OSDN Git Service

Collect a minimum number of events for filtering for noisy sensors
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15 #include "filtering.h"
16
17 /*----------------------------------------------------------------------------*/
18
19 /* Macros related to Intel Sensor Hub */
20
21 #define GRAVITY 9.80665f
22
23 /* 720 LSG = 1G */
24 #define LSG                         (1024.0f)
25 #define NUMOFACCDATA                (8.0f)
26
27 /* conversion of acceleration data to SI units (m/s^2) */
28 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
29 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
30 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
32
33 /* conversion of magnetic data to uT units */
34 #define CONVERT_M                   (1.0f/6.6f)
35 #define CONVERT_M_X                 (-CONVERT_M)
36 #define CONVERT_M_Y                 (-CONVERT_M)
37 #define CONVERT_M_Z                 (CONVERT_M)
38
39 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
40
41 /* conversion of orientation data to degree units */
42 #define CONVERT_O                   (1.0f/64.0f)
43 #define CONVERT_O_A                 (CONVERT_O)
44 #define CONVERT_O_P                 (CONVERT_O)
45 #define CONVERT_O_R                 (-CONVERT_O)
46
47 /*conversion of gyro data to SI units (radian/sec) */
48 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
49 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
51 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
52
53 #define BIT(x) (1 << (x))
54
55 inline unsigned int set_bit_range(int start, int end)
56 {
57     int i;
58     unsigned int value = 0;
59
60     for (i = start; i < end; ++i)
61         value |= BIT(i);
62     return value;
63 }
64
65 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
66 {
67     int divider=1;
68     int i;
69     float sample;
70     int mul = 1.0;
71
72     value = value & set_bit_range(0, size*8);
73     if (value & BIT(size*8-1)) {
74         value =  ((1LL << (size*8)) - value);
75         mul = -1.0;
76     }
77     sample = value * 1.0;
78     if (exponent < 0) {
79         exponent = abs(exponent);
80         for (i = 0; i < exponent; ++i) {
81             divider = divider*10;
82         }
83         return mul * sample/divider;
84     } else {
85         return mul * sample * pow(10.0, exponent);
86     }
87 }
88
89 // Platform sensor orientation
90 #define DEF_ORIENT_ACCEL_X                   -1
91 #define DEF_ORIENT_ACCEL_Y                   -1
92 #define DEF_ORIENT_ACCEL_Z                   -1
93
94 #define DEF_ORIENT_GYRO_X                   1
95 #define DEF_ORIENT_GYRO_Y                   1
96 #define DEF_ORIENT_GYRO_Z                   1
97
98 // G to m/s2
99 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
100 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
105                                         convert_from_vtf_format(s,d,x)*GRAVITY)
106
107 // Degree/sec to radian/sec
108 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
109                                         convert_from_vtf_format(s,d,x) * \
110                                         ((float)M_PI/180.0f))
111 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
112                                         convert_from_vtf_format(s,d,x) * \
113                                         ((float)M_PI/180.0f))
114 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
115                                         convert_from_vtf_format(s,d,x) * \
116                                         ((float)M_PI/180.0f))
117
118 // Milli gauss to micro tesla
119 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
122
123
124 /*----------------------------------------------------------------------------*/
125
126 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
127 {
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131         uint64_t sign_mask;
132         uint64_t value_mask;
133
134         u64 = 0;
135
136         if (type->endianness == 'b')
137                 for (i=0; i<type->storagebits/8; i++)
138                         u64 = (u64 << 8) | sample[i];
139         else
140                 for (i=type->storagebits/8 - 1; i>=0; i--)
141                         u64 = (u64 << 8) | sample[i];
142
143         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
144
145         if (type->sign == 'u')
146                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
147
148         /* Signed integer */
149
150         switch (type->realbits) {
151                 case 0 ... 1:
152                         return 0;
153
154                 case 8:
155                         return (int64_t) (int8_t) u64;
156
157                 case 16:
158                         return (int64_t) (int16_t) u64;
159
160                 case 32:
161                         return (int64_t) (int32_t) u64;
162
163                 case 64:
164                         return (int64_t) u64;
165
166                 default:
167                         sign_mask = 1 << (type->realbits-1);
168                         value_mask = sign_mask - 1;
169
170                         if (u64 & sign_mask)
171                                 /* Negative value: return 2-complement */
172                                 return - ((~u64 & value_mask) + 1);
173                         else
174                                 return (int64_t) u64; /* Positive value */
175         }
176 }
177
178
179 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
180 {
181         int i;
182         float temp[MAX_CHANNELS];
183
184         for (i=0; i<MAX_CHANNELS; i++)
185                 temp[i] = data[map[i]];
186
187         for (i=0; i<MAX_CHANNELS; i++)
188                 data[i] = temp[i];
189 }
190
191
192 static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
193                      int num_fields, int max_samples)
194 {
195         /*
196          * Smooth out incoming data using a moving average over a number of
197          * samples. We accumulate one second worth of samples, or max_samples,
198          * depending on which is lower.
