OSDN Git Service

Support for channel specific scale value
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12 #include "utils.h"
13
14 /*----------------------------------------------------------------------------*/
15
16 /* Macros related to Intel Sensor Hub */
17
18 #define GRAVITY 9.80665f
19
20 /* 720 LSG = 1G */
21 #define LSG                         (1024.0f)
22 #define NUMOFACCDATA                (8.0f)
23
24 /* conversion of acceleration data to SI units (m/s^2) */
25 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
26 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
27 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
28 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29
30 /* conversion of magnetic data to uT units */
31 #define CONVERT_M                   (1.0f/6.6f)
32 #define CONVERT_M_X                 (-CONVERT_M)
33 #define CONVERT_M_Y                 (-CONVERT_M)
34 #define CONVERT_M_Z                 (CONVERT_M)
35
36 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
37
38 /* conversion of orientation data to degree units */
39 #define CONVERT_O                   (1.0f/64.0f)
40 #define CONVERT_O_A                 (CONVERT_O)
41 #define CONVERT_O_P                 (CONVERT_O)
42 #define CONVERT_O_R                 (-CONVERT_O)
43
44 /*conversion of gyro data to SI units (radian/sec) */
45 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
46 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
47 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
48 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
49
50 #define BIT(x) (1 << (x))
51
52 inline unsigned int set_bit_range(int start, int end)
53 {
54     int i;
55     unsigned int value = 0;
56
57     for (i = start; i < end; ++i)
58         value |= BIT(i);
59     return value;
60 }
61
62 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
63 {
64     int divider=1;
65     int i;
66     float sample;
67     int mul = 1.0;
68
69     value = value & set_bit_range(0, size*8);
70     if (value & BIT(size*8-1)) {
71         value =  ((1LL << (size*8)) - value);
72         mul = -1.0;
73     }
74     sample = value * 1.0;
75     if (exponent < 0) {
76         exponent = abs(exponent);
77         for (i = 0; i < exponent; ++i) {
78             divider = divider*10;
79         }
80         return mul * sample/divider;
81     } else {
82         return mul * sample * pow(10.0, exponent);
83     }
84 }
85
86 // Platform sensor orientation
87 #define DEF_ORIENT_ACCEL_X                   -1
88 #define DEF_ORIENT_ACCEL_Y                   -1
89 #define DEF_ORIENT_ACCEL_Z                   -1
90
91 #define DEF_ORIENT_GYRO_X                   1
92 #define DEF_ORIENT_GYRO_Y                   1
93 #define DEF_ORIENT_GYRO_Z                   1
94
95 // G to m/s2
96 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
97 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
98                                         convert_from_vtf_format(s,d,x)*GRAVITY)
99 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
100                                         convert_from_vtf_format(s,d,x)*GRAVITY)
101 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
102                                         convert_from_vtf_format(s,d,x)*GRAVITY)
103
104 // Degree/sec to radian/sec
105 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
106                                         convert_from_vtf_format(s,d,x) * \
107                                         ((float)M_PI/180.0f))
108 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
109                                         convert_from_vtf_format(s,d,x) * \
110                                         ((float)M_PI/180.0f))
111 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
112                                         convert_from_vtf_format(s,d,x) * \
113                                         ((float)M_PI/180.0f))
114
115 // Milli gauss to micro tesla
116 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
117 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
118 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119
120 #define DATA_BYTES      2
121 #define ACC_EXPONENT    -2
122 #define GYRO_EXPONENT   -1
123 #define MAGN_EXPONENT   0
124 #define INC_EXPONENT    -1
125 #define ROT_EXPONENT    -8
126
127 /*----------------------------------------------------------------------------*/
128
129 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
130 {
131         uint16_t u16;
132         uint32_t u32;
133         uint64_t u64;
134         int i;
135         int zeroed_bits = type->storagebits - type->realbits;
136
137         u64 = 0;
138
139         if (type->endianness == 'b')
140                 for (i=0; i<type->storagebits/8; i++)
141                         u64 = (u64 << 8) | sample[i];
142         else
143                 for (i=type->storagebits/8 - 1; i>=0; i--)
144                         u64 = (u64 << 8) | sample[i];
145
146         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
147
148         if (type->sign == 'u')
149                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
150
151         switch (type->realbits) {
152                 case 8:
153                         return (int64_t) (int8_t) u64;
154
155                 case 12:
156                         return (int64_t)  (u64 >>  11) ?
