OSDN Git Service

STPK-966: Fix orientation of accelerometer z-axis
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12 #include "utils.h"
13
14 /*----------------------------------------------------------------------------*/
15
16 /* Macros related to Intel Sensor Hub */
17
18 #define GRAVITY 9.80665f
19
20 /* 720 LSG = 1G */
21 #define LSG                         (1024.0f)
22 #define NUMOFACCDATA                (8.0f)
23
24 /* conversion of acceleration data to SI units (m/s^2) */
25 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
26 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
27 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
28 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29
30 /* conversion of magnetic data to uT units */
31 #define CONVERT_M                   (1.0f/6.6f)
32 #define CONVERT_M_X                 (-CONVERT_M)
33 #define CONVERT_M_Y                 (-CONVERT_M)
34 #define CONVERT_M_Z                 (CONVERT_M)
35
36 /* conversion of orientation data to degree units */
37 #define CONVERT_O                   (1.0f/64.0f)
38 #define CONVERT_O_A                 (CONVERT_O)
39 #define CONVERT_O_P                 (CONVERT_O)
40 #define CONVERT_O_R                 (-CONVERT_O)
41
42 /*conversion of gyro data to SI units (radian/sec) */
43 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
44 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
45 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
46 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
47
48 #define BIT(x) (1 << (x))
49
50 inline unsigned int set_bit_range(int start, int end)
51 {
52     int i;
53     unsigned int value = 0;
54
55     for (i = start; i < end; ++i)
56         value |= BIT(i);
57     return value;
58 }
59
60 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
61 {
62     int divider=1;
63     int i;
64     float sample;
65     int mul = 1.0;
66
67     value = value & set_bit_range(0, size*8);
68     if (value & BIT(size*8-1)) {
69         value =  ((1LL << (size*8)) - value);
70         mul = -1.0;
71     }
72     sample = value * 1.0;
73     if (exponent < 0) {
74         exponent = abs(exponent);
75         for (i = 0; i < exponent; ++i) {
76             divider = divider*10;
77         }
78         return mul * sample/divider;
79     } else {
80         return mul * sample * pow(10.0, exponent);
81     }
82 }
83
84 // Platform sensor orientation
85 #define DEF_ORIENT_ACCEL_X                   -1
86 #define DEF_ORIENT_ACCEL_Y                   -1
87 #define DEF_ORIENT_ACCEL_Z                   -1
88
89 #define DEF_ORIENT_GYRO_X                   1
90 #define DEF_ORIENT_GYRO_Y                   1
91 #define DEF_ORIENT_GYRO_Z                   1
92
93 // G to m/s2
94 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
95 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
96                                         convert_from_vtf_format(s,d,x)*GRAVITY)
97 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
98                                         convert_from_vtf_format(s,d,x)*GRAVITY)
99 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
100                                         convert_from_vtf_format(s,d,x)*GRAVITY)
101
102 // Degree/sec to radian/sec
103 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
104                                         convert_from_vtf_format(s,d,x) * \
105                                         ((float)M_PI/180.0f))
106 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
107                                         convert_from_vtf_format(s,d,x) * \
108                                         ((float)M_PI/180.0f))
109 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
110                                         convert_from_vtf_format(s,d,x) * \
111                                         ((float)M_PI/180.0f))
112
113 // Milli gauss to micro tesla
114 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
115 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
116 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
117
118 #define DATA_BYTES      2
119 #define ACC_EXPONENT    -2
120 #define GYRO_EXPONENT   -1
121 #define MAGN_EXPONENT   0
122 #define INC_EXPONENT    -1
123 #define ROT_EXPONENT    -8
124
125 /*----------------------------------------------------------------------------*/
126
127 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
128 {
129         uint16_t u16;
130         uint32_t u32;
131         uint64_t u64;
132         int i;
133         int zeroed_bits = type->storagebits - type->realbits;
134
135         u64 = 0;
136
137         if (type->endianness == 'b')
138                 for (i=0; i<type->storagebits/8; i++)
139                         u64 = (u64 << 8) | sample[i];
140         else
141                 for (i=type->storagebits/8; i>=0; i--)
142                         u64 = (u64 << 8) | sample[i];
143
144         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
145
146         if (type->sign == 'u')
147                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
148
149         switch (type->realbits) {
150                 case 8:
151                         return (int64_t) (int8_t) u64;
152
153                 case 16:
154                         return (int64_t) (int16_t) u64;
155
156                 case 32:
157                         return (int64_t) (int32_t) u64;
158
159                 case 64:
160                         return (int64_t) u64;
161         }
162
163         ALOGE("Unhandled sample storage size\n");
164         return 0;
165 }
166
167
168 static void finalize_sample_default(int s, struct sensors_event_t* data)
169 {
170         int i           = sensor_info[s].catalog_index;
171         int sensor_type = sensor_catalog[i].type;
172
173         switch (sensor_type) {
174                 case SENSOR_TYPE_ACCELEROMETER:
175                         /*
176                          * Invert x and z axes orientation from SI units - see
177                          * /hardware/libhardware/include/hardware/sensors.h
178                          * for a discussion of what Android expects
179                          */
180                         data->data[0] = -data->data[0];
181                         data->data[2] = -data->data[2];
182                         break;
183
184                 case SENSOR_TYPE_GYROSCOPE:
185                         /* Limit drift */
186                         if (    fabs(data->data[0]) < 0.1 &&
187                                 fabs(data->data[1]) < 0.1 &&
