OSDN Git Service

Better support for virtual sensors
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15 #include "filtering.h"
16
17 /*----------------------------------------------------------------------------*/
18
19 /* Macros related to Intel Sensor Hub */
20
21 #define GRAVITY 9.80665f
22
23 /* 720 LSG = 1G */
24 #define LSG                         (1024.0)
25 #define NUMOFACCDATA                (8.0)
26
27 /* conversion of acceleration data to SI units (m/s^2) */
28 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
29 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
30 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
32
33 /* conversion of magnetic data to uT units */
34 #define CONVERT_M                   (1.0/6.6)
35 #define CONVERT_M_X                 (-CONVERT_M)
36 #define CONVERT_M_Y                 (-CONVERT_M)
37 #define CONVERT_M_Z                 (CONVERT_M)
38
39 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ((x) * 100 )
40
41 /* conversion of orientation data to degree units */
42 #define CONVERT_O                   (1.0/64)
43 #define CONVERT_O_A                 (CONVERT_O)
44 #define CONVERT_O_P                 (CONVERT_O)
45 #define CONVERT_O_R                 (-CONVERT_O)
46
47 /*conversion of gyro data to SI units (radian/sec) */
48 #define CONVERT_GYRO                (2000.0/32767*M_PI/180)
49 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
51 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
52
53 #define BIT(x) (1 << (x))
54
55 inline unsigned int set_bit_range(int start, int end)
56 {
57     int i;
58     unsigned int value = 0;
59
60     for (i = start; i < end; ++i)
61         value |= BIT(i);
62     return value;
63 }
64
65 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
66 {
67     int divider=1;
68     int i;
69     float sample;
70     int mul = 1.0;
71
72     value = value & set_bit_range(0, size*8);
73     if (value & BIT(size*8-1)) {
74         value =  ((1LL << (size*8)) - value);
75         mul = -1.0;
76     }
77     sample = value * 1.0;
78     if (exponent < 0) {
79         exponent = abs(exponent);
80         for (i = 0; i < exponent; ++i) {
81             divider = divider*10;
82         }
83         return mul * sample/divider;
84     } else {
85         return mul * sample * pow(10.0, exponent);
86     }
87 }
88
89 /* Platform sensor orientation */
90 #define DEF_ORIENT_ACCEL_X                   -1
91 #define DEF_ORIENT_ACCEL_Y                   -1
92 #define DEF_ORIENT_ACCEL_Z                   -1
93
94 #define DEF_ORIENT_GYRO_X                   1
95 #define DEF_ORIENT_GYRO_Y                   1
96 #define DEF_ORIENT_GYRO_Z                   1
97
98 /* G to m/s2 */
99 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
100 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
105                                         convert_from_vtf_format(s,d,x)*GRAVITY)
106
107 /* Degree/sec to radian/sec */
108 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
109                                         convert_from_vtf_format(s,d,x) * \
110                                         M_PI/180)
111 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
112                                         convert_from_vtf_format(s,d,x) * \
113                                         M_PI/180)
114 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
115                                         convert_from_vtf_format(s,d,x) * \
116                                         M_PI/180)
117
118 /* Milli gauss to micro tesla */
119 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
122
123
124 /*----------------------------------------------------------------------------*/
125
126 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
127 {
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131         uint64_t sign_mask;
132         uint64_t value_mask;
133
134         u64 = 0;
135
136         if (type->endianness == 'b')
137                 for (i=0; i<type->storagebits/8; i++)
138                         u64 = (u64 << 8) | sample[i];
139         else
140                 for (i=type->storagebits/8 - 1; i>=0; i--)
141                         u64 = (u64 << 8) | sample[i];
142
143         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
144
145         if (type->sign == 'u')
146                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
147
148         /* Signed integer */
149
150         switch (type->realbits) {
151                 case 0 ... 1:
152                         return 0;
153
154                 case 8:
155                         return (int64_t) (int8_t) u64;
156
157                 case 16:
158                         return (int64_t) (int16_t) u64;
159
160                 case 32:
161                         return (int64_t) (int32_t) u64;
162
163                 case 64:
164                         return (int64_t) u64;
165
166                 default:
167                         sign_mask = 1 << (type->realbits-1);
168                         value_mask = sign_mask - 1;
169
