OSDN Git Service

ovl: fix access beyond unterminated strings
[android-x86/kernel.git] / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76
77 EXPORT_SYMBOL(rename_lock);
78
79 static struct kmem_cache *dentry_cache __read_mostly;
80
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94
95 static unsigned int d_hash_shift __read_mostly;
96
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101         return dentry_hashtable + (hash >> d_hash_shift);
102 }
103
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108                                         unsigned int hash)
109 {
110         hash += (unsigned long) parent / L1_CACHE_BYTES;
111         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117         .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139         int i;
140         long sum = 0;
141         for_each_possible_cpu(i)
142                 sum += per_cpu(nr_dentry, i);
143         return sum < 0 ? 0 : sum;
144 }
145
146 static long get_nr_dentry_unused(void)
147 {
148         int i;
149         long sum = 0;
150         for_each_possible_cpu(i)
151                 sum += per_cpu(nr_dentry_unused, i);
152         return sum < 0 ? 0 : sum;
153 }
154
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156                    size_t *lenp, loff_t *ppos)
157 {
158         dentry_stat.nr_dentry = get_nr_dentry();
159         dentry_stat.nr_unused = get_nr_dentry_unused();
160         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182         unsigned long a,b,mask;
183
184         for (;;) {
185                 a = read_word_at_a_time(cs);
186                 b = load_unaligned_zeropad(ct);
187                 if (tcount < sizeof(unsigned long))
188                         break;
189                 if (unlikely(a != b))
190                         return 1;
191                 cs += sizeof(unsigned long);
192                 ct += sizeof(unsigned long);
193                 tcount -= sizeof(unsigned long);
194                 if (!tcount)
195                         return 0;
196         }
197         mask = bytemask_from_count(tcount);
198         return unlikely(!!((a ^ b) & mask));
199 }
200
201 #else
202
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205         do {
206                 if (*cs != *ct)
207                         return 1;
208                 cs++;
209                 ct++;
210                 tcount--;
211         } while (tcount);
212         return 0;
213 }
214
215 #endif
216
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219         /*
220          * Be careful about RCU walk racing with rename:
221          * use 'READ_ONCE' to fetch the name pointer.
222          *
223          * NOTE! Even if a rename will mean that the length
224          * was not loaded atomically, we don't care. The
225          * RCU walk will check the sequence count eventually,
226          * and catch it. And we won't overrun the buffer,
227          * because we're reading the name pointer atomically,
228          * and a dentry name is guaranteed to be properly
229          * terminated with a NUL byte.
230          *
231          * End result: even if 'len' is wrong, we'll exit
232          * early because the data cannot match (there can
233          * be no NUL in the ct/tcount data)
234          */
235         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236
237         return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241         union {
242                 atomic_t count;
243                 struct rcu_head head;
244         } u;
245         unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250         return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257         kmem_cache_free(dentry_cache, dentry); 
258 }
259
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262         struct external_name *name = container_of(head, struct external_name,
263                                                   u.head);
264
265         mod_node_page_state(page_pgdat(virt_to_page(name)),
266                             NR_INDIRECTLY_RECLAIMABLE_BYTES,
267                             -ksize(name));
268
269         kfree(name);
270 }
271
272 static void __d_free_external(struct rcu_head *head)
273 {
274         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275
276         __d_free_external_name(&external_name(dentry)->u.head);
277
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         if (unlikely(dname_external(dentry))) {
290                 struct external_name *p = external_name(dentry);
291                 atomic_inc(&p->u.count);
292                 spin_unlock(&dentry->d_lock);
293                 name->name = p->name;
294         } else {
295                 memcpy(name->inline_name, dentry->d_iname,
296                        dentry->d_name.len + 1);
297                 spin_unlock(&dentry->d_lock);
298                 name->name = name->inline_name;
299         }
300 }
301 EXPORT_SYMBOL(take_dentry_name_snapshot);
302
303 void release_dentry_name_snapshot(struct name_snapshot *name)
304 {
305         if (unlikely(name->name != name->inline_name)) {
306                 struct external_name *p;
307                 p = container_of(name->name, struct external_name, name[0]);
308                 if (unlikely(atomic_dec_and_test(&p->u.count)))
309                         call_rcu(&p->u.head, __d_free_external_name);
310         }
311 }
312 EXPORT_SYMBOL(release_dentry_name_snapshot);
313
314 static inline void __d_set_inode_and_type(struct dentry *dentry,
315                                           struct inode *inode,
316                                           unsigned type_flags)
317 {
318         unsigned flags;
319
320         dentry->d_inode = inode;
321         flags = READ_ONCE(dentry->d_flags);
322         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323         flags |= type_flags;
324         WRITE_ONCE(dentry->d_flags, flags);
325 }
326
327 static inline void __d_clear_type_and_inode(struct dentry *dentry)
328 {
329         unsigned flags = READ_ONCE(dentry->d_flags);
330
331         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332         WRITE_ONCE(dentry->d_flags, flags);
333         dentry->d_inode = NULL;
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (!(dentry->d_flags & DCACHE_RCUACCESS))
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * These helper functions make sure we always follow the
389  * rules. d_lock must be held by the caller.
390  */
391 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
392 static void d_lru_add(struct dentry *dentry)
393 {
394         D_FLAG_VERIFY(dentry, 0);
395         dentry->d_flags |= DCACHE_LRU_LIST;
396         this_cpu_inc(nr_dentry_unused);
397         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
398 }
399
400 static void d_lru_del(struct dentry *dentry)
401 {
402         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
403         dentry->d_flags &= ~DCACHE_LRU_LIST;
404         this_cpu_dec(nr_dentry_unused);
405         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
406 }
407
408 static void d_shrink_del(struct dentry *dentry)
409 {
410         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411         list_del_init(&dentry->d_lru);
412         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413         this_cpu_dec(nr_dentry_unused);
414 }
415
416 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
417 {
418         D_FLAG_VERIFY(dentry, 0);
419         list_add(&dentry->d_lru, list);
420         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
421         this_cpu_inc(nr_dentry_unused);
422 }
423
424 /*
425  * These can only be called under the global LRU lock, ie during the
426  * callback for freeing the LRU list. "isolate" removes it from the
427  * LRU lists entirely, while shrink_move moves it to the indicated
428  * private list.
429  */
430 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
431 {
432         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
433         dentry->d_flags &= ~DCACHE_LRU_LIST;
434         this_cpu_dec(nr_dentry_unused);
435         list_lru_isolate(lru, &dentry->d_lru);
436 }
437
438 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
439                               struct list_head *list)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags |= DCACHE_SHRINK_LIST;
443         list_lru_isolate_move(lru, &dentry->d_lru, list);
444 }
445
446 /**
447  * d_drop - drop a dentry
448  * @dentry: dentry to drop
449  *
450  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451  * be found through a VFS lookup any more. Note that this is different from
452  * deleting the dentry - d_delete will try to mark the dentry negative if
453  * possible, giving a successful _negative_ lookup, while d_drop will
454  * just make the cache lookup fail.
455  *
456  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457  * reason (NFS timeouts or autofs deletes).
