OSDN Git Service

STPK-1429: Fix trigger type for proximity sensor
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12 #include "utils.h"
13 #include "calibration.h"
14
15 /*----------------------------------------------------------------------------*/
16
17 /* Macros related to Intel Sensor Hub */
18
19 #define GRAVITY 9.80665f
20
21 /* 720 LSG = 1G */
22 #define LSG                         (1024.0f)
23 #define NUMOFACCDATA                (8.0f)
24
25 /* conversion of acceleration data to SI units (m/s^2) */
26 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
27 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
28 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
30
31 /* conversion of magnetic data to uT units */
32 #define CONVERT_M                   (1.0f/6.6f)
33 #define CONVERT_M_X                 (-CONVERT_M)
34 #define CONVERT_M_Y                 (-CONVERT_M)
35 #define CONVERT_M_Z                 (CONVERT_M)
36
37 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
38
39 /* conversion of orientation data to degree units */
40 #define CONVERT_O                   (1.0f/64.0f)
41 #define CONVERT_O_A                 (CONVERT_O)
42 #define CONVERT_O_P                 (CONVERT_O)
43 #define CONVERT_O_R                 (-CONVERT_O)
44
45 /*conversion of gyro data to SI units (radian/sec) */
46 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
47 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
48 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
49 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
50
51 #define BIT(x) (1 << (x))
52
53 inline unsigned int set_bit_range(int start, int end)
54 {
55     int i;
56     unsigned int value = 0;
57
58     for (i = start; i < end; ++i)
59         value |= BIT(i);
60     return value;
61 }
62
63 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
64 {
65     int divider=1;
66     int i;
67     float sample;
68     int mul = 1.0;
69
70     value = value & set_bit_range(0, size*8);
71     if (value & BIT(size*8-1)) {
72         value =  ((1LL << (size*8)) - value);
73         mul = -1.0;
74     }
75     sample = value * 1.0;
76     if (exponent < 0) {
77         exponent = abs(exponent);
78         for (i = 0; i < exponent; ++i) {
79             divider = divider*10;
80         }
81         return mul * sample/divider;
82     } else {
83         return mul * sample * pow(10.0, exponent);
84     }
85 }
86
87 // Platform sensor orientation
88 #define DEF_ORIENT_ACCEL_X                   -1
89 #define DEF_ORIENT_ACCEL_Y                   -1
90 #define DEF_ORIENT_ACCEL_Z                   -1
91
92 #define DEF_ORIENT_GYRO_X                   1
93 #define DEF_ORIENT_GYRO_Y                   1
94 #define DEF_ORIENT_GYRO_Z                   1
95
96 // G to m/s2
97 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
98 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
99                                         convert_from_vtf_format(s,d,x)*GRAVITY)
100 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104
105 // Degree/sec to radian/sec
106 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
107                                         convert_from_vtf_format(s,d,x) * \
108                                         ((float)M_PI/180.0f))
109 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
110                                         convert_from_vtf_format(s,d,x) * \
111                                         ((float)M_PI/180.0f))
112 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
113                                         convert_from_vtf_format(s,d,x) * \
114                                         ((float)M_PI/180.0f))
115
116 // Milli gauss to micro tesla
117 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
118 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120
121
122 /*----------------------------------------------------------------------------*/
123
124 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
125 {
126         uint64_t u64;
127         int i;
128         int zeroed_bits = type->storagebits - type->realbits;
129         uint64_t sign_mask;
130         uint64_t value_mask;
131
132         u64 = 0;
133
134         if (type->endianness == 'b')
135                 for (i=0; i<type->storagebits/8; i++)
136                         u64 = (u64 << 8) | sample[i];
137         else
138                 for (i=type->storagebits/8 - 1; i>=0; i--)
139                         u64 = (u64 << 8) | sample[i];
140
141         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
142
143         if (type->sign == 'u')
144                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
145
146         /* Signed integer */
147
148         switch (type->realbits) {
149                 case 0 ... 1:
150                         return 0;
151
152                 case 8:
153                         return (int64_t) (int8_t) u64;
154
155                 case 16:
156                         return (int64_t) (int16_t) u64;
157
158                 case 32:
159                         return (int64_t) (int32_t) u64;
160
161                 case 64:
162                         return (int64_t) u64;
163
164                 default:
165                         sign_mask = 1 << (type->realbits-1);
166                         value_mask = sign_mask - 1;
167
168                         if (u64 & sign_mask)
169                                 /* Negative value: return 2-complement */
