OSDN Git Service

GMINL-3234: Reorganize filters a litle
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15 #include "filtering.h"
16
17 /*----------------------------------------------------------------------------*/
18
19 /* Macros related to Intel Sensor Hub */
20
21 #define GRAVITY 9.80665f
22
23 /* 720 LSG = 1G */
24 #define LSG                         (1024.0f)
25 #define NUMOFACCDATA                (8.0f)
26
27 /* conversion of acceleration data to SI units (m/s^2) */
28 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
29 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
30 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
32
33 /* conversion of magnetic data to uT units */
34 #define CONVERT_M                   (1.0f/6.6f)
35 #define CONVERT_M_X                 (-CONVERT_M)
36 #define CONVERT_M_Y                 (-CONVERT_M)
37 #define CONVERT_M_Z                 (CONVERT_M)
38
39 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
40
41 /* conversion of orientation data to degree units */
42 #define CONVERT_O                   (1.0f/64.0f)
43 #define CONVERT_O_A                 (CONVERT_O)
44 #define CONVERT_O_P                 (CONVERT_O)
45 #define CONVERT_O_R                 (-CONVERT_O)
46
47 /*conversion of gyro data to SI units (radian/sec) */
48 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
49 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
51 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
52
53 #define BIT(x) (1 << (x))
54
55 inline unsigned int set_bit_range(int start, int end)
56 {
57     int i;
58     unsigned int value = 0;
59
60     for (i = start; i < end; ++i)
61         value |= BIT(i);
62     return value;
63 }
64
65 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
66 {
67     int divider=1;
68     int i;
69     float sample;
70     int mul = 1.0;
71
72     value = value & set_bit_range(0, size*8);
73     if (value & BIT(size*8-1)) {
74         value =  ((1LL << (size*8)) - value);
75         mul = -1.0;
76     }
77     sample = value * 1.0;
78     if (exponent < 0) {
79         exponent = abs(exponent);
80         for (i = 0; i < exponent; ++i) {
81             divider = divider*10;
82         }
83         return mul * sample/divider;
84     } else {
85         return mul * sample * pow(10.0, exponent);
86     }
87 }
88
89 // Platform sensor orientation
90 #define DEF_ORIENT_ACCEL_X                   -1
91 #define DEF_ORIENT_ACCEL_Y                   -1
92 #define DEF_ORIENT_ACCEL_Z                   -1
93
94 #define DEF_ORIENT_GYRO_X                   1
95 #define DEF_ORIENT_GYRO_Y                   1
96 #define DEF_ORIENT_GYRO_Z                   1
97
98 // G to m/s2
99 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
100 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
105                                         convert_from_vtf_format(s,d,x)*GRAVITY)
106
107 // Degree/sec to radian/sec
108 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
109                                         convert_from_vtf_format(s,d,x) * \
110                                         ((float)M_PI/180.0f))
111 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
112                                         convert_from_vtf_format(s,d,x) * \
113                                         ((float)M_PI/180.0f))
114 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
115                                         convert_from_vtf_format(s,d,x) * \
116                                         ((float)M_PI/180.0f))
117
118 // Milli gauss to micro tesla
119 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
122
123
124 /*----------------------------------------------------------------------------*/
125
126 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
127 {
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131         uint64_t sign_mask;
132         uint64_t value_mask;
133
134         u64 = 0;
135
136         if (type->endianness == 'b')
137                 for (i=0; i<type->storagebits/8; i++)
138                         u64 = (u64 << 8) | sample[i];
139         else
140                 for (i=type->storagebits/8 - 1; i>=0; i--)
141                         u64 = (u64 << 8) | sample[i];
142
143         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
144
145         if (type->sign == 'u')
146                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
147
148         /* Signed integer */
149
150         switch (type->realbits) {
151                 case 0 ... 1:
152                         return 0;
153
154                 case 8:
155                         return (int64_t) (int8_t) u64;
156
157                 case 16:
158                         return (int64_t) (int16_t) u64;
159
160                 case 32:
161                         return (int64_t) (int32_t) u64;
162
163                 case 64:
164                         return (int64_t) u64;
165
166                 default:
167                         sign_mask = 1 << (type->realbits-1);
168                         value_mask = sign_mask - 1;
169
