OSDN Git Service

GMINL-3234: Refactor a little bit our filtering code
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15 #include "filtering.h"
16
17 /*----------------------------------------------------------------------------*/
18
19 /* Macros related to Intel Sensor Hub */
20
21 #define GRAVITY 9.80665f
22
23 /* 720 LSG = 1G */
24 #define LSG                         (1024.0f)
25 #define NUMOFACCDATA                (8.0f)
26
27 /* conversion of acceleration data to SI units (m/s^2) */
28 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
29 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
30 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
32
33 /* conversion of magnetic data to uT units */
34 #define CONVERT_M                   (1.0f/6.6f)
35 #define CONVERT_M_X                 (-CONVERT_M)
36 #define CONVERT_M_Y                 (-CONVERT_M)
37 #define CONVERT_M_Z                 (CONVERT_M)
38
39 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
40
41 /* conversion of orientation data to degree units */
42 #define CONVERT_O                   (1.0f/64.0f)
43 #define CONVERT_O_A                 (CONVERT_O)
44 #define CONVERT_O_P                 (CONVERT_O)
45 #define CONVERT_O_R                 (-CONVERT_O)
46
47 /*conversion of gyro data to SI units (radian/sec) */
48 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
49 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
51 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
52
53 #define BIT(x) (1 << (x))
54
55 inline unsigned int set_bit_range(int start, int end)
56 {
57     int i;
58     unsigned int value = 0;
59
60     for (i = start; i < end; ++i)
61         value |= BIT(i);
62     return value;
63 }
64
65 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
66 {
67     int divider=1;
68     int i;
69     float sample;
70     int mul = 1.0;
71
72     value = value & set_bit_range(0, size*8);
73     if (value & BIT(size*8-1)) {
74         value =  ((1LL << (size*8)) - value);
75         mul = -1.0;
76     }
77     sample = value * 1.0;
78     if (exponent < 0) {
79         exponent = abs(exponent);
80         for (i = 0; i < exponent; ++i) {
81             divider = divider*10;
82         }
83         return mul * sample/divider;
84     } else {
85         return mul * sample * pow(10.0, exponent);
86     }
87 }
88
89 // Platform sensor orientation
90 #define DEF_ORIENT_ACCEL_X                   -1
91 #define DEF_ORIENT_ACCEL_Y                   -1
92 #define DEF_ORIENT_ACCEL_Z                   -1
93
94 #define DEF_ORIENT_GYRO_X                   1
95 #define DEF_ORIENT_GYRO_Y                   1
96 #define DEF_ORIENT_GYRO_Z                   1
97
98 // G to m/s2
99 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
100 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
105                                         convert_from_vtf_format(s,d,x)*GRAVITY)
106
107 // Degree/sec to radian/sec
108 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
109                                         convert_from_vtf_format(s,d,x) * \
110                                         ((float)M_PI/180.0f))
111 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
112                                         convert_from_vtf_format(s,d,x) * \
113                                         ((float)M_PI/180.0f))
114 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
115                                         convert_from_vtf_format(s,d,x) * \
116                                         ((float)M_PI/180.0f))
117
118 // Milli gauss to micro tesla
119 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
122
123
124 /*----------------------------------------------------------------------------*/
125
126 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
127 {
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131         uint64_t sign_mask;
132         uint64_t value_mask;
133
134         u64 = 0;
135
136         if (type->endianness == 'b')
137                 for (i=0; i<type->storagebits/8; i++)
138                         u64 = (u64 << 8) | sample[i];
139         else
140                 for (i=type->storagebits/8 - 1; i>=0; i--)
141                         u64 = (u64 << 8) | sample[i];
142
143         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
144
145         if (type->sign == 'u')
146                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
147
148         /* Signed integer */
149
150         switch (type->realbits) {
151                 case 0 ... 1:
152                         return 0;
153
154                 case 8:
155                         return (int64_t) (int8_t) u64;
156
157                 case 16:
158                         return (int64_t) (int16_t) u64;
159
160                 case 32:
161                         return (int64_t) (int32_t) u64;
162
163                 case 64:
164                         return (int64_t) u64;
165
166                 default:
167                         sign_mask = 1 << (type->realbits-1);
168                         value_mask = sign_mask - 1;
