OSDN Git Service

Merge remote-tracking branch 'origin/abt/topic/gmin/l-dev/sensors/master' into gmin...
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15
16 /*----------------------------------------------------------------------------*/
17
18 /* Macros related to Intel Sensor Hub */
19
20 #define GRAVITY 9.80665f
21
22 /* 720 LSG = 1G */
23 #define LSG                         (1024.0f)
24 #define NUMOFACCDATA                (8.0f)
25
26 /* conversion of acceleration data to SI units (m/s^2) */
27 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
28 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
29 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
30 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31
32 /* conversion of magnetic data to uT units */
33 #define CONVERT_M                   (1.0f/6.6f)
34 #define CONVERT_M_X                 (-CONVERT_M)
35 #define CONVERT_M_Y                 (-CONVERT_M)
36 #define CONVERT_M_Z                 (CONVERT_M)
37
38 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
39
40 /* conversion of orientation data to degree units */
41 #define CONVERT_O                   (1.0f/64.0f)
42 #define CONVERT_O_A                 (CONVERT_O)
43 #define CONVERT_O_P                 (CONVERT_O)
44 #define CONVERT_O_R                 (-CONVERT_O)
45
46 /*conversion of gyro data to SI units (radian/sec) */
47 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
48 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
49 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
51
52 #define BIT(x) (1 << (x))
53
54 inline unsigned int set_bit_range(int start, int end)
55 {
56     int i;
57     unsigned int value = 0;
58
59     for (i = start; i < end; ++i)
60         value |= BIT(i);
61     return value;
62 }
63
64 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
65 {
66     int divider=1;
67     int i;
68     float sample;
69     int mul = 1.0;
70
71     value = value & set_bit_range(0, size*8);
72     if (value & BIT(size*8-1)) {
73         value =  ((1LL << (size*8)) - value);
74         mul = -1.0;
75     }
76     sample = value * 1.0;
77     if (exponent < 0) {
78         exponent = abs(exponent);
79         for (i = 0; i < exponent; ++i) {
80             divider = divider*10;
81         }
82         return mul * sample/divider;
83     } else {
84         return mul * sample * pow(10.0, exponent);
85     }
86 }
87
88 // Platform sensor orientation
89 #define DEF_ORIENT_ACCEL_X                   -1
90 #define DEF_ORIENT_ACCEL_Y                   -1
91 #define DEF_ORIENT_ACCEL_Z                   -1
92
93 #define DEF_ORIENT_GYRO_X                   1
94 #define DEF_ORIENT_GYRO_Y                   1
95 #define DEF_ORIENT_GYRO_Z                   1
96
97 // G to m/s2
98 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
99 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
100                                         convert_from_vtf_format(s,d,x)*GRAVITY)
101 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
102                                         convert_from_vtf_format(s,d,x)*GRAVITY)
103 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
104                                         convert_from_vtf_format(s,d,x)*GRAVITY)
105
106 // Degree/sec to radian/sec
107 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
108                                         convert_from_vtf_format(s,d,x) * \
109                                         ((float)M_PI/180.0f))
110 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
111                                         convert_from_vtf_format(s,d,x) * \
112                                         ((float)M_PI/180.0f))
113 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
114                                         convert_from_vtf_format(s,d,x) * \
115                                         ((float)M_PI/180.0f))
116
117 // Milli gauss to micro tesla
118 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121
122
123 /*----------------------------------------------------------------------------*/
124
125 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
126 {
127         uint64_t u64;
128         int i;
129         int zeroed_bits = type->storagebits - type->realbits;
130         uint64_t sign_mask;
131         uint64_t value_mask;
132
133         u64 = 0;
134
135         if (type->endianness == 'b')
136                 for (i=0; i<type->storagebits/8; i++)
137                         u64 = (u64 << 8) | sample[i];
138         else
139                 for (i=type->storagebits/8 - 1; i>=0; i--)
140                         u64 = (u64 << 8) | sample[i];
141
142         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
143
144         if (type->sign == 'u')
145                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
146
147         /* Signed integer */
148
149         switch (type->realbits) {
150                 case 0 ... 1:
151                         return 0;
152
153                 case 8:
154                         return (int64_t) (int8_t) u64;
155
156                 case 16:
157                         return (int64_t) (int16_t) u64;
158
159                 case 32:
160                         return (int64_t) (int32_t) u64;
161
162                 case 64:
163                         return (int64_t) u64;
164
165                 default:
166                         sign_mask = 1 << (type->realbits-1);
167                         value_mask = sign_mask - 1;
168
169                         if (u64 & sign_mask)
170                                 /* Negative value: return 2-complement */
171                                 return - ((~u64 & value_mask) + 1);
172                         else
173                                 return (int64_t) u64; /* Positive value */
174         }
175 }
176
177
178 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
179 {
180         int i;
181         float temp[MAX_CHANNELS];
182
183         for (i=0; i<MAX_CHANNELS; i++)
184                 temp[i] = data[map[i]];
185
186         for (i=0; i<MAX_CHANNELS; i++)
187                 data[i] = temp[i];
188 }
189
190
191 static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
192                      int num_fields, int max_samples)
193 {
194         /*
195          * Smooth out incoming data using a moving average over a number of
196          * samples. We accumulate one second worth of samples, or max_samples,
197          * depending on which is lower.
