OSDN Git Service

Merge remote-tracking branch 'airlied/drm-next' into topic/drm-misc
[android-x86/kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197         struct intel_encoder *encoder = &intel_dig_port->base;
198         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199         int max_dotclk = dev_priv->max_dotclk_freq;
200         int ds_max_dotclk;
201
202         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204         if (type != DP_DS_PORT_TYPE_VGA)
205                 return max_dotclk;
206
207         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208                                                     intel_dp->downstream_ports);
209
210         if (ds_max_dotclk != 0)
211                 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213         return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218                     struct drm_display_mode *mode)
219 {
220         struct intel_dp *intel_dp = intel_attached_dp(connector);
221         struct intel_connector *intel_connector = to_intel_connector(connector);
222         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223         int target_clock = mode->clock;
224         int max_rate, mode_rate, max_lanes, max_link_clock;
225         int max_dotclk;
226
227         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229         if (is_edp(intel_dp) && fixed_mode) {
230                 if (mode->hdisplay > fixed_mode->hdisplay)
231                         return MODE_PANEL;
232
233                 if (mode->vdisplay > fixed_mode->vdisplay)
234                         return MODE_PANEL;
235
236                 target_clock = fixed_mode->clock;
237         }
238
239         max_link_clock = intel_dp_max_link_rate(intel_dp);
240         max_lanes = intel_dp_max_lane_count(intel_dp);
241
242         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243         mode_rate = intel_dp_link_required(target_clock, 18);
244
245         if (mode_rate > max_rate || target_clock > max_dotclk)
246                 return MODE_CLOCK_HIGH;
247
248         if (mode->clock < 10000)
249                 return MODE_CLOCK_LOW;
250
251         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252                 return MODE_H_ILLEGAL;
253
254         return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259         int     i;
260         uint32_t v = 0;
261
262         if (src_bytes > 4)
263                 src_bytes = 4;
264         for (i = 0; i < src_bytes; i++)
265                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266         return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271         int i;
272         if (dst_bytes > 4)
273                 dst_bytes = 4;
274         for (i = 0; i < dst_bytes; i++)
275                 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280                                     struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283                                               struct intel_dp *intel_dp);
284 static void
285 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286
287 static void pps_lock(struct intel_dp *intel_dp)
288 {
289         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
290         struct intel_encoder *encoder = &intel_dig_port->base;
291         struct drm_device *dev = encoder->base.dev;
292         struct drm_i915_private *dev_priv = to_i915(dev);
293         enum intel_display_power_domain power_domain;
294
295         /*
296          * See vlv_power_sequencer_reset() why we need
297          * a power domain reference here.
298          */
299         power_domain = intel_display_port_aux_power_domain(encoder);
300         intel_display_power_get(dev_priv, power_domain);
301
302         mutex_lock(&dev_priv->pps_mutex);
303 }
304
305 static void pps_unlock(struct intel_dp *intel_dp)
306 {
307         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
308         struct intel_encoder *encoder = &intel_dig_port->base;
309         struct drm_device *dev = encoder->base.dev;
310         struct drm_i915_private *dev_priv = to_i915(dev);
311         enum intel_display_power_domain power_domain;
312
313         mutex_unlock(&dev_priv->pps_mutex);
314
315         power_domain = intel_display_port_aux_power_domain(encoder);
316         intel_display_power_put(dev_priv, power_domain);
317 }
318
319 static void
320 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
321 {
322         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323         struct drm_device *dev = intel_dig_port->base.base.dev;
324         struct drm_i915_private *dev_priv = to_i915(dev);
325         enum pipe pipe = intel_dp->pps_pipe;
326         bool pll_enabled, release_cl_override = false;
327         enum dpio_phy phy = DPIO_PHY(pipe);
328         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329         uint32_t DP;
330
331         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
332                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
333                  pipe_name(pipe), port_name(intel_dig_port->port)))
334                 return;
335
336         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
337                       pipe_name(pipe), port_name(intel_dig_port->port));
338
339         /* Preserve the BIOS-computed detected bit. This is
340          * supposed to be read-only.
341          */
342         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
343         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
344         DP |= DP_PORT_WIDTH(1);
345         DP |= DP_LINK_TRAIN_PAT_1;
346
347         if (IS_CHERRYVIEW(dev_priv))
348                 DP |= DP_PIPE_SELECT_CHV(pipe);
349         else if (pipe == PIPE_B)
350                 DP |= DP_PIPEB_SELECT;
351
352         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
353
354         /*
355          * The DPLL for the pipe must be enabled for this to work.
356          * So enable temporarily it if it's not already enabled.
357          */
358         if (!pll_enabled) {
359                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
360                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
361
362                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev_priv) ?
363                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
364                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
365                                   pipe_name(pipe));
366                         return;
367                 }
368         }
369
370         /*
371          * Similar magic as in intel_dp_enable_port().
372          * We _must_ do this port enable + disable trick
373          * to make this power seqeuencer lock onto the port.
374          * Otherwise even VDD force bit won't work.
375          */
376         I915_WRITE(intel_dp->output_reg, DP);
377         POSTING_READ(intel_dp->output_reg);
378
379         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
380         POSTING_READ(intel_dp->output_reg);
381
382         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
383         POSTING_READ(intel_dp->output_reg);
384
385         if (!pll_enabled) {
386                 vlv_force_pll_off(dev, pipe);
387
388                 if (release_cl_override)
389                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
390         }
391 }
392
393 static enum pipe
394 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
395 {
396         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397         struct drm_device *dev = intel_dig_port->base.base.dev;
398         struct drm_i915_private *dev_priv = to_i915(dev);
399         struct intel_encoder *encoder;
400         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401         enum pipe pipe;
402
403         lockdep_assert_held(&dev_priv->pps_mutex);
404
405         /* We should never land here with regular DP ports */
406         WARN_ON(!is_edp(intel_dp));
407
408         if (intel_dp->pps_pipe != INVALID_PIPE)
409                 return intel_dp->pps_pipe;
410
411         /*
412          * We don't have power sequencer currently.
413          * Pick one that's not used by other ports.
414          */
415         for_each_intel_encoder(dev, encoder) {
416                 struct intel_dp *tmp;
417
418                 if (encoder->type != INTEL_OUTPUT_EDP)
419                         continue;
420
421                 tmp = enc_to_intel_dp(&encoder->base);
422
423                 if (tmp->pps_pipe != INVALID_PIPE)
424                         pipes &= ~(1 << tmp->pps_pipe);
425         }
426
427         /*
428          * Didn't find one. This should not happen since there
429          * are two power sequencers and up to two eDP ports.
430          */
431         if (WARN_ON(pipes == 0))
432                 pipe = PIPE_A;
433         else
434                 pipe = ffs(pipes) - 1;
435
436         vlv_steal_power_sequencer(dev, pipe);
437         intel_dp->pps_pipe = pipe;
438
439         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440                       pipe_name(intel_dp->pps_pipe),
441                       port_name(intel_dig_port->port));
442
443         /* init power sequencer on this pipe and port */
444         intel_dp_init_panel_power_sequencer(dev, intel_dp);
445         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447         /*
448          * Even vdd force doesn't work until we've made
449          * the power sequencer lock in on the port.
450          */
451         vlv_power_sequencer_kick(intel_dp);
452
453         return intel_dp->pps_pipe;
454 }
455
456 static int
457 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
458 {
459         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460         struct drm_device *dev = intel_dig_port->base.base.dev;
461         struct drm_i915_private *dev_priv = to_i915(dev);
462
463         lockdep_assert_held(&dev_priv->pps_mutex);
464
465         /* We should never land here with regular DP ports */
466         WARN_ON(!is_edp(intel_dp));
467
468         /*
469          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
470          * mapping needs to be retrieved from VBT, for now just hard-code to
471          * use instance #0 always.
472          */
473         if (!intel_dp->pps_reset)
474                 return 0;
475
476         intel_dp->pps_reset = false;
477
478         /*
479          * Only the HW needs to be reprogrammed, the SW state is fixed and
480          * has been setup during connector init.
481          */
482         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
483
484         return 0;
485 }
486
487 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
488                                enum pipe pipe);
489
490 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
491                                enum pipe pipe)
492 {
493         return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 }
495
496 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
497                                 enum pipe pipe)
498 {
499         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 }
501
502 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
503                          enum pipe pipe)
504 {
505         return true;
506 }
507
508 static enum pipe
509 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
510                      enum port port,
511                      vlv_pipe_check pipe_check)
512 {
513         enum pipe pipe;
514
515         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517                         PANEL_PORT_SELECT_MASK;
518
519                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
520                         continue;
521
522                 if (!pipe_check(dev_priv, pipe))
523                         continue;
524
525                 return pipe;
526         }
527
528         return INVALID_PIPE;
529 }
530
531 static void
532 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
533 {
534         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
535         struct drm_device *dev = intel_dig_port->base.base.dev;
536         struct drm_i915_private *dev_priv = to_i915(dev);
537         enum port port = intel_dig_port->port;
538
539         lockdep_assert_held(&dev_priv->pps_mutex);
540
541         /* try to find a pipe with this port selected */
542         /* first pick one where the panel is on */
543         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
544                                                   vlv_pipe_has_pp_on);
545         /* didn't find one? pick one where vdd is on */
546         if (intel_dp->pps_pipe == INVALID_PIPE)
547                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
548                                                           vlv_pipe_has_vdd_on);
549         /* didn't find one? pick one with just the correct port */
550         if (intel_dp->pps_pipe == INVALID_PIPE)
551                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
552                                                           vlv_pipe_any);
553
554         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
555         if (intel_dp->pps_pipe == INVALID_PIPE) {
556                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
557                               port_name(port));
558                 return;
559         }
560
561         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
562                       port_name(port), pipe_name(intel_dp->pps_pipe));
563
564         intel_dp_init_panel_power_sequencer(dev, intel_dp);
565         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 }
567
568 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569 {
570         struct drm_device *dev = &dev_priv->drm;
571         struct intel_encoder *encoder;
572
573         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
574                     !IS_BROXTON(dev_priv)))
575                 return;
576
577         /*
578          * We can't grab pps_mutex here due to deadlock with power_domain
579          * mutex when power_domain functions are called while holding pps_mutex.
580          * That also means that in order to use pps_pipe the code needs to
581          * hold both a power domain reference and pps_mutex, and the power domain
582          * reference get/put must be done while _not_ holding pps_mutex.
583          * pps_{lock,unlock}() do these steps in the correct order, so one
584          * should use them always.
585          */
586
587         for_each_intel_encoder(dev, encoder) {
588                 struct intel_dp *intel_dp;
589
590                 if (encoder->type != INTEL_OUTPUT_EDP)
591                         continue;
592
593                 intel_dp = enc_to_intel_dp(&encoder->base);
594                 if (IS_BROXTON(dev_priv))
595                         intel_dp->pps_reset = true;
596                 else
597                         intel_dp->pps_pipe = INVALID_PIPE;
598         }
599 }
600
601 struct pps_registers {
602         i915_reg_t pp_ctrl;
603         i915_reg_t pp_stat;
604         i915_reg_t pp_on;
605         i915_reg_t pp_off;
606         i915_reg_t pp_div;
607 };
608
609 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
610                                     struct intel_dp *intel_dp,
611                                     struct pps_registers *regs)
612 {
613         int pps_idx = 0;
614
615         memset(regs, 0, sizeof(*regs));
616
617         if (IS_BROXTON(dev_priv))
618                 pps_idx = bxt_power_sequencer_idx(intel_dp);
619         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
620                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
621
622         regs->pp_ctrl = PP_CONTROL(pps_idx);
623         regs->pp_stat = PP_STATUS(pps_idx);
624         regs->pp_on = PP_ON_DELAYS(pps_idx);
625         regs->pp_off = PP_OFF_DELAYS(pps_idx);
626         if (!IS_BROXTON(dev_priv))
627                 regs->pp_div = PP_DIVISOR(pps_idx);
628 }
629
630 static i915_reg_t
631 _pp_ctrl_reg(struct intel_dp *intel_dp)
632 {
633         struct pps_registers regs;
634
635         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
636                                 &regs);
637
638         return regs.pp_ctrl;
639 }
640
641 static i915_reg_t
642 _pp_stat_reg(struct intel_dp *intel_dp)
643 {
644         struct pps_registers regs;
645
646         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
647                                 &regs);
648
649         return regs.pp_stat;
650 }
651
652 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
653    This function only applicable when panel PM state is not to be tracked */
654 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
655                               void *unused)
656 {
657         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
658                                                  edp_notifier);
659         struct drm_device *dev = intel_dp_to_dev(intel_dp);
660         struct drm_i915_private *dev_priv = to_i915(dev);
661
662         if (!is_edp(intel_dp) || code != SYS_RESTART)
663                 return 0;
664
665         pps_lock(intel_dp);
666
667         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
668                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669                 i915_reg_t pp_ctrl_reg, pp_div_reg;
670                 u32 pp_div;
671
672                 pp_ctrl_reg = PP_CONTROL(pipe);
673                 pp_div_reg  = PP_DIVISOR(pipe);
674                 pp_div = I915_READ(pp_div_reg);
675                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
676
677                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
678                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
679                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
680                 msleep(intel_dp->panel_power_cycle_delay);
681         }
682
683         pps_unlock(intel_dp);
684
685         return 0;
686 }
687
688 static bool edp_have_panel_power(struct intel_dp *intel_dp)
689 {
690         struct drm_device *dev = intel_dp_to_dev(intel_dp);
691         struct drm_i915_private *dev_priv = to_i915(dev);
692
693         lockdep_assert_held(&dev_priv->pps_mutex);
694
695         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
696             intel_dp->pps_pipe == INVALID_PIPE)
697                 return false;
698
699         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 }
701
702 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703 {
704         struct drm_device *dev = intel_dp_to_dev(intel_dp);
705         struct drm_i915_private *dev_priv = to_i915(dev);
706
707         lockdep_assert_held(&dev_priv->pps_mutex);
708
709         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
710             intel_dp->pps_pipe == INVALID_PIPE)
711                 return false;
712
713         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 }
715
716 static void
717 intel_dp_check_edp(struct intel_dp *intel_dp)
718 {
719         struct drm_device *dev = intel_dp_to_dev(intel_dp);
720         struct drm_i915_private *dev_priv = to_i915(dev);
721
722         if (!is_edp(intel_dp))
723                 return;
724
725         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
727                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728                               I915_READ(_pp_stat_reg(intel_dp)),
729                               I915_READ(_pp_ctrl_reg(intel_dp)));
730         }
731 }
732
733 static uint32_t
734 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
735 {
736         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737         struct drm_device *dev = intel_dig_port->base.base.dev;
738         struct drm_i915_private *dev_priv = to_i915(dev);
739         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740         uint32_t status;
741         bool done;
742
743 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744         if (has_aux_irq)
745                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746                                           msecs_to_jiffies_timeout(10));
747         else
748                 done = wait_for(C, 10) == 0;
749         if (!done)
750                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
751                           has_aux_irq);
752 #undef C
753
754         return status;
755 }
756
757 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758 {
759         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761
762         if (index)
763                 return 0;
764
765         /*
766          * The clock divider is based off the hrawclk, and would like to run at
767          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
768          */
769         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 }
771
772 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
773 {
774         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776
777         if (index)
778                 return 0;
779
780         /*
781          * The clock divider is based off the cdclk or PCH rawclk, and would
782          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
783          * divide by 2000 and use that
784          */
785         if (intel_dig_port->port == PORT_A)
786                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787         else
788                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 }
790
791 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
792 {
793         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795
796         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797                 /* Workaround for non-ULT HSW */
798                 switch (index) {
799                 case 0: return 63;
800                 case 1: return 72;
801                 default: return 0;
802                 }
803         }
804
805         return ilk_get_aux_clock_divider(intel_dp, index);
806 }
807
808 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
809 {
810         /*
811          * SKL doesn't need us to program the AUX clock divider (Hardware will
812          * derive the clock from CDCLK automatically). We still implement the
813          * get_aux_clock_divider vfunc to plug-in into the existing code.
814          */
815         return index ? 0 : 1;
816 }
817
818 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
819                                      bool has_aux_irq,
820                                      int send_bytes,
821                                      uint32_t aux_clock_divider)
822 {
823         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824         struct drm_i915_private *dev_priv =
825                         to_i915(intel_dig_port->base.base.dev);
826         uint32_t precharge, timeout;
827
828         if (IS_GEN6(dev_priv))
829                 precharge = 3;
830         else
831                 precharge = 5;
832
833         if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
834                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
835         else
836                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
837
838         return DP_AUX_CH_CTL_SEND_BUSY |
839                DP_AUX_CH_CTL_DONE |
840                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
841                DP_AUX_CH_CTL_TIME_OUT_ERROR |
842                timeout |
843                DP_AUX_CH_CTL_RECEIVE_ERROR |
844                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
845                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
846                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
847 }
848
849 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
850                                       bool has_aux_irq,
851                                       int send_bytes,
852                                       uint32_t unused)
853 {
854         return DP_AUX_CH_CTL_SEND_BUSY |
855                DP_AUX_CH_CTL_DONE |
856                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
857                DP_AUX_CH_CTL_TIME_OUT_ERROR |
858                DP_AUX_CH_CTL_TIME_OUT_1600us |
859                DP_AUX_CH_CTL_RECEIVE_ERROR |
860                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
861                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
862                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
863 }
864
865 static int
866 intel_dp_aux_ch(struct intel_dp *intel_dp,
867                 const uint8_t *send, int send_bytes,
868                 uint8_t *recv, int recv_size)
869 {
870         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
871         struct drm_device *dev = intel_dig_port->base.base.dev;
872         struct drm_i915_private *dev_priv = to_i915(dev);
873         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
874         uint32_t aux_clock_divider;
875         int i, ret, recv_bytes;
876         uint32_t status;
877         int try, clock = 0;
878         bool has_aux_irq = HAS_AUX_IRQ(dev);
879         bool vdd;
880
881         pps_lock(intel_dp);
882
883         /*
884          * We will be called with VDD already enabled for dpcd/edid/oui reads.
885          * In such cases we want to leave VDD enabled and it's up to upper layers
886          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
887          * ourselves.
888          */
889         vdd = edp_panel_vdd_on(intel_dp);
890
891         /* dp aux is extremely sensitive to irq latency, hence request the
892          * lowest possible wakeup latency and so prevent the cpu from going into
893          * deep sleep states.
894          */
895         pm_qos_update_request(&dev_priv->pm_qos, 0);
896
897         intel_dp_check_edp(intel_dp);
898
899         /* Try to wait for any previous AUX channel activity */
900         for (try = 0; try < 3; try++) {
901                 status = I915_READ_NOTRACE(ch_ctl);
902                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
903                         break;
904                 msleep(1);
905         }
906
907         if (try == 3) {
908                 static u32 last_status = -1;
909                 const u32 status = I915_READ(ch_ctl);
910
911                 if (status != last_status) {
912                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
913                              status);
914                         last_status = status;
915                 }
916
917                 ret = -EBUSY;
918                 goto out;
919         }
920
921         /* Only 5 data registers! */
922         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
923                 ret = -E2BIG;
924                 goto out;
925         }
926
927         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
928                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
929                                                           has_aux_irq,
930                                                           send_bytes,
931                                                           aux_clock_divider);
932
933                 /* Must try at least 3 times according to DP spec */
934                 for (try = 0; try < 5; try++) {
935                         /* Load the send data into the aux channel data registers */
936                         for (i = 0; i < send_bytes; i += 4)
937                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
938                                            intel_dp_pack_aux(send + i,
939                                                              send_bytes - i));
940
941                         /* Send the command and wait for it to complete */
942                         I915_WRITE(ch_ctl, send_ctl);
943
944                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
945
946                         /* Clear done status and any errors */
947                         I915_WRITE(ch_ctl,
948                                    status |
949                                    DP_AUX_CH_CTL_DONE |
950                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
951                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
952
953                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
954                                 continue;
955
956                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
957                          *   400us delay required for errors and timeouts
958                          *   Timeout errors from the HW already meet this
959                          *   requirement so skip to next iteration
960                          */
961                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962                                 usleep_range(400, 500);
963                                 continue;
964                         }
965                         if (status & DP_AUX_CH_CTL_DONE)
966                                 goto done;
967                 }
968         }
969
970         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
971                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
972                 ret = -EBUSY;
973                 goto out;
974         }
975
976 done:
977         /* Check for timeout or receive error.