170                         if (u64 & sign_mask)
171                                 /* Negative value: return 2-complement */
172                                 return - ((~u64 & value_mask) + 1);
173                         else
174                                 return (int64_t) u64; /* Positive value */
175         }
176 }
177
178
179 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
180 {
181         int i;
182         float temp[MAX_CHANNELS];
183
184         for (i=0; i<MAX_CHANNELS; i++)
185                 temp[i] = data[map[i]];
186
187         for (i=0; i<MAX_CHANNELS; i++)
188                 data[i] = temp[i];
189 }
190
191
192 static void clamp_gyro_readings_to_zero (int s, struct sensors_event_t* data)
193 {
194         float x, y, z;
195         float near_zero;
196
197         x = data->data[0];
198         y = data->data[1];
199         z = data->data[2];
200
201
202         /* If we're calibrated, don't filter out as much */
203         if (sensor_info[s].cal_level > 0)
204                 near_zero = 0.02; /* rad/s */
205         else
206                 near_zero = 0.1;
207
208         /* If motion on all axes is small enough */
209         if (fabs(x) < near_zero && fabs(y) < near_zero && fabs(z) < near_zero) {
210
211                 /*
212                  * Report that we're not moving at all... but not exactly zero
213                  * as composite sensors (orientation, rotation vector) don't
214                  * seem to react very well to it.
215                  */
216
217                 data->data[0] *= 0.000001;
218                 data->data[1] *= 0.000001;
219                 data->data[2] *= 0.000001;
220         }
221 }
222
223 static void process_event_gyro_uncal(int s, int i, struct sensors_event_t* data)
224 {
225         struct gyro_cal* gyro_data = NULL;
226
227         if (sensor_info[s].type == SENSOR_TYPE_GYROSCOPE) {
228                 gyro_data = (struct gyro_cal*) sensor_info[s].cal_data;
229                 memcpy(&sensor_info[i].sample, data, sizeof(struct sensors_event_t));
230
231                 sensor_info[i].sample.type = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED;
232                 sensor_info[i].sample.sensor = s;
233
234                 sensor_info[i].sample.data[0] = data->data[0] + gyro_data->bias_x;
235                 sensor_info[i].sample.data[1] = data->data[1] + gyro_data->bias_y;
236                 sensor_info[i].sample.data[2] = data->data[2] + gyro_data->bias_z;
237
238                 sensor_info[i].sample.uncalibrated_gyro.bias[0] = gyro_data->bias_x;
239                 sensor_info[i].sample.uncalibrated_gyro.bias[1] = gyro_data->bias_y;
240                 sensor_info[i].sample.uncalibrated_gyro.bias[2] = gyro_data->bias_z;
241
242                 sensor_info[i].report_pending = 1;
243         }
244 }
245
246 static void process_event(int s, struct sensors_event_t* data)
247 {
248         /*
249          * This gets the real event (post process - calibration, filtering & co.)
250          * and makes it into a virtual one.
251          * The specific processing function for each sensor will populate the
252          * necessary fields and set up the report pending flag.
253          */
254
255          int i;
256
257          /* Go through out virtual sensors and check if we can use this event */
258          for (i = 0; i < sensor_count; i++) {
259                 switch (sensor_info[i].type) {
260                         case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
261                                 process_event_gyro_uncal(s, i, data);
262                         break;
263
264                         default:
265                         break;
266                 }
267         }
268 }
269
270 static int finalize_sample_default (int s, struct sensors_event_t* data)
271 {
272         /* Swap fields if we have a custom channel ordering on this sensor */
273         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
274                 reorder_fields(data->data, sensor_info[s].order);
275
276         sensor_info[s].event_count++;
277         switch (sensor_info[s].type) {
278                 case SENSOR_TYPE_ACCELEROMETER:
279                         /* Always consider the accelerometer accurate */
280                         data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
281                         if (sensor_info[s].quirks & QUIRK_NOISY)
282                                 denoise(s, data);
283                         break;
284
285                 case SENSOR_TYPE_MAGNETIC_FIELD:
286                         calibrate_compass (data, &sensor_info[s]);
287                         if (sensor_info[s].quirks & QUIRK_NOISY)
288                                 denoise(s, data);
289                         break;
290
291                 case SENSOR_TYPE_GYROSCOPE:
292
293                         /*
294                          * Report medium accuracy by default ; higher accuracy
295                          * levels will be reported once, and if, we achieve
296                          * calibration.