199          */
200
201         int i;
202         int f;
203         int sampling_rate = (int) si->sampling_rate;
204         int history_size;
205         int history_full = 0;
206
207         /* Don't denoise anything if we have less than two samples per second */
208         if (sampling_rate < 2)
209                 return;
210
211         /* Restrict window size to the min of sampling_rate and max_samples */
212         if (sampling_rate > max_samples)
213                 history_size = max_samples;
214         else
215                 history_size = sampling_rate;
216
217         /* Reset history if we're operating on an incorrect window size */
218         if (si->history_size != history_size) {
219                 si->history_size = history_size;
220                 si->history_entries = 0;
221                 si->history_index = 0;
222                 si->history = (float*) realloc(si->history,
223                                 si->history_size * num_fields * sizeof(float));
224                 if (si->history) {
225                         si->history_sum = (float*) realloc(si->history_sum,
226                                 num_fields * sizeof(float));
227                         if (si->history_sum)
228                                 memset(si->history_sum, 0, num_fields * sizeof(float));
229                 }
230         }
231
232         if (!si->history || !si->history_sum)
233                 return; /* Unlikely, but still... */
234
235         /* Update initialized samples count */
236         if (si->history_entries < si->history_size)
237                 si->history_entries++;
238         else
239                 history_full = 1;
240
241         /* Record new sample and calculate the moving sum */
242         for (f=0; f < num_fields; f++) {
243                 /**
244                  * A field is going to be overwritten if
245                  * history is full, so decrease the history sum
246                  */
247                 if (history_full)
248                         si->history_sum[f] -=
249                                 si->history[si->history_index * num_fields + f];
250
251                 si->history[si->history_index * num_fields + f] = data->data[f];
252                 si->history_sum[f] += data->data[f];
253
254                 /* For now simply compute a mobile mean for each field */
255                 /* and output filtered data */
256                 data->data[f] = si->history_sum[f] / si->history_entries;
257         }
258
259         /* Update our rolling index (next evicted cell) */
260         si->history_index = (si->history_index + 1) % si->history_size;
261 }
262
263
264 static int finalize_sample_default (int s, struct sensors_event_t* data)
265 {
266         /* Swap fields if we have a custom channel ordering on this sensor */
267         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
268                 reorder_fields(data->data, sensor_info[s].order);
269
270         sensor_info[s].event_count++;
271         switch (sensor_info[s].type) {
272                 case SENSOR_TYPE_ACCELEROMETER:
273                         /* Always consider the accelerometer accurate */
274                         data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
275                         if (sensor_info[s].quirks & QUIRK_NOISY)
276                                 denoise(&sensor_info[s], data, 3, 20);
277                         break;
278
279                 case SENSOR_TYPE_MAGNETIC_FIELD:
280                         calibrate_compass (data, &sensor_info[s], get_timestamp());
281                         if (sensor_info[s].quirks & QUIRK_NOISY)
282                                 denoise(&sensor_info[s], data, 3, 100);
283                         break;
284
285                 case SENSOR_TYPE_GYROSCOPE:
286                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
287                         /*
288                          * Report medium accuracy by default ; higher accuracy
289                          * levels will be reported once, and if, we achieve
290                          * calibration.