978          * Timeouts occur when the sink is not connected
979          */
980         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
981                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
982                 ret = -EIO;
983                 goto out;
984         }
985
986         /* Timeouts occur when the device isn't connected, so they're
987          * "normal" -- don't fill the kernel log with these */
988         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
989                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
990                 ret = -ETIMEDOUT;
991                 goto out;
992         }
993
994         /* Unload any bytes sent back from the other side */
995         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
996                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
997
998         /*
999          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1000          * We have no idea of what happened so we return -EBUSY so
1001          * drm layer takes care for the necessary retries.
1002          */
1003         if (recv_bytes == 0 || recv_bytes > 20) {
1004                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1005                               recv_bytes);
1006                 /*
1007                  * FIXME: This patch was created on top of a series that
1008                  * organize the retries at drm level. There EBUSY should
1009                  * also take care for 1ms wait before retrying.
1010                  * That aux retries re-org is still needed and after that is
1011                  * merged we remove this sleep from here.
1012                  */
1013                 usleep_range(1000, 1500);
1014                 ret = -EBUSY;
1015                 goto out;
1016         }
1017
1018         if (recv_bytes > recv_size)
1019                 recv_bytes = recv_size;
1020
1021         for (i = 0; i < recv_bytes; i += 4)
1022                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1023                                     recv + i, recv_bytes - i);
1024
1025         ret = recv_bytes;
1026 out:
1027         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1028
1029         if (vdd)
1030                 edp_panel_vdd_off(intel_dp, false);
1031
1032         pps_unlock(intel_dp);
1033
1034         return ret;
1035 }
1036
1037 #define BARE_ADDRESS_SIZE       3
1038 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1039 static ssize_t
1040 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1041 {
1042         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1043         uint8_t txbuf[20], rxbuf[20];
1044         size_t txsize, rxsize;
1045         int ret;
1046
1047         txbuf[0] = (msg->request << 4) |
1048                 ((msg->address >> 16) & 0xf);
1049         txbuf[1] = (msg->address >> 8) & 0xff;
1050         txbuf[2] = msg->address & 0xff;
1051         txbuf[3] = msg->size - 1;
1052
1053         switch (msg->request & ~DP_AUX_I2C_MOT) {
1054         case DP_AUX_NATIVE_WRITE:
1055         case DP_AUX_I2C_WRITE:
1056         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1057                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1058                 rxsize = 2; /* 0 or 1 data bytes */
1059
1060                 if (WARN_ON(txsize > 20))
1061                         return -E2BIG;
1062
1063                 WARN_ON(!msg->buffer != !msg->size);
1064
1065                 if (msg->buffer)
1066                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1067
1068                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1069                 if (ret > 0) {
1070                         msg->reply = rxbuf[0] >> 4;
1071
1072                         if (ret > 1) {
1073                                 /* Number of bytes written in a short write. */
1074                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1075                         } else {
1076                                 /* Return payload size. */
1077                                 ret = msg->size;
1078                         }
1079                 }
1080                 break;
1081
1082         case DP_AUX_NATIVE_READ:
1083         case DP_AUX_I2C_READ:
1084                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1085                 rxsize = msg->size + 1;
1086
1087                 if (WARN_ON(rxsize > 20))
1088                         return -E2BIG;
1089
1090                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1091                 if (ret > 0) {
1092                         msg->reply = rxbuf[0] >> 4;
1093                         /*
1094                          * Assume happy day, and copy the data. The caller is
1095                          * expected to check msg->reply before touching it.
1096                          *
1097                          * Return payload size.
1098                          */
1099                         ret--;
1100                         memcpy(msg->buffer, rxbuf + 1, ret);
1101                 }
1102                 break;
1103
1104         default:
1105                 ret = -EINVAL;
1106                 break;
1107         }
1108
1109         return ret;
1110 }
1111
1112 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1113                                 enum port port)
1114 {
1115         const struct ddi_vbt_port_info *info =
1116                 &dev_priv->vbt.ddi_port_info[port];
1117         enum port aux_port;
1118
1119         if (!info->alternate_aux_channel) {
1120                 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1121                               port_name(port), port_name(port));
1122                 return port;
1123         }
1124
1125         switch (info->alternate_aux_channel) {
1126         case DP_AUX_A:
1127                 aux_port = PORT_A;
1128                 break;
1129         case DP_AUX_B:
1130                 aux_port = PORT_B;
1131                 break;
1132         case DP_AUX_C:
1133                 aux_port = PORT_C;
1134                 break;
1135         case DP_AUX_D:
1136                 aux_port = PORT_D;
1137                 break;
1138         default:
1139                 MISSING_CASE(info->alternate_aux_channel);
1140                 aux_port = PORT_A;
1141                 break;
1142         }
1143
1144         DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1145                       port_name(aux_port), port_name(port));
1146
1147         return aux_port;
1148 }
1149
1150 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1151                                   enum port port)
1152 {
1153         switch (port) {
1154         case PORT_B:
1155         case PORT_C:
1156         case PORT_D:
1157                 return DP_AUX_CH_CTL(port);
1158         default:
1159                 MISSING_CASE(port);
1160                 return DP_AUX_CH_CTL(PORT_B);
1161         }
1162 }
1163
1164 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1165                                    enum port port, int index)
1166 {
1167         switch (port) {
1168         case PORT_B:
1169         case PORT_C:
1170         case PORT_D:
1171                 return DP_AUX_CH_DATA(port, index);
1172         default:
1173                 MISSING_CASE(port);
1174                 return DP_AUX_CH_DATA(PORT_B, index);
1175         }
1176 }
1177
1178 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1179                                   enum port port)
1180 {
1181         switch (port) {
1182         case PORT_A:
1183                 return DP_AUX_CH_CTL(port);
1184         case PORT_B:
1185         case PORT_C:
1186         case PORT_D:
1187                 return PCH_DP_AUX_CH_CTL(port);
1188         default:
1189                 MISSING_CASE(port);
1190                 return DP_AUX_CH_CTL(PORT_A);
1191         }
1192 }
1193
1194 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1195                                    enum port port, int index)
1196 {
1197         switch (port) {
1198         case PORT_A:
1199                 return DP_AUX_CH_DATA(port, index);
1200         case PORT_B:
1201         case PORT_C:
1202         case PORT_D:
1203                 return PCH_DP_AUX_CH_DATA(port, index);
1204         default:
1205                 MISSING_CASE(port);
1206                 return DP_AUX_CH_DATA(PORT_A, index);
1207         }
1208 }
1209
1210 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1211                                   enum port port)
1212 {
1213         switch (port) {
1214         case PORT_A:
1215         case PORT_B:
1216         case PORT_C:
1217         case PORT_D:
1218                 return DP_AUX_CH_CTL(port);
1219         default:
1220                 MISSING_CASE(port);
1221                 return DP_AUX_CH_CTL(PORT_A);
1222         }
1223 }
1224
1225 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1226                                    enum port port, int index)
1227 {
1228         switch (port) {
1229         case PORT_A:
1230         case PORT_B:
1231         case PORT_C:
1232         case PORT_D:
1233                 return DP_AUX_CH_DATA(port, index);
1234         default:
1235                 MISSING_CASE(port);
1236                 return DP_AUX_CH_DATA(PORT_A, index);
1237         }
1238 }
1239
1240 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1241                                     enum port port)
1242 {
1243         if (INTEL_INFO(dev_priv)->gen >= 9)
1244                 return skl_aux_ctl_reg(dev_priv, port);
1245         else if (HAS_PCH_SPLIT(dev_priv))
1246                 return ilk_aux_ctl_reg(dev_priv, port);
1247         else
1248                 return g4x_aux_ctl_reg(dev_priv, port);
1249 }
1250
1251 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1252                                      enum port port, int index)
1253 {
1254         if (INTEL_INFO(dev_priv)->gen >= 9)
1255                 return skl_aux_data_reg(dev_priv, port, index);
1256         else if (HAS_PCH_SPLIT(dev_priv))
1257                 return ilk_aux_data_reg(dev_priv, port, index);
1258         else
1259                 return g4x_aux_data_reg(dev_priv, port, index);
1260 }
1261
1262 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1263 {
1264         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1265         enum port port = intel_aux_port(dev_priv,
1266                                         dp_to_dig_port(intel_dp)->port);
1267         int i;
1268
1269         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1270         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1271                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1272 }
1273
1274 static void
1275 intel_dp_aux_fini(struct intel_dp *intel_dp)
1276 {
1277         kfree(intel_dp->aux.name);
1278 }
1279
1280 static void
1281 intel_dp_aux_init(struct intel_dp *intel_dp)
1282 {
1283         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284         enum port port = intel_dig_port->port;
1285
1286         intel_aux_reg_init(intel_dp);
1287         drm_dp_aux_init(&intel_dp->aux);
1288
1289         /* Failure to allocate our preferred name is not critical */
1290         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1291         intel_dp->aux.transfer = intel_dp_aux_transfer;
1292 }
1293
1294 static int
1295 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1296 {
1297         if (intel_dp->num_sink_rates) {
1298                 *sink_rates = intel_dp->sink_rates;
1299                 return intel_dp->num_sink_rates;
1300         }
1301
1302         *sink_rates = default_rates;
1303
1304         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1305 }
1306
1307 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1308 {
1309         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1310         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1311
1312         if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1313             IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1314                 return true;
1315         else
1316                 return false;
1317 }
1318
1319 static int
1320 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1321 {
1322         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1323         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1324         int size;
1325
1326         if (IS_BROXTON(dev_priv)) {
1327                 *source_rates = bxt_rates;
1328                 size = ARRAY_SIZE(bxt_rates);
1329         } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1330                 *source_rates = skl_rates;
1331                 size = ARRAY_SIZE(skl_rates);
1332         } else {
1333                 *source_rates = default_rates;
1334                 size = ARRAY_SIZE(default_rates);
1335         }
1336
1337         /* This depends on the fact that 5.4 is last value in the array */
1338         if (!intel_dp_source_supports_hbr2(intel_dp))
1339                 size--;
1340
1341         return size;
1342 }
1343
1344 static void
1345 intel_dp_set_clock(struct intel_encoder *encoder,
1346                    struct intel_crtc_state *pipe_config)
1347 {
1348         struct drm_device *dev = encoder->base.dev;
1349         struct drm_i915_private *dev_priv = to_i915(dev);
1350         const struct dp_link_dpll *divisor = NULL;
1351         int i, count = 0;
1352
1353         if (IS_G4X(dev_priv)) {
1354                 divisor = gen4_dpll;
1355                 count = ARRAY_SIZE(gen4_dpll);
1356         } else if (HAS_PCH_SPLIT(dev_priv)) {
1357                 divisor = pch_dpll;
1358                 count = ARRAY_SIZE(pch_dpll);
1359         } else if (IS_CHERRYVIEW(dev_priv)) {
1360                 divisor = chv_dpll;
1361                 count = ARRAY_SIZE(chv_dpll);
1362         } else if (IS_VALLEYVIEW(dev_priv)) {
1363                 divisor = vlv_dpll;
1364                 count = ARRAY_SIZE(vlv_dpll);
1365         }
1366
1367         if (divisor && count) {
1368                 for (i = 0; i < count; i++) {
1369                         if (pipe_config->port_clock == divisor[i].clock) {
1370                                 pipe_config->dpll = divisor[i].dpll;
1371                                 pipe_config->clock_set = true;
1372                                 break;
1373                         }
1374                 }
1375         }
1376 }
1377
1378 static int intersect_rates(const int *source_rates, int source_len,
1379                            const int *sink_rates, int sink_len,
1380                            int *common_rates)
1381 {
1382         int i = 0, j = 0, k = 0;
1383
1384         while (i < source_len && j < sink_len) {
1385                 if (source_rates[i] == sink_rates[j]) {
1386                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1387                                 return k;
1388                         common_rates[k] = source_rates[i];
1389                         ++k;
1390                         ++i;
1391                         ++j;
1392                 } else if (source_rates[i] < sink_rates[j]) {
1393                         ++i;
1394                 } else {
1395                         ++j;
1396                 }
1397         }
1398         return k;
1399 }
1400
1401 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1402                                  int *common_rates)
1403 {
1404         const int *source_rates, *sink_rates;
1405         int source_len, sink_len;
1406
1407         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1408         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1409
1410         return intersect_rates(source_rates, source_len,
1411                                sink_rates, sink_len,
1412                                common_rates);
1413 }
1414
1415 static void snprintf_int_array(char *str, size_t len,
1416                                const int *array, int nelem)
1417 {
1418         int i;
1419
1420         str[0] = '\0';
1421
1422         for (i = 0; i < nelem; i++) {
1423                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1424                 if (r >= len)
1425                         return;
1426                 str += r;
1427                 len -= r;
1428         }
1429 }
1430
1431 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1432 {
1433         const int *source_rates, *sink_rates;
1434         int source_len, sink_len, common_len;
1435         int common_rates[DP_MAX_SUPPORTED_RATES];
1436         char str[128]; /* FIXME: too big for stack? */
1437
1438         if ((drm_debug & DRM_UT_KMS) == 0)
1439                 return;
1440
1441         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1442         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1443         DRM_DEBUG_KMS("source rates: %s\n", str);
1444
1445         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1446         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1447         DRM_DEBUG_KMS("sink rates: %s\n", str);
1448
1449         common_len = intel_dp_common_rates(intel_dp, common_rates);
1450         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1451         DRM_DEBUG_KMS("common rates: %s\n", str);
1452 }
1453
1454 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1455 {
1456         uint8_t rev;
1457         int len;
1458
1459         if ((drm_debug & DRM_UT_KMS) == 0)
1460                 return;
1461
1462         if (!drm_dp_is_branch(intel_dp->dpcd))
1463                 return;
1464
1465         len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1466         if (len < 0)
1467                 return;
1468
1469         DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1470 }
1471
1472 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1473 {
1474         uint8_t rev[2];
1475         int len;
1476
1477         if ((drm_debug & DRM_UT_KMS) == 0)
1478                 return;
1479
1480         if (!drm_dp_is_branch(intel_dp->dpcd))
1481                 return;
1482
1483         len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1484         if (len < 0)
1485                 return;
1486
1487         DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1488 }
1489
1490 static int rate_to_index(int find, const int *rates)
1491 {
1492         int i = 0;
1493
1494         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1495                 if (find == rates[i])
1496                         break;
1497
1498         return i;
1499 }
1500
1501 int
1502 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1503 {
1504         int rates[DP_MAX_SUPPORTED_RATES] = {};
1505         int len;
1506
1507         len = intel_dp_common_rates(intel_dp, rates);
1508         if (WARN_ON(len <= 0))
1509                 return 162000;
1510
1511         return rates[len - 1];
1512 }
1513
1514 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1515 {
1516         return rate_to_index(rate, intel_dp->sink_rates);
1517 }
1518
1519 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1520                            uint8_t *link_bw, uint8_t *rate_select)
1521 {
1522         if (intel_dp->num_sink_rates) {
1523                 *link_bw = 0;
1524                 *rate_select =
1525                         intel_dp_rate_select(intel_dp, port_clock);
1526         } else {
1527                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1528                 *rate_select = 0;
1529         }
1530 }
1531
1532 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1533                                 struct intel_crtc_state *pipe_config)
1534 {
1535         int bpp, bpc;
1536
1537         bpp = pipe_config->pipe_bpp;
1538         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1539
1540         if (bpc > 0)
1541                 bpp = min(bpp, 3*bpc);
1542
1543         return bpp;
1544 }
1545
1546 bool
1547 intel_dp_compute_config(struct intel_encoder *encoder,
1548                         struct intel_crtc_state *pipe_config,
1549                         struct drm_connector_state *conn_state)
1550 {
1551         struct drm_device *dev = encoder->base.dev;
1552         struct drm_i915_private *dev_priv = to_i915(dev);
1553         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1554         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1555         enum port port = dp_to_dig_port(intel_dp)->port;
1556         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1557         struct intel_connector *intel_connector = intel_dp->attached_connector;
1558         int lane_count, clock;
1559         int min_lane_count = 1;
1560         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1561         /* Conveniently, the link BW constants become indices with a shift...*/
1562         int min_clock = 0;
1563         int max_clock;
1564         int bpp, mode_rate;
1565         int link_avail, link_clock;
1566         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1567         int common_len;
1568         uint8_t link_bw, rate_select;
1569
1570         common_len = intel_dp_common_rates(intel_dp, common_rates);
1571
1572         /* No common link rates between source and sink */
1573         WARN_ON(common_len <= 0);
1574
1575         max_clock = common_len - 1;
1576
1577         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1578                 pipe_config->has_pch_encoder = true;
1579
1580         pipe_config->has_drrs = false;
1581         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1582
1583         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1584                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1585                                        adjusted_mode);
1586
1587                 if (INTEL_INFO(dev)->gen >= 9) {
1588                         int ret;
1589                         ret = skl_update_scaler_crtc(pipe_config);
1590                         if (ret)
1591                                 return ret;
1592                 }
1593
1594                 if (HAS_GMCH_DISPLAY(dev_priv))
1595                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1596                                                  intel_connector->panel.fitting_mode);
1597                 else
1598                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1599                                                 intel_connector->panel.fitting_mode);
1600         }
1601
1602         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1603                 return false;
1604
1605         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1606                       "max bw %d pixel clock %iKHz\n",
1607                       max_lane_count, common_rates[max_clock],
1608                       adjusted_mode->crtc_clock);
1609
1610         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1611          * bpc in between. */
1612         bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1613         if (is_edp(intel_dp)) {
1614
1615                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1616                 if (intel_connector->base.display_info.bpc == 0 &&
1617                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1618                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1619                                       dev_priv->vbt.edp.bpp);
1620                         bpp = dev_priv->vbt.edp.bpp;
1621                 }
1622
1623                 /*
1624                  * Use the maximum clock and number of lanes the eDP panel
1625                  * advertizes being capable of. The panels are generally
1626                  * designed to support only a single clock and lane
1627                  * configuration, and typically these values correspond to the
1628                  * native resolution of the panel.
1629                  */
1630                 min_lane_count = max_lane_count;
1631                 min_clock = max_clock;
1632         }
1633
1634         for (; bpp >= 6*3; bpp -= 2*3) {
1635                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1636                                                    bpp);
1637
1638                 for (clock = min_clock; clock <= max_clock; clock++) {
1639                         for (lane_count = min_lane_count;
1640                                 lane_count <= max_lane_count;
1641                                 lane_count <<= 1) {
1642
1643                                 link_clock = common_rates[clock];
1644                                 link_avail = intel_dp_max_data_rate(link_clock,
1645                                                                     lane_count);
1646
1647                                 if (mode_rate <= link_avail) {
1648                                         goto found;
1649                                 }
1650                         }
1651                 }
1652         }
1653
1654         return false;
1655
1656 found:
1657         if (intel_dp->color_range_auto) {
1658                 /*
1659                  * See:
1660                  * CEA-861-E - 5.1 Default Encoding Parameters
1661                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1662                  */
1663                 pipe_config->limited_color_range =
1664                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1665         } else {
1666                 pipe_config->limited_color_range =
1667                         intel_dp->limited_color_range;
1668         }
1669
1670         pipe_config->lane_count = lane_count;
1671
1672         pipe_config->pipe_bpp = bpp;
1673         pipe_config->port_clock = common_rates[clock];
1674
1675         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1676                               &link_bw, &rate_select);
1677
1678         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1679                       link_bw, rate_select, pipe_config->lane_count,
1680                       pipe_config->port_clock, bpp);
1681         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1682                       mode_rate, link_avail);
1683
1684         intel_link_compute_m_n(bpp, lane_count,
1685                                adjusted_mode->crtc_clock,
1686                                pipe_config->port_clock,
1687                                &pipe_config->dp_m_n);
1688
1689         if (intel_connector->panel.downclock_mode != NULL &&
1690                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1691                         pipe_config->has_drrs = true;
1692                         intel_link_compute_m_n(bpp, lane_count,
1693                                 intel_connector->panel.downclock_mode->clock,
1694                                 pipe_config->port_clock,
1695                                 &pipe_config->dp_m2_n2);
1696         }
1697
1698         /*
1699          * DPLL0 VCO may need to be adjusted to get the correct
1700          * clock for eDP. This will affect cdclk as well.