170                         if (u64 & sign_mask)
171                                 /* Negative value: return 2-complement */
172                                 return - ((~u64 & value_mask) + 1);
173                         else
174                                 return (int64_t) u64; /* Positive value */
175         }
176 }
177
178
179 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
180 {
181         int i;
182         float temp[MAX_CHANNELS];
183
184         for (i=0; i<MAX_CHANNELS; i++)
185                 temp[i] = data[map[i]];
186
187         for (i=0; i<MAX_CHANNELS; i++)
188                 data[i] = temp[i];
189 }
190
191
192 static void clamp_gyro_readings_to_zero (int s, struct sensors_event_t* data)
193 {
194         float x, y, z;
195         float near_zero;
196
197         switch (sensor_info[s].type) {
198                 case SENSOR_TYPE_GYROSCOPE:
199                         x = data->data[0];
200                         y = data->data[1];
201                         z = data->data[2];
202                         break;
203
204                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
205                         x = data->data[0] - data->uncalibrated_gyro.bias[0];
206                         y = data->data[1] - data->uncalibrated_gyro.bias[1];
207                         z = data->data[2] - data->uncalibrated_gyro.bias[2];
208                         break;
209
210                 default:
211                         return;
212         }
213
214         /* If we're calibrated, don't filter out as much */
215         if (sensor_info[s].cal_level > 0)
216                 near_zero = 0.02; /* rad/s */
217         else
218                 near_zero = 0.1;
219
220         /* If motion on all axes is small enough */
221         if (fabs(x) < near_zero && fabs(y) < near_zero && fabs(z) < near_zero) {
222
223                 /*
224                  * Report that we're not moving at all... but not exactly zero
225                  * as composite sensors (orientation, rotation vector) don't
226                  * seem to react very well to it.
227                  */
228                 switch (sensor_info[s].type) {
229                         case SENSOR_TYPE_GYROSCOPE:
230                                 data->data[0] *= 0.000001;
231                                 data->data[1] *= 0.000001;
232                                 data->data[2] *= 0.000001;
233                                 break;
234
235                         case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
236                                 data->data[0]= data->uncalibrated_gyro.bias[0]
237                                                 + 0.000001 * x;
238                                 data->data[1]= data->uncalibrated_gyro.bias[1]
239                                                 + 0.000001 * y;
240                                 data->data[2]= data->uncalibrated_gyro.bias[2]
241                                                 + 0.000001 * z;
242                                 break;
243                 }
244         }
245 }
246
247
248 static int finalize_sample_default (int s, struct sensors_event_t* data)
249 {
250         /* Swap fields if we have a custom channel ordering on this sensor */
251         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
252                 reorder_fields(data->data, sensor_info[s].order);
253
254         sensor_info[s].event_count++;
255         switch (sensor_info[s].type) {
256                 case SENSOR_TYPE_ACCELEROMETER:
257                         /* Always consider the accelerometer accurate */
258                         data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
259                         if (sensor_info[s].quirks & QUIRK_NOISY)
260                                 denoise_average(&sensor_info[s], data, 3, 20);
261                         break;
262
263                 case SENSOR_TYPE_MAGNETIC_FIELD:
264                         calibrate_compass (data, &sensor_info[s], get_timestamp());
265                         if (sensor_info[s].quirks & QUIRK_NOISY)
266                                 denoise_average(&sensor_info[s], data, 3, 30);
267                         break;
268
269                 case SENSOR_TYPE_GYROSCOPE:
270
271                         /*
272                          * Report medium accuracy by default ; higher accuracy
273                          * levels will be reported once, and if, we achieve
274                          * calibration.
275                          */
276                         data->gyro.status = SENSOR_STATUS_ACCURACY_MEDIUM;
277
278                         /* ... fall through */
279
280                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
281
282                         /*
283                          * We're only trying to calibrate data from continuously
284                          * firing gyroscope drivers, as motion based ones use
285                          * movement thresholds that may lead us to incorrectly
286                          * estimate bias.
