OSDN Git Service

Merge remote-tracking branch 'origin/abt/topic/gmin/l-dev/sensors/master' into gmin...
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15
16 /*----------------------------------------------------------------------------*/
17
18 /* Macros related to Intel Sensor Hub */
19
20 #define GRAVITY 9.80665f
21
22 /* 720 LSG = 1G */
23 #define LSG                         (1024.0f)
24 #define NUMOFACCDATA                (8.0f)
25
26 /* conversion of acceleration data to SI units (m/s^2) */
27 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
28 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
29 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
30 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31
32 /* conversion of magnetic data to uT units */
33 #define CONVERT_M                   (1.0f/6.6f)
34 #define CONVERT_M_X                 (-CONVERT_M)
35 #define CONVERT_M_Y                 (-CONVERT_M)
36 #define CONVERT_M_Z                 (CONVERT_M)
37
38 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
39
40 /* conversion of orientation data to degree units */
41 #define CONVERT_O                   (1.0f/64.0f)
42 #define CONVERT_O_A                 (CONVERT_O)
43 #define CONVERT_O_P                 (CONVERT_O)
44 #define CONVERT_O_R                 (-CONVERT_O)
45
46 /*conversion of gyro data to SI units (radian/sec) */
47 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
48 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
49 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
51
52 #define BIT(x) (1 << (x))
53
54 inline unsigned int set_bit_range(int start, int end)
55 {
56     int i;
57     unsigned int value = 0;
58
59     for (i = start; i < end; ++i)
60         value |= BIT(i);
61     return value;
62 }
63
64 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
65 {
66     int divider=1;
67     int i;
68     float sample;
69     int mul = 1.0;
70
71     value = value & set_bit_range(0, size*8);
72     if (value & BIT(size*8-1)) {
73         value =  ((1LL << (size*8)) - value);
74         mul = -1.0;
75     }
76     sample = value * 1.0;
77     if (exponent < 0) {
78         exponent = abs(exponent);
79         for (i = 0; i < exponent; ++i) {
80             divider = divider*10;
81         }
82         return mul * sample/divider;
83     } else {
84         return mul * sample * pow(10.0, exponent);
85     }
86 }
87
88 // Platform sensor orientation
89 #define DEF_ORIENT_ACCEL_X                   -1
90 #define DEF_ORIENT_ACCEL_Y                   -1
91 #define DEF_ORIENT_ACCEL_Z                   -1
92
93 #define DEF_ORIENT_GYRO_X                   1
94 #define DEF_ORIENT_GYRO_Y                   1
95 #define DEF_ORIENT_GYRO_Z                   1
96
97 // G to m/s2
98 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
99 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
100                                         convert_from_vtf_format(s,d,x)*GRAVITY)
101 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
102                                         convert_from_vtf_format(s,d,x)*GRAVITY)
103 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
104                                         convert_from_vtf_format(s,d,x)*GRAVITY)
105
106 // Degree/sec to radian/sec
107 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
108                                         convert_from_vtf_format(s,d,x) * \
109                                         ((float)M_PI/180.0f))
110 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
111                                         convert_from_vtf_format(s,d,x) * \
112                                         ((float)M_PI/180.0f))
113 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
114                                         convert_from_vtf_format(s,d,x) * \
115                                         ((float)M_PI/180.0f))
116
117 // Milli gauss to micro tesla
118 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
119 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121
122
123 /*----------------------------------------------------------------------------*/
124
125 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
126 {
127         uint64_t u64;
128         int i;
129         int zeroed_bits = type->storagebits - type->realbits;
130         uint64_t sign_mask;
131         uint64_t value_mask;
132
133         u64 = 0;
134
135         if (type->endianness == 'b')
136                 for (i=0; i<type->storagebits/8; i++)
137                         u64 = (u64 << 8) | sample[i];
138         else
139                 for (i=type->storagebits/8 - 1; i>=0; i--)
140                         u64 = (u64 << 8) | sample[i];
141
142         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
143
144         if (type->sign == 'u')
145                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
146
147         /* Signed integer */
148
149         switch (type->realbits) {
150                 case 0 ... 1:
151                         return 0;
152
153                 case 8:
154                         return (int64_t) (int8_t) u64;
155
156                 case 16:
157                         return (int64_t) (int16_t) u64;
158
159                 case 32:
160                         return (int64_t) (int32_t) u64;
161
162                 case 64:
163                         return (int64_t) u64;
164
165                 default:
166                         sign_mask = 1 << (type->realbits-1);