1701          */
1702         if (is_edp(intel_dp) &&
1703             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1704                 int vco;
1705
1706                 switch (pipe_config->port_clock / 2) {
1707                 case 108000:
1708                 case 216000:
1709                         vco = 8640000;
1710                         break;
1711                 default:
1712                         vco = 8100000;
1713                         break;
1714                 }
1715
1716                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1717         }
1718
1719         if (!HAS_DDI(dev_priv))
1720                 intel_dp_set_clock(encoder, pipe_config);
1721
1722         return true;
1723 }
1724
1725 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1726                               int link_rate, uint8_t lane_count,
1727                               bool link_mst)
1728 {
1729         intel_dp->link_rate = link_rate;
1730         intel_dp->lane_count = lane_count;
1731         intel_dp->link_mst = link_mst;
1732 }
1733
1734 static void intel_dp_prepare(struct intel_encoder *encoder,
1735                              struct intel_crtc_state *pipe_config)
1736 {
1737         struct drm_device *dev = encoder->base.dev;
1738         struct drm_i915_private *dev_priv = to_i915(dev);
1739         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1740         enum port port = dp_to_dig_port(intel_dp)->port;
1741         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1742         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1743
1744         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1745                                  pipe_config->lane_count,
1746                                  intel_crtc_has_type(pipe_config,
1747                                                      INTEL_OUTPUT_DP_MST));
1748
1749         /*
1750          * There are four kinds of DP registers:
1751          *
1752          *      IBX PCH
1753          *      SNB CPU
1754          *      IVB CPU
1755          *      CPT PCH
1756          *
1757          * IBX PCH and CPU are the same for almost everything,
1758          * except that the CPU DP PLL is configured in this
1759          * register
1760          *
1761          * CPT PCH is quite different, having many bits moved
1762          * to the TRANS_DP_CTL register instead. That
1763          * configuration happens (oddly) in ironlake_pch_enable
1764          */
1765
1766         /* Preserve the BIOS-computed detected bit. This is
1767          * supposed to be read-only.
1768          */
1769         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1770
1771         /* Handle DP bits in common between all three register formats */
1772         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1773         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1774
1775         /* Split out the IBX/CPU vs CPT settings */
1776
1777         if (IS_GEN7(dev_priv) && port == PORT_A) {
1778                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1779                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1780                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1781                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1782                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1783
1784                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1785                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1786
1787                 intel_dp->DP |= crtc->pipe << 29;
1788         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1789                 u32 trans_dp;
1790
1791                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1792
1793                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1794                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1795                         trans_dp |= TRANS_DP_ENH_FRAMING;
1796                 else
1797                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1798                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1799         } else {
1800                 if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
1801                     !IS_CHERRYVIEW(dev_priv) &&
1802                     pipe_config->limited_color_range)
1803                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1804
1805                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1806                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1807                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1808                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1809                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1810
1811                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1812                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1813
1814                 if (IS_CHERRYVIEW(dev_priv))
1815                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1816                 else if (crtc->pipe == PIPE_B)
1817                         intel_dp->DP |= DP_PIPEB_SELECT;
1818         }
1819 }
1820
1821 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1822 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1823
1824 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1825 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1826
1827 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1828 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1829
1830 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1831                                    struct intel_dp *intel_dp);
1832
1833 static void wait_panel_status(struct intel_dp *intel_dp,
1834                                        u32 mask,
1835                                        u32 value)
1836 {
1837         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1838         struct drm_i915_private *dev_priv = to_i915(dev);
1839         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1840
1841         lockdep_assert_held(&dev_priv->pps_mutex);
1842
1843         intel_pps_verify_state(dev_priv, intel_dp);
1844
1845         pp_stat_reg = _pp_stat_reg(intel_dp);
1846         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1847
1848         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1849                         mask, value,
1850                         I915_READ(pp_stat_reg),
1851                         I915_READ(pp_ctrl_reg));
1852
1853         if (intel_wait_for_register(dev_priv,
1854                                     pp_stat_reg, mask, value,
1855                                     5000))
1856                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1857                                 I915_READ(pp_stat_reg),
1858                                 I915_READ(pp_ctrl_reg));
1859
1860         DRM_DEBUG_KMS("Wait complete\n");
1861 }
1862
1863 static void wait_panel_on(struct intel_dp *intel_dp)
1864 {
1865         DRM_DEBUG_KMS("Wait for panel power on\n");
1866         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1867 }
1868
1869 static void wait_panel_off(struct intel_dp *intel_dp)
1870 {
1871         DRM_DEBUG_KMS("Wait for panel power off time\n");
1872         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1873 }
1874
1875 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1876 {
1877         ktime_t panel_power_on_time;
1878         s64 panel_power_off_duration;
1879
1880         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1881
1882         /* take the difference of currrent time and panel power off time
1883          * and then make panel wait for t11_t12 if needed. */
1884         panel_power_on_time = ktime_get_boottime();
1885         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1886
1887         /* When we disable the VDD override bit last we have to do the manual
1888          * wait. */
1889         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1890                 wait_remaining_ms_from_jiffies(jiffies,
1891                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1892
1893         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1894 }
1895
1896 static void wait_backlight_on(struct intel_dp *intel_dp)
1897 {
1898         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1899                                        intel_dp->backlight_on_delay);
1900 }
1901
1902 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1903 {
1904         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1905                                        intel_dp->backlight_off_delay);
1906 }
1907
1908 /* Read the current pp_control value, unlocking the register if it
1909  * is locked
1910  */
1911
1912 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1913 {
1914         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1915         struct drm_i915_private *dev_priv = to_i915(dev);
1916         u32 control;
1917
1918         lockdep_assert_held(&dev_priv->pps_mutex);
1919
1920         control = I915_READ(_pp_ctrl_reg(intel_dp));
1921         if (WARN_ON(!HAS_DDI(dev_priv) &&
1922                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1923                 control &= ~PANEL_UNLOCK_MASK;
1924                 control |= PANEL_UNLOCK_REGS;
1925         }
1926         return control;
1927 }
1928
1929 /*
1930  * Must be paired with edp_panel_vdd_off().
1931  * Must hold pps_mutex around the whole on/off sequence.
1932  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1933  */
1934 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1935 {
1936         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1937         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1938         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1939         struct drm_i915_private *dev_priv = to_i915(dev);
1940         enum intel_display_power_domain power_domain;
1941         u32 pp;
1942         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1943         bool need_to_disable = !intel_dp->want_panel_vdd;
1944
1945         lockdep_assert_held(&dev_priv->pps_mutex);
1946
1947         if (!is_edp(intel_dp))
1948                 return false;
1949
1950         cancel_delayed_work(&intel_dp->panel_vdd_work);
1951         intel_dp->want_panel_vdd = true;
1952
1953         if (edp_have_panel_vdd(intel_dp))
1954                 return need_to_disable;
1955
1956         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1957         intel_display_power_get(dev_priv, power_domain);
1958
1959         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1960                       port_name(intel_dig_port->port));
1961
1962         if (!edp_have_panel_power(intel_dp))
1963                 wait_panel_power_cycle(intel_dp);
1964
1965         pp = ironlake_get_pp_control(intel_dp);
1966         pp |= EDP_FORCE_VDD;
1967
1968         pp_stat_reg = _pp_stat_reg(intel_dp);
1969         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1970
1971         I915_WRITE(pp_ctrl_reg, pp);
1972         POSTING_READ(pp_ctrl_reg);
1973         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1974                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1975         /*
1976          * If the panel wasn't on, delay before accessing aux channel
1977          */
1978         if (!edp_have_panel_power(intel_dp)) {
1979                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1980                               port_name(intel_dig_port->port));
1981                 msleep(intel_dp->panel_power_up_delay);
1982         }
1983
1984         return need_to_disable;
1985 }
1986
1987 /*
1988  * Must be paired with intel_edp_panel_vdd_off() or
1989  * intel_edp_panel_off().
1990  * Nested calls to these functions are not allowed since
1991  * we drop the lock. Caller must use some higher level
1992  * locking to prevent nested calls from other threads.
1993  */
1994 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1995 {
1996         bool vdd;
1997
1998         if (!is_edp(intel_dp))
1999                 return;
2000
2001         pps_lock(intel_dp);
2002         vdd = edp_panel_vdd_on(intel_dp);
2003         pps_unlock(intel_dp);
2004
2005         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2006              port_name(dp_to_dig_port(intel_dp)->port));
2007 }
2008
2009 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2010 {
2011         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2012         struct drm_i915_private *dev_priv = to_i915(dev);
2013         struct intel_digital_port *intel_dig_port =
2014                 dp_to_dig_port(intel_dp);
2015         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2016         enum intel_display_power_domain power_domain;
2017         u32 pp;
2018         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2019
2020         lockdep_assert_held(&dev_priv->pps_mutex);
2021
2022         WARN_ON(intel_dp->want_panel_vdd);
2023
2024         if (!edp_have_panel_vdd(intel_dp))
2025                 return;
2026
2027         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2028                       port_name(intel_dig_port->port));
2029
2030         pp = ironlake_get_pp_control(intel_dp);
2031         pp &= ~EDP_FORCE_VDD;
2032
2033         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2034         pp_stat_reg = _pp_stat_reg(intel_dp);
2035
2036         I915_WRITE(pp_ctrl_reg, pp);
2037         POSTING_READ(pp_ctrl_reg);
2038
2039         /* Make sure sequencer is idle before allowing subsequent activity */
2040         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2041         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2042
2043         if ((pp & PANEL_POWER_ON) == 0)
2044                 intel_dp->panel_power_off_time = ktime_get_boottime();
2045
2046         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2047         intel_display_power_put(dev_priv, power_domain);
2048 }
2049
2050 static void edp_panel_vdd_work(struct work_struct *__work)
2051 {
2052         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2053                                                  struct intel_dp, panel_vdd_work);
2054
2055         pps_lock(intel_dp);
2056         if (!intel_dp->want_panel_vdd)
2057                 edp_panel_vdd_off_sync(intel_dp);
2058         pps_unlock(intel_dp);
2059 }
2060
2061 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2062 {
2063         unsigned long delay;
2064
2065         /*
2066          * Queue the timer to fire a long time from now (relative to the power
2067          * down delay) to keep the panel power up across a sequence of
2068          * operations.
2069          */
2070         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2071         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2072 }
2073
2074 /*
2075  * Must be paired with edp_panel_vdd_on().
2076  * Must hold pps_mutex around the whole on/off sequence.
2077  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2078  */
2079 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2080 {
2081         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2082
2083         lockdep_assert_held(&dev_priv->pps_mutex);
2084
2085         if (!is_edp(intel_dp))
2086                 return;
2087
2088         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2089              port_name(dp_to_dig_port(intel_dp)->port));
2090
2091         intel_dp->want_panel_vdd = false;
2092
2093         if (sync)
2094                 edp_panel_vdd_off_sync(intel_dp);
2095         else
2096                 edp_panel_vdd_schedule_off(intel_dp);
2097 }
2098
2099 static void edp_panel_on(struct intel_dp *intel_dp)
2100 {
2101         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2102         struct drm_i915_private *dev_priv = to_i915(dev);
2103         u32 pp;
2104         i915_reg_t pp_ctrl_reg;
2105
2106         lockdep_assert_held(&dev_priv->pps_mutex);
2107
2108         if (!is_edp(intel_dp))
2109                 return;
2110
2111         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2112                       port_name(dp_to_dig_port(intel_dp)->port));
2113
2114         if (WARN(edp_have_panel_power(intel_dp),
2115                  "eDP port %c panel power already on\n",
2116                  port_name(dp_to_dig_port(intel_dp)->port)))
2117                 return;
2118
2119         wait_panel_power_cycle(intel_dp);
2120
2121         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2122         pp = ironlake_get_pp_control(intel_dp);
2123         if (IS_GEN5(dev_priv)) {
2124                 /* ILK workaround: disable reset around power sequence */
2125                 pp &= ~PANEL_POWER_RESET;
2126                 I915_WRITE(pp_ctrl_reg, pp);
2127                 POSTING_READ(pp_ctrl_reg);
2128         }
2129
2130         pp |= PANEL_POWER_ON;
2131         if (!IS_GEN5(dev_priv))
2132                 pp |= PANEL_POWER_RESET;
2133
2134         I915_WRITE(pp_ctrl_reg, pp);
2135         POSTING_READ(pp_ctrl_reg);
2136
2137         wait_panel_on(intel_dp);
2138         intel_dp->last_power_on = jiffies;
2139
2140         if (IS_GEN5(dev_priv)) {
2141                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2142                 I915_WRITE(pp_ctrl_reg, pp);
2143                 POSTING_READ(pp_ctrl_reg);
2144         }
2145 }
2146
2147 void intel_edp_panel_on(struct intel_dp *intel_dp)
2148 {
2149         if (!is_edp(intel_dp))
2150                 return;
2151
2152         pps_lock(intel_dp);
2153         edp_panel_on(intel_dp);
2154         pps_unlock(intel_dp);
2155 }
2156
2157
2158 static void edp_panel_off(struct intel_dp *intel_dp)
2159 {
2160         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2161         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2162         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2163         struct drm_i915_private *dev_priv = to_i915(dev);
2164         enum intel_display_power_domain power_domain;
2165         u32 pp;
2166         i915_reg_t pp_ctrl_reg;
2167
2168         lockdep_assert_held(&dev_priv->pps_mutex);
2169
2170         if (!is_edp(intel_dp))
2171                 return;
2172
2173         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2174                       port_name(dp_to_dig_port(intel_dp)->port));
2175
2176         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2177              port_name(dp_to_dig_port(intel_dp)->port));
2178
2179         pp = ironlake_get_pp_control(intel_dp);
2180         /* We need to switch off panel power _and_ force vdd, for otherwise some
2181          * panels get very unhappy and cease to work. */
2182         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2183                 EDP_BLC_ENABLE);
2184
2185         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2186
2187         intel_dp->want_panel_vdd = false;
2188
2189         I915_WRITE(pp_ctrl_reg, pp);
2190         POSTING_READ(pp_ctrl_reg);
2191
2192         intel_dp->panel_power_off_time = ktime_get_boottime();
2193         wait_panel_off(intel_dp);
2194
2195         /* We got a reference when we enabled the VDD. */
2196         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2197         intel_display_power_put(dev_priv, power_domain);
2198 }
2199
2200 void intel_edp_panel_off(struct intel_dp *intel_dp)
2201 {
2202         if (!is_edp(intel_dp))
2203                 return;
2204
2205         pps_lock(intel_dp);
2206         edp_panel_off(intel_dp);
2207         pps_unlock(intel_dp);
2208 }
2209
2210 /* Enable backlight in the panel power control. */
2211 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2212 {
2213         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2214         struct drm_device *dev = intel_dig_port->base.base.dev;
2215         struct drm_i915_private *dev_priv = to_i915(dev);
2216         u32 pp;
2217         i915_reg_t pp_ctrl_reg;
2218
2219         /*
2220          * If we enable the backlight right away following a panel power
2221          * on, we may see slight flicker as the panel syncs with the eDP
2222          * link.  So delay a bit to make sure the image is solid before
2223          * allowing it to appear.
2224          */
2225         wait_backlight_on(intel_dp);
2226
2227         pps_lock(intel_dp);
2228
2229         pp = ironlake_get_pp_control(intel_dp);
2230         pp |= EDP_BLC_ENABLE;
2231
2232         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2233
2234         I915_WRITE(pp_ctrl_reg, pp);
2235         POSTING_READ(pp_ctrl_reg);
2236
2237         pps_unlock(intel_dp);
2238 }
2239
2240 /* Enable backlight PWM and backlight PP control. */
2241 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2242 {
2243         if (!is_edp(intel_dp))
2244                 return;
2245
2246         DRM_DEBUG_KMS("\n");
2247
2248         intel_panel_enable_backlight(intel_dp->attached_connector);
2249         _intel_edp_backlight_on(intel_dp);
2250 }
2251
2252 /* Disable backlight in the panel power control. */
2253 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2254 {
2255         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2256         struct drm_i915_private *dev_priv = to_i915(dev);
2257         u32 pp;
2258         i915_reg_t pp_ctrl_reg;
2259
2260         if (!is_edp(intel_dp))
2261                 return;
2262
2263         pps_lock(intel_dp);
2264
2265         pp = ironlake_get_pp_control(intel_dp);
2266         pp &= ~EDP_BLC_ENABLE;
2267
2268         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2269
2270         I915_WRITE(pp_ctrl_reg, pp);
2271         POSTING_READ(pp_ctrl_reg);
2272
2273         pps_unlock(intel_dp);
2274
2275         intel_dp->last_backlight_off = jiffies;
2276         edp_wait_backlight_off(intel_dp);
2277 }
2278
2279 /* Disable backlight PP control and backlight PWM. */
2280 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2281 {
2282         if (!is_edp(intel_dp))
2283                 return;
2284
2285         DRM_DEBUG_KMS("\n");
2286
2287         _intel_edp_backlight_off(intel_dp);
2288         intel_panel_disable_backlight(intel_dp->attached_connector);
2289 }
2290
2291 /*
2292  * Hook for controlling the panel power control backlight through the bl_power
2293  * sysfs attribute. Take care to handle multiple calls.
2294  */
2295 static void intel_edp_backlight_power(struct intel_connector *connector,
2296                                       bool enable)
2297 {
2298         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2299         bool is_enabled;
2300
2301         pps_lock(intel_dp);
2302         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2303         pps_unlock(intel_dp);
2304
2305         if (is_enabled == enable)
2306                 return;
2307
2308         DRM_DEBUG_KMS("panel power control backlight %s\n",
2309                       enable ? "enable" : "disable");
2310
2311         if (enable)
2312                 _intel_edp_backlight_on(intel_dp);
2313         else
2314                 _intel_edp_backlight_off(intel_dp);
2315 }
2316
2317 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2318 {
2319         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2320         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2321         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2322
2323         I915_STATE_WARN(cur_state != state,
2324                         "DP port %c state assertion failure (expected %s, current %s)\n",
2325                         port_name(dig_port->port),
2326                         onoff(state), onoff(cur_state));
2327 }
2328 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2329
2330 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2331 {
2332         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2333
2334         I915_STATE_WARN(cur_state != state,
2335                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2336                         onoff(state), onoff(cur_state));
2337 }
2338 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2339 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2340
2341 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2342                                 struct intel_crtc_state *pipe_config)
2343 {
2344         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2345         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2346
2347         assert_pipe_disabled(dev_priv, crtc->pipe);
2348         assert_dp_port_disabled(intel_dp);
2349         assert_edp_pll_disabled(dev_priv);
2350
2351         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2352                       pipe_config->port_clock);
2353
2354         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2355
2356         if (pipe_config->port_clock == 162000)
2357                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2358         else
2359                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2360
2361         I915_WRITE(DP_A, intel_dp->DP);
2362         POSTING_READ(DP_A);
2363         udelay(500);
2364
2365         /*
2366          * [DevILK] Work around required when enabling DP PLL
2367          * while a pipe is enabled going to FDI:
2368          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2369          * 2. Program DP PLL enable
2370          */
2371         if (IS_GEN5(dev_priv))
2372                 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2373
2374         intel_dp->DP |= DP_PLL_ENABLE;
2375
2376         I915_WRITE(DP_A, intel_dp->DP);
2377         POSTING_READ(DP_A);
2378         udelay(200);
2379 }
2380
2381 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2382 {
2383         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2384         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2385         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2386
2387         assert_pipe_disabled(dev_priv, crtc->pipe);
2388         assert_dp_port_disabled(intel_dp);
2389         assert_edp_pll_enabled(dev_priv);
2390
2391         DRM_DEBUG_KMS("disabling eDP PLL\n");
2392
2393         intel_dp->DP &= ~DP_PLL_ENABLE;
2394
2395         I915_WRITE(DP_A, intel_dp->DP);
2396         POSTING_READ(DP_A);
2397         udelay(200);
2398 }
2399
2400 /* If the sink supports it, try to set the power state appropriately */
2401 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2402 {
2403         int ret, i;
2404
2405         /* Should have a valid DPCD by this point */
2406         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2407                 return;
2408
2409         if (mode != DRM_MODE_DPMS_ON) {
2410                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2411                                          DP_SET_POWER_D3);
2412         } else {
2413                 /*
2414                  * When turning on, we need to retry for 1ms to give the sink
2415                  * time to wake up.