170                                 return - ((~u64 & value_mask) + 1);
171                         else
172                                 return (int64_t) u64; /* Positive value */
173         }
174 }
175
176
177 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
178 {
179         int i;
180         float temp[MAX_CHANNELS];
181
182         for (i=0; i<MAX_CHANNELS; i++)
183                 temp[i] = data[map[i]];
184
185         for (i=0; i<MAX_CHANNELS; i++)
186                 data[i] = temp[i];
187 }
188
189
190 static int finalize_sample_default(int s, struct sensors_event_t* data)
191 {
192         int i           = sensor_info[s].catalog_index;
193         int sensor_type = sensor_catalog[i].type;
194
195         /* Swap fields if we have a custom channel ordering on this sensor */
196         if (sensor_info[s].flags & FLAG_FIELD_ORDERING)
197                 reorder_fields(data->data, sensor_info[s].order);
198
199         switch (sensor_type) {
200                 case SENSOR_TYPE_ACCELEROMETER:
201                         break;
202
203                 case SENSOR_TYPE_MAGNETIC_FIELD:
204                         calibrate_compass (data, &sensor_info[s], get_timestamp());
205                         break;
206
207                 case SENSOR_TYPE_GYROSCOPE:
208                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
209                         calibrate_gyro(data, &sensor_info[s]);
210                         break;
211
212                 case SENSOR_TYPE_LIGHT:
213                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
214                 case SENSOR_TYPE_TEMPERATURE:
215                         /* Only keep two decimals for these readings */
216                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
217
218                         /* ... fall through ... */
219
220                 case SENSOR_TYPE_PROXIMITY:
221                         /*
222                          * These are on change sensors ; drop the sample if it
223                          * has the same value as the previously reported one.
224                          */
225                         if (data->data[0] == sensor_info[s].prev_val)
226                                 return 0;
227
228                         sensor_info[s].prev_val = data->data[0];
229                         break;
230         }
231
232         return 1; /* Return sample to Android */
233 }
234
235
236 static float transform_sample_default(int s, int c, unsigned char* sample_data)
237 {
238         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
239         int64_t              s64 = sample_as_int64(sample_data, sample_type);
240         float scale = sensor_info[s].scale ?
241                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
242
243         /* In case correction has been requested using properties, apply it */
244         scale *= sensor_info[s].channel[c].opt_scale;
245
246         /* Apply default scaling rules */
247         return (sensor_info[s].offset + s64) * scale;
248 }
249
250
251 static int finalize_sample_ISH(int s, struct sensors_event_t* data)
252 {
253         int i           = sensor_info[s].catalog_index;
254         int sensor_type = sensor_catalog[i].type;
255         float pitch, roll, yaw;
256
257         /* Swap fields if we have a custom channel ordering on this sensor */
258         if (sensor_info[s].flags & FLAG_FIELD_ORDERING)
259                 reorder_fields(data->data, sensor_info[s].order);
260
261         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
262
263                 pitch = data->data[0];
264                 roll = data->data[1];
265                 yaw = data->data[2];
266
267                 data->data[0] = 360.0 - yaw;
268                 data->data[1] = -pitch;
269                 data->data[2] = -roll;
270         }
271
272         return 1; /* Return sample to Android */
273 }
274
275
276 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
277 {
278         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
279         int val         = (int) sample_as_int64(sample_data, sample_type);
280         int i           = sensor_info[s].catalog_index;
281         int sensor_type = sensor_catalog[i].type;
282         float correction;
283         int data_bytes  = (sample_type->realbits)/8;
284         int exponent    = sensor_info[s].offset;
285
286         /* In case correction has been requested using properties, apply it */
287         correction = sensor_info[s].channel[c].opt_scale;
288
289         switch (sensor_type) {
290                 case SENSOR_TYPE_ACCELEROMETER:
291                         switch (c) {
292                                 case 0:
293                                         return  correction *
294                                                 CONVERT_A_G_VTF16E14_X(
295                                                 data_bytes, exponent, val);
296
297                                 case 1:
298                                         return  correction *
299                                                 CONVERT_A_G_VTF16E14_Y(
300                                                 data_bytes, exponent, val);
301
302                                 case 2:
303                                         return  correction *
304                                                 CONVERT_A_G_VTF16E14_Z(