287                          */
288                         if (sensor_info[s].selected_trigger !=
289                                 sensor_info[s].motion_trigger_name)
290                                         calibrate_gyro(data, &sensor_info[s]);
291
292                         /* For noisy sensors we'll drop a very few number
293                          * of samples to make sure we have at least MIN_SAMPLES events
294                          * in the filtering queue. This is to make sure we are not sending
295                          * events that can disturb our mean or stddev.
296                          */
297                         if (sensor_info[s].quirks & QUIRK_NOISY) {
298                                 denoise_median(&sensor_info[s], data, 3);
299                                 if((sensor_info[s].selected_trigger !=
300                                         sensor_info[s].motion_trigger_name) &&
301                                         sensor_info[s].event_count < MIN_SAMPLES)
302                                                 return 0;
303                         }
304
305                         /* Clamp near zero moves to (0,0,0) if appropriate */
306                         clamp_gyro_readings_to_zero(s, data);
307                         break;
308
309                 case SENSOR_TYPE_LIGHT:
310                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
311                 case SENSOR_TYPE_TEMPERATURE:
312                         /* Only keep two decimals for these readings */
313                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
314
315                         /* ... fall through ... */
316
317                 case SENSOR_TYPE_PROXIMITY:
318                         /*
319                          * These are on change sensors ; drop the sample if it
320                          * has the same value as the previously reported one.
321                          */
322                         if (data->data[0] == sensor_info[s].prev_val)
323                                 return 0;
324
325                         sensor_info[s].prev_val = data->data[0];
326                         break;
327         }
328
329         /* Add this event to our global records, for filtering purposes */
330         record_sample(s, data);
331
332         return 1; /* Return sample to Android */
333 }
334
335
336 static float transform_sample_default(int s, int c, unsigned char* sample_data)
337 {
338         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
339         int64_t              s64 = sample_as_int64(sample_data, sample_type);
340         float scale = sensor_info[s].scale ?
341                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
342
343         /* In case correction has been requested using properties, apply it */
344         scale *= sensor_info[s].channel[c].opt_scale;
345
346         /* Apply default scaling rules */
347         return (sensor_info[s].offset + s64) * scale;
348 }
349
350
351 static int finalize_sample_ISH (int s, struct sensors_event_t* data)
352 {
353         float pitch, roll, yaw;
354
355         /* Swap fields if we have a custom channel ordering on this sensor */
356         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
357                 reorder_fields(data->data, sensor_info[s].order);
358
359         if (sensor_info[s].type == SENSOR_TYPE_ORIENTATION) {
360
361                 pitch = data->data[0];
362                 roll = data->data[1];
363                 yaw = data->data[2];
364
365                 data->data[0] = 360.0 - yaw;
366                 data->data[1] = -pitch;
367                 data->data[2] = -roll;
368         }
369
370         /* Add this event to our global records, for filtering purposes */
371         record_sample(s, data);
372
373         return 1; /* Return sample to Android */
374 }
375
376
377 static float transform_sample_ISH (int s, int c, unsigned char* sample_data)
378 {
379         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
380         int val         = (int) sample_as_int64(sample_data, sample_type);
381         float correction;
382         int data_bytes  = (sample_type->realbits)/8;
383         int exponent    = sensor_info[s].offset;
384
385         /* In case correction has been requested using properties, apply it */
386         correction = sensor_info[s].channel[c].opt_scale;
387
388         switch (sensor_info[s].type) {
389                 case SENSOR_TYPE_ACCELEROMETER:
390                         switch (c) {
391                                 case 0:
392                                         return  correction *
393                                                 CONVERT_A_G_VTF16E14_X(
394                                                 data_bytes, exponent, val);
395
396                                 case 1:
397                                         return  correction *
398                                                 CONVERT_A_G_VTF16E14_Y(
399                                                 data_bytes, exponent, val);
400
401                                 case 2:
402                                         return  correction *
403                                                 CONVERT_A_G_VTF16E14_Z(
404                                                 data_bytes, exponent, val);