458  *
459  * __d_drop requires dentry->d_lock
460  * ___d_drop doesn't mark dentry as "unhashed"
461  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
462  */
463 static void ___d_drop(struct dentry *dentry)
464 {
465         struct hlist_bl_head *b;
466         /*
467          * Hashed dentries are normally on the dentry hashtable,
468          * with the exception of those newly allocated by
469          * d_obtain_root, which are always IS_ROOT:
470          */
471         if (unlikely(IS_ROOT(dentry)))
472                 b = &dentry->d_sb->s_roots;
473         else
474                 b = d_hash(dentry->d_name.hash);
475
476         hlist_bl_lock(b);
477         __hlist_bl_del(&dentry->d_hash);
478         hlist_bl_unlock(b);
479 }
480
481 void __d_drop(struct dentry *dentry)
482 {
483         if (!d_unhashed(dentry)) {
484                 ___d_drop(dentry);
485                 dentry->d_hash.pprev = NULL;
486                 write_seqcount_invalidate(&dentry->d_seq);
487         }
488 }
489 EXPORT_SYMBOL(__d_drop);
490
491 void d_drop(struct dentry *dentry)
492 {
493         spin_lock(&dentry->d_lock);
494         __d_drop(dentry);
495         spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498
499 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
500 {
501         struct dentry *next;
502         /*
503          * Inform d_walk() and shrink_dentry_list() that we are no longer
504          * attached to the dentry tree
505          */
506         dentry->d_flags |= DCACHE_DENTRY_KILLED;
507         if (unlikely(list_empty(&dentry->d_child)))
508                 return;
509         __list_del_entry(&dentry->d_child);
510         /*
511          * Cursors can move around the list of children.  While we'd been
512          * a normal list member, it didn't matter - ->d_child.next would've
513          * been updated.  However, from now on it won't be and for the
514          * things like d_walk() it might end up with a nasty surprise.
515          * Normally d_walk() doesn't care about cursors moving around -
516          * ->d_lock on parent prevents that and since a cursor has no children
517          * of its own, we get through it without ever unlocking the parent.
518          * There is one exception, though - if we ascend from a child that
519          * gets killed as soon as we unlock it, the next sibling is found
520          * using the value left in its ->d_child.next.  And if _that_
521          * pointed to a cursor, and cursor got moved (e.g. by lseek())
522          * before d_walk() regains parent->d_lock, we'll end up skipping
523          * everything the cursor had been moved past.
524          *
525          * Solution: make sure that the pointer left behind in ->d_child.next
526          * points to something that won't be moving around.  I.e. skip the
527          * cursors.
528          */
529         while (dentry->d_child.next != &parent->d_subdirs) {
530                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
531                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
532                         break;
533                 dentry->d_child.next = next->d_child.next;
534         }
535 }
536
537 static void __dentry_kill(struct dentry *dentry)
538 {
539         struct dentry *parent = NULL;
540         bool can_free = true;
541         if (!IS_ROOT(dentry))
542                 parent = dentry->d_parent;
543
544         /*
545          * The dentry is now unrecoverably dead to the world.
546          */
547         lockref_mark_dead(&dentry->d_lockref);
548
549         /*
550          * inform the fs via d_prune that this dentry is about to be
551          * unhashed and destroyed.
552          */
553         if (dentry->d_flags & DCACHE_OP_PRUNE)
554                 dentry->d_op->d_prune(dentry);
555
556         if (dentry->d_flags & DCACHE_LRU_LIST) {
557                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
558                         d_lru_del(dentry);
559         }
560         /* if it was on the hash then remove it */
561         __d_drop(dentry);
562         dentry_unlist(dentry, parent);
563         if (parent)
564                 spin_unlock(&parent->d_lock);
565         if (dentry->d_inode)
566                 dentry_unlink_inode(dentry);
567         else
568                 spin_unlock(&dentry->d_lock);
569         this_cpu_dec(nr_dentry);
570         if (dentry->d_op && dentry->d_op->d_release)
571                 dentry->d_op->d_release(dentry);
572
573         spin_lock(&dentry->d_lock);
574         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
575                 dentry->d_flags |= DCACHE_MAY_FREE;
576                 can_free = false;
577         }
578         spin_unlock(&dentry->d_lock);
579         if (likely(can_free))
580                 dentry_free(dentry);
581         cond_resched();
582 }
583
584 static struct dentry *__lock_parent(struct dentry *dentry)
585 {
586         struct dentry *parent;
587         rcu_read_lock();
588         spin_unlock(&dentry->d_lock);
589 again:
590         parent = READ_ONCE(dentry->d_parent);
591         spin_lock(&parent->d_lock);
592         /*
593          * We can't blindly lock dentry until we are sure
594          * that we won't violate the locking order.
595          * Any changes of dentry->d_parent must have
596          * been done with parent->d_lock held, so
597          * spin_lock() above is enough of a barrier
598          * for checking if it's still our child.
599          */
600         if (unlikely(parent != dentry->d_parent)) {
601                 spin_unlock(&parent->d_lock);
602                 goto again;
603         }
604         rcu_read_unlock();
605         if (parent != dentry)
606                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
607         else
608                 parent = NULL;
609         return parent;
610 }
611
612 static inline struct dentry *lock_parent(struct dentry *dentry)
613 {
614         struct dentry *parent = dentry->d_parent;
615         if (IS_ROOT(dentry))
616                 return NULL;
617         if (likely(spin_trylock(&parent->d_lock)))
618                 return parent;
619         return __lock_parent(dentry);
620 }
621
622 static inline bool retain_dentry(struct dentry *dentry)
623 {
624         WARN_ON(d_in_lookup(dentry));
625
626         /* Unreachable? Get rid of it */
627         if (unlikely(d_unhashed(dentry)))
628                 return false;
629
630         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
631                 return false;
632
633         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634                 if (dentry->d_op->d_delete(dentry))
635                         return false;
636         }
637         /* retain; LRU fodder */
638         dentry->d_lockref.count--;
639         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
640                 d_lru_add(dentry);
641         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
642                 dentry->d_flags |= DCACHE_REFERENCED;
643         return true;
644 }
645
646 /*
647  * Finish off a dentry we've decided to kill.
648  * dentry->d_lock must be held, returns with it unlocked.
649  * Returns dentry requiring refcount drop, or NULL if we're done.
650  */
651 static struct dentry *dentry_kill(struct dentry *dentry)
652         __releases(dentry->d_lock)
653 {
654         struct inode *inode = dentry->d_inode;
655         struct dentry *parent = NULL;
656
657         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
658                 goto slow_positive;
659
660         if (!IS_ROOT(dentry)) {
661                 parent = dentry->d_parent;
662                 if (unlikely(!spin_trylock(&parent->d_lock))) {
663                         parent = __lock_parent(dentry);
664                         if (likely(inode || !dentry->d_inode))
665                                 goto got_locks;
666                         /* negative that became positive */
667                         if (parent)
668                                 spin_unlock(&parent->d_lock);
669                         inode = dentry->d_inode;
670                         goto slow_positive;
671                 }
672         }
673         __dentry_kill(dentry);
674         return parent;
675
676 slow_positive:
677         spin_unlock(&dentry->d_lock);
678         spin_lock(&inode->i_lock);
679         spin_lock(&dentry->d_lock);
680         parent = lock_parent(dentry);
681 got_locks:
682         if (unlikely(dentry->d_lockref.count != 1)) {
683                 dentry->d_lockref.count--;
684         } else if (likely(!retain_dentry(dentry))) {
685                 __dentry_kill(dentry);
686                 return parent;
687         }
688         /* we are keeping it, after all */
689         if (inode)
690                 spin_unlock(&inode->i_lock);
691         if (parent)
692                 spin_unlock(&parent->d_lock);
693         spin_unlock(&dentry->d_lock);
694         return NULL;
695 }
696
697 /*
698  * Try to do a lockless dput(), and return whether that was successful.
699  *
700  * If unsuccessful, we return false, having already taken the dentry lock.
701  *
702  * The caller needs to hold the RCU read lock, so that the dentry is
703  * guaranteed to stay around even if the refcount goes down to zero!