2416                  */
2417                 for (i = 0; i < 3; i++) {
2418                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2419                                                  DP_SET_POWER_D0);
2420                         if (ret == 1)
2421                                 break;
2422                         msleep(1);
2423                 }
2424         }
2425
2426         if (ret != 1)
2427                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2428                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2429 }
2430
2431 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2432                                   enum pipe *pipe)
2433 {
2434         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2435         enum port port = dp_to_dig_port(intel_dp)->port;
2436         struct drm_device *dev = encoder->base.dev;
2437         struct drm_i915_private *dev_priv = to_i915(dev);
2438         enum intel_display_power_domain power_domain;
2439         u32 tmp;
2440         bool ret;
2441
2442         power_domain = intel_display_port_power_domain(encoder);
2443         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2444                 return false;
2445
2446         ret = false;
2447
2448         tmp = I915_READ(intel_dp->output_reg);
2449
2450         if (!(tmp & DP_PORT_EN))
2451                 goto out;
2452
2453         if (IS_GEN7(dev_priv) && port == PORT_A) {
2454                 *pipe = PORT_TO_PIPE_CPT(tmp);
2455         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2456                 enum pipe p;
2457
2458                 for_each_pipe(dev_priv, p) {
2459                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2460                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2461                                 *pipe = p;
2462                                 ret = true;
2463
2464                                 goto out;
2465                         }
2466                 }
2467
2468                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2469                               i915_mmio_reg_offset(intel_dp->output_reg));
2470         } else if (IS_CHERRYVIEW(dev_priv)) {
2471                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2472         } else {
2473                 *pipe = PORT_TO_PIPE(tmp);
2474         }
2475
2476         ret = true;
2477
2478 out:
2479         intel_display_power_put(dev_priv, power_domain);
2480
2481         return ret;
2482 }
2483
2484 static void intel_dp_get_config(struct intel_encoder *encoder,
2485                                 struct intel_crtc_state *pipe_config)
2486 {
2487         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2488         u32 tmp, flags = 0;
2489         struct drm_device *dev = encoder->base.dev;
2490         struct drm_i915_private *dev_priv = to_i915(dev);
2491         enum port port = dp_to_dig_port(intel_dp)->port;
2492         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2493
2494         tmp = I915_READ(intel_dp->output_reg);
2495
2496         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2497
2498         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2499                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2500
2501                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2502                         flags |= DRM_MODE_FLAG_PHSYNC;
2503                 else
2504                         flags |= DRM_MODE_FLAG_NHSYNC;
2505
2506                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2507                         flags |= DRM_MODE_FLAG_PVSYNC;
2508                 else
2509                         flags |= DRM_MODE_FLAG_NVSYNC;
2510         } else {
2511                 if (tmp & DP_SYNC_HS_HIGH)
2512                         flags |= DRM_MODE_FLAG_PHSYNC;
2513                 else
2514                         flags |= DRM_MODE_FLAG_NHSYNC;
2515
2516                 if (tmp & DP_SYNC_VS_HIGH)
2517                         flags |= DRM_MODE_FLAG_PVSYNC;
2518                 else
2519                         flags |= DRM_MODE_FLAG_NVSYNC;
2520         }
2521
2522         pipe_config->base.adjusted_mode.flags |= flags;
2523
2524         if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
2525             !IS_CHERRYVIEW(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2526                 pipe_config->limited_color_range = true;
2527
2528         pipe_config->lane_count =
2529                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2530
2531         intel_dp_get_m_n(crtc, pipe_config);
2532
2533         if (port == PORT_A) {
2534                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2535                         pipe_config->port_clock = 162000;
2536                 else
2537                         pipe_config->port_clock = 270000;
2538         }
2539
2540         pipe_config->base.adjusted_mode.crtc_clock =
2541                 intel_dotclock_calculate(pipe_config->port_clock,
2542                                          &pipe_config->dp_m_n);
2543
2544         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2545             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2546                 /*
2547                  * This is a big fat ugly hack.
2548                  *
2549                  * Some machines in UEFI boot mode provide us a VBT that has 18
2550                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2551                  * unknown we fail to light up. Yet the same BIOS boots up with
2552                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2553                  * max, not what it tells us to use.
2554                  *
2555                  * Note: This will still be broken if the eDP panel is not lit
2556                  * up by the BIOS, and thus we can't get the mode at module
2557                  * load.
2558                  */
2559                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2560                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2561                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2562         }
2563 }
2564
2565 static void intel_disable_dp(struct intel_encoder *encoder,
2566                              struct intel_crtc_state *old_crtc_state,
2567                              struct drm_connector_state *old_conn_state)
2568 {
2569         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2570         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2571
2572         if (old_crtc_state->has_audio)
2573                 intel_audio_codec_disable(encoder);
2574
2575         if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2576                 intel_psr_disable(intel_dp);
2577
2578         /* Make sure the panel is off before trying to change the mode. But also
2579          * ensure that we have vdd while we switch off the panel. */
2580         intel_edp_panel_vdd_on(intel_dp);
2581         intel_edp_backlight_off(intel_dp);
2582         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2583         intel_edp_panel_off(intel_dp);
2584
2585         /* disable the port before the pipe on g4x */
2586         if (INTEL_GEN(dev_priv) < 5)
2587                 intel_dp_link_down(intel_dp);
2588 }
2589
2590 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2591                                 struct intel_crtc_state *old_crtc_state,
2592                                 struct drm_connector_state *old_conn_state)
2593 {
2594         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2595         enum port port = dp_to_dig_port(intel_dp)->port;
2596
2597         intel_dp_link_down(intel_dp);
2598
2599         /* Only ilk+ has port A */
2600         if (port == PORT_A)
2601                 ironlake_edp_pll_off(intel_dp);
2602 }
2603
2604 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2605                                 struct intel_crtc_state *old_crtc_state,
2606                                 struct drm_connector_state *old_conn_state)
2607 {
2608         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2609
2610         intel_dp_link_down(intel_dp);
2611 }
2612
2613 static void chv_post_disable_dp(struct intel_encoder *encoder,
2614                                 struct intel_crtc_state *old_crtc_state,
2615                                 struct drm_connector_state *old_conn_state)
2616 {
2617         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2618         struct drm_device *dev = encoder->base.dev;
2619         struct drm_i915_private *dev_priv = to_i915(dev);
2620
2621         intel_dp_link_down(intel_dp);
2622
2623         mutex_lock(&dev_priv->sb_lock);
2624
2625         /* Assert data lane reset */
2626         chv_data_lane_soft_reset(encoder, true);
2627
2628         mutex_unlock(&dev_priv->sb_lock);
2629 }
2630
2631 static void
2632 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2633                          uint32_t *DP,
2634                          uint8_t dp_train_pat)
2635 {
2636         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2637         struct drm_device *dev = intel_dig_port->base.base.dev;
2638         struct drm_i915_private *dev_priv = to_i915(dev);
2639         enum port port = intel_dig_port->port;
2640
2641         if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2642                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2643                               dp_train_pat & DP_TRAINING_PATTERN_MASK);
2644
2645         if (HAS_DDI(dev_priv)) {
2646                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2647
2648                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2649                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2650                 else
2651                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2652
2653                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2654                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2655                 case DP_TRAINING_PATTERN_DISABLE:
2656                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2657
2658                         break;
2659                 case DP_TRAINING_PATTERN_1:
2660                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2661                         break;
2662                 case DP_TRAINING_PATTERN_2:
2663                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2664                         break;
2665                 case DP_TRAINING_PATTERN_3:
2666                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2667                         break;
2668                 }
2669                 I915_WRITE(DP_TP_CTL(port), temp);
2670
2671         } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2672                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2673                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2674
2675                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2676                 case DP_TRAINING_PATTERN_DISABLE:
2677                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2678                         break;
2679                 case DP_TRAINING_PATTERN_1:
2680                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2681                         break;
2682                 case DP_TRAINING_PATTERN_2:
2683                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2684                         break;
2685                 case DP_TRAINING_PATTERN_3:
2686                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2687                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2688                         break;
2689                 }
2690
2691         } else {
2692                 if (IS_CHERRYVIEW(dev_priv))
2693                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2694                 else
2695                         *DP &= ~DP_LINK_TRAIN_MASK;
2696
2697                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2698                 case DP_TRAINING_PATTERN_DISABLE:
2699                         *DP |= DP_LINK_TRAIN_OFF;
2700                         break;
2701                 case DP_TRAINING_PATTERN_1:
2702                         *DP |= DP_LINK_TRAIN_PAT_1;
2703                         break;
2704                 case DP_TRAINING_PATTERN_2:
2705                         *DP |= DP_LINK_TRAIN_PAT_2;
2706                         break;
2707                 case DP_TRAINING_PATTERN_3:
2708                         if (IS_CHERRYVIEW(dev_priv)) {
2709                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2710                         } else {
2711                                 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2712                                 *DP |= DP_LINK_TRAIN_PAT_2;
2713                         }
2714                         break;
2715                 }
2716         }
2717 }
2718
2719 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2720                                  struct intel_crtc_state *old_crtc_state)
2721 {
2722         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2723         struct drm_i915_private *dev_priv = to_i915(dev);
2724
2725         /* enable with pattern 1 (as per spec) */
2726
2727         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2728
2729         /*
2730          * Magic for VLV/CHV. We _must_ first set up the register
2731          * without actually enabling the port, and then do another
2732          * write to enable the port. Otherwise link training will
2733          * fail when the power sequencer is freshly used for this port.
2734          */
2735         intel_dp->DP |= DP_PORT_EN;
2736         if (old_crtc_state->has_audio)
2737                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2738
2739         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2740         POSTING_READ(intel_dp->output_reg);
2741 }
2742
2743 static void intel_enable_dp(struct intel_encoder *encoder,
2744                             struct intel_crtc_state *pipe_config)
2745 {
2746         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2747         struct drm_device *dev = encoder->base.dev;
2748         struct drm_i915_private *dev_priv = to_i915(dev);
2749         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2750         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2751         enum pipe pipe = crtc->pipe;
2752
2753         if (WARN_ON(dp_reg & DP_PORT_EN))
2754                 return;
2755
2756         pps_lock(intel_dp);
2757
2758         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2759                 vlv_init_panel_power_sequencer(intel_dp);
2760
2761         intel_dp_enable_port(intel_dp, pipe_config);
2762
2763         edp_panel_vdd_on(intel_dp);
2764         edp_panel_on(intel_dp);
2765         edp_panel_vdd_off(intel_dp, true);
2766
2767         pps_unlock(intel_dp);
2768
2769         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2770                 unsigned int lane_mask = 0x0;
2771
2772                 if (IS_CHERRYVIEW(dev_priv))
2773                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2774
2775                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2776                                     lane_mask);
2777         }
2778
2779         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2780         intel_dp_start_link_train(intel_dp);
2781         intel_dp_stop_link_train(intel_dp);
2782
2783         if (pipe_config->has_audio) {
2784                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2785                                  pipe_name(pipe));
2786                 intel_audio_codec_enable(encoder);
2787         }
2788 }
2789
2790 static void g4x_enable_dp(struct intel_encoder *encoder,
2791                           struct intel_crtc_state *pipe_config,
2792                           struct drm_connector_state *conn_state)
2793 {
2794         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2795
2796         intel_enable_dp(encoder, pipe_config);
2797         intel_edp_backlight_on(intel_dp);
2798 }
2799
2800 static void vlv_enable_dp(struct intel_encoder *encoder,
2801                           struct intel_crtc_state *pipe_config,
2802                           struct drm_connector_state *conn_state)
2803 {
2804         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2805
2806         intel_edp_backlight_on(intel_dp);
2807         intel_psr_enable(intel_dp);
2808 }
2809
2810 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2811                               struct intel_crtc_state *pipe_config,
2812                               struct drm_connector_state *conn_state)
2813 {
2814         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2815         enum port port = dp_to_dig_port(intel_dp)->port;
2816
2817         intel_dp_prepare(encoder, pipe_config);
2818
2819         /* Only ilk+ has port A */
2820         if (port == PORT_A)
2821                 ironlake_edp_pll_on(intel_dp, pipe_config);
2822 }
2823
2824 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2825 {
2826         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2827         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2828         enum pipe pipe = intel_dp->pps_pipe;
2829         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2830
2831         edp_panel_vdd_off_sync(intel_dp);
2832
2833         /*
2834          * VLV seems to get confused when multiple power seqeuencers
2835          * have the same port selected (even if only one has power/vdd
2836          * enabled). The failure manifests as vlv_wait_port_ready() failing
2837          * CHV on the other hand doesn't seem to mind having the same port
2838          * selected in multiple power seqeuencers, but let's clear the
2839          * port select always when logically disconnecting a power sequencer
2840          * from a port.
2841          */
2842         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2843                       pipe_name(pipe), port_name(intel_dig_port->port));
2844         I915_WRITE(pp_on_reg, 0);
2845         POSTING_READ(pp_on_reg);
2846
2847         intel_dp->pps_pipe = INVALID_PIPE;
2848 }
2849
2850 static void vlv_steal_power_sequencer(struct drm_device *dev,
2851                                       enum pipe pipe)
2852 {
2853         struct drm_i915_private *dev_priv = to_i915(dev);
2854         struct intel_encoder *encoder;
2855
2856         lockdep_assert_held(&dev_priv->pps_mutex);
2857
2858         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2859                 return;
2860
2861         for_each_intel_encoder(dev, encoder) {
2862                 struct intel_dp *intel_dp;
2863                 enum port port;
2864
2865                 if (encoder->type != INTEL_OUTPUT_EDP)
2866                         continue;
2867
2868                 intel_dp = enc_to_intel_dp(&encoder->base);
2869                 port = dp_to_dig_port(intel_dp)->port;
2870
2871                 if (intel_dp->pps_pipe != pipe)
2872                         continue;
2873
2874                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2875                               pipe_name(pipe), port_name(port));
2876
2877                 WARN(encoder->base.crtc,
2878                      "stealing pipe %c power sequencer from active eDP port %c\n",
2879                      pipe_name(pipe), port_name(port));
2880
2881                 /* make sure vdd is off before we steal it */
2882                 vlv_detach_power_sequencer(intel_dp);
2883         }
2884 }
2885
2886 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2887 {
2888         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2889         struct intel_encoder *encoder = &intel_dig_port->base;
2890         struct drm_device *dev = encoder->base.dev;
2891         struct drm_i915_private *dev_priv = to_i915(dev);
2892         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2893
2894         lockdep_assert_held(&dev_priv->pps_mutex);
2895
2896         if (!is_edp(intel_dp))
2897                 return;
2898
2899         if (intel_dp->pps_pipe == crtc->pipe)
2900                 return;
2901
2902         /*
2903          * If another power sequencer was being used on this
2904          * port previously make sure to turn off vdd there while
2905          * we still have control of it.
2906          */
2907         if (intel_dp->pps_pipe != INVALID_PIPE)
2908                 vlv_detach_power_sequencer(intel_dp);
2909
2910         /*
2911          * We may be stealing the power
2912          * sequencer from another port.
