OSDN Git Service

Merge remote-tracking branch 'origin/abt/topic/gmin/l-dev/sensors/master' into gmin...
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15 #include "filtering.h"
16
17 /*----------------------------------------------------------------------------*/
18
19 /* Macros related to Intel Sensor Hub */
20
21 #define GRAVITY 9.80665f
22
23 /* 720 LSG = 1G */
24 #define LSG                         (1024.0f)
25 #define NUMOFACCDATA                (8.0f)
26
27 /* conversion of acceleration data to SI units (m/s^2) */
28 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
29 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
30 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
32
33 /* conversion of magnetic data to uT units */
34 #define CONVERT_M                   (1.0f/6.6f)
35 #define CONVERT_M_X                 (-CONVERT_M)
36 #define CONVERT_M_Y                 (-CONVERT_M)
37 #define CONVERT_M_Z                 (CONVERT_M)
38
39 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
40
41 /* conversion of orientation data to degree units */
42 #define CONVERT_O                   (1.0f/64.0f)
43 #define CONVERT_O_A                 (CONVERT_O)
44 #define CONVERT_O_P                 (CONVERT_O)
45 #define CONVERT_O_R                 (-CONVERT_O)
46
47 /*conversion of gyro data to SI units (radian/sec) */
48 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
49 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
51 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
52
53 #define BIT(x) (1 << (x))
54
55 inline unsigned int set_bit_range(int start, int end)
56 {
57     int i;
58     unsigned int value = 0;
59
60     for (i = start; i < end; ++i)
61         value |= BIT(i);
62     return value;
63 }
64
65 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
66 {
67     int divider=1;
68     int i;
69     float sample;
70     int mul = 1.0;
71
72     value = value & set_bit_range(0, size*8);
73     if (value & BIT(size*8-1)) {
74         value =  ((1LL << (size*8)) - value);
75         mul = -1.0;
76     }
77     sample = value * 1.0;
78     if (exponent < 0) {
79         exponent = abs(exponent);
80         for (i = 0; i < exponent; ++i) {
81             divider = divider*10;
82         }
83         return mul * sample/divider;
84     } else {
85         return mul * sample * pow(10.0, exponent);
86     }
87 }
88
89 // Platform sensor orientation
90 #define DEF_ORIENT_ACCEL_X                   -1
91 #define DEF_ORIENT_ACCEL_Y                   -1
92 #define DEF_ORIENT_ACCEL_Z                   -1
93
94 #define DEF_ORIENT_GYRO_X                   1
95 #define DEF_ORIENT_GYRO_Y                   1
96 #define DEF_ORIENT_GYRO_Z                   1
97
98 // G to m/s2
99 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
100 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
105                                         convert_from_vtf_format(s,d,x)*GRAVITY)
106
107 // Degree/sec to radian/sec
108 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
109                                         convert_from_vtf_format(s,d,x) * \
110                                         ((float)M_PI/180.0f))
111 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
112                                         convert_from_vtf_format(s,d,x) * \
113                                         ((float)M_PI/180.0f))
114 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
115                                         convert_from_vtf_format(s,d,x) * \
116                                         ((float)M_PI/180.0f))
117
118 // Milli gauss to micro tesla
119 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
122
123
124 /*----------------------------------------------------------------------------*/
125
126 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
127 {
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131         uint64_t sign_mask;
132         uint64_t value_mask;
133
134         u64 = 0;
135
136         if (type->endianness == 'b')
137                 for (i=0; i<type->storagebits/8; i++)
138                         u64 = (u64 << 8) | sample[i];
139         else
140                 for (i=type->storagebits/8 - 1; i>=0; i--)
141                         u64 = (u64 << 8) | sample[i];
142
143         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
144
145         if (type->sign == 'u')
146                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
147
148         /* Signed integer */
149
150         switch (type->realbits) {
151                 case 0 ... 1:
152                         return 0;
153
154                 case 8:
155                         return (int64_t) (int8_t) u64;
156
157                 case 16:
158                         return (int64_t) (int16_t) u64;
159
160                 case 32:
161                         return (int64_t) (int32_t) u64;
162
163                 case 64:
164                         return (int64_t) u64;
165
166                 default:
167                         sign_mask = 1 << (type->realbits-1);
168                         value_mask = sign_mask - 1;
169
170                         if (u64 & sign_mask)
171                                 /* Negative value: return 2-complement */
172                                 return - ((~u64 & value_mask) + 1);
173                         else
174                                 return (int64_t) u64; /* Positive value */
175         }
176 }
177
178
179 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
180 {
181         int i;
182         float temp[MAX_CHANNELS];
183
184         for (i=0; i<MAX_CHANNELS; i++)
185                 temp[i] = data[map[i]];
186
187         for (i=0; i<MAX_CHANNELS; i++)
188                 data[i] = temp[i];
189 }
190
191
192 static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
193                      int num_fields, int max_samples)
194 {
195         /*
196          * Smooth out incoming data using a moving average over a number of
197          * samples. We accumulate one second worth of samples, or max_samples,
198          * depending on which is lower.