704  */
705 static inline bool fast_dput(struct dentry *dentry)
706 {
707         int ret;
708         unsigned int d_flags;
709
710         /*
711          * If we have a d_op->d_delete() operation, we sould not
712          * let the dentry count go to zero, so use "put_or_lock".
713          */
714         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
715                 return lockref_put_or_lock(&dentry->d_lockref);
716
717         /*
718          * .. otherwise, we can try to just decrement the
719          * lockref optimistically.
720          */
721         ret = lockref_put_return(&dentry->d_lockref);
722
723         /*
724          * If the lockref_put_return() failed due to the lock being held
725          * by somebody else, the fast path has failed. We will need to
726          * get the lock, and then check the count again.
727          */
728         if (unlikely(ret < 0)) {
729                 spin_lock(&dentry->d_lock);
730                 if (dentry->d_lockref.count > 1) {
731                         dentry->d_lockref.count--;
732                         spin_unlock(&dentry->d_lock);
733                         return 1;
734                 }
735                 return 0;
736         }
737
738         /*
739          * If we weren't the last ref, we're done.
740          */
741         if (ret)
742                 return 1;
743
744         /*
745          * Careful, careful. The reference count went down
746          * to zero, but we don't hold the dentry lock, so
747          * somebody else could get it again, and do another
748          * dput(), and we need to not race with that.
749          *
750          * However, there is a very special and common case
751          * where we don't care, because there is nothing to
752          * do: the dentry is still hashed, it does not have
753          * a 'delete' op, and it's referenced and already on
754          * the LRU list.
755          *
756          * NOTE! Since we aren't locked, these values are
757          * not "stable". However, it is sufficient that at
758          * some point after we dropped the reference the
759          * dentry was hashed and the flags had the proper
760          * value. Other dentry users may have re-gotten
761          * a reference to the dentry and change that, but
762          * our work is done - we can leave the dentry
763          * around with a zero refcount.
764          */
765         smp_rmb();
766         d_flags = READ_ONCE(dentry->d_flags);
767         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
768
769         /* Nothing to do? Dropping the reference was all we needed? */
770         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
771                 return 1;
772
773         /*
774          * Not the fast normal case? Get the lock. We've already decremented
775          * the refcount, but we'll need to re-check the situation after
776          * getting the lock.
777          */
778         spin_lock(&dentry->d_lock);
779
780         /*
781          * Did somebody else grab a reference to it in the meantime, and
782          * we're no longer the last user after all? Alternatively, somebody
783          * else could have killed it and marked it dead. Either way, we
784          * don't need to do anything else.
785          */
786         if (dentry->d_lockref.count) {
787                 spin_unlock(&dentry->d_lock);
788                 return 1;
789         }
790
791         /*
792          * Re-get the reference we optimistically dropped. We hold the
793          * lock, and we just tested that it was zero, so we can just
794          * set it to 1.
795          */
796         dentry->d_lockref.count = 1;
797         return 0;
798 }
799
800
801 /* 
802  * This is dput
803  *
804  * This is complicated by the fact that we do not want to put
805  * dentries that are no longer on any hash chain on the unused
806  * list: we'd much rather just get rid of them immediately.
807  *
808  * However, that implies that we have to traverse the dentry
809  * tree upwards to the parents which might _also_ now be
810  * scheduled for deletion (it may have been only waiting for
811  * its last child to go away).
812  *
813  * This tail recursion is done by hand as we don't want to depend
814  * on the compiler to always get this right (gcc generally doesn't).
815  * Real recursion would eat up our stack space.
816  */
817
818 /*
819  * dput - release a dentry
820  * @dentry: dentry to release 
821  *
822  * Release a dentry. This will drop the usage count and if appropriate
823  * call the dentry unlink method as well as removing it from the queues and
824  * releasing its resources. If the parent dentries were scheduled for release
825  * they too may now get deleted.
826  */
827 void dput(struct dentry *dentry)
828 {
829         while (dentry) {
830                 might_sleep();
831
832                 rcu_read_lock();
833                 if (likely(fast_dput(dentry))) {
834                         rcu_read_unlock();
835                         return;
836                 }
837
838                 /* Slow case: now with the dentry lock held */
839                 rcu_read_unlock();
840
841                 if (likely(retain_dentry(dentry))) {
842                         spin_unlock(&dentry->d_lock);
843                         return;
844                 }
845
846                 dentry = dentry_kill(dentry);
847         }
848 }
849 EXPORT_SYMBOL(dput);
850
851
852 /* This must be called with d_lock held */
853 static inline void __dget_dlock(struct dentry *dentry)
854 {
855         dentry->d_lockref.count++;
856 }
857
858 static inline void __dget(struct dentry *dentry)
859 {
860         lockref_get(&dentry->d_lockref);
861 }
862
863 struct dentry *dget_parent(struct dentry *dentry)
864 {
865         int gotref;
866         struct dentry *ret;
867
868         /*
869          * Do optimistic parent lookup without any
870          * locking.
871          */
872         rcu_read_lock();
873         ret = READ_ONCE(dentry->d_parent);
874         gotref = lockref_get_not_zero(&ret->d_lockref);
875         rcu_read_unlock();
876         if (likely(gotref)) {
877                 if (likely(ret == READ_ONCE(dentry->d_parent)))
878                         return ret;
879                 dput(ret);
880         }
881
882 repeat:
883         /*
884          * Don't need rcu_dereference because we re-check it was correct under
885          * the lock.
886          */
887         rcu_read_lock();
888         ret = dentry->d_parent;
889         spin_lock(&ret->d_lock);
890         if (unlikely(ret != dentry->d_parent)) {
891                 spin_unlock(&ret->d_lock);
892                 rcu_read_unlock();
893                 goto repeat;
894         }
895         rcu_read_unlock();
896         BUG_ON(!ret->d_lockref.count);
897         ret->d_lockref.count++;
898         spin_unlock(&ret->d_lock);
899         return ret;
900 }
901 EXPORT_SYMBOL(dget_parent);
902
903 static struct dentry * __d_find_any_alias(struct inode *inode)
904 {
905         struct dentry *alias;
906
907         if (hlist_empty(&inode->i_dentry))
908                 return NULL;
909         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
910         __dget(alias);
911         return alias;
912 }
913
914 /**
915  * d_find_any_alias - find any alias for a given inode
916  * @inode: inode to find an alias for
917  *
918  * If any aliases exist for the given inode, take and return a
919  * reference for one of them.  If no aliases exist, return %NULL.
920  */
921 struct dentry *d_find_any_alias(struct inode *inode)
922 {
923         struct dentry *de;
924
925         spin_lock(&inode->i_lock);
926         de = __d_find_any_alias(inode);
927         spin_unlock(&inode->i_lock);
928         return de;
929 }
930 EXPORT_SYMBOL(d_find_any_alias);
931
932 /**
933  * d_find_alias - grab a hashed alias of inode
934  * @inode: inode in question
935  *
936  * If inode has a hashed alias, or is a directory and has any alias,
937  * acquire the reference to alias and return it. Otherwise return NULL.
938  * Notice that if inode is a directory there can be only one alias and
939  * it can be unhashed only if it has no children, or if it is the root
940  * of a filesystem, or if the directory was renamed and d_revalidate
941  * was the first vfs operation to notice.
942  *
943  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
944  * any other hashed alias over that one.