2913          */
2914         vlv_steal_power_sequencer(dev, crtc->pipe);
2915
2916         /* now it's all ours */
2917         intel_dp->pps_pipe = crtc->pipe;
2918
2919         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2920                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2921
2922         /* init power sequencer on this pipe and port */
2923         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2924         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2925 }
2926
2927 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2928                               struct intel_crtc_state *pipe_config,
2929                               struct drm_connector_state *conn_state)
2930 {
2931         vlv_phy_pre_encoder_enable(encoder);
2932
2933         intel_enable_dp(encoder, pipe_config);
2934 }
2935
2936 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2937                                   struct intel_crtc_state *pipe_config,
2938                                   struct drm_connector_state *conn_state)
2939 {
2940         intel_dp_prepare(encoder, pipe_config);
2941
2942         vlv_phy_pre_pll_enable(encoder);
2943 }
2944
2945 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2946                               struct intel_crtc_state *pipe_config,
2947                               struct drm_connector_state *conn_state)
2948 {
2949         chv_phy_pre_encoder_enable(encoder);
2950
2951         intel_enable_dp(encoder, pipe_config);
2952
2953         /* Second common lane will stay alive on its own now */
2954         chv_phy_release_cl2_override(encoder);
2955 }
2956
2957 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2958                                   struct intel_crtc_state *pipe_config,
2959                                   struct drm_connector_state *conn_state)
2960 {
2961         intel_dp_prepare(encoder, pipe_config);
2962
2963         chv_phy_pre_pll_enable(encoder);
2964 }
2965
2966 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2967                                     struct intel_crtc_state *pipe_config,
2968                                     struct drm_connector_state *conn_state)
2969 {
2970         chv_phy_post_pll_disable(encoder);
2971 }
2972
2973 /*
2974  * Fetch AUX CH registers 0x202 - 0x207 which contain
2975  * link status information
2976  */
2977 bool
2978 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2979 {
2980         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2981                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2982 }
2983
2984 /* These are source-specific values. */
2985 uint8_t
2986 intel_dp_voltage_max(struct intel_dp *intel_dp)
2987 {
2988         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2989         struct drm_i915_private *dev_priv = to_i915(dev);
2990         enum port port = dp_to_dig_port(intel_dp)->port;
2991
2992         if (IS_BROXTON(dev_priv))
2993                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2994         else if (INTEL_INFO(dev)->gen >= 9) {
2995                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2996                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2997                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2998         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2999                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3000         else if (IS_GEN7(dev_priv) && port == PORT_A)
3001                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3002         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3003                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3004         else
3005                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3006 }
3007
3008 uint8_t
3009 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3010 {
3011         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3012         enum port port = dp_to_dig_port(intel_dp)->port;
3013
3014         if (INTEL_GEN(dev_priv) >= 9) {
3015                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3016                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3017                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3018                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3019                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3020                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3021                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3022                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3023                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3024                 default:
3025                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3026                 }
3027         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3028                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3029                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3030                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3031                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3032                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3033                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3034                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3035                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3036                 default:
3037                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3038                 }
3039         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3040                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3041                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3042                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3043                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3044                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3045                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3046                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3047                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3048                 default:
3049                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3050                 }
3051         } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3052                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3053                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3054                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3055                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3056                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3057                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3058                 default:
3059                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3060                 }
3061         } else {
3062                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3063                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3064                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3065                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3066                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3067                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3068                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3069                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3070                 default:
3071                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3072                 }
3073         }
3074 }
3075
3076 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3077 {
3078         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3079         unsigned long demph_reg_value, preemph_reg_value,
3080                 uniqtranscale_reg_value;
3081         uint8_t train_set = intel_dp->train_set[0];
3082
3083         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3084         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3085                 preemph_reg_value = 0x0004000;
3086                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3087                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3088                         demph_reg_value = 0x2B405555;
3089                         uniqtranscale_reg_value = 0x552AB83A;
3090                         break;
3091                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3092                         demph_reg_value = 0x2B404040;
3093                         uniqtranscale_reg_value = 0x5548B83A;
3094                         break;
3095                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3096                         demph_reg_value = 0x2B245555;
3097                         uniqtranscale_reg_value = 0x5560B83A;
3098                         break;
3099                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3100                         demph_reg_value = 0x2B405555;
3101                         uniqtranscale_reg_value = 0x5598DA3A;
3102                         break;
3103                 default:
3104                         return 0;
3105                 }
3106                 break;
3107         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3108                 preemph_reg_value = 0x0002000;
3109                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3110                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3111                         demph_reg_value = 0x2B404040;
3112                         uniqtranscale_reg_value = 0x5552B83A;
3113                         break;
3114                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3115                         demph_reg_value = 0x2B404848;
3116                         uniqtranscale_reg_value = 0x5580B83A;
3117                         break;
3118                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3119                         demph_reg_value = 0x2B404040;
3120                         uniqtranscale_reg_value = 0x55ADDA3A;
3121                         break;
3122                 default:
3123                         return 0;
3124                 }
3125                 break;
3126         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3127                 preemph_reg_value = 0x0000000;
3128                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3129                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3130                         demph_reg_value = 0x2B305555;
3131                         uniqtranscale_reg_value = 0x5570B83A;
3132                         break;
3133                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3134                         demph_reg_value = 0x2B2B4040;
3135                         uniqtranscale_reg_value = 0x55ADDA3A;
3136                         break;
3137                 default:
3138                         return 0;
3139                 }
3140                 break;
3141         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3142                 preemph_reg_value = 0x0006000;
3143                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3144                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3145                         demph_reg_value = 0x1B405555;
3146                         uniqtranscale_reg_value = 0x55ADDA3A;
3147                         break;
3148                 default:
3149                         return 0;
3150                 }
3151                 break;
3152         default:
3153                 return 0;
3154         }
3155
3156         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3157                                  uniqtranscale_reg_value, 0);
3158
3159         return 0;
3160 }
3161
3162 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3163 {
3164         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3165         u32 deemph_reg_value, margin_reg_value;
3166         bool uniq_trans_scale = false;
3167         uint8_t train_set = intel_dp->train_set[0];
3168
3169         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3170         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3171                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3172                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3173                         deemph_reg_value = 128;
3174                         margin_reg_value = 52;
3175                         break;
3176                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3177                         deemph_reg_value = 128;
3178                         margin_reg_value = 77;
3179                         break;
3180                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3181                         deemph_reg_value = 128;
3182                         margin_reg_value = 102;
3183                         break;
3184                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3185                         deemph_reg_value = 128;
3186                         margin_reg_value = 154;
3187                         uniq_trans_scale = true;
3188                         break;
3189                 default:
3190                         return 0;
3191                 }
3192                 break;
3193         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3194                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3195                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3196                         deemph_reg_value = 85;
3197                         margin_reg_value = 78;
3198                         break;
3199                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3200                         deemph_reg_value = 85;
3201                         margin_reg_value = 116;
3202                         break;
3203                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3204                         deemph_reg_value = 85;
3205                         margin_reg_value = 154;
3206                         break;
3207                 default:
3208                         return 0;
3209                 }
3210                 break;
3211         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3212                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3213                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3214                         deemph_reg_value = 64;
3215                         margin_reg_value = 104;
3216                         break;
3217                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3218                         deemph_reg_value = 64;
3219                         margin_reg_value = 154;
3220                         break;
3221                 default:
3222                         return 0;
3223                 }
3224                 break;
3225         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3226                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3227                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3228                         deemph_reg_value = 43;
3229                         margin_reg_value = 154;
3230                         break;
3231                 default:
3232                         return 0;
3233                 }
3234                 break;
3235         default:
3236                 return 0;
3237         }
3238
3239         chv_set_phy_signal_level(encoder, deemph_reg_value,
3240                                  margin_reg_value, uniq_trans_scale);
3241
3242         return 0;
3243 }
3244
3245 static uint32_t
3246 gen4_signal_levels(uint8_t train_set)
3247 {
3248         uint32_t        signal_levels = 0;
3249
3250         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3251         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3252         default:
3253                 signal_levels |= DP_VOLTAGE_0_4;
3254                 break;
3255         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3256                 signal_levels |= DP_VOLTAGE_0_6;
3257                 break;
3258         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3259                 signal_levels |= DP_VOLTAGE_0_8;
3260                 break;
3261         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3262                 signal_levels |= DP_VOLTAGE_1_2;
3263                 break;
3264         }
3265         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3266         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3267         default:
3268                 signal_levels |= DP_PRE_EMPHASIS_0;
3269                 break;
3270         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3271                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3272                 break;
3273         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3274                 signal_levels |= DP_PRE_EMPHASIS_6;
3275                 break;
3276         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3277                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3278                 break;
3279         }
3280         return signal_levels;
3281 }
3282
3283 /* Gen6's DP voltage swing and pre-emphasis control */
3284 static uint32_t
3285 gen6_edp_signal_levels(uint8_t train_set)
3286 {
3287         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3288                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3289         switch (signal_levels) {
3290         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3291         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3292                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3293         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3294                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3295         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3296         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3297                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3298         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3299         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3300                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3301         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3302         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3303                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3304         default:
3305                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3306                               "0x%x\n", signal_levels);
3307                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3308         }
3309 }
3310
3311 /* Gen7's DP voltage swing and pre-emphasis control */
3312 static uint32_t
3313 gen7_edp_signal_levels(uint8_t train_set)
3314 {
3315         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3316                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3317         switch (signal_levels) {
3318         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3319                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3320         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3321                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3322         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3323                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3324
3325         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3326                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3327         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3328                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3329
3330         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3331                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3332         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3333                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3334
3335         default:
3336                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3337                               "0x%x\n", signal_levels);
3338                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3339         }
3340 }
3341
3342 void
3343 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3344 {
3345         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3346         enum port port = intel_dig_port->port;
3347         struct drm_device *dev = intel_dig_port->base.base.dev;
3348         struct drm_i915_private *dev_priv = to_i915(dev);
3349         uint32_t signal_levels, mask = 0;
3350         uint8_t train_set = intel_dp->train_set[0];
3351
3352         if (HAS_DDI(dev_priv)) {
3353                 signal_levels = ddi_signal_levels(intel_dp);
3354
3355                 if (IS_BROXTON(dev_priv))
3356                         signal_levels = 0;
3357                 else
3358                         mask = DDI_BUF_EMP_MASK;
3359         } else if (IS_CHERRYVIEW(dev_priv)) {
3360                 signal_levels = chv_signal_levels(intel_dp);
3361         } else if (IS_VALLEYVIEW(dev_priv)) {
3362                 signal_levels = vlv_signal_levels(intel_dp);
3363         } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3364                 signal_levels = gen7_edp_signal_levels(train_set);
3365                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3366         } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3367                 signal_levels = gen6_edp_signal_levels(train_set);
3368                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3369         } else {
3370                 signal_levels = gen4_signal_levels(train_set);
3371                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3372         }
3373
3374         if (mask)
3375                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3376
3377         DRM_DEBUG_KMS("Using vswing level %d\n",
3378                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3379         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3380                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3381                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3382
3383         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3384
3385         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3386         POSTING_READ(intel_dp->output_reg);
3387 }
3388
3389 void
3390 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3391                                        uint8_t dp_train_pat)
3392 {
3393         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3394         struct drm_i915_private *dev_priv =
3395                 to_i915(intel_dig_port->base.base.dev);
3396
3397         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3398
3399         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3400         POSTING_READ(intel_dp->output_reg);
3401 }
3402
3403 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3404 {
3405         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3406         struct drm_device *dev = intel_dig_port->base.base.dev;
3407         struct drm_i915_private *dev_priv = to_i915(dev);
3408         enum port port = intel_dig_port->port;
3409         uint32_t val;
3410
3411         if (!HAS_DDI(dev_priv))
3412                 return;
3413
3414         val = I915_READ(DP_TP_CTL(port));
3415         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3416         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3417         I915_WRITE(DP_TP_CTL(port), val);
3418
3419         /*
3420          * On PORT_A we can have only eDP in SST mode. There the only reason
3421          * we need to set idle transmission mode is to work around a HW issue
3422          * where we enable the pipe while not in idle link-training mode.
3423          * In this case there is requirement to wait for a minimum number of
3424          * idle patterns to be sent.
3425          */
3426         if (port == PORT_A)
3427                 return;
3428
3429         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3430                                     DP_TP_STATUS_IDLE_DONE,
3431                                     DP_TP_STATUS_IDLE_DONE,
3432                                     1))
3433                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3434 }
3435
3436 static void
3437 intel_dp_link_down(struct intel_dp *intel_dp)
3438 {
3439         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3440         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3441         enum port port = intel_dig_port->port;
3442         struct drm_device *dev = intel_dig_port->base.base.dev;
3443         struct drm_i915_private *dev_priv = to_i915(dev);
3444         uint32_t DP = intel_dp->DP;
3445
3446         if (WARN_ON(HAS_DDI(dev_priv)))
3447                 return;
3448
3449         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3450                 return;
3451
3452         DRM_DEBUG_KMS("\n");
3453
3454         if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3455             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3456                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3457                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3458         } else {
3459                 if (IS_CHERRYVIEW(dev_priv))
3460                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3461                 else
3462                         DP &= ~DP_LINK_TRAIN_MASK;
3463                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3464         }
3465         I915_WRITE(intel_dp->output_reg, DP);
3466         POSTING_READ(intel_dp->output_reg);
3467
3468         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3469         I915_WRITE(intel_dp->output_reg, DP);
3470         POSTING_READ(intel_dp->output_reg);
3471
3472         /*
3473          * HW workaround for IBX, we need to move the port
3474          * to transcoder A after disabling it to allow the
3475          * matching HDMI port to be enabled on transcoder A.
3476          */
3477         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3478                 /*
3479                  * We get CPU/PCH FIFO underruns on the other pipe when
3480                  * doing the workaround. Sweep them under the rug.
3481                  */
3482                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3483                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3484
3485                 /* always enable with pattern 1 (as per spec) */
3486                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3487                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3488                 I915_WRITE(intel_dp->output_reg, DP);
3489                 POSTING_READ(intel_dp->output_reg);
3490
3491                 DP &= ~DP_PORT_EN;
3492                 I915_WRITE(intel_dp->output_reg, DP);
3493                 POSTING_READ(intel_dp->output_reg);
3494
3495                 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3496                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3497                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3498         }
3499
3500         msleep(intel_dp->panel_power_down_delay);
3501
3502         intel_dp->DP = DP;
3503 }
3504
3505 static bool
3506 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3507 {
3508         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3509                              sizeof(intel_dp->dpcd)) < 0)
3510                 return false; /* aux transfer failed */
3511
3512         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3513
3514         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3515 }
3516
3517 static bool
3518 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3519 {
3520         struct drm_i915_private *dev_priv =
3521                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3522
3523         /* this function is meant to be called only once */
3524         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3525
3526         if (!intel_dp_read_dpcd(intel_dp))
3527                 return false;
3528
3529         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3530                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3531                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3532
3533         /* Check if the panel supports PSR */
3534         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3535                          intel_dp->psr_dpcd,
3536                          sizeof(intel_dp->psr_dpcd));
3537         if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3538                 dev_priv->psr.sink_support = true;
3539                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3540         }
3541
3542         if (INTEL_GEN(dev_priv) >= 9 &&
3543             (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3544                 uint8_t frame_sync_cap;
3545
3546                 dev_priv->psr.sink_support = true;
3547                 drm_dp_dpcd_read(&intel_dp->aux,
3548                                  DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3549                                  &frame_sync_cap, 1);
3550                 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3551                 /* PSR2 needs frame sync as well */
3552                 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3553                 DRM_DEBUG_KMS("PSR2 %s on sink",
3554                               dev_priv->psr.psr2_support ? "supported" : "not supported");
3555         }
3556
3557         /* Read the eDP Display control capabilities registers */
3558         if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3559             drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3560                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3561                              sizeof(intel_dp->edp_dpcd))
3562                 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3563                               intel_dp->edp_dpcd);
3564
3565         /* Intermediate frequency support */
3566         if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3567                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3568                 int i;
3569
3570                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3571                                 sink_rates, sizeof(sink_rates));
3572
3573                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3574                         int val = le16_to_cpu(sink_rates[i]);
3575
3576                         if (val == 0)
3577                                 break;
3578
3579                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3580                         intel_dp->sink_rates[i] = (val * 200) / 10;
3581                 }
3582                 intel_dp->num_sink_rates = i;
3583         }
3584
3585         return true;
3586 }
3587
3588
3589 static bool
3590 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3591 {
3592         if (!intel_dp_read_dpcd(intel_dp))
3593                 return false;
3594
3595         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3596                              &intel_dp->sink_count, 1) < 0)
3597                 return false;
3598
3599         /*
3600          * Sink count can change between short pulse hpd hence
3601          * a member variable in intel_dp will track any changes
3602          * between short pulse interrupts.
3603          */
3604         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3605
3606         /*
3607          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3608          * a dongle is present but no display. Unless we require to know
3609          * if a dongle is present or not, we don't need to update
3610          * downstream port information. So, an early return here saves
3611          * time from performing other operations which are not required.
3612          */
3613         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3614                 return false;
3615
3616         if (!drm_dp_is_branch(intel_dp->dpcd))
3617                 return true; /* native DP sink */
3618
3619         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3620                 return true; /* no per-port downstream info */
3621
3622         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3623                              intel_dp->downstream_ports,
3624                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3625                 return false; /* downstream port status fetch failed */
3626
3627         return true;
3628 }
3629
3630 static void
3631 intel_dp_probe_oui(struct intel_dp *intel_dp)
3632 {
3633         u8 buf[3];
3634
3635         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3636                 return;
3637
3638         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3639                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3640                               buf[0], buf[1], buf[2]);
3641
3642         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3643                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3644                               buf[0], buf[1], buf[2]);
3645 }
3646
3647 static bool
3648 intel_dp_can_mst(struct intel_dp *intel_dp)
3649 {
3650         u8 buf[1];
3651
3652         if (!i915.enable_dp_mst)
3653                 return false;
3654
3655         if (!intel_dp->can_mst)
3656                 return false;
3657
3658         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3659                 return false;
3660
3661         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3662                 return false;
3663
3664         return buf[0] & DP_MST_CAP;
3665 }
3666
3667 static void
3668 intel_dp_configure_mst(struct intel_dp *intel_dp)
3669 {
3670         if (!i915.enable_dp_mst)
3671                 return;
3672
3673         if (!intel_dp->can_mst)
3674                 return;
3675
3676         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3677
3678         if (intel_dp->is_mst)
3679                 DRM_DEBUG_KMS("Sink is MST capable\n");
3680         else
3681                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3682
3683         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3684                                         intel_dp->is_mst);
3685 }
3686
3687 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3688 {
3689         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3690         struct drm_device *dev = dig_port->base.base.dev;
3691         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3692         u8 buf;
3693         int ret = 0;
3694         int count = 0;
3695         int attempts = 10;
3696
3697         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3698                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3699                 ret = -EIO;
3700                 goto out;
3701         }
3702
3703         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3704                                buf & ~DP_TEST_SINK_START) < 0) {
3705                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3706                 ret = -EIO;
3707                 goto out;
3708         }
3709
3710         do {
3711                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3712
3713                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3714                                       DP_TEST_SINK_MISC, &buf) < 0) {
3715                         ret = -EIO;
3716                         goto out;
3717                 }
3718                 count = buf & DP_TEST_COUNT_MASK;
3719         } while (--attempts && count);
3720
3721         if (attempts == 0) {
3722                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3723                 ret = -ETIMEDOUT;
3724         }
3725
3726  out:
3727         hsw_enable_ips(intel_crtc);
3728         return ret;
3729 }
3730
3731 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3732 {
3733         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3734         struct drm_device *dev = dig_port->base.base.dev;
3735         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3736         u8 buf;
3737         int ret;
3738
3739         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3740                 return -EIO;
3741
3742         if (!(buf & DP_TEST_CRC_SUPPORTED))
3743                 return -ENOTTY;
3744
3745         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3746                 return -EIO;
3747
3748         if (buf & DP_TEST_SINK_START) {
3749                 ret = intel_dp_sink_crc_stop(intel_dp);
3750                 if (ret)
3751                         return ret;
3752         }
3753
3754         hsw_disable_ips(intel_crtc);
3755
3756         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3757                                buf | DP_TEST_SINK_START) < 0) {
3758                 hsw_enable_ips(intel_crtc);
3759                 return -EIO;
3760         }
3761
3762         intel_wait_for_vblank(dev, intel_crtc->pipe);
3763         return 0;
3764 }
3765
3766 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3767 {
3768         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3769         struct drm_device *dev = dig_port->base.base.dev;
3770         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3771         u8 buf;
3772         int count, ret;
3773         int attempts = 6;
3774
3775         ret = intel_dp_sink_crc_start(intel_dp);
3776         if (ret)
3777                 return ret;
3778
3779         do {
3780                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3781
3782                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3783                                       DP_TEST_SINK_MISC, &buf) < 0) {
3784                         ret = -EIO;
3785                         goto stop;
3786                 }
3787                 count = buf & DP_TEST_COUNT_MASK;
3788
3789         } while (--attempts && count == 0);
3790
3791         if (attempts == 0) {
3792                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3793                 ret = -ETIMEDOUT;
3794                 goto stop;
3795         }
3796
3797         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3798                 ret = -EIO;
3799                 goto stop;
3800         }
3801
3802 stop:
3803         intel_dp_sink_crc_stop(intel_dp);
3804         return ret;
3805 }
3806
3807 static bool
3808 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3809 {
3810         return drm_dp_dpcd_read(&intel_dp->aux,
3811                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3812                                        sink_irq_vector, 1) == 1;
3813 }
3814
3815 static bool
3816 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3817 {
3818         int ret;
3819
3820         ret = drm_dp_dpcd_read(&intel_dp->aux,
3821                                              DP_SINK_COUNT_ESI,
3822                                              sink_irq_vector, 14);
3823         if (ret != 14)
3824                 return false;
3825
3826         return true;
3827 }
3828
3829 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3830 {
3831         uint8_t test_result = DP_TEST_ACK;
3832         return test_result;
3833 }
3834
3835 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3836 {
3837         uint8_t test_result = DP_TEST_NAK;
3838         return test_result;
3839 }
3840
3841 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3842 {
3843         uint8_t test_result = DP_TEST_NAK;
3844         struct intel_connector *intel_connector = intel_dp->attached_connector;
3845         struct drm_connector *connector = &intel_connector->base;
3846
3847         if (intel_connector->detect_edid == NULL ||
3848             connector->edid_corrupt ||
3849             intel_dp->aux.i2c_defer_count > 6) {
3850                 /* Check EDID read for NACKs, DEFERs and corruption
3851                  * (DP CTS 1.2 Core r1.1)
3852                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3853                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3854                  *    4.2.2.6 : EDID corruption detected
3855                  * Use failsafe mode for all cases
3856                  */
3857                 if (intel_dp->aux.i2c_nack_count > 0 ||
3858                         intel_dp->aux.i2c_defer_count > 0)
3859                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3860                                       intel_dp->aux.i2c_nack_count,
3861                                       intel_dp->aux.i2c_defer_count);
3862                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3863         } else {
3864                 struct edid *block = intel_connector->detect_edid;
3865
3866                 /* We have to write the checksum
3867                  * of the last block read
3868                  */
3869                 block += intel_connector->detect_edid->extensions;
3870
3871                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3872                                         DP_TEST_EDID_CHECKSUM,
3873                                         &block->checksum,
3874                                         1))
3875                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3876
3877                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3878                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3879         }
3880
3881         /* Set test active flag here so userspace doesn't interrupt things */
3882         intel_dp->compliance_test_active = 1;
3883
3884         return test_result;
3885 }
3886
3887 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3888 {
3889         uint8_t test_result = DP_TEST_NAK;
3890         return test_result;
3891 }
3892
3893 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3894 {
3895         uint8_t response = DP_TEST_NAK;
3896         uint8_t rxdata = 0;
3897         int status = 0;
3898
3899         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3900         if (status <= 0) {
3901                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3902                 goto update_status;
3903         }
3904
3905         switch (rxdata) {
3906         case DP_TEST_LINK_TRAINING:
3907                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3908                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3909                 response = intel_dp_autotest_link_training(intel_dp);
3910                 break;
3911         case DP_TEST_LINK_VIDEO_PATTERN:
3912                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3913                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3914                 response = intel_dp_autotest_video_pattern(intel_dp);
3915                 break;
3916         case DP_TEST_LINK_EDID_READ:
3917                 DRM_DEBUG_KMS("EDID test requested\n");
3918                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3919                 response = intel_dp_autotest_edid(intel_dp);
3920                 break;
3921         case DP_TEST_LINK_PHY_TEST_PATTERN:
3922                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3923                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3924                 response = intel_dp_autotest_phy_pattern(intel_dp);
3925                 break;
3926         default:
3927                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3928                 break;
3929         }
3930
3931 update_status:
3932         status = drm_dp_dpcd_write(&intel_dp->aux,
3933                                    DP_TEST_RESPONSE,
3934                                    &response, 1);
3935         if (status <= 0)
3936                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3937 }
3938
3939 static int
3940 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3941 {
3942         bool bret;
3943
3944         if (intel_dp->is_mst) {
3945                 u8 esi[16] = { 0 };
3946                 int ret = 0;
3947                 int retry;
3948                 bool handled;
3949                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3950 go_again:
3951                 if (bret == true) {
3952
3953                         /* check link status - esi[10] = 0x200c */
3954                         if (intel_dp->active_mst_links &&
3955                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3956                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3957                                 intel_dp_start_link_train(intel_dp);
3958                                 intel_dp_stop_link_train(intel_dp);
3959                         }
3960
3961                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3962                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3963
3964                         if (handled) {
3965                                 for (retry = 0; retry < 3; retry++) {
3966                                         int wret;
3967                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3968                                                                  DP_SINK_COUNT_ESI+1,
3969                                                                  &esi[1], 3);
3970                                         if (wret == 3) {
3971                                                 break;
3972                                         }
3973                                 }
3974
3975                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3976                                 if (bret == true) {
3977                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3978                                         goto go_again;
3979                                 }
3980                         } else
3981                                 ret = 0;
3982
3983                         return ret;
3984                 } else {
3985                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3986                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3987                         intel_dp->is_mst = false;
3988                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3989                         /* send a hotplug event */
3990                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3991                 }
3992         }
3993         return -EINVAL;
3994 }
3995
3996 static void
3997 intel_dp_retrain_link(struct intel_dp *intel_dp)
3998 {
3999         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4000         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4001         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4002
4003         /* Suppress underruns caused by re-training */
4004         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4005         if (crtc->config->has_pch_encoder)
4006                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4007                                                       intel_crtc_pch_transcoder(crtc), false);
4008
4009         intel_dp_start_link_train(intel_dp);
4010         intel_dp_stop_link_train(intel_dp);
4011
4012         /* Keep underrun reporting disabled until things are stable */
4013         intel_wait_for_vblank(&dev_priv->drm, crtc->pipe);
4014
4015         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4016         if (crtc->config->has_pch_encoder)
4017                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4018                                                       intel_crtc_pch_transcoder(crtc), true);
4019 }
4020
4021 static void
4022 intel_dp_check_link_status(struct intel_dp *intel_dp)
4023 {
4024         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4025         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4026         u8 link_status[DP_LINK_STATUS_SIZE];
4027
4028         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4029
4030         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4031                 DRM_ERROR("Failed to get link status\n");
4032                 return;
4033         }
4034
4035         if (!intel_encoder->base.crtc)
4036                 return;
4037
4038         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4039                 return;
4040
4041         /* FIXME: we need to synchronize this sort of stuff with hardware
4042          * readout */
4043         if (WARN_ON_ONCE(!intel_dp->lane_count))
4044                 return;
4045
4046         /* if link training is requested we should perform it always */
4047         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4048             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4049                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4050                               intel_encoder->base.name);
4051
4052                 intel_dp_retrain_link(intel_dp);
4053         }
4054 }
4055
4056 /*
4057  * According to DP spec
4058  * 5.1.2:
4059  *  1. Read DPCD
4060  *  2. Configure link according to Receiver Capabilities
4061  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4062  *  4. Check link status on receipt of hot-plug interrupt
4063  *
4064  * intel_dp_short_pulse -  handles short pulse interrupts
4065  * when full detection is not required.