167                         value_mask = sign_mask - 1;
168
169                         if (u64 & sign_mask)
170                                 /* Negative value: return 2-complement */
171                                 return - ((~u64 & value_mask) + 1);
172                         else
173                                 return (int64_t) u64; /* Positive value */
174         }
175 }
176
177
178 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
179 {
180         int i;
181         float temp[MAX_CHANNELS];
182
183         for (i=0; i<MAX_CHANNELS; i++)
184                 temp[i] = data[map[i]];
185
186         for (i=0; i<MAX_CHANNELS; i++)
187                 data[i] = temp[i];
188 }
189
190
191 static int finalize_sample_default(int s, struct sensors_event_t* data)
192 {
193         int i           = sensor_info[s].catalog_index;
194         int sensor_type = sensor_catalog[i].type;
195
196         /* Swap fields if we have a custom channel ordering on this sensor */
197         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
198                 reorder_fields(data->data, sensor_info[s].order);
199
200         switch (sensor_type) {
201                 case SENSOR_TYPE_ACCELEROMETER:
202                         break;
203
204                 case SENSOR_TYPE_MAGNETIC_FIELD:
205                         calibrate_compass (data, &sensor_info[s], get_timestamp());
206                         break;
207
208                 case SENSOR_TYPE_GYROSCOPE:
209                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
210                         calibrate_gyro(data, &sensor_info[s]);
211                         break;
212
213                 case SENSOR_TYPE_LIGHT:
214                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
215                 case SENSOR_TYPE_TEMPERATURE:
216                         /* Only keep two decimals for these readings */
217                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
218
219                         /* ... fall through ... */
220
221                 case SENSOR_TYPE_PROXIMITY:
222                         /*
223                          * These are on change sensors ; drop the sample if it
224                          * has the same value as the previously reported one.
225                          */
226                         if (data->data[0] == sensor_info[s].prev_val)
227                                 return 0;
228
229                         sensor_info[s].prev_val = data->data[0];
230                         break;
231         }
232
233         return 1; /* Return sample to Android */
234 }
235
236
237 static float transform_sample_default(int s, int c, unsigned char* sample_data)
238 {
239         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
240         int64_t              s64 = sample_as_int64(sample_data, sample_type);
241         float scale = sensor_info[s].scale ?
242                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
243
244         /* In case correction has been requested using properties, apply it */
245         scale *= sensor_info[s].channel[c].opt_scale;
246
247         /* Apply default scaling rules */
248         return (sensor_info[s].offset + s64) * scale;
249 }
250
251
252 static int finalize_sample_ISH(int s, struct sensors_event_t* data)
253 {
254         int i           = sensor_info[s].catalog_index;
255         int sensor_type = sensor_catalog[i].type;
256         float pitch, roll, yaw;
257
258         /* Swap fields if we have a custom channel ordering on this sensor */
259         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
260                 reorder_fields(data->data, sensor_info[s].order);
261
262         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
263
264                 pitch = data->data[0];
265                 roll = data->data[1];
266                 yaw = data->data[2];
267
268                 data->data[0] = 360.0 - yaw;
269                 data->data[1] = -pitch;
270                 data->data[2] = -roll;
271         }
272
273         return 1; /* Return sample to Android */
274 }
275
276
277 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
278 {
279         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
280         int val         = (int) sample_as_int64(sample_data, sample_type);
281         int i           = sensor_info[s].catalog_index;
282         int sensor_type = sensor_catalog[i].type;
283         float correction;
284         int data_bytes  = (sample_type->realbits)/8;
285         int exponent    = sensor_info[s].offset;
286
287         /* In case correction has been requested using properties, apply it */
288         correction = sensor_info[s].channel[c].opt_scale;
289
290         switch (sensor_type) {
291                 case SENSOR_TYPE_ACCELEROMETER:
292                         switch (c) {
293                                 case 0:
294                                         return  correction *
295                                                 CONVERT_A_G_VTF16E14_X(
296                                                 data_bytes, exponent, val);
297
298                                 case 1:
299                                         return  correction *
300                                                 CONVERT_A_G_VTF16E14_Y(
301                                                 data_bytes, exponent, val);
302
303                                 case 2:
304                                         return  correction *