297                          */
298                         data->gyro.status = SENSOR_STATUS_ACCURACY_MEDIUM;
299
300                         /*
301                          * We're only trying to calibrate data from continuously
302                          * firing gyroscope drivers, as motion based ones use
303                          * movement thresholds that may lead us to incorrectly
304                          * estimate bias.
305                          */
306                         if (sensor_info[s].selected_trigger !=
307                                 sensor_info[s].motion_trigger_name)
308                                         calibrate_gyro(data, &sensor_info[s]);
309
310                         /*
311                          * For noisy sensors drop a few samples to make sure we
312                          * have at least GYRO_MIN_SAMPLES events in the
313                          * filtering queue. This improves mean and std dev.
314                          */
315                         if (sensor_info[s].quirks & QUIRK_NOISY) {
316                                 if (sensor_info[s].selected_trigger !=
317                                     sensor_info[s].motion_trigger_name &&
318                                     sensor_info[s].event_count<GYRO_MIN_SAMPLES)
319                                                 return 0;
320
321                                 denoise(s, data);
322                         }
323
324                         /* Clamp near zero moves to (0,0,0) if appropriate */
325                         clamp_gyro_readings_to_zero(s, data);
326                         break;
327
328                 case SENSOR_TYPE_LIGHT:
329                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
330                 case SENSOR_TYPE_TEMPERATURE:
331                         /* Only keep two decimals for these readings */
332                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
333
334                         /* ... fall through ... */
335
336                 case SENSOR_TYPE_PROXIMITY:
337                         /*
338                          * These are on change sensors ; drop the sample if it
339                          * has the same value as the previously reported one.
340                          */
341                         if (data->data[0] == sensor_info[s].prev_val)
342                                 return 0;
343
344                         sensor_info[s].prev_val = data->data[0];
345                         break;
346         }
347         /* If there are active virtual sensors depending on this one - process the event */
348         if (sensor_info[s].ref_count)
349                 process_event(s, data);
350         /* We will drop samples if the sensor is not directly enabled */
351         if (!sensor_info[s].directly_enabled)
352                 return 0;
353
354         return 1; /* Return sample to Android */
355 }
356
357
358 static float transform_sample_default(int s, int c, unsigned char* sample_data)
359 {
360         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
361         int64_t              s64 = sample_as_int64(sample_data, sample_type);
362         float scale = sensor_info[s].scale ?
363                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
364
365         /* In case correction has been requested using properties, apply it */
366         scale *= sensor_info[s].channel[c].opt_scale;
367
368         /* Apply default scaling rules */
369         return (sensor_info[s].offset + s64) * scale;
370 }
371
372
373 static int finalize_sample_ISH (int s, struct sensors_event_t* data)
374 {
375         float pitch, roll, yaw;
376
377         /* Swap fields if we have a custom channel ordering on this sensor */
378         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
379                 reorder_fields(data->data, sensor_info[s].order);
380
381         if (sensor_info[s].type == SENSOR_TYPE_ORIENTATION) {
382
383                 pitch = data->data[0];
384                 roll = data->data[1];
385                 yaw = data->data[2];
386
387                 data->data[0] = 360.0 - yaw;
388                 data->data[1] = -pitch;
389                 data->data[2] = -roll;
390         }
391
392         /* Add this event to our global records, for filtering purposes */
393         record_sample(s, data);
394
395         return 1; /* Return sample to Android */
396 }
397
398
399 static float transform_sample_ISH (int s, int c, unsigned char* sample_data)
400 {
401         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
402         int val         = (int) sample_as_int64(sample_data, sample_type);
403         float correction;
404         int data_bytes  = (sample_type->realbits)/8;
405         int exponent    = sensor_info[s].offset;
406
407         /* In case correction has been requested using properties, apply it */
408         correction = sensor_info[s].channel[c].opt_scale;
409
410         switch (sensor_info[s].type) {
411                 case SENSOR_TYPE_ACCELEROMETER:
412                         switch (c) {
413                                 case 0:
414                                         return  correction *
415                                                 CONVERT_A_G_VTF16E14_X(
416                                                 data_bytes, exponent, val);
417
418                                 case 1:
419                                         return  correction *
420                                                 CONVERT_A_G_VTF16E14_Y(
421                                                 data_bytes, exponent, val);