198          */
199
200         int i;
201         float total;
202         int f;
203         int sampling_rate = (int) si->sampling_rate;
204         int history_size;
205
206         /* Don't denoise anything if we have less than two samples per second */
207         if (sampling_rate < 2)
208                 return;
209
210         /* Restrict window size to the min of sampling_rate and max_samples */
211         if (sampling_rate > max_samples)
212                 history_size = max_samples;
213         else
214                 history_size = sampling_rate;
215
216         /* Reset history if we're operating on an incorrect window size */
217         if (si->history_size != history_size) {
218                 si->history_size = history_size;
219                 si->history_entries = 0;
220                 si->history_index = 0;
221                 si->history = (float*) realloc(si->history,
222                                 si->history_size * num_fields * sizeof(float));
223         }
224
225         if (!si->history)
226                 return; /* Unlikely, but still... */
227
228         /* Update initialized samples count */
229         if (si->history_entries < si->history_size)
230                 si->history_entries++;
231
232         /* Record new sample */
233         for (f=0; f < num_fields; f++)
234                 si->history[si->history_index * num_fields + f] = data->data[f];
235
236         /* Update our rolling index (next evicted cell) */
237         si->history_index = (si->history_index + 1) % si->history_size;
238
239         /* For now simply compute a mobile mean for each field */
240         for (f=0; f < num_fields; f++) {
241                 total = 0;
242
243                 for (i=0; i < si->history_entries; i++)
244                                 total += si->history[i * num_fields + f];
245
246                 /* Output filtered data */
247                 data->data[f] = total / si->history_entries;
248         }
249 }
250
251
252 static int finalize_sample_default(int s, struct sensors_event_t* data)
253 {
254         int i           = sensor_info[s].catalog_index;
255         int sensor_type = sensor_catalog[i].type;
256
257         /* Swap fields if we have a custom channel ordering on this sensor */
258         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
259                 reorder_fields(data->data, sensor_info[s].order);
260
261         switch (sensor_type) {
262                 case SENSOR_TYPE_ACCELEROMETER:
263                         /* Always consider the accelerometer accurate */
264                         data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
265                         if (sensor_info[s].quirks & QUIRK_NOISY)
266                                 denoise(&sensor_info[s], data, 3, 20);
267                         break;
268
269                 case SENSOR_TYPE_MAGNETIC_FIELD:
270                         calibrate_compass (data, &sensor_info[s], get_timestamp());
271                         if (sensor_info[s].quirks & QUIRK_NOISY)
272                                 denoise(&sensor_info[s], data, 3, 100);
273                         break;
274
275                 case SENSOR_TYPE_GYROSCOPE:
276                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
277                         if (!(sensor_info[s].quirks & QUIRK_TERSE_DRIVER))
278                                 calibrate_gyro(data, &sensor_info[s]);
279                         if (sensor_info[s].quirks & QUIRK_NOISY)
280                                 denoise(&sensor_info[s], data, 3, 20);
281                         break;
282
283                 case SENSOR_TYPE_LIGHT:
284                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
285                 case SENSOR_TYPE_TEMPERATURE:
286                         /* Only keep two decimals for these readings */
287                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
288
289                         /* ... fall through ... */
290
291                 case SENSOR_TYPE_PROXIMITY:
292                         /*
293                          * These are on change sensors ; drop the sample if it
294                          * has the same value as the previously reported one.
295                          */
296                         if (data->data[0] == sensor_info[s].prev_val)
297                                 return 0;
298
299                         sensor_info[s].prev_val = data->data[0];
300                         break;
301         }
302
303         return 1; /* Return sample to Android */
304 }
305
306
307 static float transform_sample_default(int s, int c, unsigned char* sample_data)
308 {
309         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
310         int64_t              s64 = sample_as_int64(sample_data, sample_type);
311         float scale = sensor_info[s].scale ?