945  */
946 static struct dentry *__d_find_alias(struct inode *inode)
947 {
948         struct dentry *alias;
949
950         if (S_ISDIR(inode->i_mode))
951                 return __d_find_any_alias(inode);
952
953         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
954                 spin_lock(&alias->d_lock);
955                 if (!d_unhashed(alias)) {
956                         __dget_dlock(alias);
957                         spin_unlock(&alias->d_lock);
958                         return alias;
959                 }
960                 spin_unlock(&alias->d_lock);
961         }
962         return NULL;
963 }
964
965 struct dentry *d_find_alias(struct inode *inode)
966 {
967         struct dentry *de = NULL;
968
969         if (!hlist_empty(&inode->i_dentry)) {
970                 spin_lock(&inode->i_lock);
971                 de = __d_find_alias(inode);
972                 spin_unlock(&inode->i_lock);
973         }
974         return de;
975 }
976 EXPORT_SYMBOL(d_find_alias);
977
978 /*
979  *      Try to kill dentries associated with this inode.
980  * WARNING: you must own a reference to inode.
981  */
982 void d_prune_aliases(struct inode *inode)
983 {
984         struct dentry *dentry;
985 restart:
986         spin_lock(&inode->i_lock);
987         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
988                 spin_lock(&dentry->d_lock);
989                 if (!dentry->d_lockref.count) {
990                         struct dentry *parent = lock_parent(dentry);
991                         if (likely(!dentry->d_lockref.count)) {
992                                 __dentry_kill(dentry);
993                                 dput(parent);
994                                 goto restart;
995                         }
996                         if (parent)
997                                 spin_unlock(&parent->d_lock);
998                 }
999                 spin_unlock(&dentry->d_lock);
1000         }
1001         spin_unlock(&inode->i_lock);
1002 }
1003 EXPORT_SYMBOL(d_prune_aliases);
1004
1005 /*
1006  * Lock a dentry from shrink list.
1007  * Called under rcu_read_lock() and dentry->d_lock; the former
1008  * guarantees that nothing we access will be freed under us.
1009  * Note that dentry is *not* protected from concurrent dentry_kill(),
1010  * d_delete(), etc.
1011  *
1012  * Return false if dentry has been disrupted or grabbed, leaving
1013  * the caller to kick it off-list.  Otherwise, return true and have
1014  * that dentry's inode and parent both locked.
1015  */
1016 static bool shrink_lock_dentry(struct dentry *dentry)
1017 {
1018         struct inode *inode;
1019         struct dentry *parent;
1020
1021         if (dentry->d_lockref.count)
1022                 return false;
1023
1024         inode = dentry->d_inode;
1025         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1026                 spin_unlock(&dentry->d_lock);
1027                 spin_lock(&inode->i_lock);
1028                 spin_lock(&dentry->d_lock);
1029                 if (unlikely(dentry->d_lockref.count))
1030                         goto out;
1031                 /* changed inode means that somebody had grabbed it */
1032                 if (unlikely(inode != dentry->d_inode))
1033                         goto out;
1034         }
1035
1036         parent = dentry->d_parent;
1037         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1038                 return true;
1039
1040         spin_unlock(&dentry->d_lock);
1041         spin_lock(&parent->d_lock);
1042         if (unlikely(parent != dentry->d_parent)) {
1043                 spin_unlock(&parent->d_lock);
1044                 spin_lock(&dentry->d_lock);
1045                 goto out;
1046         }
1047         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1048         if (likely(!dentry->d_lockref.count))
1049                 return true;
1050         spin_unlock(&parent->d_lock);
1051 out:
1052         if (inode)
1053                 spin_unlock(&inode->i_lock);
1054         return false;
1055 }
1056
1057 static void shrink_dentry_list(struct list_head *list)
1058 {
1059         while (!list_empty(list)) {
1060                 struct dentry *dentry, *parent;
1061
1062                 dentry = list_entry(list->prev, struct dentry, d_lru);
1063                 spin_lock(&dentry->d_lock);
1064                 rcu_read_lock();
1065                 if (!shrink_lock_dentry(dentry)) {
1066                         bool can_free = false;
1067                         rcu_read_unlock();
1068                         d_shrink_del(dentry);
1069                         if (dentry->d_lockref.count < 0)
1070                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1071                         spin_unlock(&dentry->d_lock);
1072                         if (can_free)
1073                                 dentry_free(dentry);
1074                         continue;
1075                 }
1076                 rcu_read_unlock();
1077                 d_shrink_del(dentry);
1078                 parent = dentry->d_parent;
1079                 __dentry_kill(dentry);
1080                 if (parent == dentry)
1081                         continue;
1082                 /*
1083                  * We need to prune ancestors too. This is necessary to prevent
1084                  * quadratic behavior of shrink_dcache_parent(), but is also
1085                  * expected to be beneficial in reducing dentry cache
1086                  * fragmentation.
1087                  */
1088                 dentry = parent;
1089                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1090                         dentry = dentry_kill(dentry);
1091         }
1092 }
1093
1094 static enum lru_status dentry_lru_isolate(struct list_head *item,
1095                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1096 {
1097         struct list_head *freeable = arg;
1098         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1099
1100
1101         /*
1102          * we are inverting the lru lock/dentry->d_lock here,
1103          * so use a trylock. If we fail to get the lock, just skip
1104          * it
1105          */
1106         if (!spin_trylock(&dentry->d_lock))
1107                 return LRU_SKIP;
1108
1109         /*
1110          * Referenced dentries are still in use. If they have active
1111          * counts, just remove them from the LRU. Otherwise give them
1112          * another pass through the LRU.
1113          */
1114         if (dentry->d_lockref.count) {
1115                 d_lru_isolate(lru, dentry);
1116                 spin_unlock(&dentry->d_lock);
1117                 return LRU_REMOVED;
1118         }
1119
1120         if (dentry->d_flags & DCACHE_REFERENCED) {
1121                 dentry->d_flags &= ~DCACHE_REFERENCED;
1122                 spin_unlock(&dentry->d_lock);
1123
1124                 /*
1125                  * The list move itself will be made by the common LRU code. At
1126                  * this point, we've dropped the dentry->d_lock but keep the
1127                  * lru lock. This is safe to do, since every list movement is
1128                  * protected by the lru lock even if both locks are held.
1129                  *
1130                  * This is guaranteed by the fact that all LRU management
1131                  * functions are intermediated by the LRU API calls like
1132                  * list_lru_add and list_lru_del. List movement in this file
1133                  * only ever occur through this functions or through callbacks
1134                  * like this one, that are called from the LRU API.
1135                  *
1136                  * The only exceptions to this are functions like
1137                  * shrink_dentry_list, and code that first checks for the
1138                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1139                  * operating only with stack provided lists after they are
1140                  * properly isolated from the main list.  It is thus, always a
1141                  * local access.
1142                  */
1143                 return LRU_ROTATE;
1144         }
1145
1146         d_lru_shrink_move(lru, dentry, freeable);
1147         spin_unlock(&dentry->d_lock);
1148
1149         return LRU_REMOVED;
1150 }
1151
1152 /**
1153  * prune_dcache_sb - shrink the dcache
1154  * @sb: superblock
1155  * @sc: shrink control, passed to list_lru_shrink_walk()
1156  *
1157  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1158  * is done when we need more memory and called from the superblock shrinker
1159  * function.
1160  *
1161  * This function may fail to free any resources if all the dentries are in
1162  * use.
1163  */
1164 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1165 {
1166         LIST_HEAD(dispose);
1167         long freed;
1168
1169         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1170                                      dentry_lru_isolate, &dispose);
1171         shrink_dentry_list(&dispose);
1172         return freed;
1173 }
1174
1175 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1176                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1177 {
1178         struct list_head *freeable = arg;
1179         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1180
1181         /*
1182          * we are inverting the lru lock/dentry->d_lock here,
1183          * so use a trylock. If we fail to get the lock, just skip
1184          * it
1185          */
1186         if (!spin_trylock(&dentry->d_lock))
1187                 return LRU_SKIP;
1188
1189         d_lru_shrink_move(lru, dentry, freeable);
1190         spin_unlock(&dentry->d_lock);
1191
1192         return LRU_REMOVED;
1193 }
1194
1195
1196 /**
1197  * shrink_dcache_sb - shrink dcache for a superblock
1198  * @sb: superblock
1199  *
1200  * Shrink the dcache for the specified super block. This is used to free
1201  * the dcache before unmounting a file system.