291                          */
292                         data->gyro.status = SENSOR_STATUS_ACCURACY_MEDIUM;
293
294                         /*
295                          * We're only trying to calibrate data from continuously
296                          * firing gyroscope drivers, as motion based ones use
297                          * movement thresholds that may lead us to incorrectly
298                          * estimate bias.
299                          */
300                         if (sensor_info[s].selected_trigger !=
301                                 sensor_info[s].motion_trigger_name)
302                                         calibrate_gyro(data, &sensor_info[s]);
303
304                         /* For noisy sensors we'll drop a very few number
305                          * of samples to make sure we have at least MIN_SAMPLES events
306                          * in the filtering queue. This is to make sure we are not sending
307                          * events that can disturb our mean or stddev.
308                          */
309                         if (sensor_info[s].quirks & QUIRK_NOISY) {
310                                 denoise_median(&sensor_info[s], data, 3);
311                                 if((sensor_info[s].selected_trigger !=
312                                         sensor_info[s].motion_trigger_name) &&
313                                         sensor_info[s].event_count < MIN_SAMPLES)
314                                                 return 0;
315                         }
316                         break;
317
318                 case SENSOR_TYPE_LIGHT:
319                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
320                 case SENSOR_TYPE_TEMPERATURE:
321                         /* Only keep two decimals for these readings */
322                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
323
324                         /* ... fall through ... */
325
326                 case SENSOR_TYPE_PROXIMITY:
327                         /*
328                          * These are on change sensors ; drop the sample if it
329                          * has the same value as the previously reported one.
330                          */
331                         if (data->data[0] == sensor_info[s].prev_val)
332                                 return 0;
333
334                         sensor_info[s].prev_val = data->data[0];
335                         break;
336         }
337
338         return 1; /* Return sample to Android */
339 }
340
341
342 static float transform_sample_default(int s, int c, unsigned char* sample_data)
343 {
344         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
345         int64_t              s64 = sample_as_int64(sample_data, sample_type);
346         float scale = sensor_info[s].scale ?
347                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
348
349         /* In case correction has been requested using properties, apply it */
350         scale *= sensor_info[s].channel[c].opt_scale;
351
352         /* Apply default scaling rules */
353         return (sensor_info[s].offset + s64) * scale;
354 }
355
356
357 static int finalize_sample_ISH (int s, struct sensors_event_t* data)
358 {
359         float pitch, roll, yaw;
360
361         /* Swap fields if we have a custom channel ordering on this sensor */
362         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
363                 reorder_fields(data->data, sensor_info[s].order);
364
365         if (sensor_info[s].type == SENSOR_TYPE_ORIENTATION) {
366
367                 pitch = data->data[0];
368                 roll = data->data[1];
369                 yaw = data->data[2];
370
371                 data->data[0] = 360.0 - yaw;
372                 data->data[1] = -pitch;
373                 data->data[2] = -roll;
374         }
375
376         return 1; /* Return sample to Android */
377 }
378
379
380 static float transform_sample_ISH (int s, int c, unsigned char* sample_data)
381 {
382         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
383         int val         = (int) sample_as_int64(sample_data, sample_type);
384         float correction;
385         int data_bytes  = (sample_type->realbits)/8;
386         int exponent    = sensor_info[s].offset;
387
388         /* In case correction has been requested using properties, apply it */
389         correction = sensor_info[s].channel[c].opt_scale;
390
391         switch (sensor_info[s].type) {
392                 case SENSOR_TYPE_ACCELEROMETER:
393                         switch (c) {
394                                 case 0:
395                                         return  correction *
396                                                 CONVERT_A_G_VTF16E14_X(
397                                                 data_bytes, exponent, val);
398
399                                 case 1:
400                                         return  correction *
401                                                 CONVERT_A_G_VTF16E14_Y(
402                                                 data_bytes, exponent, val);
403
404                                 case 2:
405                                         return  correction *
406                                                 CONVERT_A_G_VTF16E14_Z(
407                                                 data_bytes, exponent, val);