4066  * Returns %true if short pulse is handled and full detection
4067  * is NOT required and %false otherwise.
4068  */
4069 static bool
4070 intel_dp_short_pulse(struct intel_dp *intel_dp)
4071 {
4072         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4073         u8 sink_irq_vector = 0;
4074         u8 old_sink_count = intel_dp->sink_count;
4075         bool ret;
4076
4077         /*
4078          * Clearing compliance test variables to allow capturing
4079          * of values for next automated test request.
4080          */
4081         intel_dp->compliance_test_active = 0;
4082         intel_dp->compliance_test_type = 0;
4083         intel_dp->compliance_test_data = 0;
4084
4085         /*
4086          * Now read the DPCD to see if it's actually running
4087          * If the current value of sink count doesn't match with
4088          * the value that was stored earlier or dpcd read failed
4089          * we need to do full detection
4090          */
4091         ret = intel_dp_get_dpcd(intel_dp);
4092
4093         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4094                 /* No need to proceed if we are going to do full detect */
4095                 return false;
4096         }
4097
4098         /* Try to read the source of the interrupt */
4099         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4100             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4101             sink_irq_vector != 0) {
4102                 /* Clear interrupt source */
4103                 drm_dp_dpcd_writeb(&intel_dp->aux,
4104                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4105                                    sink_irq_vector);
4106
4107                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4108                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4109                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4110                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4111         }
4112
4113         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4114         intel_dp_check_link_status(intel_dp);
4115         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4116
4117         return true;
4118 }
4119
4120 /* XXX this is probably wrong for multiple downstream ports */
4121 static enum drm_connector_status
4122 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4123 {
4124         uint8_t *dpcd = intel_dp->dpcd;
4125         uint8_t type;
4126
4127         if (!intel_dp_get_dpcd(intel_dp))
4128                 return connector_status_disconnected;
4129
4130         if (is_edp(intel_dp))
4131                 return connector_status_connected;
4132
4133         /* if there's no downstream port, we're done */
4134         if (!drm_dp_is_branch(dpcd))
4135                 return connector_status_connected;
4136
4137         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4138         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4139             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4140
4141                 return intel_dp->sink_count ?
4142                 connector_status_connected : connector_status_disconnected;
4143         }
4144
4145         if (intel_dp_can_mst(intel_dp))
4146                 return connector_status_connected;
4147
4148         /* If no HPD, poke DDC gently */
4149         if (drm_probe_ddc(&intel_dp->aux.ddc))
4150                 return connector_status_connected;
4151
4152         /* Well we tried, say unknown for unreliable port types */
4153         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4154                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4155                 if (type == DP_DS_PORT_TYPE_VGA ||
4156                     type == DP_DS_PORT_TYPE_NON_EDID)
4157                         return connector_status_unknown;
4158         } else {
4159                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4160                         DP_DWN_STRM_PORT_TYPE_MASK;
4161                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4162                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4163                         return connector_status_unknown;
4164         }
4165
4166         /* Anything else is out of spec, warn and ignore */
4167         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4168         return connector_status_disconnected;
4169 }
4170
4171 static enum drm_connector_status
4172 edp_detect(struct intel_dp *intel_dp)
4173 {
4174         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4175         enum drm_connector_status status;
4176
4177         status = intel_panel_detect(dev);
4178         if (status == connector_status_unknown)
4179                 status = connector_status_connected;
4180
4181         return status;
4182 }
4183
4184 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4185                                        struct intel_digital_port *port)
4186 {
4187         u32 bit;
4188
4189         switch (port->port) {
4190         case PORT_A:
4191                 return true;
4192         case PORT_B:
4193                 bit = SDE_PORTB_HOTPLUG;
4194                 break;
4195         case PORT_C:
4196                 bit = SDE_PORTC_HOTPLUG;
4197                 break;
4198         case PORT_D:
4199                 bit = SDE_PORTD_HOTPLUG;
4200                 break;
4201         default:
4202                 MISSING_CASE(port->port);
4203                 return false;
4204         }
4205
4206         return I915_READ(SDEISR) & bit;
4207 }
4208
4209 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4210                                        struct intel_digital_port *port)
4211 {
4212         u32 bit;
4213
4214         switch (port->port) {
4215         case PORT_A:
4216                 return true;
4217         case PORT_B:
4218                 bit = SDE_PORTB_HOTPLUG_CPT;
4219                 break;
4220         case PORT_C:
4221                 bit = SDE_PORTC_HOTPLUG_CPT;
4222                 break;
4223         case PORT_D:
4224                 bit = SDE_PORTD_HOTPLUG_CPT;
4225                 break;
4226         case PORT_E:
4227                 bit = SDE_PORTE_HOTPLUG_SPT;
4228                 break;
4229         default:
4230                 MISSING_CASE(port->port);
4231                 return false;
4232         }
4233
4234         return I915_READ(SDEISR) & bit;
4235 }
4236
4237 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4238                                        struct intel_digital_port *port)
4239 {
4240         u32 bit;
4241
4242         switch (port->port) {
4243         case PORT_B:
4244                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4245                 break;
4246         case PORT_C:
4247                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4248                 break;
4249         case PORT_D:
4250                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4251                 break;
4252         default:
4253                 MISSING_CASE(port->port);
4254                 return false;
4255         }
4256
4257         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4258 }
4259
4260 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4261                                         struct intel_digital_port *port)
4262 {
4263         u32 bit;
4264
4265         switch (port->port) {
4266         case PORT_B:
4267                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4268                 break;
4269         case PORT_C:
4270                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4271                 break;
4272         case PORT_D:
4273                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4274                 break;
4275         default:
4276                 MISSING_CASE(port->port);
4277                 return false;
4278         }
4279
4280         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4281 }
4282
4283 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4284                                        struct intel_digital_port *intel_dig_port)
4285 {
4286         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4287         enum port port;
4288         u32 bit;
4289
4290         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4291         switch (port) {
4292         case PORT_A:
4293                 bit = BXT_DE_PORT_HP_DDIA;
4294                 break;
4295         case PORT_B:
4296                 bit = BXT_DE_PORT_HP_DDIB;
4297                 break;
4298         case PORT_C:
4299                 bit = BXT_DE_PORT_HP_DDIC;
4300                 break;
4301         default:
4302                 MISSING_CASE(port);
4303                 return false;
4304         }
4305
4306         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4307 }
4308
4309 /*
4310  * intel_digital_port_connected - is the specified port connected?
4311  * @dev_priv: i915 private structure
4312  * @port: the port to test
4313  *
4314  * Return %true if @port is connected, %false otherwise.
4315  */
4316 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4317                                          struct intel_digital_port *port)
4318 {
4319         if (HAS_PCH_IBX(dev_priv))
4320                 return ibx_digital_port_connected(dev_priv, port);
4321         else if (HAS_PCH_SPLIT(dev_priv))
4322                 return cpt_digital_port_connected(dev_priv, port);
4323         else if (IS_BROXTON(dev_priv))
4324                 return bxt_digital_port_connected(dev_priv, port);
4325         else if (IS_GM45(dev_priv))
4326                 return gm45_digital_port_connected(dev_priv, port);
4327         else
4328                 return g4x_digital_port_connected(dev_priv, port);
4329 }
4330
4331 static struct edid *
4332 intel_dp_get_edid(struct intel_dp *intel_dp)
4333 {
4334         struct intel_connector *intel_connector = intel_dp->attached_connector;
4335
4336         /* use cached edid if we have one */
4337         if (intel_connector->edid) {
4338                 /* invalid edid */
4339                 if (IS_ERR(intel_connector->edid))
4340                         return NULL;
4341
4342                 return drm_edid_duplicate(intel_connector->edid);
4343         } else
4344                 return drm_get_edid(&intel_connector->base,
4345                                     &intel_dp->aux.ddc);
4346 }
4347
4348 static void
4349 intel_dp_set_edid(struct intel_dp *intel_dp)
4350 {
4351         struct intel_connector *intel_connector = intel_dp->attached_connector;
4352         struct edid *edid;
4353
4354         intel_dp_unset_edid(intel_dp);
4355         edid = intel_dp_get_edid(intel_dp);
4356         intel_connector->detect_edid = edid;
4357
4358         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4359                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4360         else
4361                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4362 }
4363
4364 static void
4365 intel_dp_unset_edid(struct intel_dp *intel_dp)
4366 {
4367         struct intel_connector *intel_connector = intel_dp->attached_connector;
4368
4369         kfree(intel_connector->detect_edid);
4370         intel_connector->detect_edid = NULL;
4371
4372         intel_dp->has_audio = false;
4373 }
4374
4375 static enum drm_connector_status
4376 intel_dp_long_pulse(struct intel_connector *intel_connector)
4377 {
4378         struct drm_connector *connector = &intel_connector->base;
4379         struct intel_dp *intel_dp = intel_attached_dp(connector);
4380         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4381         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4382         struct drm_device *dev = connector->dev;
4383         enum drm_connector_status status;
4384         enum intel_display_power_domain power_domain;
4385         u8 sink_irq_vector = 0;
4386
4387         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4388         intel_display_power_get(to_i915(dev), power_domain);
4389
4390         /* Can't disconnect eDP, but you can close the lid... */
4391         if (is_edp(intel_dp))
4392                 status = edp_detect(intel_dp);
4393         else if (intel_digital_port_connected(to_i915(dev),
4394                                               dp_to_dig_port(intel_dp)))
4395                 status = intel_dp_detect_dpcd(intel_dp);
4396         else
4397                 status = connector_status_disconnected;
4398
4399         if (status == connector_status_disconnected) {
4400                 intel_dp->compliance_test_active = 0;
4401                 intel_dp->compliance_test_type = 0;
4402                 intel_dp->compliance_test_data = 0;
4403
4404                 if (intel_dp->is_mst) {
4405                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4406                                       intel_dp->is_mst,
4407                                       intel_dp->mst_mgr.mst_state);
4408                         intel_dp->is_mst = false;
4409                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4410                                                         intel_dp->is_mst);
4411                 }
4412
4413                 goto out;
4414         }
4415
4416         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4417                 intel_encoder->type = INTEL_OUTPUT_DP;
4418
4419         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4420                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
4421                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4422
4423         intel_dp_print_rates(intel_dp);
4424
4425         intel_dp_probe_oui(intel_dp);
4426
4427         intel_dp_print_hw_revision(intel_dp);
4428         intel_dp_print_sw_revision(intel_dp);
4429
4430         intel_dp_configure_mst(intel_dp);
4431
4432         if (intel_dp->is_mst) {
4433                 /*
4434                  * If we are in MST mode then this connector
4435                  * won't appear connected or have anything
4436                  * with EDID on it
4437                  */
4438                 status = connector_status_disconnected;
4439                 goto out;
4440         } else if (connector->status == connector_status_connected) {
4441                 /*
4442                  * If display was connected already and is still connected
4443                  * check links status, there has been known issues of
4444                  * link loss triggerring long pulse!!!!