157                                         (((int64_t)-1) ^ 0xfff) | u64 : u64;
158
159                 case 16:
160                         return (int64_t) (int16_t) u64;
161
162                 case 32:
163                         return (int64_t) (int32_t) u64;
164
165                 case 64:
166                         return (int64_t) u64;
167         }
168
169         ALOGE("Unhandled sample storage size\n");
170         return 0;
171 }
172
173
174 static void finalize_sample_default(int s, struct sensors_event_t* data)
175 {
176         int i           = sensor_info[s].catalog_index;
177         int sensor_type = sensor_catalog[i].type;
178         float x, y, z;
179
180         switch (sensor_type) {
181                 case SENSOR_TYPE_ACCELEROMETER:
182                         /*
183                          * Invert x and z axes orientation from SI units - see
184                          * /hardware/libhardware/include/hardware/sensors.h
185                          * for a discussion of what Android expects
186                          */
187                         x = -data->data[0];
188                         y = data->data[1];
189                         z = -data->data[2];
190
191                         data->data[0] = x;
192                         data->data[1] = y;
193                         data->data[2] = z;
194                         break;
195
196                 case SENSOR_TYPE_MAGNETIC_FIELD:
197                         x = -data->data[0];
198                         y = data->data[1];
199                         z = -data->data[2];
200
201                         data->data[0] = x;
202                         data->data[1] = y;
203                         data->data[2] = z;
204                         break;
205
206                 case SENSOR_TYPE_GYROSCOPE:
207                         x = -data->data[0];
208                         y = data->data[1];
209                         z = -data->data[2];
210
211                         /* Limit drift */
212                         if (fabs(x) < 0.1 && fabs(y) < 0.1 && fabs(z) < 0.1)
213                                 x = y = z = 0;
214
215                         data->data[0] = x;
216                         data->data[1] = y;
217                         data->data[2] = z;
218                         break;
219
220                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
221                 case SENSOR_TYPE_TEMPERATURE:
222                         /* Only keep two decimals for temperature readings */
223                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
224                         break;
225         }
226 }
227
228
229 static float transform_sample_default(int s, int c, unsigned char* sample_data)
230 {
231         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
232         int64_t              s64 = sample_as_int64(sample_data, sample_type);
233         float scale = sensor_info[s].scale ?
234                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
235         /* Apply default scaling rules */
236         return (sensor_info[s].offset + s64) * scale;
237 }
238
239
240 static void finalize_sample_ISH(int s, struct sensors_event_t* data)
241 {
242         int i           = sensor_info[s].catalog_index;
243         int sensor_type = sensor_catalog[i].type;
244         float pitch, roll, yaw;
245
246         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
247
248                 pitch = data->data[0];
249                 roll = data->data[1];
250                 yaw = data->data[2];
251
252                 data->data[0] = 360.0 - yaw;
253                 data->data[1] = -pitch;
254                 data->data[2] = -roll;
255         }
256 }
257
258
259 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
260 {
261         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
262         int val         = (int) sample_as_int64(sample_data, sample_type);
263         int i           = sensor_info[s].catalog_index;
264         int sensor_type = sensor_catalog[i].type;
265
266         switch (sensor_type) {
267                 case SENSOR_TYPE_ACCELEROMETER:
268                         switch (c) {
269                                 case 0:
270                                         return CONVERT_A_G_VTF16E14_X(
271                                                 DATA_BYTES, ACC_EXPONENT, val);
272
273                                 case 1:
274                                         return CONVERT_A_G_VTF16E14_Y(
275                                                 DATA_BYTES, ACC_EXPONENT, val);
276
277                                 case 2:
278                                         return CONVERT_A_G_VTF16E14_Z(