199          */
200
201         int i;
202         float total;
203         int f;
204         int sampling_rate = (int) si->sampling_rate;
205         int history_size;
206
207         /* Don't denoise anything if we have less than two samples per second */
208         if (sampling_rate < 2)
209                 return;
210
211         /* Restrict window size to the min of sampling_rate and max_samples */
212         if (sampling_rate > max_samples)
213                 history_size = max_samples;
214         else
215                 history_size = sampling_rate;
216
217         /* Reset history if we're operating on an incorrect window size */
218         if (si->history_size != history_size) {
219                 si->history_size = history_size;
220                 si->history_entries = 0;
221                 si->history_index = 0;
222                 si->history = (float*) realloc(si->history,
223                                 si->history_size * num_fields * sizeof(float));
224         }
225
226         if (!si->history)
227                 return; /* Unlikely, but still... */
228
229         /* Update initialized samples count */
230         if (si->history_entries < si->history_size)
231                 si->history_entries++;
232
233         /* Record new sample */
234         for (f=0; f < num_fields; f++)
235                 si->history[si->history_index * num_fields + f] = data->data[f];
236
237         /* Update our rolling index (next evicted cell) */
238         si->history_index = (si->history_index + 1) % si->history_size;
239
240         /* For now simply compute a mobile mean for each field */
241         for (f=0; f < num_fields; f++) {
242                 total = 0;
243
244                 for (i=0; i < si->history_entries; i++)
245                                 total += si->history[i * num_fields + f];
246
247                 /* Output filtered data */
248                 data->data[f] = total / si->history_entries;
249         }
250 }
251
252
253 static int finalize_sample_default(int s, struct sensors_event_t* data)
254 {
255         int i           = sensor_info[s].catalog_index;
256         int sensor_type = sensor_catalog[i].type;
257
258         /* Swap fields if we have a custom channel ordering on this sensor */
259         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
260                 reorder_fields(data->data, sensor_info[s].order);
261
262         switch (sensor_type) {
263                 case SENSOR_TYPE_ACCELEROMETER:
264                         /* Always consider the accelerometer accurate */
265                         data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
266                         if (sensor_info[s].quirks & QUIRK_NOISY)
267                                 denoise(&sensor_info[s], data, 3, 20);
268                         break;
269
270                 case SENSOR_TYPE_MAGNETIC_FIELD:
271                         calibrate_compass (data, &sensor_info[s], get_timestamp());
272                         if (sensor_info[s].quirks & QUIRK_NOISY)
273                                 denoise(&sensor_info[s], data, 3, 100);
274                         break;
275
276                 case SENSOR_TYPE_GYROSCOPE:
277                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
278                         if (!(sensor_info[s].quirks & QUIRK_TERSE_DRIVER))
279                                 calibrate_gyro(data, &sensor_info[s]);
280                         if (sensor_info[s].quirks & QUIRK_NOISY)
281                                 denoise_median(data, &sensor_info[s]);
282                         break;
283
284                 case SENSOR_TYPE_LIGHT:
285                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
286                 case SENSOR_TYPE_TEMPERATURE:
287                         /* Only keep two decimals for these readings */
288                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
289
290                         /* ... fall through ... */
291
292                 case SENSOR_TYPE_PROXIMITY:
293                         /*
294                          * These are on change sensors ; drop the sample if it
295                          * has the same value as the previously reported one.
296                          */
297                         if (data->data[0] == sensor_info[s].prev_val)
298                                 return 0;
299
300                         sensor_info[s].prev_val = data->data[0];
301                         break;
302         }
303
304         return 1; /* Return sample to Android */
305 }
306
307
308 static float transform_sample_default(int s, int c, unsigned char* sample_data)
309 {
310         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
311         int64_t              s64 = sample_as_int64(sample_data, sample_type);
312         float scale = sensor_info[s].scale ?