305                                                 CONVERT_A_G_VTF16E14_Z(
306                                                 data_bytes, exponent, val);
307                         }
308                         break;
309
310
311                 case SENSOR_TYPE_GYROSCOPE:
312                         switch (c) {
313                                 case 0:
314                                         return  correction *
315                                                 CONVERT_G_D_VTF16E14_X(
316                                                 data_bytes, exponent, val);
317
318                                 case 1:
319                                         return  correction *
320                                                 CONVERT_G_D_VTF16E14_Y(
321                                                 data_bytes, exponent, val);
322
323                                 case 2:
324                                         return  correction *
325                                                 CONVERT_G_D_VTF16E14_Z(
326                                                 data_bytes, exponent, val);
327                         }
328                         break;
329
330                 case SENSOR_TYPE_MAGNETIC_FIELD:
331                         switch (c) {
332                                 case 0:
333                                         return  correction *
334                                                 CONVERT_M_MG_VTF16E14_X(
335                                                 data_bytes, exponent, val);
336
337                                 case 1:
338                                         return  correction *
339                                                 CONVERT_M_MG_VTF16E14_Y(
340                                                 data_bytes, exponent, val);
341
342                                 case 2:
343                                         return  correction *
344                                                 CONVERT_M_MG_VTF16E14_Z(
345                                                 data_bytes, exponent, val);
346                         }
347                         break;
348
349                 case SENSOR_TYPE_LIGHT:
350                                 return (float) val;
351
352                 case SENSOR_TYPE_ORIENTATION:
353                         return  correction * convert_from_vtf_format(
354                                                 data_bytes, exponent, val);
355
356                 case SENSOR_TYPE_ROTATION_VECTOR:
357                         return  correction * convert_from_vtf_format(
358                                                 data_bytes, exponent, val);
359         }
360
361         return 0;
362 }
363
364
365 void select_transform (int s)
366 {
367         char prop_name[PROP_NAME_MAX];
368         char prop_val[PROP_VALUE_MAX];
369         int i                   = sensor_info[s].catalog_index;
370         const char *prefix      = sensor_catalog[i].tag;
371
372         sprintf(prop_name, PROP_BASE, prefix, "transform");
373
374         if (property_get(prop_name, prop_val, "")) {
375                 if (!strcmp(prop_val, "ISH")) {
376                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
377                                 sensor_info[s].friendly_name);
378
379                         sensor_info[s].ops.transform = transform_sample_ISH;
380                         sensor_info[s].ops.finalize = finalize_sample_ISH;
381                         return;
382                 }
383         }
384
385         sensor_info[s].ops.transform = transform_sample_default;
386         sensor_info[s].ops.finalize = finalize_sample_default;
387 }
388
389
390 float acquire_immediate_value(int s, int c)
391 {
392         char sysfs_path[PATH_MAX];
393         float val;
394         int ret;
395         int dev_num = sensor_info[s].dev_num;
396         int i = sensor_info[s].catalog_index;
397         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
398         const char* input_path = sensor_catalog[i].channel[c].input_path;
399         float scale = sensor_info[s].scale ?
400                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
401         float offset = sensor_info[s].offset;
402         int sensor_type = sensor_catalog[i].type;
403         float correction;
404
405         /* In case correction has been requested using properties, apply it */
406         correction = sensor_info[s].channel[c].opt_scale;
407
408         /* Acquire a sample value for sensor s / channel c through sysfs */
409
410         if (input_path[0]) {
411                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
412                 ret = sysfs_read_float(sysfs_path, &val);
413
414                 if (!ret) {
415                         return val * correction;
416                 }
417         };
418
419         if (!raw_path[0])
420                 return 0;
421
422         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
423         ret = sysfs_read_float(sysfs_path, &val);
424
425         if (ret == -1)
426                 return 0;
427
428         /*
429         There is no transform ops defined yet for Raw sysfs values
430         Use this function to perform transformation as well.
431         */
432         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
433                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
434                         correction;
435
436         return (val + offset) * scale * correction;
437 }