OSDN Git Service

IRDA-2056: Refine the test we use to decide to apply gyro calibration
[android-x86/hardware-intel-libsensors.git] / transform.c
1 /*
2  * Copyright (C) 2014 Intel Corporation.
3  */
4
5 #include <stdlib.h>
6 #include <math.h>
7 #include <utils/Log.h>
8 #include <cutils/properties.h>
9 #include <hardware/sensors.h>
10 #include "calibration.h"
11 #include "common.h"
12 #include "description.h"
13 #include "transform.h"
14 #include "utils.h"
15 #include "filtering.h"
16
17 /*----------------------------------------------------------------------------*/
18
19 /* Macros related to Intel Sensor Hub */
20
21 #define GRAVITY 9.80665f
22
23 /* 720 LSG = 1G */
24 #define LSG                         (1024.0f)
25 #define NUMOFACCDATA                (8.0f)
26
27 /* conversion of acceleration data to SI units (m/s^2) */
28 #define CONVERT_A                   (GRAVITY_EARTH / LSG / NUMOFACCDATA)
29 #define CONVERT_A_X(x)              ((float(x)/1000) * (GRAVITY * -1.0))
30 #define CONVERT_A_Y(x)              ((float(x)/1000) * (GRAVITY * 1.0))
31 #define CONVERT_A_Z(x)              ((float(x)/1000) * (GRAVITY * 1.0))
32
33 /* conversion of magnetic data to uT units */
34 #define CONVERT_M                   (1.0f/6.6f)
35 #define CONVERT_M_X                 (-CONVERT_M)
36 #define CONVERT_M_Y                 (-CONVERT_M)
37 #define CONVERT_M_Z                 (CONVERT_M)
38
39 #define CONVERT_GAUSS_TO_MICROTESLA(x)        ( (x) * 100 )
40
41 /* conversion of orientation data to degree units */
42 #define CONVERT_O                   (1.0f/64.0f)
43 #define CONVERT_O_A                 (CONVERT_O)
44 #define CONVERT_O_P                 (CONVERT_O)
45 #define CONVERT_O_R                 (-CONVERT_O)
46
47 /*conversion of gyro data to SI units (radian/sec) */
48 #define CONVERT_GYRO                ((2000.0f/32767.0f)*((float)M_PI / 180.0f))
49 #define CONVERT_GYRO_X              (-CONVERT_GYRO)
50 #define CONVERT_GYRO_Y              (-CONVERT_GYRO)
51 #define CONVERT_GYRO_Z              (CONVERT_GYRO)
52
53 #define BIT(x) (1 << (x))
54
55 inline unsigned int set_bit_range(int start, int end)
56 {
57     int i;
58     unsigned int value = 0;
59
60     for (i = start; i < end; ++i)
61         value |= BIT(i);
62     return value;
63 }
64
65 inline float convert_from_vtf_format(int size, int exponent, unsigned int value)
66 {
67     int divider=1;
68     int i;
69     float sample;
70     int mul = 1.0;
71
72     value = value & set_bit_range(0, size*8);
73     if (value & BIT(size*8-1)) {
74         value =  ((1LL << (size*8)) - value);
75         mul = -1.0;
76     }
77     sample = value * 1.0;
78     if (exponent < 0) {
79         exponent = abs(exponent);
80         for (i = 0; i < exponent; ++i) {
81             divider = divider*10;
82         }
83         return mul * sample/divider;
84     } else {
85         return mul * sample * pow(10.0, exponent);
86     }
87 }
88
89 // Platform sensor orientation
90 #define DEF_ORIENT_ACCEL_X                   -1
91 #define DEF_ORIENT_ACCEL_Y                   -1
92 #define DEF_ORIENT_ACCEL_Z                   -1
93
94 #define DEF_ORIENT_GYRO_X                   1
95 #define DEF_ORIENT_GYRO_Y                   1
96 #define DEF_ORIENT_GYRO_Z                   1
97
98 // G to m/s2
99 #define CONVERT_FROM_VTF16(s,d,x)      (convert_from_vtf_format(s,d,x))
100 #define CONVERT_A_G_VTF16E14_X(s,d,x)  (DEF_ORIENT_ACCEL_X *\
101                                         convert_from_vtf_format(s,d,x)*GRAVITY)
102 #define CONVERT_A_G_VTF16E14_Y(s,d,x)  (DEF_ORIENT_ACCEL_Y *\
103                                         convert_from_vtf_format(s,d,x)*GRAVITY)