1202  */
1203 void shrink_dcache_sb(struct super_block *sb)
1204 {
1205         long freed;
1206
1207         do {
1208                 LIST_HEAD(dispose);
1209
1210                 freed = list_lru_walk(&sb->s_dentry_lru,
1211                         dentry_lru_isolate_shrink, &dispose, 1024);
1212
1213                 this_cpu_sub(nr_dentry_unused, freed);
1214                 shrink_dentry_list(&dispose);
1215         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1216 }
1217 EXPORT_SYMBOL(shrink_dcache_sb);
1218
1219 /**
1220  * enum d_walk_ret - action to talke during tree walk
1221  * @D_WALK_CONTINUE:    contrinue walk
1222  * @D_WALK_QUIT:        quit walk
1223  * @D_WALK_NORETRY:     quit when retry is needed
1224  * @D_WALK_SKIP:        skip this dentry and its children
1225  */
1226 enum d_walk_ret {
1227         D_WALK_CONTINUE,
1228         D_WALK_QUIT,
1229         D_WALK_NORETRY,
1230         D_WALK_SKIP,
1231 };
1232
1233 /**
1234  * d_walk - walk the dentry tree
1235  * @parent:     start of walk
1236  * @data:       data passed to @enter() and @finish()
1237  * @enter:      callback when first entering the dentry
1238  *
1239  * The @enter() callbacks are called with d_lock held.
1240  */
1241 static void d_walk(struct dentry *parent, void *data,
1242                    enum d_walk_ret (*enter)(void *, struct dentry *))
1243 {
1244         struct dentry *this_parent;
1245         struct list_head *next;
1246         unsigned seq = 0;
1247         enum d_walk_ret ret;
1248         bool retry = true;
1249
1250 again:
1251         read_seqbegin_or_lock(&rename_lock, &seq);
1252         this_parent = parent;
1253         spin_lock(&this_parent->d_lock);
1254
1255         ret = enter(data, this_parent);
1256         switch (ret) {
1257         case D_WALK_CONTINUE:
1258                 break;
1259         case D_WALK_QUIT:
1260         case D_WALK_SKIP:
1261                 goto out_unlock;
1262         case D_WALK_NORETRY:
1263                 retry = false;
1264                 break;
1265         }
1266 repeat:
1267         next = this_parent->d_subdirs.next;
1268 resume:
1269         while (next != &this_parent->d_subdirs) {
1270                 struct list_head *tmp = next;
1271                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1272                 next = tmp->next;
1273
1274                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1275                         continue;
1276
1277                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1278
1279                 ret = enter(data, dentry);
1280                 switch (ret) {
1281                 case D_WALK_CONTINUE:
1282                         break;
1283                 case D_WALK_QUIT:
1284                         spin_unlock(&dentry->d_lock);
1285                         goto out_unlock;
1286                 case D_WALK_NORETRY:
1287                         retry = false;
1288                         break;
1289                 case D_WALK_SKIP:
1290                         spin_unlock(&dentry->d_lock);
1291                         continue;
1292                 }
1293
1294                 if (!list_empty(&dentry->d_subdirs)) {
1295                         spin_unlock(&this_parent->d_lock);
1296                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1297                         this_parent = dentry;
1298                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1299                         goto repeat;
1300                 }
1301                 spin_unlock(&dentry->d_lock);
1302         }
1303         /*
1304          * All done at this level ... ascend and resume the search.
1305          */
1306         rcu_read_lock();
1307 ascend:
1308         if (this_parent != parent) {
1309                 struct dentry *child = this_parent;
1310                 this_parent = child->d_parent;
1311
1312                 spin_unlock(&child->d_lock);
1313                 spin_lock(&this_parent->d_lock);
1314
1315                 /* might go back up the wrong parent if we have had a rename. */
1316                 if (need_seqretry(&rename_lock, seq))
1317                         goto rename_retry;
1318                 /* go into the first sibling still alive */
1319                 do {
1320                         next = child->d_child.next;
1321                         if (next == &this_parent->d_subdirs)
1322                                 goto ascend;
1323                         child = list_entry(next, struct dentry, d_child);
1324                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1325                 rcu_read_unlock();
1326                 goto resume;
1327         }
1328         if (need_seqretry(&rename_lock, seq))
1329                 goto rename_retry;
1330         rcu_read_unlock();
1331
1332 out_unlock:
1333         spin_unlock(&this_parent->d_lock);
1334         done_seqretry(&rename_lock, seq);
1335         return;
1336
1337 rename_retry:
1338         spin_unlock(&this_parent->d_lock);
1339         rcu_read_unlock();
1340         BUG_ON(seq & 1);
1341         if (!retry)
1342                 return;
1343         seq = 1;
1344         goto again;
1345 }
1346
1347 struct check_mount {
1348         struct vfsmount *mnt;
1349         unsigned int mounted;
1350 };
1351
1352 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1353 {
1354         struct check_mount *info = data;
1355         struct path path = { .mnt = info->mnt, .dentry = dentry };
1356
1357         if (likely(!d_mountpoint(dentry)))
1358                 return D_WALK_CONTINUE;
1359         if (__path_is_mountpoint(&path)) {
1360                 info->mounted = 1;
1361                 return D_WALK_QUIT;
1362         }
1363         return D_WALK_CONTINUE;
1364 }
1365
1366 /**
1367  * path_has_submounts - check for mounts over a dentry in the
1368  *                      current namespace.
1369  * @parent: path to check.
1370  *
1371  * Return true if the parent or its subdirectories contain
1372  * a mount point in the current namespace.
1373  */
1374 int path_has_submounts(const struct path *parent)
1375 {
1376         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1377
1378         read_seqlock_excl(&mount_lock);
1379         d_walk(parent->dentry, &data, path_check_mount);
1380         read_sequnlock_excl(&mount_lock);
1381
1382         return data.mounted;
1383 }
1384 EXPORT_SYMBOL(path_has_submounts);
1385
1386 /*
1387  * Called by mount code to set a mountpoint and check if the mountpoint is
1388  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1389  * subtree can become unreachable).
1390  *
1391  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1392  * this reason take rename_lock and d_lock on dentry and ancestors.
1393  */
1394 int d_set_mounted(struct dentry *dentry)
1395 {
1396         struct dentry *p;
1397         int ret = -ENOENT;
1398         write_seqlock(&rename_lock);
1399         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1400                 /* Need exclusion wrt. d_invalidate() */
1401                 spin_lock(&p->d_lock);
1402                 if (unlikely(d_unhashed(p))) {
1403                         spin_unlock(&p->d_lock);
1404                         goto out;
1405                 }
1406                 spin_unlock(&p->d_lock);
1407         }
1408         spin_lock(&dentry->d_lock);
1409         if (!d_unlinked(dentry)) {
1410                 ret = -EBUSY;
1411                 if (!d_mountpoint(dentry)) {
1412                         dentry->d_flags |= DCACHE_MOUNTED;
1413                         ret = 0;
1414                 }
1415         }
1416         spin_unlock(&dentry->d_lock);
1417 out:
1418         write_sequnlock(&rename_lock);
1419         return ret;
1420 }
1421
1422 /*
1423  * Search the dentry child list of the specified parent,
1424  * and move any unused dentries to the end of the unused
1425  * list for prune_dcache(). We descend to the next level
1426  * whenever the d_subdirs list is non-empty and continue
1427  * searching.
