_val[PROP_VALUE_MAX];
322         int i                   = sensor_info[s].catalog_index;
323         const char *prefix      = sensor_catalog[i].tag;
324
325         sprintf(prop_name, PROP_BASE, prefix, "transform");
326
327         if (property_get(prop_name, prop_val, "")) {
328                 if (!strcmp(prop_val, "ISH")) {
329                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
330                                 sensor_info[s].friendly_name);
331
332                         sensor_info[s].ops.transform = transform_sample_ISH;
333                         sensor_info[s].ops.finalize = finalize_sample_ISH;
334                         return;
335                 }
336         }
337
338         sensor_info[s].ops.transform = transform_sample_default;
339         sensor_info[s].ops.finalize = finalize_sample_default;
340 }
341
342
343 float acquire_immediate_value(int s, int c)
344 {
345         char sysfs_path[PATH_MAX];
346         float val;
347         int ret;
348         int dev_num = sensor_info[s].dev_num;
349         int i = sensor_info[s].catalog_index;
350         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
351         const char* input_path = sensor_catalog[i].channel[c].input_path;
352         float scale = sensor_info[s].scale ?
353                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
354         float offset = sensor_info[s].offset;
355         int sensor_type = sensor_catalog[i].type;
356         float correction;
357
358         /* In case correction has been requested using properties, apply it */
359         correction = sensor_info[s].channel[c].opt_scale;
360
361         /* Acquire a sample value for sensor s / channel c through sysfs */
362
363         if (input_path[0]) {
364                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
365                 ret = sysfs_read_float(sysfs_path, &val);
366
367                 if (!ret) {
368                         return val * correction;
369                 }
370         };
371
372         if (!raw_path[0])
373                 return 0;
374
375         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
376         ret = sysfs_read_float(sysfs_path, &val);
377
378         if (ret == -1)
379                 return 0;
380
381         /*
382         There is no transform ops defined yet for Raw sysfs values
383         Use this function to perform transformation as well.
384         */
385         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
386                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
387                         correction;
388
389         return (val + offset) * scale * correction;
390 }