279                                                 DATA_BYTES, ACC_EXPONENT, val);
280                         }
281                         break;
282
283
284                 case SENSOR_TYPE_GYROSCOPE:
285                         switch (c) {
286                                 case 0:
287                                         return CONVERT_G_D_VTF16E14_X(
288                                                 DATA_BYTES, GYRO_EXPONENT, val);
289
290                                 case 1:
291                                         return CONVERT_G_D_VTF16E14_Y(
292                                                 DATA_BYTES, GYRO_EXPONENT, val);
293
294                                 case 2:
295                                         return CONVERT_G_D_VTF16E14_Z(
296                                                 DATA_BYTES, GYRO_EXPONENT, val);
297                         }
298                         break;
299
300                 case SENSOR_TYPE_MAGNETIC_FIELD:
301                         switch (c) {
302                                 case 0:
303                                         return CONVERT_M_MG_VTF16E14_X(
304                                                 DATA_BYTES, MAGN_EXPONENT, val);
305
306                                 case 1:
307                                         return CONVERT_M_MG_VTF16E14_Y(
308                                                 DATA_BYTES, MAGN_EXPONENT, val);
309
310                                 case 2:
311                                         return CONVERT_M_MG_VTF16E14_Z(
312                                                 DATA_BYTES, MAGN_EXPONENT, val);
313                         }
314                         break;
315
316                 case SENSOR_TYPE_ORIENTATION:
317                         return convert_from_vtf_format(DATA_BYTES, INC_EXPONENT,
318                                 val);
319
320                 case SENSOR_TYPE_ROTATION_VECTOR:
321                         return convert_from_vtf_format(DATA_BYTES, ROT_EXPONENT,
322                                 val);
323         }
324
325         return 0;
326 }
327
328
329 void select_transform (int s)
330 {
331         char prop_name[PROP_NAME_MAX];
332         char prop_val[PROP_VALUE_MAX];
333         int i                   = sensor_info[s].catalog_index;
334         const char *prefix      = sensor_catalog[i].tag;
335
336         sprintf(prop_name, PROP_BASE, prefix, "transform");
337
338         if (property_get(prop_name, prop_val, "")) {
339                 if (!strcmp(prop_val, "ISH")) {
340                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
341                                 sensor_info[s].friendly_name);
342
343                         sensor_info[s].ops.transform = transform_sample_ISH;
344                         sensor_info[s].ops.finalize = finalize_sample_ISH;
345                         return;
346                 }
347         }
348
349         sensor_info[s].ops.transform = transform_sample_default;
350         sensor_info[s].ops.finalize = finalize_sample_default;
351 }
352
353
354 float acquire_immediate_value(int s, int c)
355 {
356         char sysfs_path[PATH_MAX];
357         float val;
358         int ret;
359         int dev_num = sensor_info[s].dev_num;
360         int i = sensor_info[s].catalog_index;
361         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
362         const char* input_path = sensor_catalog[i].channel[c].input_path;
363         float scale = sensor_info[s].scale ?
364                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
365         float offset = sensor_info[s].offset;
366         int sensor_type = sensor_catalog[i].type;
367
368         /* Acquire a sample value for sensor s / channel c through sysfs */
369
370         if (input_path[0]) {
371                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
372                 ret = sysfs_read_float(sysfs_path, &val);
373
374                 if (!ret) {
375                         return val;
376                 }
377         };
378
379         if (!raw_path[0])
380                 return 0;
381
382         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
383         ret = sysfs_read_float(sysfs_path, &val);
384
385         if (ret == -1)
386                 return 0;
387
388         /*
389         There is no transform ops defined yet for Raw sysfs values
390         Use this function to perform transformation as well.
391         */
392         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
393                 return CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale); //Gauss to MicroTesla
394
395         return (val + offset) * scale;
396 }