1428  *
1429  * It returns zero iff there are no unused children,
1430  * otherwise  it returns the number of children moved to
1431  * the end of the unused list. This may not be the total
1432  * number of unused children, because select_parent can
1433  * drop the lock and return early due to latency
1434  * constraints.
1435  */
1436
1437 struct select_data {
1438         struct dentry *start;
1439         struct list_head dispose;
1440         int found;
1441 };
1442
1443 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1444 {
1445         struct select_data *data = _data;
1446         enum d_walk_ret ret = D_WALK_CONTINUE;
1447
1448         if (data->start == dentry)
1449                 goto out;
1450
1451         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1452                 data->found++;
1453         } else {
1454                 if (dentry->d_flags & DCACHE_LRU_LIST)
1455                         d_lru_del(dentry);
1456                 if (!dentry->d_lockref.count) {
1457                         d_shrink_add(dentry, &data->dispose);
1458                         data->found++;
1459                 }
1460         }
1461         /*
1462          * We can return to the caller if we have found some (this
1463          * ensures forward progress). We'll be coming back to find
1464          * the rest.
1465          */
1466         if (!list_empty(&data->dispose))
1467                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1468 out:
1469         return ret;
1470 }
1471
1472 /**
1473  * shrink_dcache_parent - prune dcache
1474  * @parent: parent of entries to prune
1475  *
1476  * Prune the dcache to remove unused children of the parent dentry.
1477  */
1478 void shrink_dcache_parent(struct dentry *parent)
1479 {
1480         for (;;) {
1481                 struct select_data data;
1482
1483                 INIT_LIST_HEAD(&data.dispose);
1484                 data.start = parent;
1485                 data.found = 0;
1486
1487                 d_walk(parent, &data, select_collect);
1488
1489                 if (!list_empty(&data.dispose)) {
1490                         shrink_dentry_list(&data.dispose);
1491                         continue;
1492                 }
1493
1494                 cond_resched();
1495                 if (!data.found)
1496                         break;
1497         }
1498 }
1499 EXPORT_SYMBOL(shrink_dcache_parent);
1500
1501 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1502 {
1503         /* it has busy descendents; complain about those instead */
1504         if (!list_empty(&dentry->d_subdirs))
1505                 return D_WALK_CONTINUE;
1506
1507         /* root with refcount 1 is fine */
1508         if (dentry == _data && dentry->d_lockref.count == 1)
1509                 return D_WALK_CONTINUE;
1510
1511         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1512                         " still in use (%d) [unmount of %s %s]\n",
1513                        dentry,
1514                        dentry->d_inode ?
1515                        dentry->d_inode->i_ino : 0UL,
1516                        dentry,
1517                        dentry->d_lockref.count,
1518                        dentry->d_sb->s_type->name,
1519                        dentry->d_sb->s_id);
1520         WARN_ON(1);
1521         return D_WALK_CONTINUE;
1522 }
1523
1524 static void do_one_tree(struct dentry *dentry)
1525 {
1526         shrink_dcache_parent(dentry);
1527         d_walk(dentry, dentry, umount_check);
1528         d_drop(dentry);
1529         dput(dentry);
1530 }
1531
1532 /*
1533  * destroy the dentries attached to a superblock on unmounting
1534  */
1535 void shrink_dcache_for_umount(struct super_block *sb)
1536 {
1537         struct dentry *dentry;
1538
1539         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1540
1541         dentry = sb->s_root;
1542         sb->s_root = NULL;
1543         do_one_tree(dentry);
1544
1545         while (!hlist_bl_empty(&sb->s_roots)) {
1546                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1547                 do_one_tree(dentry);
1548         }
1549 }
1550
1551 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1552 {
1553         struct dentry **victim = _data;
1554         if (d_mountpoint(dentry)) {
1555                 __dget_dlock(dentry);
1556                 *victim = dentry;
1557                 return D_WALK_QUIT;
1558         }
1559         return D_WALK_CONTINUE;
1560 }
1561
1562 /**
1563  * d_invalidate - detach submounts, prune dcache, and drop
1564  * @dentry: dentry to invalidate (aka detach, prune and drop)
1565  */
1566 void d_invalidate(struct dentry *dentry)
1567 {
1568         bool had_submounts = false;
1569         spin_lock(&dentry->d_lock);
1570         if (d_unhashed(dentry)) {
1571                 spin_unlock(&dentry->d_lock);
1572                 return;
1573         }
1574         __d_drop(dentry);
1575         spin_unlock(&dentry->d_lock);
1576
1577         /* Negative dentries can be dropped without further checks */
1578         if (!dentry->d_inode)
1579                 return;
1580
1581         shrink_dcache_parent(dentry);
1582         for (;;) {
1583                 struct dentry *victim = NULL;
1584                 d_walk(dentry, &victim, find_submount);
1585                 if (!victim) {
1586                         if (had_submounts)
1587                                 shrink_dcache_parent(dentry);
1588                         return;
1589                 }
1590                 had_submounts = true;
1591                 detach_mounts(victim);
1592                 dput(victim);
1593         }
1594 }
1595 EXPORT_SYMBOL(d_invalidate);
1596
1597 /**
1598  * __d_alloc    -       allocate a dcache entry
1599  * @sb: filesystem it will belong to
1600  * @name: qstr of the name
1601  *
1602  * Allocates a dentry. It returns %NULL if there is insufficient memory
1603  * available. On a success the dentry is returned. The name passed in is
1604  * copied and the copy passed in may be reused after this call.
1605  */
1606  
1607 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1608 {
1609         struct external_name *ext = NULL;
1610         struct dentry *dentry;
1611         char *dname;
1612         int err;
1613
1614         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1615         if (!dentry)
1616                 return NULL;
1617
1618         /*
1619          * We guarantee that the inline name is always NUL-terminated.
1620          * This way the memcpy() done by the name switching in rename
1621          * will still always have a NUL at the end, even if we might
1622          * be overwriting an internal NUL character
1623          */
1624         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1625         if (unlikely(!name)) {
1626                 name = &slash_name;
1627                 dname = dentry->d_iname;
1628         } else if (name->len > DNAME_INLINE_LEN-1) {
1629                 size_t size = offsetof(struct external_name, name[1]);
1630
1631                 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1632                 if (!ext) {
1633                         kmem_cache_free(dentry_cache, dentry); 
1634                         return NULL;
1635                 }
1636                 atomic_set(&ext->u.count, 1);
1637                 dname = ext->name;
1638         } else  {
1639                 dname = dentry->d_iname;
1640         }       
1641
1642         dentry->d_name.len = name->len;
1643         dentry->d_name.hash = name->hash;
1644         memcpy(dname, name->name, name->len);
1645         dname[name->len] = 0;
1646
1647         /* Make sure we always see the terminating NUL character */
1648         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1649
1650         dentry->d_lockref.count = 1;
1651         dentry->d_flags = 0;
1652         spin_lock_init(&dentry->d_lock);
1653         seqcount_init(&dentry->d_seq);
1654         dentry->d_inode = NULL;
1655         dentry->d_parent = dentry;
1656         dentry->d_sb = sb;
1657         dentry->d_op = NULL;
1658         dentry->d_fsdata = NULL;
1659         INIT_HLIST_BL_NODE(&dentry->d_hash);
1660         INIT_LIST_HEAD(&dentry->d_lru);
1661         INIT_LIST_HEAD(&dentry->d_subdirs);
1662         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1663         INIT_LIST_HEAD(&dentry->d_child);
1664         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1665
1666         if (dentry->d_op && dentry->d_op->d_init) {
1667                 err = dentry->d_op->d_init(dentry);
1668                 if (err) {
1669                         if (dname_external(dentry))
1670                                 kfree(external_name(dentry));
1671                         kmem_cache_free(dentry_cache, dentry);
1672                         return NULL;
1673                 }
1674         }
1675
1676         if (unlikely(ext)) {
1677                 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1678                 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1679                                     ksize(ext));
1680         }
1681
1682         this_cpu_inc(nr_dentry);
1683
1684         return dentry;
1685 }
1686
1687 /**
1688  * d_alloc      -       allocate a dcache entry
1689  * @parent: parent of entry to allocate
1690  * @name: qstr of the name
1691  *
1692  * Allocates a dentry. It returns %NULL if there is insufficient memory
1693  * available. On a success the dentry is returned. The name passed in is
1694  * copied and the copy passed in may be reused after this call.