169
170                         if (u64 & sign_mask)
171                                 /* Negative value: return 2-complement */
172                                 return - ((~u64 & value_mask) + 1);
173                         else
174                                 return (int64_t) u64; /* Positive value */
175         }
176 }
177
178
179 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
180 {
181         int i;
182         float temp[MAX_CHANNELS];
183
184         for (i=0; i<MAX_CHANNELS; i++)
185                 temp[i] = data[map[i]];
186
187         for (i=0; i<MAX_CHANNELS; i++)
188                 data[i] = temp[i];
189 }
190
191
192 static void clamp_gyro_readings_to_zero (int s, struct sensors_event_t* data)
193 {
194         float x, y, z;
195         float near_zero;
196
197         switch (sensor_info[s].type) {
198                 case SENSOR_TYPE_GYROSCOPE:
199                         x = data->data[0];
200                         y = data->data[1];
201                         z = data->data[2];
202                         break;
203
204                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
205                         x = data->data[0] - data->uncalibrated_gyro.bias[0];
206                         y = data->data[1] - data->uncalibrated_gyro.bias[1];
207                         z = data->data[2] - data->uncalibrated_gyro.bias[2];
208                         break;
209
210                 default:
211                         return;
212         }
213
214         /* If we're calibrated, don't filter out as much */
215         if (sensor_info[s].cal_level > 0)
216                 near_zero = 0.02; /* rad/s */
217         else
218                 near_zero = 0.1;
219
220         /* If motion on all axes is small enough */
221         if (fabs(x) < near_zero && fabs(y) < near_zero && fabs(z) < near_zero) {
222
223                 /*
224                  * Report that we're not moving at all... but not exactly zero
225                  * as composite sensors (orientation, rotation vector) don't
226                  * seem to react very well to it.
227                  */
228                 switch (sensor_info[s].type) {
229                         case SENSOR_TYPE_GYROSCOPE:
230                                 data->data[0] *= 0.000001;
231                                 data->data[1] *= 0.000001;
232                                 data->data[2] *= 0.000001;
233                                 break;
234
235                         case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
236                                 data->data[0]= data->uncalibrated_gyro.bias[0]
237                                                 + 0.000001 * x;
238                                 data->data[1]= data->uncalibrated_gyro.bias[1]
239                                                 + 0.000001 * y;
240                                 data->data[2]= data->uncalibrated_gyro.bias[2]
241                                                 + 0.000001 * z;
242                                 break;
243                 }
244         }
245 }
246
247
248 static int finalize_sample_default (int s, struct sensors_event_t* data)
249 {
250         /* Swap fields if we have a custom channel ordering on this sensor */
251         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
252                 reorder_fields(data->data, sensor_info[s].order);
253
254         sensor_info[s].event_count++;
255         switch (sensor_info[s].type) {
256                 case SENSOR_TYPE_ACCELEROMETER:
257                         /* Always consider the accelerometer accurate */
258                         data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
259                         if (sensor_info[s].quirks & QUIRK_NOISY)
260                                 denoise(s, data);
261                         break;
262
263                 case SENSOR_TYPE_MAGNETIC_FIELD:
264                         calibrate_compass (data, &sensor_info[s], get_timestamp());
265                         if (sensor_info[s].quirks & QUIRK_NOISY)
266                                 denoise(s, data);
267                         break;
268
269                 case SENSOR_TYPE_GYROSCOPE:
270
271                         /*
272                          * Report medium accuracy by default ; higher accuracy
273                          * levels will be reported once, and if, we achieve
274                          * calibration.
275                          */
276                         data->gyro.status = SENSOR_STATUS_ACCURACY_MEDIUM;
277
278                         /* ... fall through */
279
280                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
281
282                         /*
283                          * We're only trying to calibrate data from continuously
284                          * firing gyroscope drivers, as motion based ones use
285                          * movement thresholds that may lead us to incorrectly
286                          * estimate bias.