104 #define CONVERT_A_G_VTF16E14_Z(s,d,x)  (DEF_ORIENT_ACCEL_Z *\
105                                         convert_from_vtf_format(s,d,x)*GRAVITY)
106
107 // Degree/sec to radian/sec
108 #define CONVERT_G_D_VTF16E14_X(s,d,x)  (DEF_ORIENT_GYRO_X *\
109                                         convert_from_vtf_format(s,d,x) * \
110                                         ((float)M_PI/180.0f))
111 #define CONVERT_G_D_VTF16E14_Y(s,d,x)  (DEF_ORIENT_GYRO_Y *\
112                                         convert_from_vtf_format(s,d,x) * \
113                                         ((float)M_PI/180.0f))
114 #define CONVERT_G_D_VTF16E14_Z(s,d,x)  (DEF_ORIENT_GYRO_Z *\
115                                         convert_from_vtf_format(s,d,x) * \
116                                         ((float)M_PI/180.0f))
117
118 // Milli gauss to micro tesla
119 #define CONVERT_M_MG_VTF16E14_X(s,d,x) (convert_from_vtf_format(s,d,x)/10)
120 #define CONVERT_M_MG_VTF16E14_Y(s,d,x) (convert_from_vtf_format(s,d,x)/10)
121 #define CONVERT_M_MG_VTF16E14_Z(s,d,x) (convert_from_vtf_format(s,d,x)/10)
122
123
124 /*----------------------------------------------------------------------------*/
125
126 static int64_t sample_as_int64(unsigned char* sample, struct datum_info_t* type)
127 {
128         uint64_t u64;
129         int i;
130         int zeroed_bits = type->storagebits - type->realbits;
131         uint64_t sign_mask;
132         uint64_t value_mask;
133
134         u64 = 0;
135
136         if (type->endianness == 'b')
137                 for (i=0; i<type->storagebits/8; i++)
138                         u64 = (u64 << 8) | sample[i];
139         else
140                 for (i=type->storagebits/8 - 1; i>=0; i--)
141                         u64 = (u64 << 8) | sample[i];
142
143         u64 = (u64 >> type->shift) & (~0ULL >> zeroed_bits);
144
145         if (type->sign == 'u')
146                 return (int64_t) u64; /* We don't handle unsigned 64 bits int */
147
148         /* Signed integer */
149
150         switch (type->realbits) {
151                 case 0 ... 1:
152                         return 0;
153
154                 case 8:
155                         return (int64_t) (int8_t) u64;
156
157                 case 16:
158                         return (int64_t) (int16_t) u64;
159
160                 case 32:
161                         return (int64_t) (int32_t) u64;
162
163                 case 64:
164                         return (int64_t) u64;
165
166                 default:
167                         sign_mask = 1 << (type->realbits-1);
168                         value_mask = sign_mask - 1;
169
170                         if (u64 & sign_mask)
171                                 /* Negative value: return 2-complement */
172                                 return - ((~u64 & value_mask) + 1);
173                         else
174                                 return (int64_t) u64; /* Positive value */
175         }
176 }
177
178
179 static void reorder_fields(float* data, unsigned char map[MAX_CHANNELS])
180 {
181         int i;
182         float temp[MAX_CHANNELS];
183
184         for (i=0; i<MAX_CHANNELS; i++)
185                 temp[i] = data[map[i]];
186
187         for (i=0; i<MAX_CHANNELS; i++)
188                 data[i] = temp[i];
189 }
190
191
192 static void denoise (struct sensor_info_t* si, struct sensors_event_t* data,
193                      int num_fields, int max_samples)
194 {
195         /*
196          * Smooth out incoming data using a moving average over a number of
197          * samples. We accumulate one second worth of samples, or max_samples,
198          * depending on which is lower.