1695  */
1696 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1697 {
1698         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1699         if (!dentry)
1700                 return NULL;
1701         dentry->d_flags |= DCACHE_RCUACCESS;
1702         spin_lock(&parent->d_lock);
1703         /*
1704          * don't need child lock because it is not subject
1705          * to concurrency here
1706          */
1707         __dget_dlock(parent);
1708         dentry->d_parent = parent;
1709         list_add(&dentry->d_child, &parent->d_subdirs);
1710         spin_unlock(&parent->d_lock);
1711
1712         return dentry;
1713 }
1714 EXPORT_SYMBOL(d_alloc);
1715
1716 struct dentry *d_alloc_anon(struct super_block *sb)
1717 {
1718         return __d_alloc(sb, NULL);
1719 }
1720 EXPORT_SYMBOL(d_alloc_anon);
1721
1722 struct dentry *d_alloc_cursor(struct dentry * parent)
1723 {
1724         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1725         if (dentry) {
1726                 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1727                 dentry->d_parent = dget(parent);
1728         }
1729         return dentry;
1730 }
1731
1732 /**
1733  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1734  * @sb: the superblock
1735  * @name: qstr of the name
1736  *
1737  * For a filesystem that just pins its dentries in memory and never
1738  * performs lookups at all, return an unhashed IS_ROOT dentry.
1739  */
1740 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1741 {
1742         return __d_alloc(sb, name);
1743 }
1744 EXPORT_SYMBOL(d_alloc_pseudo);
1745
1746 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1747 {
1748         struct qstr q;
1749
1750         q.name = name;
1751         q.hash_len = hashlen_string(parent, name);
1752         return d_alloc(parent, &q);
1753 }
1754 EXPORT_SYMBOL(d_alloc_name);
1755
1756 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1757 {
1758         WARN_ON_ONCE(dentry->d_op);
1759         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1760                                 DCACHE_OP_COMPARE       |
1761                                 DCACHE_OP_REVALIDATE    |
1762                                 DCACHE_OP_WEAK_REVALIDATE       |
1763                                 DCACHE_OP_DELETE        |
1764                                 DCACHE_OP_REAL));
1765         dentry->d_op = op;
1766         if (!op)
1767                 return;
1768         if (op->d_hash)
1769                 dentry->d_flags |= DCACHE_OP_HASH;
1770         if (op->d_compare)
1771                 dentry->d_flags |= DCACHE_OP_COMPARE;
1772         if (op->d_revalidate)
1773                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1774         if (op->d_weak_revalidate)
1775                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1776         if (op->d_delete)
1777                 dentry->d_flags |= DCACHE_OP_DELETE;
1778         if (op->d_prune)
1779                 dentry->d_flags |= DCACHE_OP_PRUNE;
1780         if (op->d_real)
1781                 dentry->d_flags |= DCACHE_OP_REAL;
1782
1783 }
1784 EXPORT_SYMBOL(d_set_d_op);
1785
1786
1787 /*
1788  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1789  * @dentry - The dentry to mark
1790  *
1791  * Mark a dentry as falling through to the lower layer (as set with
1792  * d_pin_lower()).  This flag may be recorded on the medium.
1793  */
1794 void d_set_fallthru(struct dentry *dentry)
1795 {
1796         spin_lock(&dentry->d_lock);
1797         dentry->d_flags |= DCACHE_FALLTHRU;
1798         spin_unlock(&dentry->d_lock);
1799 }
1800 EXPORT_SYMBOL(d_set_fallthru);
1801
1802 static unsigned d_flags_for_inode(struct inode *inode)
1803 {
1804         unsigned add_flags = DCACHE_REGULAR_TYPE;
1805
1806         if (!inode)
1807                 return DCACHE_MISS_TYPE;
1808
1809         if (S_ISDIR(inode->i_mode)) {
1810                 add_flags = DCACHE_DIRECTORY_TYPE;
1811                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1812                         if (unlikely(!inode->i_op->lookup))
1813                                 add_flags = DCACHE_AUTODIR_TYPE;
1814                         else
1815                                 inode->i_opflags |= IOP_LOOKUP;
1816                 }
1817                 goto type_determined;
1818         }
1819
1820         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1821                 if (unlikely(inode->i_op->get_link)) {
1822                         add_flags = DCACHE_SYMLINK_TYPE;
1823                         goto type_determined;
1824                 }
1825                 inode->i_opflags |= IOP_NOFOLLOW;
1826         }
1827
1828         if (unlikely(!S_ISREG(inode->i_mode)))
1829                 add_flags = DCACHE_SPECIAL_TYPE;
1830
1831 type_determined:
1832         if (unlikely(IS_AUTOMOUNT(inode)))
1833                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1834         return add_flags;
1835 }
1836
1837 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1838 {
1839         unsigned add_flags = d_flags_for_inode(inode);
1840         WARN_ON(d_in_lookup(dentry));
1841
1842         spin_lock(&dentry->d_lock);
1843         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1844         raw_write_seqcount_begin(&dentry->d_seq);
1845         __d_set_inode_and_type(dentry, inode, add_flags);
1846         raw_write_seqcount_end(&dentry->d_seq);
1847         fsnotify_update_flags(dentry);
1848         spin_unlock(&dentry->d_lock);
1849 }
1850
1851 /**
1852  * d_instantiate - fill in inode information for a dentry
1853  * @entry: dentry to complete
1854  * @inode: inode to attach to this dentry
1855  *
1856  * Fill in inode information in the entry.
1857  *
1858  * This turns negative dentries into productive full members
1859  * of society.
1860  *
1861  * NOTE! This assumes that the inode count has been incremented
1862  * (or otherwise set) by the caller to indicate that it is now
1863  * in use by the dcache.
1864  */
1865  
1866 void d_instantiate(struct dentry *entry, struct inode * inode)
1867 {
1868         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1869         if (inode) {
1870                 security_d_instantiate(entry, inode);
1871                 spin_lock(&inode->i_lock);
1872                 __d_instantiate(entry, inode);
1873                 spin_unlock(&inode->i_lock);
1874         }
1875 }
1876 EXPORT_SYMBOL(d_instantiate);
1877
1878 /*
1879  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1880  * with lockdep-related part of unlock_new_inode() done before
1881  * anything else.  Use that instead of open-coding d_instantiate()/
1882  * unlock_new_inode() combinations.