4445                  */
4446                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4447                 intel_dp_check_link_status(intel_dp);
4448                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4449                 goto out;
4450         }
4451
4452         /*
4453          * Clearing NACK and defer counts to get their exact values
4454          * while reading EDID which are required by Compliance tests
4455          * 4.2.2.4 and 4.2.2.5
4456          */
4457         intel_dp->aux.i2c_nack_count = 0;
4458         intel_dp->aux.i2c_defer_count = 0;
4459
4460         intel_dp_set_edid(intel_dp);
4461         if (is_edp(intel_dp) || intel_connector->detect_edid)
4462                 status = connector_status_connected;
4463         intel_dp->detect_done = true;
4464
4465         /* Try to read the source of the interrupt */
4466         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4467             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4468             sink_irq_vector != 0) {
4469                 /* Clear interrupt source */
4470                 drm_dp_dpcd_writeb(&intel_dp->aux,
4471                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4472                                    sink_irq_vector);
4473
4474                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4475                         intel_dp_handle_test_request(intel_dp);
4476                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4477                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4478         }
4479
4480 out:
4481         if (status != connector_status_connected && !intel_dp->is_mst)
4482                 intel_dp_unset_edid(intel_dp);
4483
4484         intel_display_power_put(to_i915(dev), power_domain);
4485         return status;
4486 }
4487
4488 static enum drm_connector_status
4489 intel_dp_detect(struct drm_connector *connector, bool force)
4490 {
4491         struct intel_dp *intel_dp = intel_attached_dp(connector);
4492         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4493         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4494         enum drm_connector_status status = connector->status;
4495
4496         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4497                       connector->base.id, connector->name);
4498
4499         if (intel_dp->is_mst) {
4500                 /* MST devices are disconnected from a monitor POV */
4501                 intel_dp_unset_edid(intel_dp);
4502                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4503                         intel_encoder->type = INTEL_OUTPUT_DP;
4504                 return connector_status_disconnected;
4505         }
4506
4507         /* If full detect is not performed yet, do a full detect */
4508         if (!intel_dp->detect_done)
4509                 status = intel_dp_long_pulse(intel_dp->attached_connector);
4510
4511         intel_dp->detect_done = false;
4512
4513         return status;
4514 }
4515
4516 static void
4517 intel_dp_force(struct drm_connector *connector)
4518 {
4519         struct intel_dp *intel_dp = intel_attached_dp(connector);
4520         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4521         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4522         enum intel_display_power_domain power_domain;
4523
4524         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4525                       connector->base.id, connector->name);
4526         intel_dp_unset_edid(intel_dp);
4527
4528         if (connector->status != connector_status_connected)
4529                 return;
4530
4531         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4532         intel_display_power_get(dev_priv, power_domain);
4533
4534         intel_dp_set_edid(intel_dp);
4535
4536         intel_display_power_put(dev_priv, power_domain);
4537
4538         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4539                 intel_encoder->type = INTEL_OUTPUT_DP;
4540 }
4541
4542 static int intel_dp_get_modes(struct drm_connector *connector)
4543 {
4544         struct intel_connector *intel_connector = to_intel_connector(connector);
4545         struct edid *edid;
4546
4547         edid = intel_connector->detect_edid;
4548         if (edid) {
4549                 int ret = intel_connector_update_modes(connector, edid);
4550                 if (ret)
4551                         return ret;
4552         }
4553
4554         /* if eDP has no EDID, fall back to fixed mode */
4555         if (is_edp(intel_attached_dp(connector)) &&
4556             intel_connector->panel.fixed_mode) {
4557                 struct drm_display_mode *mode;
4558
4559                 mode = drm_mode_duplicate(connector->dev,
4560                                           intel_connector->panel.fixed_mode);
4561                 if (mode) {
4562                         drm_mode_probed_add(connector, mode);
4563                         return 1;
4564                 }
4565         }
4566
4567         return 0;
4568 }
4569
4570 static bool
4571 intel_dp_detect_audio(struct drm_connector *connector)
4572 {
4573         bool has_audio = false;
4574         struct edid *edid;
4575
4576         edid = to_intel_connector(connector)->detect_edid;
4577         if (edid)
4578                 has_audio = drm_detect_monitor_audio(edid);
4579
4580         return has_audio;
4581 }
4582
4583 static int
4584 intel_dp_set_property(struct drm_connector *connector,
4585                       struct drm_property *property,
4586                       uint64_t val)
4587 {
4588         struct drm_i915_private *dev_priv = to_i915(connector->dev);
4589         struct intel_connector *intel_connector = to_intel_connector(connector);
4590         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4591         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4592         int ret;
4593
4594         ret = drm_object_property_set_value(&connector->base, property, val);
4595         if (ret)
4596                 return ret;
4597
4598         if (property == dev_priv->force_audio_property) {
4599                 int i = val;
4600                 bool has_audio;
4601
4602                 if (i == intel_dp->force_audio)
4603                         return 0;
4604
4605                 intel_dp->force_audio = i;
4606
4607                 if (i == HDMI_AUDIO_AUTO)
4608                         has_audio = intel_dp_detect_audio(connector);
4609                 else
4610                         has_audio = (i == HDMI_AUDIO_ON);
4611
4612                 if (has_audio == intel_dp->has_audio)
4613                         return 0;
4614
4615                 intel_dp->has_audio = has_audio;
4616                 goto done;
4617         }
4618
4619         if (property == dev_priv->broadcast_rgb_property) {
4620                 bool old_auto = intel_dp->color_range_auto;
4621                 bool old_range = intel_dp->limited_color_range;
4622
4623                 switch (val) {
4624                 case INTEL_BROADCAST_RGB_AUTO:
4625                         intel_dp->color_range_auto = true;
4626                         break;
4627                 case INTEL_BROADCAST_RGB_FULL:
4628                         intel_dp->color_range_auto = false;
4629                         intel_dp->limited_color_range = false;
4630                         break;
4631                 case INTEL_BROADCAST_RGB_LIMITED:
4632                         intel_dp->color_range_auto = false;
4633                         intel_dp->limited_color_range = true;
4634                         break;
4635                 default:
4636                         return -EINVAL;
4637                 }
4638
4639                 if (old_auto == intel_dp->color_range_auto &&
4640                     old_range == intel_dp->limited_color_range)
4641                         return 0;
4642
4643                 goto done;
4644         }
4645
4646         if (is_edp(intel_dp) &&
4647             property == connector->dev->mode_config.scaling_mode_property) {
4648                 if (val == DRM_MODE_SCALE_NONE) {
4649                         DRM_DEBUG_KMS("no scaling not supported\n");
4650                         return -EINVAL;
4651                 }
4652                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4653                     val == DRM_MODE_SCALE_CENTER) {
4654                         DRM_DEBUG_KMS("centering not supported\n");
4655                         return -EINVAL;
4656                 }
4657
4658                 if (intel_connector->panel.fitting_mode == val) {
4659                         /* the eDP scaling property is not changed */
4660                         return 0;
4661                 }
4662                 intel_connector->panel.fitting_mode = val;
4663
4664                 goto done;
4665         }
4666
4667         return -EINVAL;
4668
4669 done:
4670         if (intel_encoder->base.crtc)
4671                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4672
4673         return 0;
4674 }
4675
4676 static int
4677 intel_dp_connector_register(struct drm_connector *connector)
4678 {
4679         struct intel_dp *intel_dp = intel_attached_dp(connector);
4680         int ret;
4681
4682         ret = intel_connector_register(connector);
4683         if (ret)
4684                 return ret;
4685
4686         i915_debugfs_connector_add(connector);
4687
4688         DRM_DEBUG_KMS("registering %s bus for %s\n",
4689                       intel_dp->aux.name, connector->kdev->kobj.name);
4690
4691         intel_dp->aux.dev = connector->kdev;
4692         return drm_dp_aux_register(&intel_dp->aux);
4693 }
4694
4695 static void
4696 intel_dp_connector_unregister(struct drm_connector *connector)
4697 {
4698         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4699         intel_connector_unregister(connector);
4700 }
4701
4702 static void
4703 intel_dp_connector_destroy(struct drm_connector *connector)
4704 {
4705         struct intel_connector *intel_connector = to_intel_connector(connector);
4706
4707         kfree(intel_connector->detect_edid);
4708
4709         if (!IS_ERR_OR_NULL(intel_connector->edid))
4710                 kfree(intel_connector->edid);
4711
4712         /* Can't call is_edp() since the encoder may have been destroyed
4713          * already. */
4714         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4715                 intel_panel_fini(&intel_connector->panel);
4716
4717         drm_connector_cleanup(connector);
4718         kfree(connector);
4719 }
4720
4721 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4722 {
4723         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4724         struct intel_dp *intel_dp = &intel_dig_port->dp;
4725
4726         intel_dp_mst_encoder_cleanup(intel_dig_port);
4727         if (is_edp(intel_dp)) {
4728                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4729                 /*
4730                  * vdd might still be enabled do to the delayed vdd off.
4731                  * Make sure vdd is actually turned off here.
4732                  */
4733                 pps_lock(intel_dp);
4734                 edp_panel_vdd_off_sync(intel_dp);
4735                 pps_unlock(intel_dp);
4736
4737                 if (intel_dp->edp_notifier.notifier_call) {
4738                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4739                         intel_dp->edp_notifier.notifier_call = NULL;
4740                 }
4741         }
4742
4743         intel_dp_aux_fini(intel_dp);
4744
4745         drm_encoder_cleanup(encoder);
4746         kfree(intel_dig_port);
4747 }
4748
4749 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4750 {
4751         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4752
4753         if (!is_edp(intel_dp))
4754                 return;
4755
4756         /*
4757          * vdd might still be enabled do to the delayed vdd off.
4758          * Make sure vdd is actually turned off here.
4759          */
4760         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4761         pps_lock(intel_dp);
4762         edp_panel_vdd_off_sync(intel_dp);
4763         pps_unlock(intel_dp);
4764 }
4765
4766 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4767 {
4768         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4769         struct drm_device *dev = intel_dig_port->base.base.dev;
4770         struct drm_i915_private *dev_priv = to_i915(dev);
4771         enum intel_display_power_domain power_domain;
4772
4773         lockdep_assert_held(&dev_priv->pps_mutex);
4774
4775         if (!edp_have_panel_vdd(intel_dp))
4776                 return;
4777
4778         /*
4779          * The VDD bit needs a power domain reference, so if the bit is
4780          * already enabled when we boot or resume, grab this reference and
4781          * schedule a vdd off, so we don't hold on to the reference
4782          * indefinitely.
4783          */
4784         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4785         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4786         intel_display_power_get(dev_priv, power_domain);
4787
4788         edp_panel_vdd_schedule_off(intel_dp);
4789 }
4790
4791 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4792 {
4793         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4794         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4795         struct intel_lspcon *lspcon = &intel_dig_port->lspcon;
4796         struct intel_dp *intel_dp = &intel_dig_port->dp;
4797
4798         if (!HAS_DDI(dev_priv))
4799                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4800
4801         if (IS_GEN9(dev_priv) && lspcon->active)
4802                 lspcon_resume(lspcon);
4803
4804         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4805                 return;
4806
4807         pps_lock(intel_dp);
4808
4809         /* Reinit the power sequencer, in case BIOS did something with it. */
4810         intel_dp_pps_init(encoder->dev, intel_dp);
4811         intel_edp_panel_vdd_sanitize(intel_dp);
4812
4813         pps_unlock(intel_dp);
4814 }
4815
4816 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4817         .dpms = drm_atomic_helper_connector_dpms,
4818         .detect = intel_dp_detect,
4819         .force = intel_dp_force,
4820         .fill_modes = drm_helper_probe_single_connector_modes,
4821         .set_property = intel_dp_set_property,
4822         .atomic_get_property = intel_connector_atomic_get_property,
4823         .late_register = intel_dp_connector_register,
4824         .early_unregister = intel_dp_connector_unregister,
4825         .destroy = intel_dp_connector_destroy,
4826         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4827         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4828 };
4829
4830 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4831         .get_modes = intel_dp_get_modes,
4832         .mode_valid = intel_dp_mode_valid,
4833 };
4834
4835 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4836         .reset = intel_dp_encoder_reset,
4837         .destroy = intel_dp_encoder_destroy,
4838 };
4839
4840 enum irqreturn
4841 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4842 {
4843         struct intel_dp *intel_dp = &intel_dig_port->dp;
4844         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4845         struct drm_device *dev = intel_dig_port->base.base.dev;
4846         struct drm_i915_private *dev_priv = to_i915(dev);
4847         enum intel_display_power_domain power_domain;
4848         enum irqreturn ret = IRQ_NONE;
4849
4850         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4851             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4852                 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4853
4854         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4855                 /*
4856                  * vdd off can generate a long pulse on eDP which
4857                  * would require vdd on to handle it, and thus we
4858                  * would end up in an endless cycle of
4859                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4860                  */
4861                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4862                               port_name(intel_dig_port->port));
4863                 return IRQ_HANDLED;
4864         }
4865
4866         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4867                       port_name(intel_dig_port->port),
4868                       long_hpd ? "long" : "short");
4869
4870         if (long_hpd) {
4871                 intel_dp->detect_done = false;
4872                 return IRQ_NONE;
4873         }
4874
4875         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4876         intel_display_power_get(dev_priv, power_domain);
4877
4878         if (intel_dp->is_mst) {
4879                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4880                         /*
4881                          * If we were in MST mode, and device is not
4882                          * there, get out of MST mode
4883                          */
4884                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4885                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4886                         intel_dp->is_mst = false;
4887                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4888                                                         intel_dp->is_mst);
4889                         intel_dp->detect_done = false;
4890                         goto put_power;
4891                 }
4892         }
4893
4894         if (!intel_dp->is_mst) {
4895                 if (!intel_dp_short_pulse(intel_dp)) {
4896                         intel_dp->detect_done = false;
4897                         goto put_power;
4898                 }
4899         }
4900
4901         ret = IRQ_HANDLED;
4902
4903 put_power:
4904         intel_display_power_put(dev_priv, power_domain);
4905
4906         return ret;
4907 }
4908
4909 /* check the VBT to see whether the eDP is on another port */
4910 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4911 {
4912         struct drm_i915_private *dev_priv = to_i915(dev);
4913
4914         /*
4915          * eDP not supported on g4x. so bail out early just
4916          * for a bit extra safety in case the VBT is bonkers.
4917          */
4918         if (INTEL_INFO(dev)->gen < 5)
4919                 return false;
4920
4921         if (port == PORT_A)
4922                 return true;
4923
4924         return intel_bios_is_port_edp(dev_priv, port);
4925 }
4926
4927 void
4928 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4929 {
4930         struct intel_connector *intel_connector = to_intel_connector(connector);
4931
4932         intel_attach_force_audio_property(connector);
4933         intel_attach_broadcast_rgb_property(connector);
4934         intel_dp->color_range_auto = true;
4935
4936         if (is_edp(intel_dp)) {
4937                 drm_mode_create_scaling_mode_property(connector->dev);
4938                 drm_object_attach_property(
4939                         &connector->base,
4940                         connector->dev->mode_config.scaling_mode_property,
4941                         DRM_MODE_SCALE_ASPECT);
4942                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4943         }
4944 }
4945
4946 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4947 {
4948         intel_dp->panel_power_off_time = ktime_get_boottime();
4949         intel_dp->last_power_on = jiffies;
4950         intel_dp->last_backlight_off = jiffies;
4951 }
4952
4953 static void
4954 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4955                            struct intel_dp *intel_dp, struct edp_power_seq *seq)
4956 {
4957         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4958         struct pps_registers regs;
4959
4960         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4961
4962         /* Workaround: Need to write PP_CONTROL with the unlock key as
4963          * the very first thing. */
4964         pp_ctl = ironlake_get_pp_control(intel_dp);
4965
4966         pp_on = I915_READ(regs.pp_on);
4967         pp_off = I915_READ(regs.pp_off);
4968         if (!IS_BROXTON(dev_priv)) {
4969                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4970                 pp_div = I915_READ(regs.pp_div);
4971         }
4972
4973         /* Pull timing values out of registers */
4974         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4975                      PANEL_POWER_UP_DELAY_SHIFT;
4976
4977         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4978                   PANEL_LIGHT_ON_DELAY_SHIFT;
4979
4980         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4981                   PANEL_LIGHT_OFF_DELAY_SHIFT;
4982
4983         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4984                    PANEL_POWER_DOWN_DELAY_SHIFT;
4985
4986         if (IS_BROXTON(dev_priv)) {
4987                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4988                         BXT_POWER_CYCLE_DELAY_SHIFT;
4989                 if (tmp > 0)
4990                         seq->t11_t12 = (tmp - 1) * 1000;
4991                 else
4992                         seq->t11_t12 = 0;
4993         } else {
4994                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4995                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4996         }
4997 }
4998
4999 static void
5000 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5001 {
5002         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5003                       state_name,
5004                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5005 }
5006
5007 static void
5008 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5009                        struct intel_dp *intel_dp)
5010 {
5011         struct edp_power_seq hw;
5012         struct edp_power_seq *sw = &intel_dp->pps_delays;
5013
5014         intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5015
5016         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5017             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5018                 DRM_ERROR("PPS state mismatch\n");
5019                 intel_pps_dump_state("sw", sw);
5020                 intel_pps_dump_state("hw", &hw);
5021         }
5022 }
5023
5024 static void
5025 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5026                                     struct intel_dp *intel_dp)
5027 {
5028         struct drm_i915_private *dev_priv = to_i915(dev);
5029         struct edp_power_seq cur, vbt, spec,
5030                 *final = &intel_dp->pps_delays;
5031
5032         lockdep_assert_held(&dev_priv->pps_mutex);
5033
5034         /* already initialized? */
5035         if (final->t11_t12 != 0)
5036                 return;
5037
5038         intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5039
5040         intel_pps_dump_state("cur", &cur);
5041
5042         vbt = dev_priv->vbt.edp.pps;
5043
5044         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5045          * our hw here, which are all in 100usec. */
5046         spec.t1_t3 = 210 * 10;
5047         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5048         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5049         spec.t10 = 500 * 10;
5050         /* This one is special and actually in units of 100ms, but zero
5051          * based in the hw (so we need to add 100 ms). But the sw vbt
5052          * table multiplies it with 1000 to make it in units of 100usec,
5053          * too. */
5054         spec.t11_t12 = (510 + 100) * 10;
5055
5056         intel_pps_dump_state("vbt", &vbt);
5057
5058         /* Use the max of the register settings and vbt. If both are
5059          * unset, fall back to the spec limits. */
5060 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5061                                        spec.field : \
5062                                        max(cur.field, vbt.field))
5063         assign_final(t1_t3);
5064         assign_final(t8);
5065         assign_final(t9);
5066         assign_final(t10);
5067         assign_final(t11_t12);
5068 #undef assign_final
5069
5070 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5071         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5072         intel_dp->backlight_on_delay = get_delay(t8);
5073         intel_dp->backlight_off_delay = get_delay(t9);
5074         intel_dp->panel_power_down_delay = get_delay(t10);
5075         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5076 #undef get_delay
5077
5078         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5079                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5080                       intel_dp->panel_power_cycle_delay);
5081
5082         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5083                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5084
5085         /*
5086          * We override the HW backlight delays to 1 because we do manual waits
5087          * on them. For T8, even BSpec recommends doing it. For T9, if we
5088          * don't do this, we'll end up waiting for the backlight off delay
5089          * twice: once when we do the manual sleep, and once when we disable
5090          * the panel and wait for the PP_STATUS bit to become zero.
5091          */
5092         final->t8 = 1;
5093         final->t9 = 1;
5094 }
5095
5096 static void
5097 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5098                                               struct intel_dp *intel_dp)
5099 {
5100         struct drm_i915_private *dev_priv = to_i915(dev);
5101         u32 pp_on, pp_off, pp_div, port_sel = 0;
5102         int div = dev_priv->rawclk_freq / 1000;
5103         struct pps_registers regs;
5104         enum port port = dp_to_dig_port(intel_dp)->port;
5105         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5106
5107         lockdep_assert_held(&dev_priv->pps_mutex);
5108
5109         intel_pps_get_registers(dev_priv, intel_dp, &regs);
5110
5111         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5112                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5113         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5114                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5115         /* Compute the divisor for the pp clock, simply match the Bspec
5116          * formula. */
5117         if (IS_BROXTON(dev_priv)) {
5118                 pp_div = I915_READ(regs.pp_ctrl);
5119                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5120                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5121                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5122         } else {
5123                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5124                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5125                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5126         }
5127
5128         /* Haswell doesn't have any port selection bits for the panel
5129          * power sequencer any more. */
5130         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5131                 port_sel = PANEL_PORT_SELECT_VLV(port);
5132         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5133                 if (port == PORT_A)
5134                         port_sel = PANEL_PORT_SELECT_DPA;
5135                 else
5136                         port_sel = PANEL_PORT_SELECT_DPD;
5137         }
5138
5139         pp_on |= port_sel;
5140
5141         I915_WRITE(regs.pp_on, pp_on);
5142         I915_WRITE(regs.pp_off, pp_off);
5143         if (IS_BROXTON(dev_priv))
5144                 I915_WRITE(regs.pp_ctrl, pp_div);
5145         else
5146                 I915_WRITE(regs.pp_div, pp_div);
5147
5148         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5149                       I915_READ(regs.pp_on),
5150                       I915_READ(regs.pp_off),
5151                       IS_BROXTON(dev_priv) ?
5152                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5153                       I915_READ(regs.pp_div));
5154 }
5155
5156 static void intel_dp_pps_init(struct drm_device *dev,
5157                               struct intel_dp *intel_dp)
5158 {
5159         struct drm_i915_private *dev_priv = to_i915(dev);
5160
5161         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5162                 vlv_initial_power_sequencer_setup(intel_dp);
5163         } else {
5164                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5165                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5166         }
5167 }
5168
5169 /**
5170  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5171  * @dev_priv: i915 device
5172  * @crtc_state: a pointer to the active intel_crtc_state
5173  * @refresh_rate: RR to be programmed
5174  *
5175  * This function gets called when refresh rate (RR) has to be changed from
5176  * one frequency to another. Switches can be between high and low RR
5177  * supported by the panel or to any other RR based on media playback (in
5178  * this case, RR value needs to be passed from user space).
5179  *
5180  * The caller of this function needs to take a lock on dev_priv->drrs.
5181  */
5182 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5183                                     struct intel_crtc_state *crtc_state,
5184                                     int refresh_rate)
5185 {
5186         struct intel_encoder *encoder;
5187         struct intel_digital_port *dig_port = NULL;
5188         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5190         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5191
5192         if (refresh_rate <= 0) {
5193                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5194                 return;
5195         }
5196
5197         if (intel_dp == NULL) {
5198                 DRM_DEBUG_KMS("DRRS not supported.\n");
5199                 return;
5200         }
5201
5202         /*
5203          * FIXME: This needs proper synchronization with psr state for some
5204          * platforms that cannot have PSR and DRRS enabled at the same time.
5205          */
5206
5207         dig_port = dp_to_dig_port(intel_dp);
5208         encoder = &dig_port->base;
5209         intel_crtc = to_intel_crtc(encoder->base.crtc);
5210
5211         if (!intel_crtc) {
5212                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5213                 return;
5214         }
5215
5216         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5217                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5218                 return;
5219         }
5220
5221         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5222                         refresh_rate)
5223                 index = DRRS_LOW_RR;
5224
5225         if (index == dev_priv->drrs.refresh_rate_type) {
5226                 DRM_DEBUG_KMS(
5227                         "DRRS requested for previously set RR...ignoring\n");
5228                 return;
5229         }
5230
5231         if (!crtc_state->base.active) {
5232                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5233                 return;
5234         }
5235
5236         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5237                 switch (index) {
5238                 case DRRS_HIGH_RR:
5239                         intel_dp_set_m_n(intel_crtc, M1_N1);
5240                         break;
5241                 case DRRS_LOW_RR:
5242                         intel_dp_set_m_n(intel_crtc, M2_N2);
5243                         break;
5244                 case DRRS_MAX_RR:
5245                 default:
5246                         DRM_ERROR("Unsupported refreshrate type\n");
5247                 }
5248         } else if (INTEL_GEN(dev_priv) > 6) {
5249                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5250                 u32 val;
5251
5252                 val = I915_READ(reg);
5253                 if (index > DRRS_HIGH_RR) {
5254                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5255                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5256                         else
5257                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5258                 } else {
5259                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5260                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5261                         else
5262                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5263                 }
5264                 I915_WRITE(reg, val);
5265         }
5266
5267         dev_priv->drrs.refresh_rate_type = index;
5268
5269         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5270 }
5271
5272 /**
5273  * intel_edp_drrs_enable - init drrs struct if supported
5274  * @intel_dp: DP struct
5275  * @crtc_state: A pointer to the active crtc state.