199          */
200
201         int i;
202         int f;
203         int sampling_rate = (int) si->sampling_rate;
204         int history_size;
205         int history_full = 0;
206
207         /* Don't denoise anything if we have less than two samples per second */
208         if (sampling_rate < 2)
209                 return;
210
211         /* Restrict window size to the min of sampling_rate and max_samples */
212         if (sampling_rate > max_samples)
213                 history_size = max_samples;
214         else
215                 history_size = sampling_rate;
216
217         /* Reset history if we're operating on an incorrect window size */
218         if (si->history_size != history_size) {
219                 si->history_size = history_size;
220                 si->history_entries = 0;
221                 si->history_index = 0;
222                 si->history = (float*) realloc(si->history,
223                                 si->history_size * num_fields * sizeof(float));
224                 if (si->history) {
225                         si->history_sum = (float*) realloc(si->history_sum,
226                                 num_fields * sizeof(float));
227                         if (si->history_sum)
228                                 memset(si->history_sum, 0, num_fields * sizeof(float));
229                 }
230         }
231
232         if (!si->history || !si->history_sum)
233                 return; /* Unlikely, but still... */
234
235         /* Update initialized samples count */
236         if (si->history_entries < si->history_size)
237                 si->history_entries++;
238         else
239                 history_full = 1;
240
241         /* Record new sample and calculate the moving sum */
242         for (f=0; f < num_fields; f++) {
243                 /**
244                  * A field is going to be overwritten if
245                  * history is full, so decrease the history sum
246                  */
247                 if (history_full)
248                         si->history_sum[f] -=
249                                 si->history[si->history_index * num_fields + f];
250
251                 si->history[si->history_index * num_fields + f] = data->data[f];
252                 si->history_sum[f] += data->data[f];
253
254                 /* For now simply compute a mobile mean for each field */
255                 /* and output filtered data */
256                 data->data[f] = si->history_sum[f] / si->history_entries;
257         }
258
259         /* Update our rolling index (next evicted cell) */
260         si->history_index = (si->history_index + 1) % si->history_size;
261 }
262
263
264 static int finalize_sample_default(int s, struct sensors_event_t* data)
265 {
266         int i           = sensor_info[s].catalog_index;
267         int sensor_type = sensor_catalog[i].type;
268
269         /* Swap fields if we have a custom channel ordering on this sensor */
270         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
271                 reorder_fields(data->data, sensor_info[s].order);
272
273         switch (sensor_type) {
274                 case SENSOR_TYPE_ACCELEROMETER:
275                         /* Always consider the accelerometer accurate */
276                         data->acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
277                         if (sensor_info[s].quirks & QUIRK_NOISY)
278                                 denoise(&sensor_info[s], data, 3, 20);
279                         break;
280
281                 case SENSOR_TYPE_MAGNETIC_FIELD:
282                         calibrate_compass (data, &sensor_info[s], get_timestamp());
283                         if (sensor_info[s].quirks & QUIRK_NOISY)
284                                 denoise(&sensor_info[s], data, 3, 100);
285                         break;
286
287                 case SENSOR_TYPE_GYROSCOPE:
288                 case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
289                         /*
290                          * Report medium accuracy by default ; higher accuracy
291                          * levels will be reported once, and if, we achieve
292                          * calibration.
293                          */
294                         data->gyro.status = SENSOR_STATUS_ACCURACY_MEDIUM;
295
296                         /*
297                          * We're only trying to calibrate data from continuously
298                          * firing gyroscope drivers, as motion based ones use
299                          * movement thresholds that may lead us to incorrectly
300                          * estimate bias.