313                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
314
315         /* In case correction has been requested using properties, apply it */
316         scale *= sensor_info[s].channel[c].opt_scale;
317
318         /* Apply default scaling rules */
319         return (sensor_info[s].offset + s64) * scale;
320 }
321
322
323 static int finalize_sample_ISH(int s, struct sensors_event_t* data)
324 {
325         int i           = sensor_info[s].catalog_index;
326         int sensor_type = sensor_catalog[i].type;
327         float pitch, roll, yaw;
328
329         /* Swap fields if we have a custom channel ordering on this sensor */
330         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
331                 reorder_fields(data->data, sensor_info[s].order);
332
333         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
334
335                 pitch = data->data[0];
336                 roll = data->data[1];
337                 yaw = data->data[2];
338
339                 data->data[0] = 360.0 - yaw;
340                 data->data[1] = -pitch;
341                 data->data[2] = -roll;
342         }
343
344         return 1; /* Return sample to Android */
345 }
346
347
348 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
349 {
350         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
351         int val         = (int) sample_as_int64(sample_data, sample_type);
352         int i           = sensor_info[s].catalog_index;
353         int sensor_type = sensor_catalog[i].type;
354         float correction;
355         int data_bytes  = (sample_type->realbits)/8;
356         int exponent    = sensor_info[s].offset;
357
358         /* In case correction has been requested using properties, apply it */
359         correction = sensor_info[s].channel[c].opt_scale;
360
361         switch (sensor_type) {
362                 case SENSOR_TYPE_ACCELEROMETER:
363                         switch (c) {
364                                 case 0:
365                                         return  correction *
366                                                 CONVERT_A_G_VTF16E14_X(
367                                                 data_bytes, exponent, val);
368
369                                 case 1:
370                                         return  correction *
371                                                 CONVERT_A_G_VTF16E14_Y(
372                                                 data_bytes, exponent, val);
373
374                                 case 2:
375                                         return  correction *
376                                                 CONVERT_A_G_VTF16E14_Z(
377                                                 data_bytes, exponent, val);
378                         }
379                         break;
380
381
382                 case SENSOR_TYPE_GYROSCOPE:
383                         switch (c) {
384                                 case 0:
385                                         return  correction *
386                                                 CONVERT_G_D_VTF16E14_X(
387                                                 data_bytes, exponent, val);
388
389                                 case 1:
390                                         return  correction *
391                                                 CONVERT_G_D_VTF16E14_Y(
392                                                 data_bytes, exponent, val);
393
394                                 case 2:
395                                         return  correction *
396                                                 CONVERT_G_D_VTF16E14_Z(
397                                                 data_bytes, exponent, val);
398                         }
399                         break;
400
401                 case SENSOR_TYPE_MAGNETIC_FIELD:
402                         switch (c) {
403                                 case 0:
404                                         return  correction *
405                                                 CONVERT_M_MG_VTF16E14_X(
406                                                 data_bytes, exponent, val);
407
408                                 case 1:
409                                         return  correction *
410                                                 CONVERT_M_MG_VTF16E14_Y(
411                                                 data_bytes, exponent, val);
412
413                                 case 2:
414                                         return  correction *
415                                                 CONVERT_M_MG_VTF16E14_Z(
416                                                 data_bytes, exponent, val);
417                         }
418                         break;
419
420                 case SENSOR_TYPE_LIGHT:
421                                 return (float) val;
422
423                 case SENSOR_TYPE_ORIENTATION:
424                         return  correction * convert_from_vtf_format(
425                                                 data_bytes, exponent, val);
426
427                 case SENSOR_TYPE_ROTATION_VECTOR:
428                         return  correction * convert_from_vtf_format(
429                                                 data_bytes, exponent, val);
430         }
431
432         return 0;
433 }
434
435
436 void select_transform (int s)
437 {
438         char prop_name[PROP_NAME_MAX];
439         char prop_val[PROP_VALUE_MAX];
440         int i                   = sensor_info[s].catalog_index;
441         const char *prefix      = sensor_catalog[i].tag;
442
443         sprintf(prop_name, PROP_BASE, prefix, "transform");
444
445         if (property_get(prop_name, prop_val, "")) {
446                 if (!strcmp(prop_val, "ISH")) {
447                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
448                                 sensor_info[s].friendly_name);
449
450                         sensor_info[s].ops.transform = transform_sample_ISH;
451                         sensor_info[s].ops.finalize = finalize_sample_ISH;
452                         return;
453                 }
454         }
455
456         sensor_info[s].ops.transform = transform_sample_default;
457         sensor_info[s].ops.finalize = finalize_sample_default;
458 }
459
460
461 float acquire_immediate_value(int s, int c)
462 {
463         char sysfs_path[PATH_MAX];
464         float val;
465         int ret;
466         int dev_num = sensor_info[s].dev_num;
467         int i = sensor_info[s].catalog_index;
468         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
469         const char* input_path = sensor_catalog[i].channel[c].input_path;
470         float scale = sensor_info[s].scale ?
471                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
472         float offset = sensor_info[s].offset;
473         int sensor_type = sensor_catalog[i].type;
474         float correction;
475
476         /* In case correction has been requested using properties, apply it */
477         correction = sensor_info[s].channel[c].opt_scale;
478
479         /* Acquire a sample value for sensor s / channel c through sysfs */
480
481         if (input_path[0]) {
482                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
483                 ret = sysfs_read_float(sysfs_path, &val);
484
485                 if (!ret) {
486                         return val * correction;
487                 }
488         };
489
490         if (!raw_path[0])
491                 return 0;
492
493         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
494         ret = sysfs_read_float(sysfs_path, &val);
495
496         if (ret == -1)
497                 return 0;
498
499         /*
500         There is no transform ops defined yet for Raw sysfs values
501         Use this function to perform transformation as well.
502         */
503         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
504                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
505                         correction;
506
507         return (val + offset) * scale * correction;
508 }