312                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
313
314         /* In case correction has been requested using properties, apply it */
315         scale *= sensor_info[s].channel[c].opt_scale;
316
317         /* Apply default scaling rules */
318         return (sensor_info[s].offset + s64) * scale;
319 }
320
321
322 static int finalize_sample_ISH(int s, struct sensors_event_t* data)
323 {
324         int i           = sensor_info[s].catalog_index;
325         int sensor_type = sensor_catalog[i].type;
326         float pitch, roll, yaw;
327
328         /* Swap fields if we have a custom channel ordering on this sensor */
329         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
330                 reorder_fields(data->data, sensor_info[s].order);
331
332         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
333
334                 pitch = data->data[0];
335                 roll = data->data[1];
336                 yaw = data->data[2];
337
338                 data->data[0] = 360.0 - yaw;
339                 data->data[1] = -pitch;
340                 data->data[2] = -roll;
341         }
342
343         return 1; /* Return sample to Android */
344 }
345
346
347 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
348 {
349         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
350         int val         = (int) sample_as_int64(sample_data, sample_type);
351         int i           = sensor_info[s].catalog_index;
352         int sensor_type = sensor_catalog[i].type;
353         float correction;
354         int data_bytes  = (sample_type->realbits)/8;
355         int exponent    = sensor_info[s].offset;
356
357         /* In case correction has been requested using properties, apply it */
358         correction = sensor_info[s].channel[c].opt_scale;
359
360         switch (sensor_type) {
361                 case SENSOR_TYPE_ACCELEROMETER:
362                         switch (c) {
363                                 case 0:
364                                         return  correction *
365                                                 CONVERT_A_G_VTF16E14_X(
366                                                 data_bytes, exponent, val);
367
368                                 case 1:
369                                         return  correction *
370                                                 CONVERT_A_G_VTF16E14_Y(
371                                                 data_bytes, exponent, val);
372
373                                 case 2:
374                                         return  correction *
375                                                 CONVERT_A_G_VTF16E14_Z(
376                                                 data_bytes, exponent, val);
377                         }
378                         break;
379
380
381                 case SENSOR_TYPE_GYROSCOPE:
382                         switch (c) {
383                                 case 0:
384                                         return  correction *
385                                                 CONVERT_G_D_VTF16E14_X(
386                                                 data_bytes, exponent, val);
387
388                                 case 1:
389                                         return  correction *
390                                                 CONVERT_G_D_VTF16E14_Y(
391                                                 data_bytes, exponent, val);
392
393                                 case 2:
394                                         return  correction *
395                                                 CONVERT_G_D_VTF16E14_Z(
396                                                 data_bytes, exponent, val);
397                         }
398                         break;
399
400                 case SENSOR_TYPE_MAGNETIC_FIELD:
401                         switch (c) {
402                                 case 0:
403                                         return  correction *
404                                                 CONVERT_M_MG_VTF16E14_X(
405                                                 data_bytes, exponent, val);
406
407                                 case 1:
408                                         return  correction *
409                                                 CONVERT_M_MG_VTF16E14_Y(
410                                                 data_bytes, exponent, val);
411
412                                 case 2:
413                                         return  correction *
414                                                 CONVERT_M_MG_VTF16E14_Z(
415                                                 data_bytes, exponent, val);
416                         }
417                         break;
418
419                 case SENSOR_TYPE_LIGHT:
420                                 return (float) val;
421
422                 case SENSOR_TYPE_ORIENTATION:
423                         return  correction * convert_from_vtf_format(
424                                                 data_bytes, exponent, val);
425
426                 case SENSOR_TYPE_ROTATION_VECTOR:
427                         return  correction * convert_from_vtf_format(
428                                                 data_bytes, exponent, val);
429         }
430
431         return 0;
432 }
433
434
435 void select_transform (int s)
436 {
437         char prop_name[PROP_NAME_MAX];
438         char prop_val[PROP_VALUE_MAX];
439         int i                   = sensor_info[s].catalog_index;
440         const char *prefix      = sensor_catalog[i].tag;
441
442         sprintf(prop_name, PROP_BASE, prefix, "transform");
443
444         if (property_get(prop_name, prop_val, "")) {
445                 if (!strcmp(prop_val, "ISH")) {
446                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
447                                 sensor_info[s].friendly_name);
448
449                         sensor_info[s].ops.transform = transform_sample_ISH;
450                         sensor_info[s].ops.finalize = finalize_sample_ISH;
451                         return;
452                 }
453         }
454
455         sensor_info[s].ops.transform = transform_sample_default;
456         sensor_info[s].ops.finalize = finalize_sample_default;
457 }
458
459
460 float acquire_immediate_value(int s, int c)
461 {
462         char sysfs_path[PATH_MAX];
463         float val;
464         int ret;
465         int dev_num = sensor_info[s].dev_num;
466         int i = sensor_info[s].catalog_index;
467         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
468         const char* input_path = sensor_catalog[i].channel[c].input_path;
469         float scale = sensor_info[s].scale ?
470                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
471         float offset = sensor_info[s].offset;
472         int sensor_type = sensor_catalog[i].type;
473         float correction;
474
475         /* In case correction has been requested using properties, apply it */
476         correction = sensor_info[s].channel[c].opt_scale;
477
478         /* Acquire a sample value for sensor s / channel c through sysfs */
479
480         if (input_path[0]) {
481                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
482                 ret = sysfs_read_float(sysfs_path, &val);
483
484                 if (!ret) {
485                         return val * correction;
486                 }
487         };
488
489         if (!raw_path[0])
490                 return 0;
491
492         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
493         ret = sysfs_read_float(sysfs_path, &val);
494
495         if (ret == -1)
496                 return 0;
497
498         /*
499         There is no transform ops defined yet for Raw sysfs values
500         Use this function to perform transformation as well.
501         */
502         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
503                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
504                         correction;
505
506         return (val + offset) * scale * correction;
507 }