OSDN Git Service

Adding 12-bit sample size support
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "common.h"
11 #include "transform.h"
12 #include "utils.h"
13
14 /*----------------------------------------------------------------------------*/
15
16 /* Macros related to Intel Sensor Hub */
17
18 #define GRAVITY 9.80665f
19
20 /* 720 LSG = 1G */
21 #define LSG                         (1024.0f)
22 #define NUMOFACCDATA                (8.0f)
23
24 /* conversion of acceleration data to SI units (m/s^2) */
25 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
26 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
27 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
28 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
29
30 /* conversion of magnetic data to uT units */
31 #define CONVERT_M                   (1.0f/6.6f)
32 #define CONVERT_M_X                 (-CONVERT_M)
33 #define CONVERT_M_Y                 (-CONVERT_M)
34 #define CONVERT_M_Z                 (CONVERT_M)
35
36 /* conversion of orientation data to degree units */
37 #define CONVERT_O                   (1.0f/64.0f)
38 #define CONVERT_O_A                 (CONVERT_O)
39 #define CONVERT_O_P                 (CONVERT_O)
40 #define CONVERT_O_R                 (-CONVERT_O)
41
42 /*conversion of gyro data to SI units (radian/sec) */
43 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
44 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
45 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
46 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
47
48 #define BIT(x) (1 << (x))
49
50 inline unsigned int set_bit_range(int start, int end)
51 {
52     int i;
53     unsigned int value = 0;
54
55     for (i = start; i < end; ++i)
56         value |= BIT(i);
57     return value;
58 }
59
60 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
61 {
62     int divider=1;
63     int i;
64     float sample;
65     int mul = 1.0;
66
67     value = value & set_bit_range(0, size*8);
68     if (value & BIT(size*8-1)) {
69         value =  ((1LL << (size*8)) - value);
70         mul = -1.0;
71     }
72     sample = value * 1.0;
73     if (exponent < 0) {
74         exponent = abs(exponent);
75         for (i = 0; i < exponent; ++i) {
76             divider = divider*10;
77         }
78         return mul * sample/divider;
79     } else {
80         return mul * sample * pow(10.0, exponent);
81     }
82 }
83
84 // Platform sensor orientation
85 #define DEF_ORIENT_ACCEL_X                   -1
86 #define DEF_ORIENT_ACCEL_Y                   -1
87 #define DEF_ORIENT_ACCEL_Z                   -1
88
89 #define DEF_ORIENT_GYRO_X                   1
90 #define DEF_ORIENT_GYRO_Y                   1
91 #define DEF_ORIENT_GYRO_Z                   1
92
93 // G to m/s2
94 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
95 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
96                                         convert_from_vtf_format(s,d,x)*GRAVITY)
97 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
98                                         convert_from_vtf_format(s,d,x)*GRAVITY)
99 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
100                                         convert_from_vtf_format(s,d,x)*GRAVITY)
101
102 // Degree/sec to radian/sec
103 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
104                                         convert_from_vtf_format(s,d,x) * \
105                                         ((float)M_PI/180.0f))
106 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
107                                         convert_from_vtf_format(s,d,x) * \
108                                         ((float)M_PI/180.0f))
109 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
110                                         convert_from_vtf_format(s,d,x) * \
111                                         ((float)M_PI/180.0f))
112
113 // Milli gauss to micro tesla
114 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
115 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
116 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
117
118 #define DATA_BYTES      2
119 #define ACC_EXPONENT    -2
120 #define GYRO_EXPONENT   -1
121 #define MAGN_EXPONENT   0
122 #define INC_EXPONENT    -1
123 #define ROT_EXPONENT    -8
124
125 /*----------------------------------------------------------------------------*/
126
127 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
128 {
129         uint16_t u16;
130         uint32_t u32;
131         uint64_t u64;
132         int i;
133         int zeroed_bits = type->storagebits - type->realbits;
134
135         u64 = 0;
136
137         if (type->endianness == 'b')
138                 for (i=0; i<type->storagebits/8; i++)
139                         u64 = (u64 << 8) | sample[i];
140         else
141                 for (i=type->storagebits/8; i>=0; i--)
142                         u64 = (u64 << 8) | sample[i];
143
144         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
145
146         if (type->sign == 'u')
147                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
148
149         switch (type->realbits) {
150                 case 8:
151                         return (int64_t) (int8_t) u64;
152
153                 case 12:
154                         return (int64_t)  (u64 >>  11) ?
