OSDN Git Service

Magnetometer calibration
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12 #include "utils.h"
13 #include "calibration.h"
14
15 /*----------------------------------------------------------------------------*/
16
17 /* Macros related to Intel Sensor Hub */
18
19 #define GRAVITY 9.80665f
20
21 /* 720 LSG = 1G */
22 #define LSG                         (1024.0f)
23 #define NUMOFACCDATA                (8.0f)
24
25 /* conversion of acceleration data to SI units (m/s^2) */
26 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
27 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
28 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
30
31 /* conversion of magnetic data to uT units */
32 #define CONVERT_M                   (1.0f/6.6f)
33 #define CONVERT_M_X                 (-CONVERT_M)
34 #define CONVERT_M_Y                 (-CONVERT_M)
35 #define CONVERT_M_Z                 (CONVERT_M)
36
37 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
38
39 /* conversion of orientation data to degree units */
40 #define CONVERT_O                   (1.0f/64.0f)
41 #define CONVERT_O_A                 (CONVERT_O)
42 #define CONVERT_O_P                 (CONVERT_O)
43 #define CONVERT_O_R                 (-CONVERT_O)
44
45 /*conversion of gyro data to SI units (radian/sec) */
46 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
47 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
48 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
49 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
50
51 #define BIT(x) (1 << (x))
52
53 inline unsigned int set_bit_range(int start, int end)
54 {
55     int i;
56     unsigned int value = 0;
57
58     for (i = start; i < end; ++i)
59         value |= BIT(i);
60     return value;
61 }
62
63 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
64 {
65     int divider=1;
66     int i;
67     float sample;
68     int mul = 1.0;
69
70     value = value & set_bit_range(0, size*8);
71     if (value & BIT(size*8-1)) {
72         value =  ((1LL << (size*8)) - value);
73         mul = -1.0;
74     }
75     sample = value * 1.0;
76     if (exponent < 0) {
77         exponent = abs(exponent);
78         for (i = 0; i < exponent; ++i) {
79             divider = divider*10;
80         }
81         return mul * sample/divider;
82     } else {
83         return mul * sample * pow(10.0, exponent);
84     }
85 }
86
87 // Platform sensor orientation
88 #define DEF_ORIENT_ACCEL_X                   -1
89 #define DEF_ORIENT_ACCEL_Y                   -1
90 #define DEF_ORIENT_ACCEL_Z                   -1
91
92 #define DEF_ORIENT_GYRO_X                   1
93 #define DEF_ORIENT_GYRO_Y                   1
94 #define DEF_ORIENT_GYRO_Z                   1
95
96 // G to m/s2
97 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
98 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
99                                         convert_from_vtf_format(s,d,x)*GRAVITY)
100 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104
105 // Degree/sec to radian/sec
106 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
107                                         convert_from_vtf_format(s,d,x) * \
108                                         ((float)M_PI/180.0f))
109 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
110                                         convert_from_vtf_format(s,d,x) * \
111                                         ((float)M_PI/180.0f))
112 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
113                                         convert_from_vtf_format(s,d,x) * \
114                                         ((float)M_PI/180.0f))
115
116 // Milli gauss to micro tesla
117 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
118 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120
121 #define DATA_BYTES      2
122 #define ACC_EXPONENT    -2
123 #define GYRO_EXPONENT   -1
124 #define MAGN_EXPONENT   0
125 #define INC_EXPONENT    -1
126 #define ROT_EXPONENT    -8
127
128 /*----------------------------------------------------------------------------*/
129
130 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
131 {
132         uint16_t u16;
133         uint32_t u32;
134         uint64_t u64;
135         int i;
136         int zeroed_bits = type->storagebits - type->realbits;
137
138         u64 = 0;
139
140         if (type->endianness == 'b')
141                 for (i=0; i<type->storagebits/8; i++)
142                         u64 = (u64 << 8) | sample[i];
143         else
144                 for (i=type->storagebits/8 - 1; i>=0; i--)
145                         u64 = (u64 << 8) | sample[i];
146
147         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
148
149         if (type->sign == 'u')
150                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
151
152         switch (type->realbits) {
153                 case 8:
154                         return (int64_t) (int8_t) u64;
155
156                 case 12:
157                         return (int64_t)  (u64 >>  11) ?