5276  *
5277  * Initializes frontbuffer_bits and drrs.dp
5278  */
5279 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5280                            struct intel_crtc_state *crtc_state)
5281 {
5282         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5283         struct drm_i915_private *dev_priv = to_i915(dev);
5284
5285         if (!crtc_state->has_drrs) {
5286                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5287                 return;
5288         }
5289
5290         mutex_lock(&dev_priv->drrs.mutex);
5291         if (WARN_ON(dev_priv->drrs.dp)) {
5292                 DRM_ERROR("DRRS already enabled\n");
5293                 goto unlock;
5294         }
5295
5296         dev_priv->drrs.busy_frontbuffer_bits = 0;
5297
5298         dev_priv->drrs.dp = intel_dp;
5299
5300 unlock:
5301         mutex_unlock(&dev_priv->drrs.mutex);
5302 }
5303
5304 /**
5305  * intel_edp_drrs_disable - Disable DRRS
5306  * @intel_dp: DP struct
5307  * @old_crtc_state: Pointer to old crtc_state.
5308  *
5309  */
5310 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5311                             struct intel_crtc_state *old_crtc_state)
5312 {
5313         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5314         struct drm_i915_private *dev_priv = to_i915(dev);
5315
5316         if (!old_crtc_state->has_drrs)
5317                 return;
5318
5319         mutex_lock(&dev_priv->drrs.mutex);
5320         if (!dev_priv->drrs.dp) {
5321                 mutex_unlock(&dev_priv->drrs.mutex);
5322                 return;
5323         }
5324
5325         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5326                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5327                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5328
5329         dev_priv->drrs.dp = NULL;
5330         mutex_unlock(&dev_priv->drrs.mutex);
5331
5332         cancel_delayed_work_sync(&dev_priv->drrs.work);
5333 }
5334
5335 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5336 {
5337         struct drm_i915_private *dev_priv =
5338                 container_of(work, typeof(*dev_priv), drrs.work.work);
5339         struct intel_dp *intel_dp;
5340
5341         mutex_lock(&dev_priv->drrs.mutex);
5342
5343         intel_dp = dev_priv->drrs.dp;
5344
5345         if (!intel_dp)
5346                 goto unlock;
5347
5348         /*
5349          * The delayed work can race with an invalidate hence we need to
5350          * recheck.
5351          */
5352
5353         if (dev_priv->drrs.busy_frontbuffer_bits)
5354                 goto unlock;
5355
5356         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5357                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5358
5359                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5360                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5361         }
5362
5363 unlock:
5364         mutex_unlock(&dev_priv->drrs.mutex);
5365 }
5366
5367 /**
5368  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5369  * @dev_priv: i915 device
5370  * @frontbuffer_bits: frontbuffer plane tracking bits
5371  *
5372  * This function gets called everytime rendering on the given planes start.
5373  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5374  *
5375  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5376  */
5377 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5378                                unsigned int frontbuffer_bits)
5379 {
5380         struct drm_crtc *crtc;
5381         enum pipe pipe;
5382
5383         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5384                 return;
5385
5386         cancel_delayed_work(&dev_priv->drrs.work);
5387
5388         mutex_lock(&dev_priv->drrs.mutex);
5389         if (!dev_priv->drrs.dp) {
5390                 mutex_unlock(&dev_priv->drrs.mutex);
5391                 return;
5392         }
5393
5394         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5395         pipe = to_intel_crtc(crtc)->pipe;
5396
5397         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5398         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5399
5400         /* invalidate means busy screen hence upclock */
5401         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5402                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5403                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5404
5405         mutex_unlock(&dev_priv->drrs.mutex);
5406 }
5407
5408 /**
5409  * intel_edp_drrs_flush - Restart Idleness DRRS
5410  * @dev_priv: i915 device
5411  * @frontbuffer_bits: frontbuffer plane tracking bits
5412  *
5413  * This function gets called every time rendering on the given planes has
5414  * completed or flip on a crtc is completed. So DRRS should be upclocked
5415  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5416  * if no other planes are dirty.
5417  *
5418  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5419  */
5420 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5421                           unsigned int frontbuffer_bits)
5422 {
5423         struct drm_crtc *crtc;
5424         enum pipe pipe;
5425
5426         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5427                 return;
5428
5429         cancel_delayed_work(&dev_priv->drrs.work);
5430
5431         mutex_lock(&dev_priv->drrs.mutex);
5432         if (!dev_priv->drrs.dp) {
5433                 mutex_unlock(&dev_priv->drrs.mutex);
5434                 return;
5435         }
5436
5437         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5438         pipe = to_intel_crtc(crtc)->pipe;
5439
5440         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5441         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5442
5443         /* flush means busy screen hence upclock */
5444         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5445                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5446                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5447
5448         /*
5449          * flush also means no more activity hence schedule downclock, if all
5450          * other fbs are quiescent too
5451          */
5452         if (!dev_priv->drrs.busy_frontbuffer_bits)
5453                 schedule_delayed_work(&dev_priv->drrs.work,
5454                                 msecs_to_jiffies(1000));
5455         mutex_unlock(&dev_priv->drrs.mutex);
5456 }
5457
5458 /**
5459  * DOC: Display Refresh Rate Switching (DRRS)
5460  *
5461  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5462  * which enables swtching between low and high refresh rates,
5463  * dynamically, based on the usage scenario. This feature is applicable
5464  * for internal panels.
5465  *
5466  * Indication that the panel supports DRRS is given by the panel EDID, which
5467  * would list multiple refresh rates for one resolution.
5468  *
5469  * DRRS is of 2 types - static and seamless.
5470  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5471  * (may appear as a blink on screen) and is used in dock-undock scenario.
5472  * Seamless DRRS involves changing RR without any visual effect to the user
5473  * and can be used during normal system usage. This is done by programming
5474  * certain registers.
5475  *
5476  * Support for static/seamless DRRS may be indicated in the VBT based on
5477  * inputs from the panel spec.
5478  *
5479  * DRRS saves power by switching to low RR based on usage scenarios.
5480  *
5481  * The implementation is based on frontbuffer tracking implementation.  When
5482  * there is a disturbance on the screen triggered by user activity or a periodic
5483  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5484  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5485  * made.
5486  *
5487  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5488  * and intel_edp_drrs_flush() are called.
5489  *
5490  * DRRS can be further extended to support other internal panels and also
5491  * the scenario of video playback wherein RR is set based on the rate
5492  * requested by userspace.
5493  */
5494
5495 /**
5496  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5497  * @intel_connector: eDP connector
5498  * @fixed_mode: preferred mode of panel
5499  *
5500  * This function is  called only once at driver load to initialize basic
5501  * DRRS stuff.
5502  *
5503  * Returns:
5504  * Downclock mode if panel supports it, else return NULL.
5505  * DRRS support is determined by the presence of downclock mode (apart
5506  * from VBT setting).
5507  */
5508 static struct drm_display_mode *
5509 intel_dp_drrs_init(struct intel_connector *intel_connector,
5510                 struct drm_display_mode *fixed_mode)
5511 {
5512         struct drm_connector *connector = &intel_connector->base;
5513         struct drm_device *dev = connector->dev;
5514         struct drm_i915_private *dev_priv = to_i915(dev);
5515         struct drm_display_mode *downclock_mode = NULL;
5516
5517         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5518         mutex_init(&dev_priv->drrs.mutex);
5519
5520         if (INTEL_INFO(dev)->gen <= 6) {
5521                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5522                 return NULL;
5523         }
5524
5525         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5526                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5527                 return NULL;
5528         }
5529
5530         downclock_mode = intel_find_panel_downclock
5531                                         (dev, fixed_mode, connector);
5532
5533         if (!downclock_mode) {
5534                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5535                 return NULL;
5536         }
5537
5538         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5539
5540         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5541         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5542         return downclock_mode;
5543 }
5544
5545 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5546                                      struct intel_connector *intel_connector)
5547 {
5548         struct drm_connector *connector = &intel_connector->base;
5549         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5550         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5551         struct drm_device *dev = intel_encoder->base.dev;
5552         struct drm_i915_private *dev_priv = to_i915(dev);
5553         struct drm_display_mode *fixed_mode = NULL;
5554         struct drm_display_mode *downclock_mode = NULL;
5555         bool has_dpcd;
5556         struct drm_display_mode *scan;
5557         struct edid *edid;
5558         enum pipe pipe = INVALID_PIPE;
5559
5560         if (!is_edp(intel_dp))
5561                 return true;
5562
5563         /*
5564          * On IBX/CPT we may get here with LVDS already registered. Since the
5565          * driver uses the only internal power sequencer available for both
5566          * eDP and LVDS bail out early in this case to prevent interfering
5567          * with an already powered-on LVDS power sequencer.
5568          */
5569         if (intel_get_lvds_encoder(dev)) {
5570                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5571                 DRM_INFO("LVDS was detected, not registering eDP\n");
5572
5573                 return false;
5574         }
5575
5576         pps_lock(intel_dp);
5577
5578         intel_dp_init_panel_power_timestamps(intel_dp);
5579         intel_dp_pps_init(dev, intel_dp);
5580         intel_edp_panel_vdd_sanitize(intel_dp);
5581
5582         pps_unlock(intel_dp);
5583
5584         /* Cache DPCD and EDID for edp. */
5585         has_dpcd = intel_edp_init_dpcd(intel_dp);
5586
5587         if (!has_dpcd) {
5588                 /* if this fails, presume the device is a ghost */
5589                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5590                 goto out_vdd_off;
5591         }
5592
5593         mutex_lock(&dev->mode_config.mutex);
5594         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5595         if (edid) {
5596                 if (drm_add_edid_modes(connector, edid)) {
5597                         drm_mode_connector_update_edid_property(connector,
5598                                                                 edid);
5599                         drm_edid_to_eld(connector, edid);
5600                 } else {
5601                         kfree(edid);
5602                         edid = ERR_PTR(-EINVAL);
5603                 }
5604         } else {
5605                 edid = ERR_PTR(-ENOENT);
5606         }
5607         intel_connector->edid = edid;
5608
5609         /* prefer fixed mode from EDID if available */
5610         list_for_each_entry(scan, &connector->probed_modes, head) {
5611                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5612                         fixed_mode = drm_mode_duplicate(dev, scan);
5613                         downclock_mode = intel_dp_drrs_init(
5614                                                 intel_connector, fixed_mode);
5615                         break;
5616                 }
5617         }
5618
5619         /* fallback to VBT if available for eDP */
5620         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5621                 fixed_mode = drm_mode_duplicate(dev,
5622                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5623                 if (fixed_mode) {
5624                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5625                         connector->display_info.width_mm = fixed_mode->width_mm;
5626                         connector->display_info.height_mm = fixed_mode->height_mm;
5627                 }
5628         }
5629         mutex_unlock(&dev->mode_config.mutex);
5630
5631         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5632                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5633                 register_reboot_notifier(&intel_dp->edp_notifier);
5634
5635                 /*
5636                  * Figure out the current pipe for the initial backlight setup.
5637                  * If the current pipe isn't valid, try the PPS pipe, and if that
5638                  * fails just assume pipe A.
5639                  */
5640                 if (IS_CHERRYVIEW(dev_priv))
5641                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5642                 else
5643                         pipe = PORT_TO_PIPE(intel_dp->DP);
5644
5645                 if (pipe != PIPE_A && pipe != PIPE_B)
5646                         pipe = intel_dp->pps_pipe;
5647
5648                 if (pipe != PIPE_A && pipe != PIPE_B)
5649                         pipe = PIPE_A;
5650
5651                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5652                               pipe_name(pipe));
5653         }
5654
5655         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5656         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5657         intel_panel_setup_backlight(connector, pipe);
5658
5659         return true;
5660
5661 out_vdd_off:
5662         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5663         /*
5664          * vdd might still be enabled do to the delayed vdd off.
5665          * Make sure vdd is actually turned off here.
5666          */
5667         pps_lock(intel_dp);
5668         edp_panel_vdd_off_sync(intel_dp);
5669         pps_unlock(intel_dp);
5670
5671         return false;
5672 }
5673
5674 bool
5675 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5676                         struct intel_connector *intel_connector)
5677 {
5678         struct drm_connector *connector = &intel_connector->base;
5679         struct intel_dp *intel_dp = &intel_dig_port->dp;
5680         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5681         struct drm_device *dev = intel_encoder->base.dev;
5682         struct drm_i915_private *dev_priv = to_i915(dev);
5683         enum port port = intel_dig_port->port;
5684         int type;
5685
5686         if (WARN(intel_dig_port->max_lanes < 1,
5687                  "Not enough lanes (%d) for DP on port %c\n",
5688                  intel_dig_port->max_lanes, port_name(port)))
5689                 return false;
5690
5691         intel_dp->pps_pipe = INVALID_PIPE;
5692
5693         /* intel_dp vfuncs */
5694         if (INTEL_INFO(dev)->gen >= 9)
5695                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5696         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5697                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5698         else if (HAS_PCH_SPLIT(dev_priv))
5699                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5700         else
5701                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5702
5703         if (INTEL_INFO(dev)->gen >= 9)
5704                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5705         else
5706                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5707
5708         if (HAS_DDI(dev_priv))
5709                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5710
5711         /* Preserve the current hw state. */
5712         intel_dp->DP = I915_READ(intel_dp->output_reg);
5713         intel_dp->attached_connector = intel_connector;
5714
5715         if (intel_dp_is_edp(dev, port))
5716                 type = DRM_MODE_CONNECTOR_eDP;
5717         else
5718                 type = DRM_MODE_CONNECTOR_DisplayPort;
5719
5720         /*
5721          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5722          * for DP the encoder type can be set by the caller to
5723          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5724          */
5725         if (type == DRM_MODE_CONNECTOR_eDP)
5726                 intel_encoder->type = INTEL_OUTPUT_EDP;
5727
5728         /* eDP only on port B and/or C on vlv/chv */
5729         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5730                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5731                 return false;
5732
5733         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5734                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5735                         port_name(port));
5736
5737         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5738         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5739
5740         connector->interlace_allowed = true;
5741         connector->doublescan_allowed = 0;
5742
5743         intel_dp_aux_init(intel_dp);
5744
5745         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5746                           edp_panel_vdd_work);
5747
5748         intel_connector_attach_encoder(intel_connector, intel_encoder);
5749
5750         if (HAS_DDI(dev_priv))
5751                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5752         else
5753                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5754
5755         /* Set up the hotplug pin. */
5756         switch (port) {
5757         case PORT_A:
5758                 intel_encoder->hpd_pin = HPD_PORT_A;
5759                 break;
5760         case PORT_B:
5761                 intel_encoder->hpd_pin = HPD_PORT_B;
5762                 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
5763                         intel_encoder->hpd_pin = HPD_PORT_A;
5764                 break;
5765         case PORT_C:
5766                 intel_encoder->hpd_pin = HPD_PORT_C;
5767                 break;
5768         case PORT_D:
5769                 intel_encoder->hpd_pin = HPD_PORT_D;
5770                 break;
5771         case PORT_E:
5772                 intel_encoder->hpd_pin = HPD_PORT_E;
5773                 break;
5774         default:
5775                 BUG();
5776         }
5777
5778         /* init MST on ports that can support it */
5779         if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5780             (port == PORT_B || port == PORT_C || port == PORT_D))
5781                 intel_dp_mst_encoder_init(intel_dig_port,
5782                                           intel_connector->base.base.id);
5783
5784         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5785                 intel_dp_aux_fini(intel_dp);
5786                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5787                 goto fail;
5788         }
5789
5790         intel_dp_add_properties(intel_dp, connector);
5791
5792         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5793          * 0xd.  Failure to do so will result in spurious interrupts being
5794          * generated on the port when a cable is not attached.
5795          */
5796         if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
5797                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5798                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5799         }
5800
5801         return true;
5802
5803 fail:
5804         drm_connector_cleanup(connector);
5805
5806         return false;
5807 }
5808
5809 bool intel_dp_init(struct drm_device *dev,
5810                    i915_reg_t output_reg,
5811                    enum port port)
5812 {
5813         struct drm_i915_private *dev_priv = to_i915(dev);
5814         struct intel_digital_port *intel_dig_port;
5815         struct intel_encoder *intel_encoder;
5816         struct drm_encoder *encoder;
5817         struct intel_connector *intel_connector;
5818
5819         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5820         if (!intel_dig_port)
5821                 return false;
5822
5823         intel_connector = intel_connector_alloc();
5824         if (!intel_connector)
5825                 goto err_connector_alloc;
5826
5827         intel_encoder = &intel_dig_port->base;
5828         encoder = &intel_encoder->base;
5829
5830         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5831                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5832                 goto err_encoder_init;
5833
5834         intel_encoder->compute_config = intel_dp_compute_config;
5835         intel_encoder->disable = intel_disable_dp;
5836         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5837         intel_encoder->get_config = intel_dp_get_config;
5838         intel_encoder->suspend = intel_dp_encoder_suspend;
5839         if (IS_CHERRYVIEW(dev_priv)) {
5840                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5841                 intel_encoder->pre_enable = chv_pre_enable_dp;
5842                 intel_encoder->enable = vlv_enable_dp;
5843                 intel_encoder->post_disable = chv_post_disable_dp;
5844                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5845         } else if (IS_VALLEYVIEW(dev_priv)) {
5846                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5847                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5848                 intel_encoder->enable = vlv_enable_dp;
5849                 intel_encoder->post_disable = vlv_post_disable_dp;
5850         } else {
5851                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5852                 intel_encoder->enable = g4x_enable_dp;
5853                 if (INTEL_INFO(dev)->gen >= 5)
5854                         intel_encoder->post_disable = ilk_post_disable_dp;
5855         }
5856
5857         intel_dig_port->port = port;
5858         intel_dig_port->dp.output_reg = output_reg;
5859         intel_dig_port->max_lanes = 4;
5860
5861         intel_encoder->type = INTEL_OUTPUT_DP;
5862         if (IS_CHERRYVIEW(dev_priv)) {
5863                 if (port == PORT_D)
5864                         intel_encoder->crtc_mask = 1 << 2;
5865                 else
5866                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5867         } else {
5868                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5869         }
5870         intel_encoder->cloneable = 0;
5871         intel_encoder->port = port;
5872
5873         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5874         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5875
5876         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5877                 goto err_init_connector;
5878
5879         return true;
5880
5881 err_init_connector:
5882         drm_encoder_cleanup(encoder);
5883 err_encoder_init:
5884         kfree(intel_connector);
5885 err_connector_alloc:
5886         kfree(intel_dig_port);
5887         return false;
5888 }
5889
5890 void intel_dp_mst_suspend(struct drm_device *dev)
5891 {
5892         struct drm_i915_private *dev_priv = to_i915(dev);
5893         int i;
5894
5895         /* disable MST */
5896         for (i = 0; i < I915_MAX_PORTS; i++) {
5897                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5898
5899                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5900                         continue;
5901
5902                 if (intel_dig_port->dp.is_mst)
5903                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5904         }
5905 }
5906
5907 void intel_dp_mst_resume(struct drm_device *dev)
5908 {
5909         struct drm_i915_private *dev_priv = to_i915(dev);
5910         int i;
5911
5912         for (i = 0; i < I915_MAX_PORTS; i++) {
5913                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5914                 int ret;
5915
5916                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5917                         continue;
5918
5919                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5920                 if (ret)
5921                         intel_dp_check_mst_status(&intel_dig_port->dp);
5922         }
5923 }