155                                         (((int64_t)-1) ^ 0xfff) | u64 : u64;
156
157                 case 16:
158                         return (int64_t) (int16_t) u64;
159
160                 case 32:
161                         return (int64_t) (int32_t) u64;
162
163                 case 64:
164                         return (int64_t) u64;
165         }
166
167         ALOGE("Unhandled sample storage size\n");
168         return 0;
169 }
170
171
172 static void finalize_sample_default(int s, struct sensors_event_t* data)
173 {
174         int i           = sensor_info[s].catalog_index;
175         int sensor_type = sensor_catalog[i].type;
176
177         switch (sensor_type) {
178                 case SENSOR_TYPE_ACCELEROMETER:
179                         /*
180                          * Invert x and z axes orientation from SI units - see
181                          * /hardware/libhardware/include/hardware/sensors.h
182                          * for a discussion of what Android expects
183                          */
184                         data->data[0] = -data->data[0];
185                         data->data[2] = -data->data[2];
186                         break;
187
188                 case SENSOR_TYPE_GYROSCOPE:
189                         /* Limit drift */
190                         if (    fabs(data->data[0]) < 0.1 &&
191                                 fabs(data->data[1]) < 0.1 &&
192                                 fabs(data->data[2]) < 0.1) {
193                                         data->data[0] = 0;
194                                         data->data[1] = 0;
195                                         data->data[2] = 0;
196                                 }
197                         break;
198         }
199 }
200
201
202 static float transform_sample_default(int s, int c, unsigned char* sample_data)
203 {
204         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
205         int64_t              s64 = sample_as_int64(sample_data, sample_type);
206
207         /* Apply default scaling rules */
208         return (sensor_info[s].offset + s64) * sensor_info[s].scale;
209 }
210
211
212 static void finalize_sample_ISH(int s, struct sensors_event_t* data)
213 {
214         int i           = sensor_info[s].catalog_index;
215         int sensor_type = sensor_catalog[i].type;
216         float pitch, roll, yaw;
217
218         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
219
220                 pitch = data->data[0];
221                 roll = data->data[1];
222                 yaw = data->data[2];
223
224                 data->data[0] = 360.0 - yaw;
225                 data->data[1] = -pitch;
226                 data->data[2] = -roll;
227         }
228 }
229
230
231 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
232 {
233         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
234         int val         = (int) sample_as_int64(sample_data, sample_type);
235         int i           = sensor_info[s].catalog_index;
236         int sensor_type = sensor_catalog[i].type;
237
238         switch (sensor_type) {
239                 case SENSOR_TYPE_ACCELEROMETER:
240                         switch (c) {
241                                 case 0:
242                                         return CONVERT_A_G_VTF16E14_X(
243                                                 DATA_BYTES, ACC_EXPONENT, val);
244
245                                 case 1:
246                                         return CONVERT_A_G_VTF16E14_Y(
247                                                 DATA_BYTES, ACC_EXPONENT, val);
248
249                                 case 2:
250                                         return CONVERT_A_G_VTF16E14_Z(
251                                                 DATA_BYTES, ACC_EXPONENT, val);
252                         }
253                         break;
254
255
256                 case SENSOR_TYPE_GYROSCOPE:
257                         switch (c) {
258                                 case 0:
259                                         return CONVERT_G_D_VTF16E14_X(
260                                                 DATA_BYTES, GYRO_EXPONENT, val);
261
262                                 case 1:
263                                         return CONVERT_G_D_VTF16E14_Y(
264                                                 DATA_BYTES, GYRO_EXPONENT, val);
265
266                                 case 2:
267                                         return CONVERT_G_D_VTF16E14_Z(
268                                                 DATA_BYTES, GYRO_EXPONENT, val);
269                         }
270                         break;
271
272                 case SENSOR_TYPE_MAGNETIC_FIELD:
273                         switch (c) {
274                                 case 0:
275                                         return CONVERT_M_MG_VTF16E14_X(
276                                                 DATA_BYTES, MAGN_EXPONENT, val);
277
278                                 case 1:
279                                         return CONVERT_M_MG_VTF16E14_Y(
280                                                 DATA_BYTES, MAGN_EXPONENT, val);
281
282                                 case 2:
283                                         return CONVERT_M_MG_VTF16E14_Z(
284                                                 DATA_BYTES, MAGN_EXPONENT, val);
285                         }
286                         break;
287
288                 case SENSOR_TYPE_ORIENTATION:
289                         return convert_from_vtf_format(DATA_BYTES, INC_EXPONENT,
290                                 val);
291
292                 case SENSOR_TYPE_ROTATION_VECTOR:
293                         return convert_from_vtf_format(DATA_BYTES, ROT_EXPONENT,
294                                 val);
295         }
296
297         return 0;
298 }
299
300
301 void select_transform (int s)
302 {
303         char prop_name[PROP_NAME_MAX];
304         char prop_val[PROP_VALUE_MAX];
305         int i                   = sensor_info[s].catalog_index;
306         const char *prefix      = sensor_catalog[i].tag;
307
308         sprintf(prop_name, PROP_BASE, prefix, "transform");
309
310         if (property_get(prop_name, prop_val, "")) {
311                 if (!strcmp(prop_val, "ISH")) {
312                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
313                                 sensor_info[s].friendly_name);
314
315                         sensor_info[s].ops.transform = transform_sample_ISH;
316                         sensor_info[s].ops.finalize = finalize_sample_ISH;
317                         return;
318                 }
319         }
320
321         sensor_info[s].ops.transform = transform_sample_default;
322         sensor_info[s].ops.finalize = finalize_sample_default;
323 }
324
325
326 float acquire_immediate_value(int s, int c)
327 {
328         char sysfs_path[PATH_MAX];
329         float val;
330         int ret;
331         int dev_num = sensor_info[s].dev_num;
332         int i = sensor_info[s].catalog_index;
333         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
334         const char* input_path = sensor_catalog[i].channel[c].input_path;
335         float scale = sensor_info[s].scale;
336         float offset = sensor_info[s].offset;
337
338         /* Acquire a sample value for sensor s / channel c through sysfs */
339
340         if (input_path[0]) {
341                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
342                 ret = sysfs_read_float(sysfs_path, &val);
343
344                 if (!ret) {
345                         return val;
346                 }
347         };
348
349         if (!raw_path[0])
350                 return 0;
351
352         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
353         ret = sysfs_read_float(sysfs_path, &val);
354
355         if (ret == -1)
356                 return 0;
357
358         return (val + offset) * scale;
359 }