158                                         (((int64_t)-1) ^ 0xfff) | u64 : u64;
159
160                 case 16:
161                         return (int64_t) (int16_t) u64;
162
163                 case 32:
164                         return (int64_t) (int32_t) u64;
165
166                 case 64:
167                         return (int64_t) u64;
168         }
169
170         ALOGE("Unhandled sample storage size\n");
171         return 0;
172 }
173
174
175 static void finalize_sample_default(int s, struct sensors_event_t* data)
176 {
177         int i           = sensor_info[s].catalog_index;
178         int sensor_type = sensor_catalog[i].type;
179         float x, y, z;
180
181         switch (sensor_type) {
182                 case SENSOR_TYPE_ACCELEROMETER:
183                         /*
184                          * Invert x and z axes orientation from SI units - see
185                          * /hardware/libhardware/include/hardware/sensors.h
186                          * for a discussion of what Android expects
187                          */
188                         x = -data->data[0];
189                         y = data->data[1];
190                         z = -data->data[2];
191
192                         data->data[0] = x;
193                         data->data[1] = y;
194                         data->data[2] = z;
195                         break;
196
197                 case SENSOR_TYPE_MAGNETIC_FIELD:
198                         x = -data->data[0];
199                         y = data->data[1];
200                         z = -data->data[2];
201
202                         data->data[0] = x;
203                         data->data[1] = y;
204                         data->data[2] = z;
205
206                         /* Calibrate compass */
207                         calibrate_compass (data, get_timestamp());
208                         break;
209
210                 case SENSOR_TYPE_GYROSCOPE:
211                         x = -data->data[0];
212                         y = data->data[1];
213                         z = -data->data[2];
214
215                         /* Limit drift */
216                         if (fabs(x) < 0.1 && fabs(y) < 0.1 && fabs(z) < 0.1)
217                                 x = y = z = 0;
218
219                         data->data[0] = x;
220                         data->data[1] = y;
221                         data->data[2] = z;
222                         break;
223
224                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
225                 case SENSOR_TYPE_TEMPERATURE:
226                         /* Only keep two decimals for temperature readings */
227                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
228                         break;
229
230         }
231 }
232
233
234 static float transform_sample_default(int s, int c, unsigned char* sample_data)
235 {
236         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
237         int64_t              s64 = sample_as_int64(sample_data, sample_type);
238         float scale = sensor_info[s].scale ?
239                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
240         /* Apply default scaling rules */
241         return (sensor_info[s].offset + s64) * scale;
242 }
243
244
245 static void finalize_sample_ISH(int s, struct sensors_event_t* data)
246 {
247         int i           = sensor_info[s].catalog_index;
248         int sensor_type = sensor_catalog[i].type;
249         float pitch, roll, yaw;
250
251         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
252
253                 pitch = data->data[0];
254                 roll = data->data[1];
255                 yaw = data->data[2];
256
257                 data->data[0] = 360.0 - yaw;
258                 data->data[1] = -pitch;
259                 data->data[2] = -roll;
260         }
261 }
262
263
264 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
265 {
266         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
267         int val         = (int) sample_as_int64(sample_data, sample_type);
268         int i           = sensor_info[s].catalog_index;
269         int sensor_type = sensor_catalog[i].type;
270
271         switch (sensor_type) {
272                 case SENSOR_TYPE_ACCELEROMETER:
273                         switch (c) {
274                                 case 0:
275                                         return CONVERT_A_G_VTF16E14_X(
276                                                 DATA_BYTES, ACC_EXPONENT, val);
277
278                                 case 1:
279                                         return CONVERT_A_G_VTF16E14_Y(
280                                                 DATA_BYTES, ACC_EXPONENT, val);
281
282                                 case 2:
283                                         return CONVERT_A_G_VTF16E14_Z(
284                                                 DATA_BYTES, ACC_EXPONENT, val);
285                         }
286                         break;
287
288
289                 case SENSOR_TYPE_GYROSCOPE:
290                         switch (c) {
291                                 case 0:
292                                         return CONVERT_G_D_VTF16E14_X(
293                                                 DATA_BYTES, GYRO_EXPONENT, val);
294
295                                 case 1:
296                                         return CONVERT_G_D_VTF16E14_Y(
297                                                 DATA_BYTES, GYRO_EXPONENT, val);
298
299                                 case 2:
300                                         return CONVERT_G_D_VTF16E14_Z(
301                                                 DATA_BYTES, GYRO_EXPONENT, val);
302                         }
303                         break;
304
305                 case SENSOR_TYPE_MAGNETIC_FIELD:
306                         switch (c) {
307                                 case 0:
308                                         return CONVERT_M_MG_VTF16E14_X(
309                                                 DATA_BYTES, MAGN_EXPONENT, val);
310
311                                 case 1:
312                                         return CONVERT_M_MG_VTF16E14_Y(
313                                                 DATA_BYTES, MAGN_EXPONENT, val);
314
315                                 case 2:
316                                         return CONVERT_M_MG_VTF16E14_Z(
317                                                 DATA_BYTES, MAGN_EXPONENT, val);
318                         }
319                         break;
320
321                 case SENSOR_TYPE_ORIENTATION:
322                         return convert_from_vtf_format(DATA_BYTES, INC_EXPONENT,
323                                 val);
324
325                 case SENSOR_TYPE_ROTATION_VECTOR:
326                         return convert_from_vtf_format(DATA_BYTES, ROT_EXPONENT,
327                                 val);
328         }
329
330         return 0;
331 }
332
333
334 void select_transform (int s)
335 {
336         char prop_name[PROP_NAME_MAX];
337         char prop_val[PROP_VALUE_MAX];
338         int i                   = sensor_info[s].catalog_index;
339         const char *prefix      = sensor_catalog[i].tag;
340
341         sprintf(prop_name, PROP_BASE, prefix, "transform");
342
343         if (property_get(prop_name, prop_val, "")) {
344                 if (!strcmp(prop_val, "ISH")) {
345                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
346                                 sensor_info[s].friendly_name);
347
348                         sensor_info[s].ops.transform = transform_sample_ISH;
349                         sensor_info[s].ops.finalize = finalize_sample_ISH;
350                         return;
351                 }
352         }
353
354         sensor_info[s].ops.transform = transform_sample_default;
355         sensor_info[s].ops.finalize = finalize_sample_default;
356 }
357
358
359 float acquire_immediate_value(int s, int c)
360 {
361         char sysfs_path[PATH_MAX];
362         float val;
363         int ret;
364         int dev_num = sensor_info[s].dev_num;
365         int i = sensor_info[s].catalog_index;
366         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
367         const char* input_path = sensor_catalog[i].channel[c].input_path;
368         float scale = sensor_info[s].scale ?
369                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
370         float offset = sensor_info[s].offset;
371         int sensor_type = sensor_catalog[i].type;
372
373         /* Acquire a sample value for sensor s / channel c through sysfs */
374
375         if (input_path[0]) {
376                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
377                 ret = sysfs_read_float(sysfs_path, &val);
378
379                 if (!ret) {
380                         return val;
381                 }
382         };
383
384         if (!raw_path[0])
385                 return 0;
386
387         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
388         ret = sysfs_read_float(sysfs_path, &val);
389
390         if (ret == -1)
391                 return 0;
392
393         /*
394         There is no transform ops defined yet for Raw sysfs values
395         Use this function to perform transformation as well.
396         */
397         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
398                 return CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale); //Gauss to MicroTesla
399
400         return (val + offset) * scale;
401 }