OSDN Git Service

iio_sensors: Remove hard coded exponent and data bytes
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12 #include "utils.h"
13 #include "calibration.h"
14
15 /*----------------------------------------------------------------------------*/
16
17 /* Macros related to Intel Sensor Hub */
18
19 #define GRAVITY 9.80665f
20
21 /* 720 LSG = 1G */
22 #define LSG                         (1024.0f)
23 #define NUMOFACCDATA                (8.0f)
24
25 /* conversion of acceleration data to SI units (m/s^2) */
26 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
27 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
28 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
30
31 /* conversion of magnetic data to uT units */
32 #define CONVERT_M                   (1.0f/6.6f)
33 #define CONVERT_M_X                 (-CONVERT_M)
34 #define CONVERT_M_Y                 (-CONVERT_M)
35 #define CONVERT_M_Z                 (CONVERT_M)
36
37 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
38
39 /* conversion of orientation data to degree units */
40 #define CONVERT_O                   (1.0f/64.0f)
41 #define CONVERT_O_A                 (CONVERT_O)
42 #define CONVERT_O_P                 (CONVERT_O)
43 #define CONVERT_O_R                 (-CONVERT_O)
44
45 /*conversion of gyro data to SI units (radian/sec) */
46 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
47 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
48 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
49 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
50
51 #define BIT(x) (1 << (x))
52
53 inline unsigned int set_bit_range(int start, int end)
54 {
55     int i;
56     unsigned int value = 0;
57
58     for (i = start; i < end; ++i)
59         value |= BIT(i);
60     return value;
61 }
62
63 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
64 {
65     int divider=1;
66     int i;
67     float sample;
68     int mul = 1.0;
69
70     value = value & set_bit_range(0, size*8);
71     if (value & BIT(size*8-1)) {
72         value =  ((1LL << (size*8)) - value);
73         mul = -1.0;
74     }
75     sample = value * 1.0;
76     if (exponent < 0) {
77         exponent = abs(exponent);
78         for (i = 0; i < exponent; ++i) {
79             divider = divider*10;
80         }
81         return mul * sample/divider;
82     } else {
83         return mul * sample * pow(10.0, exponent);
84     }
85 }
86
87 // Platform sensor orientation
88 #define DEF_ORIENT_ACCEL_X                   -1
89 #define DEF_ORIENT_ACCEL_Y                   -1
90 #define DEF_ORIENT_ACCEL_Z                   -1
91
92 #define DEF_ORIENT_GYRO_X                   1
93 #define DEF_ORIENT_GYRO_Y                   1
94 #define DEF_ORIENT_GYRO_Z                   1
95
96 // G to m/s2
97 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
98 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
99                                         convert_from_vtf_format(s,d,x)*GRAVITY)
100 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104
105 // Degree/sec to radian/sec
106 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
107                                         convert_from_vtf_format(s,d,x) * \
108                                         ((float)M_PI/180.0f))
109 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
110                                         convert_from_vtf_format(s,d,x) * \
111                                         ((float)M_PI/180.0f))
112 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
113                                         convert_from_vtf_format(s,d,x) * \
114                                         ((float)M_PI/180.0f))
115
116 // Milli gauss to micro tesla
117 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
118 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120
121
122 /*----------------------------------------------------------------------------*/
123
124 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
125 {
126         uint16_t u16;
127         uint32_t u32;
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131
132         u64 = 0;
133
134         if (type->endianness == 'b')
135                 for (i=0; i<type->storagebits/8; i++)
136                         u64 = (u64 << 8) | sample[i];
137         else
138                 for (i=type->storagebits/8 - 1; i>=0; i--)
139                         u64 = (u64 << 8) | sample[i];
140
141         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
142
143         if (type->sign == 'u')
144                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
145
146         switch (type->realbits) {
147                 case 8:
148                         return (int64_t) (int8_t) u64;
149
150                 case 12:
151                         return (int64_t)  (u64 >>  11) ?