422
423                                 case 2:
424                                         return  correction *
425                                                 CONVERT_A_G_VTF16E14_Z(
426                                                 data_bytes, exponent, val);
427                         }
428                         break;
429
430
431                 case SENSOR_TYPE_GYROSCOPE:
432                         switch (c) {
433                                 case 0:
434                                         return  correction *
435                                                 CONVERT_G_D_VTF16E14_X(
436                                                 data_bytes, exponent, val);
437
438                                 case 1:
439                                         return  correction *
440                                                 CONVERT_G_D_VTF16E14_Y(
441                                                 data_bytes, exponent, val);
442
443                                 case 2:
444                                         return  correction *
445                                                 CONVERT_G_D_VTF16E14_Z(
446                                                 data_bytes, exponent, val);
447                         }
448                         break;
449
450                 case SENSOR_TYPE_MAGNETIC_FIELD:
451                         switch (c) {
452                                 case 0:
453                                         return  correction *
454                                                 CONVERT_M_MG_VTF16E14_X(
455                                                 data_bytes, exponent, val);
456
457                                 case 1:
458                                         return  correction *
459                                                 CONVERT_M_MG_VTF16E14_Y(
460                                                 data_bytes, exponent, val);
461
462                                 case 2:
463                                         return  correction *
464                                                 CONVERT_M_MG_VTF16E14_Z(
465                                                 data_bytes, exponent, val);
466                         }
467                         break;
468
469                 case SENSOR_TYPE_LIGHT:
470                                 return (float) val;
471
472                 case SENSOR_TYPE_ORIENTATION:
473                         return  correction * convert_from_vtf_format(
474                                                 data_bytes, exponent, val);
475
476                 case SENSOR_TYPE_ROTATION_VECTOR:
477                         return  correction * convert_from_vtf_format(
478                                                 data_bytes, exponent, val);
479         }
480
481         return 0;
482 }
483
484
485 void select_transform (int s)
486 {
487         char prop_name[PROP_NAME_MAX];
488         char prop_val[PROP_VALUE_MAX];
489         int i                   = sensor_info[s].catalog_index;
490         const char *prefix      = sensor_catalog[i].tag;
491
492         sprintf(prop_name, PROP_BASE, prefix, "transform");
493
494         if (property_get(prop_name, prop_val, "")) {
495                 if (!strcmp(prop_val, "ISH")) {
496                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
497                                 sensor_info[s].friendly_name);
498
499                         sensor_info[s].ops.transform = transform_sample_ISH;
500                         sensor_info[s].ops.finalize = finalize_sample_ISH;
501                         return;
502                 }
503         }
504
505         sensor_info[s].ops.transform = transform_sample_default;
506         sensor_info[s].ops.finalize = finalize_sample_default;
507 }
508
509
510 float acquire_immediate_value(int s, int c)
511 {
512         char sysfs_path[PATH_MAX];
513         float val;
514         int ret;
515         int dev_num = sensor_info[s].dev_num;
516         int i = sensor_info[s].catalog_index;
517         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
518         const char* input_path = sensor_catalog[i].channel[c].input_path;
519         float scale = sensor_info[s].scale ?
520                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
521         float offset = sensor_info[s].offset;
522         int sensor_type = sensor_catalog[i].type;
523         float correction;
524
525         /* In case correction has been requested using properties, apply it */
526         correction = sensor_info[s].channel[c].opt_scale;
527
528         /* Acquire a sample value for sensor s / channel c through sysfs */
529
530         if (input_path[0]) {
531                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
532                 ret = sysfs_read_float(sysfs_path, &val);
533
534                 if (!ret) {
535                         return val * correction;
536                 }
537         };
538
539         if (!raw_path[0])
540                 return 0;
541
542         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
543         ret = sysfs_read_float(sysfs_path, &val);
544
545         if (ret == -1)
546                 return 0;
547
548         /*
549         There is no transform ops defined yet for Raw sysfs values
550         Use this function to perform transformation as well.
551         */
552         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
553                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
554                         correction;
555
556         return (val + offset) * scale * correction;
557 }