301                          */
302                         if (sensor_info[s].selected_trigger !=
303                                 sensor_info[s].motion_trigger_name)
304                                         calibrate_gyro(data, &sensor_info[s]);
305
306                         if (sensor_info[s].quirks & QUIRK_NOISY)
307                                 denoise_median(&sensor_info[s], data, 3);
308                         break;
309
310                 case SENSOR_TYPE_LIGHT:
311                 case SENSOR_TYPE_AMBIENT_TEMPERATURE:
312                 case SENSOR_TYPE_TEMPERATURE:
313                         /* Only keep two decimals for these readings */
314                         data->data[0] = 0.01 * ((int) (data->data[0] * 100));
315
316                         /* ... fall through ... */
317
318                 case SENSOR_TYPE_PROXIMITY:
319                         /*
320                          * These are on change sensors ; drop the sample if it
321                          * has the same value as the previously reported one.
322                          */
323                         if (data->data[0] == sensor_info[s].prev_val)
324                                 return 0;
325
326                         sensor_info[s].prev_val = data->data[0];
327                         break;
328         }
329
330         return 1; /* Return sample to Android */
331 }
332
333
334 static float transform_sample_default(int s, int c, unsigned char* sample_data)
335 {
336         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
337         int64_t              s64 = sample_as_int64(sample_data, sample_type);
338         float scale = sensor_info[s].scale ?
339                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
340
341         /* In case correction has been requested using properties, apply it */
342         scale *= sensor_info[s].channel[c].opt_scale;
343
344         /* Apply default scaling rules */
345         return (sensor_info[s].offset + s64) * scale;
346 }
347
348
349 static int finalize_sample_ISH(int s, struct sensors_event_t* data)
350 {
351         int i           = sensor_info[s].catalog_index;
352         int sensor_type = sensor_catalog[i].type;
353         float pitch, roll, yaw;
354
355         /* Swap fields if we have a custom channel ordering on this sensor */
356         if (sensor_info[s].quirks & QUIRK_FIELD_ORDERING)
357                 reorder_fields(data->data, sensor_info[s].order);
358
359         if (sensor_type == SENSOR_TYPE_ORIENTATION) {
360
361                 pitch = data->data[0];
362                 roll = data->data[1];
363                 yaw = data->data[2];
364
365                 data->data[0] = 360.0 - yaw;
366                 data->data[1] = -pitch;
367                 data->data[2] = -roll;
368         }
369
370         return 1; /* Return sample to Android */
371 }
372
373
374 static float transform_sample_ISH(int s, int c, unsigned char* sample_data)
375 {
376         struct datum_info_t* sample_type = &sensor_info[s].channel[c].type_info;
377         int val         = (int) sample_as_int64(sample_data, sample_type);
378         int i           = sensor_info[s].catalog_index;
379         int sensor_type = sensor_catalog[i].type;
380         float correction;
381         int data_bytes  = (sample_type->realbits)/8;
382         int exponent    = sensor_info[s].offset;
383
384         /* In case correction has been requested using properties, apply it */
385         correction = sensor_info[s].channel[c].opt_scale;
386
387         switch (sensor_type) {
388                 case SENSOR_TYPE_ACCELEROMETER:
389                         switch (c) {
390                                 case 0:
391                                         return  correction *
392                                                 CONVERT_A_G_VTF16E14_X(
393                                                 data_bytes, exponent, val);
394
395                                 case 1:
396                                         return  correction *
397                                                 CONVERT_A_G_VTF16E14_Y(
398                                                 data_bytes, exponent, val);
399
400                                 case 2:
401                                         return  correction *
402                                                 CONVERT_A_G_VTF16E14_Z(
403                                                 data_bytes, exponent, val);
404                         }
405                         break;
406
407
408                 case SENSOR_TYPE_GYROSCOPE:
409                         switch (c) {
410                                 case 0:
411                                         return  correction *
412                                                 CONVERT_G_D_VTF16E14_X(
413                                                 data_bytes, exponent, val);
414
415                                 case 1:
416                                         return  correction *
417                                                 CONVERT_G_D_VTF16E14_Y(
418                                                 data_bytes, exponent, val);
419
420                                 case 2:
421                                         return  correction *
422                                                 CONVERT_G_D_VTF16E14_Z(
423                                                 data_bytes, exponent, val);
424                         }
425                         break;
426
427                 case SENSOR_TYPE_MAGNETIC_FIELD:
428                         switch (c) {
429                                 case 0:
430                                         return  correction *
431                                                 CONVERT_M_MG_VTF16E14_X(
432                                                 data_bytes, exponent, val);
433
434                                 case 1:
435                                         return  correction *
436                                                 CONVERT_M_MG_VTF16E14_Y(
437                                                 data_bytes, exponent, val);
438
439                                 case 2:
440                                         return  correction *
441                                                 CONVERT_M_MG_VTF16E14_Z(
442                                                 data_bytes, exponent, val);
443                         }
444                         break;
445
446                 case SENSOR_TYPE_LIGHT:
447                                 return (float) val;
448
449                 case SENSOR_TYPE_ORIENTATION:
450                         return  correction * convert_from_vtf_format(
451                                                 data_bytes, exponent, val);
452
453                 case SENSOR_TYPE_ROTATION_VECTOR:
454                         return  correction * convert_from_vtf_format(
455                                                 data_bytes, exponent, val);
456         }
457
458         return 0;
459 }
460
461
462 void select_transform (int s)
463 {
464         char prop_name[PROP_NAME_MAX];
465         char prop_val[PROP_VALUE_MAX];
466         int i                   = sensor_info[s].catalog_index;
467         const char *prefix      = sensor_catalog[i].tag;
468
469         sprintf(prop_name, PROP_BASE, prefix, "transform");
470
471         if (property_get(prop_name, prop_val, "")) {
472                 if (!strcmp(prop_val, "ISH")) {
473                         ALOGI(  "Using Intel Sensor Hub semantics on %s\n",
474                                 sensor_info[s].friendly_name);
475
476                         sensor_info[s].ops.transform = transform_sample_ISH;
477                         sensor_info[s].ops.finalize = finalize_sample_ISH;
478                         return;
479                 }
480         }
481
482         sensor_info[s].ops.transform = transform_sample_default;
483         sensor_info[s].ops.finalize = finalize_sample_default;
484 }
485
486
487 float acquire_immediate_value(int s, int c)
488 {
489         char sysfs_path[PATH_MAX];
490         float val;
491         int ret;
492         int dev_num = sensor_info[s].dev_num;
493         int i = sensor_info[s].catalog_index;
494         const char* raw_path = sensor_catalog[i].channel[c].raw_path;
495         const char* input_path = sensor_catalog[i].channel[c].input_path;
496         float scale = sensor_info[s].scale ?
497                         sensor_info[s].scale : sensor_info[s].channel[c].scale;
498         float offset = sensor_info[s].offset;
499         int sensor_type = sensor_catalog[i].type;
500         float correction;
501
502         /* In case correction has been requested using properties, apply it */
503         correction = sensor_info[s].channel[c].opt_scale;
504
505         /* Acquire a sample value for sensor s / channel c through sysfs */
506
507         if (input_path[0]) {
508                 sprintf(sysfs_path, BASE_PATH "%s", dev_num, input_path);
509                 ret = sysfs_read_float(sysfs_path, &val);
510
511                 if (!ret) {
512                         return val * correction;
513                 }
514         };
515
516         if (!raw_path[0])
517                 return 0;
518
519         sprintf(sysfs_path, BASE_PATH "%s", dev_num, raw_path);
520         ret = sysfs_read_float(sysfs_path, &val);
521
522         if (ret == -1)
523                 return 0;
524
525         /*
526         There is no transform ops defined yet for Raw sysfs values
527         Use this function to perform transformation as well.
528         */
529         if (sensor_type == SENSOR_TYPE_MAGNETIC_FIELD)
530                 return  CONVERT_GAUSS_TO_MICROTESLA ((val + offset) * scale) *
531                         correction;
532
533         return (val + offset) * scale * correction;
534 }