188                                 fabs(data->data[2]) < 0.1) {
189                                         data->data[0] = 0;
190                                         data->data[1] = 0;
191                                         data->data[2] = 0;
192                                 }
193                         break;
194         }
195 }
196
197
198 static float transform_sample_default(int s, int c, unsigned char* sample_data)
199 {
200         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
201         int64_t              s64 = sample_as_int64(sample_data, sample_type);
202
203         /* Apply default scaling rules */
204         return (sensor_info[s].offset + s64) * sensor_info[s].scale;
205 }
206
207
208 static void finalize_sample_ISH(int s, struct sensors_event_t* data)
209 {
210         int i           = sensor_info[s].catalog_index;
211         int sensor_type = sensor_catalog[i].type;
212         float pitch, roll, yaw;
213
214         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
215
216                 pitch = data->data[0];
217                 roll = data->data[1];
218                 yaw = data->data[2];
219
220                 data->data[0] = 360.0 - yaw;
221                 data->data[1] = -pitch;
222                 data->data[2] = -roll;
223         }
224 }
225
226
227 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
228 {
229         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
230         int val         = (int) sample_as_int64(sample_data, sample_type);
231         int i           = sensor_info[s].catalog_index;
232         int sensor_type = sensor_catalog[i].type;
233
234         switch (sensor_type) {
235                 case SENSOR_TYPE_ACCELEROMETER:
236                         switch (c) {
237                                 case 0:
238                                         return CONVERT_A_G_VTF16E14_X(
239                                                 DATA_BYTES, ACC_EXPONENT, val);
240
241                                 case 1:
242                                         return CONVERT_A_G_VTF16E14_Y(
243                                                 DATA_BYTES, ACC_EXPONENT, val);
244
245                                 case 2:
246                                         return CONVERT_A_G_VTF16E14_Z(
247                                                 DATA_BYTES, ACC_EXPONENT, val);
248                         }
249                         break;
250
251
252                 case SENSOR_TYPE_GYROSCOPE:
253                         switch (c) {
254                                 case 0:
255                                         return CONVERT_G_D_VTF16E14_X(
256                                                 DATA_BYTES, GYRO_EXPONENT, val);
257
258                                 case 1:
259                                         return CONVERT_G_D_VTF16E14_Y(
260                                                 DATA_BYTES, GYRO_EXPONENT, val);
261
262                                 case 2:
263                                         return CONVERT_G_D_VTF16E14_Z(
264                                                 DATA_BYTES, GYRO_EXPONENT, val);
265                         }
266                         break;
267
268                 case SENSOR_TYPE_MAGNETIC_FIELD:
269                         switch (c) {
270                                 case 0:
271                                         return CONVERT_M_MG_VTF16E14_X(
272                                                 DATA_BYTES, MAGN_EXPONENT, val);
273
274                                 case 1:
275                                         return CONVERT_M_MG_VTF16E14_Y(
276                                                 DATA_BYTES, MAGN_EXPONENT, val);
277
278                                 case 2:
279                                         return CONVERT_M_MG_VTF16E14_Z(
280                                                 DATA_BYTES, MAGN_EXPONENT, val);
281                         }
282                         break;
283
284                 case SENSOR_TYPE_ORIENTATION:
285                         return convert_from_vtf_format(DATA_BYTES, INC_EXPONENT,
286                                 val);
287
288                 case SENSOR_TYPE_ROTATION_VECTOR:
289                         return convert_from_vtf_format(DATA_BYTES, ROT_EXPONENT,
290                                 val);
291         }
292
293         return 0;
294 }
295
296
297 void select_transform (int s)
298 {
299         char prop_name[PROP_NAME_MAX];
300         char prop_val[PROP_VALUE_MAX];
301         int i                   = sensor_info[s].catalog_index;
302         const char *prefix      = sensor_catalog[i].tag;
303
304         sprintf(prop_name, PROP_BASE, prefix, "transform");
305
306         if (property_get(prop_name, prop_val, "")) {
307                 if (!strcmp(prop_val, "ISH")) {
308                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
309                                 sensor_info[s].friendly_name);
310
311                         sensor_info[s].ops.transform = transform_sample_ISH;
312                         sensor_info[s].ops.finalize = finalize_sample_ISH;
313                         return;
314                 }
315         }
316
317         sensor_info[s].ops.transform = transform_sample_default;
318         sensor_info[s].ops.finalize = finalize_sample_default;
319 }
320
321
322 float acquire_immediate_value(int s, int c)
323 {
324         char sysfs_path[PATH_MAX];
325         float val;
326         int ret;
327         int dev_num = sensor_info[s].dev_num;
328         int i = sensor_info[s].catalog_index;
329         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
330         const char* input_path = sensor_catalog[i].channel[c].input_path;
331         float scale = sensor_info[s].scale;
332         float offset = sensor_info[s].offset;
333
334         /* Acquire a sample value for sensor s / channel c through sysfs */
335
336         if (input_path[0]) {
337                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
338                 ret = sysfs_read_float(sysfs_path, &val);
339
340                 if (!ret) {
341                         return val;
342                 }
343         };
344
345         if (!raw_path[0])
346                 return 0;
347
348         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
349         ret = sysfs_read_float(sysfs_path, &val);
350
351         if (ret == -1)
352                 return 0;
353
354         return (val + offset) * scale;
355 }