287                          */
288                         if (sensor_info[s].selected_trigger !=
289                                 sensor_info[s].motion_trigger_name)
290                                         calibrate_gyro(data, &sensor_info[s]);
291
292                         /* For noisy sensors we'll drop a very few number
293                          * of samples to make sure we have at least MIN_SAMPLES events
294                          * in the filtering queue. This is to make sure we are not sending
295                          * events that can disturb our mean or stddev.
296                          */
297                         if (sensor_info[s].quirks & QUIRK_NOISY) {
298                                 if((sensor_info[s].selected_trigger !=
299                                         sensor_info[s].motion_trigger_name) &&
300                                         sensor_info[s].event_count < MIN_SAMPLES)
301                                                 return 0;
302
303                                 denoise(s, data);
304                         }
305
306                         /* Clamp near zero moves to (0,0,0) if appropriate */
307                         clamp_gyro_readings_to_zero(s, data);
308                         break;
309
310                 case SENSOR_TYPE_LIGHT:
311                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
312                 case SENSOR_TYPE_TEMPERATURE:
313                         /* Only keep two decimals for these readings */
314                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
315
316                         /* ... fall through ... */
317
318                 case SENSOR_TYPE_PROXIMITY:
319                         /*
320                          * These are on change sensors ; drop the sample if it
321                          * has the same value as the previously reported one.
322                          */
323                         if (data->data[0] == sensor_info[s].prev_val)
324                                 return 0;
325
326                         sensor_info[s].prev_val = data->data[0];
327                         break;
328         }
329
330         return 1; /* Return sample to Android */
331 }
332
333
334 static float transform_sample_default(int s, int c, unsigned char* sample_data)
335 {
336         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
337         int64_t              s64 = sample_as_int64(sample_data, sample_type);
338         float scale = sensor_info[s].scale ?
339                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
340
341         /* In case correction has been requested using properties, apply it */
342         scale *= sensor_info[s].channel[c].opt_scale;
343
344         /* Apply default scaling rules */
345         return (sensor_info[s].offset + s64) * scale;
346 }
347
348
349 static int finalize_sample_ISH (int s, struct sensors_event_t* data)
350 {
351         float pitch, roll, yaw;
352
353         /* Swap fields if we have a custom channel ordering on this sensor */
354         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
355                 reorder_fields(data->data, sensor_info[s].order);
356
357         if (sensor_info[s].type == SENSOR_TYPE_ORIENTATION) {
358
359                 pitch = data->data[0];
360                 roll = data->data[1];
361                 yaw = data->data[2];
362
363                 data->data[0] = 360.0 - yaw;
364                 data->data[1] = -pitch;
365                 data->data[2] = -roll;
366         }
367
368         /* Add this event to our global records, for filtering purposes */
369         record_sample(s, data);
370
371         return 1; /* Return sample to Android */
372 }
373
374
375 static float transform_sample_ISH (int s, int c, unsigned char* sample_data)
376 {
377         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
378         int val         = (int) sample_as_int64(sample_data, sample_type);
379         float correction;
380         int data_bytes  = (sample_type->realbits)/8;
381         int exponent    = sensor_info[s].offset;
382
383         /* In case correction has been requested using properties, apply it */
384         correction = sensor_info[s].channel[c].opt_scale;
385
386         switch (sensor_info[s].type) {
387                 case SENSOR_TYPE_ACCELEROMETER:
388                         switch (c) {
389                                 case 0:
390                                         return  correction *
391                                                 CONVERT_A_G_VTF16E14_X(
392                                                 data_bytes, exponent, val);
393
394                                 case 1:
395                                         return  correction *
396                                                 CONVERT_A_G_VTF16E14_Y(
397                                                 data_bytes, exponent, val);
398
399                                 case 2:
400                                         return  correction *
401                                                 CONVERT_A_G_VTF16E14_Z(
402                                                 data_bytes, exponent, val);
403                         }
404                         break;
405
406