405                         }
406                         break;
407
408
409                 case SENSOR_TYPE_GYROSCOPE:
410                         switch (c) {
411                                 case 0:
412                                         return  correction *
413                                                 CONVERT_G_D_VTF16E14_X(
414                                                 data_bytes, exponent, val);
415
416                                 case 1:
417                                         return  correction *
418                                                 CONVERT_G_D_VTF16E14_Y(
419                                                 data_bytes, exponent, val);
420
421                                 case 2:
422                                         return  correction *
423                                                 CONVERT_G_D_VTF16E14_Z(
424                                                 data_bytes, exponent, val);
425                         }
426                         break;
427
428                 case SENSOR_TYPE_MAGNETIC_FIELD:
429                         switch (c) {
430                                 case 0:
431                                         return  correction *
432                                                 CONVERT_M_MG_VTF16E14_X(
433                                                 data_bytes, exponent, val);
434
435                                 case 1:
436                                         return  correction *
437                                                 CONVERT_M_MG_VTF16E14_Y(
438                                                 data_bytes, exponent, val);
439
440                                 case 2:
441                                         return  correction *
442                                                 CONVERT_M_MG_VTF16E14_Z(
443                                                 data_bytes, exponent, val);
444                         }
445                         break;
446
447                 case SENSOR_TYPE_LIGHT:
448                                 return (float) val;
449
450                 case SENSOR_TYPE_ORIENTATION:
451                         return  correction * convert_from_vtf_format(
452                                                 data_bytes, exponent, val);
453
454                 case SENSOR_TYPE_ROTATION_VECTOR:
455                         return  correction * convert_from_vtf_format(
456                                                 data_bytes, exponent, val);
457         }
458
459         return 0;
460 }
461
462
463 void select_transform (int s)
464 {
465         char prop_name[PROP_NAME_MAX];
466         char prop_val[PROP_VALUE_MAX];
467         int i                   = sensor_info[s].catalog_index;
468         const char *prefix      = sensor_catalog[i].tag;
469
470         sprintf(prop_name, PROP_BASE, prefix, "transform");
471
472         if (property_get(prop_name, prop_val, "")) {
473                 if (!strcmp(prop_val, "ISH")) {
474                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
475                                 sensor_info[s].friendly_name);
476
477                         sensor_info[s].ops.transform = transform_sample_ISH;
478                         sensor_info[s].ops.finalize = finalize_sample_ISH;
479                         return;
480                 }
481         }
482
483         sensor_info[s].ops.transform = transform_sample_default;
484         sensor_info[s].ops.finalize = finalize_sample_default;
485 }
486
487
488 float acquire_immediate_value(int s, int c)
489 {
490         char sysfs_path[PATH_MAX];
491         float val;
492         int ret;
493         int dev_num = sensor_info[s].dev_num;
494         int i = sensor_info[s].catalog_index;
495         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
496         const char* input_path = sensor_catalog[i].channel[c].input_path;
497         float scale = sensor_info[s].scale ?
498                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
499         float offset = sensor_info[s].offset;
500         int sensor_type = sensor_catalog[i].type;
501         float correction;
502
503         /* In case correction has been requested using properties, apply it */
504         correction = sensor_info[s].channel[c].opt_scale;
505
506         /* Acquire a sample value for sensor s / channel c through sysfs */
507
508         if (input_path[0]) {
509                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
510                 ret = sysfs_read_float(sysfs_path, &val);
511
512                 if (!ret) {
513                         return val * correction;
514                 }
515         };
516
517         if (!raw_path[0])
518                 return 0;
519
520         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
521         ret = sysfs_read_float(sysfs_path, &val);
522
523         if (ret == -1)
524                 return 0;
525
526         /*
527         There is no transform ops defined yet for Raw sysfs values
528         Use this function to perform transformation as well.
529         */
530         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
531                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
532                         correction;
533
534         return (val + offset) * scale * correction;
535 }