305                                                 data_bytes, exponent, val);
306                         }
307                         break;
308
309
310                 case SENSOR_TYPE_GYROSCOPE:
311                         switch (c) {
312                                 case 0:
313                                         return  correction *
314                                                 CONVERT_G_D_VTF16E14_X(
315                                                 data_bytes, exponent, val);
316
317                                 case 1:
318                                         return  correction *
319                                                 CONVERT_G_D_VTF16E14_Y(
320                                                 data_bytes, exponent, val);
321
322                                 case 2:
323                                         return  correction *
324                                                 CONVERT_G_D_VTF16E14_Z(
325                                                 data_bytes, exponent, val);
326                         }
327                         break;
328
329                 case SENSOR_TYPE_MAGNETIC_FIELD:
330                         switch (c) {
331                                 case 0:
332                                         return  correction *
333                                                 CONVERT_M_MG_VTF16E14_X(
334                                                 data_bytes, exponent, val);
335
336                                 case 1:
337                                         return  correction *
338                                                 CONVERT_M_MG_VTF16E14_Y(
339                                                 data_bytes, exponent, val);
340
341                                 case 2:
342                                         return  correction *
343                                                 CONVERT_M_MG_VTF16E14_Z(
344                                                 data_bytes, exponent, val);
345                         }
346                         break;
347
348                 case SENSOR_TYPE_LIGHT:
349                                 return (float) val;
350
351                 case SENSOR_TYPE_ORIENTATION:
352                         return  correction * convert_from_vtf_format(
353                                                 data_bytes, exponent, val);
354
355                 case SENSOR_TYPE_ROTATION_VECTOR:
356                         return  correction * convert_from_vtf_format(
357                                                 data_bytes, exponent, val);
358         }
359
360         return 0;
361 }
362
363
364 void select_transform (int s)
365 {
366         char prop_name[PROP_NAME_MAX];
367         char prop_val[PROP_VALUE_MAX];
368         int i                   = sensor_info[s].catalog_index;
369         const char *prefix      = sensor_catalog[i].tag;
370
371         sprintf(prop_name, PROP_BASE, prefix, "transform");
372
373         if (property_get(prop_name, prop_val, "")) {
374                 if (!strcmp(prop_val, "ISH")) {
375                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
376                                 sensor_info[s].friendly_name);
377
378                         sensor_info[s].ops.transform = transform_sample_ISH;
379                         sensor_info[s].ops.finalize = finalize_sample_ISH;
380                         return;
381                 }
382         }
383
384         sensor_info[s].ops.transform = transform_sample_default;
385         sensor_info[s].ops.finalize = finalize_sample_default;
386 }
387
388
389 float acquire_immediate_value(int s, int c)
390 {
391         char sysfs_path[PATH_MAX];
392         float val;
393         int ret;
394         int dev_num = sensor_info[s].dev_num;
395         int i = sensor_info[s].catalog_index;
396         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
397         const char* input_path = sensor_catalog[i].channel[c].input_path;
398         float scale = sensor_info[s].scale ?
399                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
400         float offset = sensor_info[s].offset;
401         int sensor_type = sensor_catalog[i].type;
402         float correction;
403
404         /* In case correction has been requested using properties, apply it */
405         correction = sensor_info[s].channel[c].opt_scale;
406
407         /* Acquire a sample value for sensor s / channel c through sysfs */
408
409         if (input_path[0]) {
410                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
411                 ret = sysfs_read_float(sysfs_path, &val);
412
413                 if (!ret) {
414                         return val * correction;
415                 }
416         };
417
418         if (!raw_path[0])
419                 return 0;
420
421         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
422         ret = sysfs_read_float(sysfs_path, &val);
423
424         if (ret == -1)
425                 return 0;
426
427         /*
428         There is no transform ops defined yet for Raw sysfs values
429         Use this function to perform transformation as well.
430         */
431         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
432                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
433                         correction;
434
435         return (val + offset) * scale * correction;
436 }