407                 case SENSOR_TYPE_GYROSCOPE:
408                         switch (c) {
409                                 case 0:
410                                         return  correction *
411                                                 CONVERT_G_D_VTF16E14_X(
412                                                 data_bytes, exponent, val);
413
414                                 case 1:
415                                         return  correction *
416                                                 CONVERT_G_D_VTF16E14_Y(
417                                                 data_bytes, exponent, val);
418
419                                 case 2:
420                                         return  correction *
421                                                 CONVERT_G_D_VTF16E14_Z(
422                                                 data_bytes, exponent, val);
423                         }
424                         break;
425
426                 case SENSOR_TYPE_MAGNETIC_FIELD:
427                         switch (c) {
428                                 case 0:
429                                         return  correction *
430                                                 CONVERT_M_MG_VTF16E14_X(
431                                                 data_bytes, exponent, val);
432
433                                 case 1:
434                                         return  correction *
435                                                 CONVERT_M_MG_VTF16E14_Y(
436                                                 data_bytes, exponent, val);
437
438                                 case 2:
439                                         return  correction *
440                                                 CONVERT_M_MG_VTF16E14_Z(
441                                                 data_bytes, exponent, val);
442                         }
443                         break;
444
445                 case SENSOR_TYPE_LIGHT:
446                                 return (float) val;
447
448                 case SENSOR_TYPE_ORIENTATION:
449                         return  correction * convert_from_vtf_format(
450                                                 data_bytes, exponent, val);
451
452                 case SENSOR_TYPE_ROTATION_VECTOR:
453                         return  correction * convert_from_vtf_format(
454                                                 data_bytes, exponent, val);
455         }
456
457         return 0;
458 }
459
460
461 void select_transform (int s)
462 {
463         char prop_name[PROP_NAME_MAX];
464         char prop_val[PROP_VALUE_MAX];
465         int i                   = sensor_info[s].catalog_index;
466         const char *prefix      = sensor_catalog[i].tag;
467
468         sprintf(prop_name, PROP_BASE, prefix, "transform");
469
470         if (property_get(prop_name, prop_val, "")) {
471                 if (!strcmp(prop_val, "ISH")) {
472                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
473                                 sensor_info[s].friendly_name);
474
475                         sensor_info[s].ops.transform = transform_sample_ISH;
476                         sensor_info[s].ops.finalize = finalize_sample_ISH;
477                         return;
478                 }
479         }
480
481         sensor_info[s].ops.transform = transform_sample_default;
482         sensor_info[s].ops.finalize = finalize_sample_default;
483 }
484
485
486 float acquire_immediate_value(int s, int c)
487 {
488         char sysfs_path[PATH_MAX];
489         float val;
490         int ret;
491         int dev_num = sensor_info[s].dev_num;
492         int i = sensor_info[s].catalog_index;
493         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
494         const char* input_path = sensor_catalog[i].channel[c].input_path;
495         float scale = sensor_info[s].scale ?
496                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
497         float offset = sensor_info[s].offset;
498         int sensor_type = sensor_catalog[i].type;
499         float correction;
500
501         /* In case correction has been requested using properties, apply it */
502         correction = sensor_info[s].channel[c].opt_scale;
503
504         /* Acquire a sample value for sensor s / channel c through sysfs */
505
506         if (input_path[0]) {
507                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
508                 ret = sysfs_read_float(sysfs_path, &val);
509
510                 if (!ret) {
511                         return val * correction;
512                 }
513         };
514
515         if (!raw_path[0])
516                 return 0;
517
518         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
519         ret = sysfs_read_float(sysfs_path, &val);
520
521         if (ret == -1)
522                 return 0;
523
524         /*
525         There is no transform ops defined yet for Raw sysfs values
526         Use this function to perform transformation as well.
527         */
528         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
529                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
530                         correction;
531
532         return (val + offset) * scale * correction;
533 }