152                                         (((int64_t)-1) ^ 0xfff) | u64 : u64;
153
154                 case 16:
155                         return (int64_t) (int16_t) u64;
156
157                 case 32:
158                         return (int64_t) (int32_t) u64;
159
160                 case 64:
161                         return (int64_t) u64;
162         }
163
164         ALOGE("Unhandled sample storage size\n");
165         return 0;
166 }
167
168
169 static void finalize_sample_default(int s, struct sensors_event_t* data)
170 {
171         int i           = sensor_info[s].catalog_index;
172         int sensor_type = sensor_catalog[i].type;
173         float x, y, z;
174
175         switch (sensor_type) {
176                 case SENSOR_TYPE_ACCELEROMETER:
177                         /*
178                          * Invert x and z axes orientation from SI units - see
179                          * /hardware/libhardware/include/hardware/sensors.h
180                          * for a discussion of what Android expects
181                          */
182                         x = -data->data[0];
183                         y = data->data[1];
184                         z = -data->data[2];
185
186                         data->data[0] = x;
187                         data->data[1] = y;
188                         data->data[2] = z;
189                         break;
190
191                 case SENSOR_TYPE_MAGNETIC_FIELD:
192                         x = -data->data[0];
193                         y = data->data[1];
194                         z = -data->data[2];
195
196                         data->data[0] = x;
197                         data->data[1] = y;
198                         data->data[2] = z;
199
200                         /* Calibrate compass */
201                         calibrate_compass (data, get_timestamp());
202                         break;
203
204                 case SENSOR_TYPE_GYROSCOPE:
205                         x = -data->data[0];
206                         y = data->data[1];
207                         z = -data->data[2];
208
209                         /* Limit drift */
210                         if (fabs(x) < 0.1 && fabs(y) < 0.1 && fabs(z) < 0.1)
211                                 x = y = z = 0;
212
213                         data->data[0] = x;
214                         data->data[1] = y;
215                         data->data[2] = z;
216                         break;
217
218                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
219                 case SENSOR_TYPE_TEMPERATURE:
220                         /* Only keep two decimals for temperature readings */
221                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
222                         break;
223
224         }
225 }
226
227
228 static float transform_sample_default(int s, int c, unsigned char* sample_data)
229 {
230         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
231         int64_t              s64 = sample_as_int64(sample_data, sample_type);
232         float scale = sensor_info[s].scale ?
233                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
234
235         /* In case correction has been requested using properties, apply it */
236         scale *= sensor_info[s].channel[c].opt_scale;
237
238         /* Apply default scaling rules */
239         return (sensor_info[s].offset + s64) * scale;
240 }
241
242
243 static void finalize_sample_ISH(int s, struct sensors_event_t* data)
244 {
245         int i           = sensor_info[s].catalog_index;
246         int sensor_type = sensor_catalog[i].type;
247         float pitch, roll, yaw;
248
249         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
250
251                 pitch = data->data[0];
252                 roll = data->data[1];
253                 yaw = data->data[2];
254
255                 data->data[0] = 360.0 - yaw;
256                 data->data[1] = -pitch;
257                 data->data[2] = -roll;
258         }
259 }
260
261
262 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
263 {
264         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
265         int val         = (int) sample_as_int64(sample_data, sample_type);
266         int i           = sensor_info[s].catalog_index;
267         int sensor_type = sensor_catalog[i].type;
268         float correction;
269         int data_bytes  = (sample_type->realbits)/8;
270         int exponent    = sensor_info[s].offset;
271
272         /* In case correction has been requested using properties, apply it */
273         correction = sensor_info[s].channel[c].opt_scale;
274
275         switch (sensor_type) {
276                 case SENSOR_TYPE_ACCELEROMETER:
277                         switch (c) {
278                                 case 0:
279                                         return  correction *
280                                                 CONVERT_A_G_VTF16E14_X(
281                                                 data_bytes, exponent, val);
282
283                                 case 1:
284                                         return  correction *
285                                                 CONVERT_A_G_VTF16E14_Y(
286                                                 data_bytes, exponent, val);
287
288                                 case 2:
289                                         return  correction *