408                         }
409                         break;
410
411
412                 case SENSOR_TYPE_GYROSCOPE:
413                         switch (c) {
414                                 case 0:
415                                         return  correction *
416                                                 CONVERT_G_D_VTF16E14_X(
417                                                 data_bytes, exponent, val);
418
419                                 case 1:
420                                         return  correction *
421                                                 CONVERT_G_D_VTF16E14_Y(
422                                                 data_bytes, exponent, val);
423
424                                 case 2:
425                                         return  correction *
426                                                 CONVERT_G_D_VTF16E14_Z(
427                                                 data_bytes, exponent, val);
428                         }
429                         break;
430
431                 case SENSOR_TYPE_MAGNETIC_FIELD:
432                         switch (c) {
433                                 case 0:
434                                         return  correction *
435                                                 CONVERT_M_MG_VTF16E14_X(
436                                                 data_bytes, exponent, val);
437
438                                 case 1:
439                                         return  correction *
440                                                 CONVERT_M_MG_VTF16E14_Y(
441                                                 data_bytes, exponent, val);
442
443                                 case 2:
444                                         return  correction *
445                                                 CONVERT_M_MG_VTF16E14_Z(
446                                                 data_bytes, exponent, val);
447                         }
448                         break;
449
450                 case SENSOR_TYPE_LIGHT:
451                                 return (float) val;
452
453                 case SENSOR_TYPE_ORIENTATION:
454                         return  correction * convert_from_vtf_format(
455                                                 data_bytes, exponent, val);
456
457                 case SENSOR_TYPE_ROTATION_VECTOR:
458                         return  correction * convert_from_vtf_format(
459                                                 data_bytes, exponent, val);
460         }
461
462         return 0;
463 }
464
465
466 void select_transform (int s)
467 {
468         char prop_name[PROP_NAME_MAX];
469         char prop_val[PROP_VALUE_MAX];
470         int i                   = sensor_info[s].catalog_index;
471         const char *prefix      = sensor_catalog[i].tag;
472
473         sprintf(prop_name, PROP_BASE, prefix, "transform");
474
475         if (property_get(prop_name, prop_val, "")) {
476                 if (!strcmp(prop_val, "ISH")) {
477                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
478                                 sensor_info[s].friendly_name);
479
480                         sensor_info[s].ops.transform = transform_sample_ISH;
481                         sensor_info[s].ops.finalize = finalize_sample_ISH;
482                         return;
483                 }
484         }
485
486         sensor_info[s].ops.transform = transform_sample_default;
487         sensor_info[s].ops.finalize = finalize_sample_default;
488 }
489
490
491 float acquire_immediate_value(int s, int c)
492 {
493         char sysfs_path[PATH_MAX];
494         float val;
495         int ret;
496         int dev_num = sensor_info[s].dev_num;
497         int i = sensor_info[s].catalog_index;
498         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
499         const char* input_path = sensor_catalog[i].channel[c].input_path;
500         float scale = sensor_info[s].scale ?
501                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
502         float offset = sensor_info[s].offset;
503         int sensor_type = sensor_catalog[i].type;
504         float correction;
505
506         /* In case correction has been requested using properties, apply it */
507         correction = sensor_info[s].channel[c].opt_scale;
508
509         /* Acquire a sample value for sensor s / channel c through sysfs */
510
511         if (input_path[0]) {
512                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
513                 ret = sysfs_read_float(sysfs_path, &val);
514
515                 if (!ret) {
516                         return val * correction;
517                 }
518         };
519
520         if (!raw_path[0])
521                 return 0;
522
523         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
524         ret = sysfs_read_float(sysfs_path, &val);
525
526         if (ret == -1)
527                 return 0;
528
529         /*
530         There is no transform ops defined yet for Raw sysfs values
531         Use this function to perform transformation as well.
532         */
533         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
534                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
535                         correction;
536
537         return (val + offset) * scale * correction;
538 }