290                                                 CONVERT_A_G_VTF16E14_Z(
291                                                 data_bytes, exponent, val);
292                         }
293                         break;
294
295
296                 case SENSOR_TYPE_GYROSCOPE:
297                         switch (c) {
298                                 case 0:
299                                         return  correction *
300                                                 CONVERT_G_D_VTF16E14_X(
301                                                 data_bytes, exponent, val);
302
303                                 case 1:
304                                         return  correction *
305                                                 CONVERT_G_D_VTF16E14_Y(
306                                                 data_bytes, exponent, val);
307
308                                 case 2:
309                                         return  correction *
310                                                 CONVERT_G_D_VTF16E14_Z(
311                                                 data_bytes, exponent, val);
312                         }
313                         break;
314
315                 case SENSOR_TYPE_MAGNETIC_FIELD:
316                         switch (c) {
317                                 case 0:
318                                         return  correction *
319                                                 CONVERT_M_MG_VTF16E14_X(
320                                                 data_bytes, exponent, val);
321
322                                 case 1:
323                                         return  correction *
324                                                 CONVERT_M_MG_VTF16E14_Y(
325                                                 data_bytes, exponent, val);
326
327                                 case 2:
328                                         return  correction *
329                                                 CONVERT_M_MG_VTF16E14_Z(
330                                                 data_bytes, exponent, val);
331                         }
332                         break;
333
334                 case SENSOR_TYPE_ORIENTATION:
335                         return  correction * convert_from_vtf_format(
336                                                 data_bytes, exponent, val);
337
338                 case SENSOR_TYPE_ROTATION_VECTOR:
339                         return  correction * convert_from_vtf_format(
340                                                 data_bytes, exponent, val);
341         }
342
343         return 0;
344 }
345
346
347 void select_transform (int s)
348 {
349         char prop_name[PROP_NAME_MAX];
350         char prop_val[PROP_VALUE_MAX];
351         int i                   = sensor_info[s].catalog_index;
352         const char *prefix      = sensor_catalog[i].tag;
353
354         sprintf(prop_name, PROP_BASE, prefix, "transform");
355
356         if (property_get(prop_name, prop_val, "")) {
357                 if (!strcmp(prop_val, "ISH")) {
358                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
359                                 sensor_info[s].friendly_name);
360
361                         sensor_info[s].ops.transform = transform_sample_ISH;
362                         sensor_info[s].ops.finalize = finalize_sample_ISH;
363                         return;
364                 }
365         }
366
367         sensor_info[s].ops.transform = transform_sample_default;
368         sensor_info[s].ops.finalize = finalize_sample_default;
369 }
370
371
372 float acquire_immediate_value(int s, int c)
373 {
374         char sysfs_path[PATH_MAX];
375         float val;
376         int ret;
377         int dev_num = sensor_info[s].dev_num;
378         int i = sensor_info[s].catalog_index;
379         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
380         const char* input_path = sensor_catalog[i].channel[c].input_path;
381         float scale = sensor_info[s].scale ?
382                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
383         float offset = sensor_info[s].offset;
384         int sensor_type = sensor_catalog[i].type;
385         float correction;
386
387         /* In case correction has been requested using properties, apply it */
388         correction = sensor_info[s].channel[c].opt_scale;
389
390         /* Acquire a sample value for sensor s / channel c through sysfs */
391
392         if (input_path[0]) {
393                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
394                 ret = sysfs_read_float(sysfs_path, &val);
395
396                 if (!ret) {
397                         return val * correction;
398                 }
399         };
400
401         if (!raw_path[0])
402                 return 0;
403
404         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
405         ret = sysfs_read_float(sysfs_path, &val);
406
407         if (ret == -1)
408                 return 0;
409
410         /*
411         There is no transform ops defined yet for Raw sysfs values
412         Use this function to perform transformation as well.
413         */
414         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
415                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
416                         correction;
417
418         return (val + offset) * scale * correction;
419 }