1883  */
1884 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1885 {
1886         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1887         BUG_ON(!inode);
1888         lockdep_annotate_inode_mutex_key(inode);
1889         security_d_instantiate(entry, inode);
1890         spin_lock(&inode->i_lock);
1891         __d_instantiate(entry, inode);
1892         WARN_ON(!(inode->i_state & I_NEW));
1893         inode->i_state &= ~I_NEW & ~I_CREATING;
1894         smp_mb();
1895         wake_up_bit(&inode->i_state, __I_NEW);
1896         spin_unlock(&inode->i_lock);
1897 }
1898 EXPORT_SYMBOL(d_instantiate_new);
1899
1900 /**
1901  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1902  * @entry: dentry to complete
1903  * @inode: inode to attach to this dentry
1904  *
1905  * Fill in inode information in the entry.  If a directory alias is found, then
1906  * return an error (and drop inode).  Together with d_materialise_unique() this
1907  * guarantees that a directory inode may never have more than one alias.
1908  */
1909 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1910 {
1911         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1912
1913         security_d_instantiate(entry, inode);
1914         spin_lock(&inode->i_lock);
1915         if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1916                 spin_unlock(&inode->i_lock);
1917                 iput(inode);
1918                 return -EBUSY;
1919         }
1920         __d_instantiate(entry, inode);
1921         spin_unlock(&inode->i_lock);
1922
1923         return 0;
1924 }
1925 EXPORT_SYMBOL(d_instantiate_no_diralias);
1926
1927 struct dentry *d_make_root(struct inode *root_inode)
1928 {
1929         struct dentry *res = NULL;
1930
1931         if (root_inode) {
1932                 res = d_alloc_anon(root_inode->i_sb);
1933                 if (res) {
1934                         res->d_flags |= DCACHE_RCUACCESS;
1935                         d_instantiate(res, root_inode);
1936                 } else {
1937                         iput(root_inode);
1938                 }
1939         }
1940         return res;
1941 }
1942 EXPORT_SYMBOL(d_make_root);
1943
1944 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1945                                            struct inode *inode,
1946                                            bool disconnected)
1947 {
1948         struct dentry *res;
1949         unsigned add_flags;
1950
1951         security_d_instantiate(dentry, inode);
1952         spin_lock(&inode->i_lock);
1953         res = __d_find_any_alias(inode);
1954         if (res) {
1955                 spin_unlock(&inode->i_lock);
1956                 dput(dentry);
1957                 goto out_iput;
1958         }
1959
1960         /* attach a disconnected dentry */
1961         add_flags = d_flags_for_inode(inode);
1962
1963         if (disconnected)
1964                 add_flags |= DCACHE_DISCONNECTED;
1965
1966         spin_lock(&dentry->d_lock);
1967         __d_set_inode_and_type(dentry, inode, add_flags);
1968         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1969         if (!disconnected) {
1970                 hlist_bl_lock(&dentry->d_sb->s_roots);
1971                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1972                 hlist_bl_unlock(&dentry->d_sb->s_roots);
1973         }
1974         spin_unlock(&dentry->d_lock);
1975         spin_unlock(&inode->i_lock);
1976
1977         return dentry;
1978
1979  out_iput:
1980         iput(inode);
1981         return res;
1982 }
1983
1984 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1985 {
1986         return __d_instantiate_anon(dentry, inode, true);
1987 }
1988 EXPORT_SYMBOL(d_instantiate_anon);
1989
1990 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1991 {
1992         struct dentry *tmp;
1993         struct dentry *res;
1994
1995         if (!inode)
1996                 return ERR_PTR(-ESTALE);
1997         if (IS_ERR(inode))
1998                 return ERR_CAST(inode);
1999
2000         res = d_find_any_alias(inode);
2001         if (res)
2002                 goto out_iput;
2003
2004         tmp = d_alloc_anon(inode->i_sb);
2005         if (!tmp) {
2006                 res = ERR_PTR(-ENOMEM);
2007                 goto out_iput;
2008         }
2009
2010         return __d_instantiate_anon(tmp, inode, disconnected);
2011
2012 out_iput:
2013         iput(inode);
2014         return res;
2015 }
2016
2017 /**
2018  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2019  * @inode: inode to allocate the dentry for
2020  *
2021  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2022  * similar open by handle operations.  The returned dentry may be anonymous,
2023  * or may have a full name (if the inode was already in the cache).
2024  *
2025  * When called on a directory inode, we must ensure that the inode only ever
2026  * has one dentry.  If a dentry is found, that is returned instead of
2027  * allocating a new one.
2028  *
2029  * On successful return, the reference to the inode has been transferred
2030  * to the dentry.  In case of an error the reference on the inode is released.
2031  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2032  * be passed in and the error will be propagated to the return value,
2033  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2034  */
2035 struct dentry *d_obtain_alias(struct inode *inode)
2036 {
2037         return __d_obtain_alias(inode, true);
2038 }
2039 EXPORT_SYMBOL(d_obtain_alias);
2040
2041 /**
2042  * d_obtain_root - find or allocate a dentry for a given inode
2043  * @inode: inode to allocate the dentry for
2044  *
2045  * Obtain an IS_ROOT dentry for the root of a filesystem.
2046  *
2047  * We must ensure that directory inodes only ever have one dentry.  If a
2048  * dentry is found, that is returned instead of allocating a new one.
2049  *
2050  * On successful return, the reference to the inode has been transferred
2051  * to the dentry.  In case of an error the reference on the inode is
2052  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2053  * error will be propagate to the return value, with a %NULL @inode
2054  * replaced by ERR_PTR(-ESTALE).
2055  */
2056 struct dentry *d_obtain_root(struct inode *inode)
2057 {
2058         return __d_obtain_alias(inode, false);
2059 }
2060 EXPORT_SYMBOL(d_obtain_root);
2061
2062 /**
2063  * d_add_ci - lookup or allocate new dentry with case-exact name
2064  * @inode:  the inode case-insensitive lookup has found
2065  * @dentry: the negative dentry that was passed to the parent's lookup func
2066  * @name:   the case-exact name to be associated with the returned dentry
2067  *
2068  * This is to avoid filling the dcache with case-insensitive names to the
2069  * same inode, only the actual correct case is stored in the dcache for
2070  * case-insensitive filesystems.
2071  *
2072  * For a case-insensitive lookup match and if the the case-exact dentry
2073  * already exists in in the dcache, use it and return it.
2074  *
2075  * If no entry exists with the exact case name, allocate new dentry with
2076  * the exact case, and return the spliced entry.
2077  */
2078 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2079                         struct qstr *name)
2080 {
2081         struct dentry *found, *res;
2082
2083         /*
2084          * First check if a dentry matching the name already exists,
2085          * if not go ahead and create it now.
2086          */
2087         found = d_hash_and_lookup(dentry->d_parent, name);
2088         if (found) {
2089                 iput(inode);
2090                 return found;
2091         }
2092         if (d_in_lookup(dentry)) {
2093                 found = d_alloc_parallel(dentry->d_parent, name,
2094                                         dentry->d_wait);
2095                 if (IS_ERR(found) || !d_in_lookup(found)) {
2096                         iput(inode);
2097                         return found;
2098                 }
2099         } else {
2100                 found = d_alloc(dentry->d_parent, name);
2101                 if (!found) {
2102                         iput(inode);
2103                         return ERR_PTR(-ENOMEM);
2104                 } 
2105         }
2106         res = d_splice_alias(inode, found);
2107         if (res) {
2108                 dput(found);
2109                 return res;
2110         }
2111         return found;
2112 }
2113 EXPORT_SYMBOL(d_add_ci);
2114
2115
2116 static inline bool d_same_name(const struct dentry *dentry,
2117                                 const struct dentry *parent,
2118                                 const struct qstr *name)
2119 {
2120         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2121                 if (dentry->d_name.len != name->len)
2122                         return false;
2123                 return dentry_cmp(dentry, name->name, name->len) == 0;
2124         }
2125         return parent->d_op->d_compare(dentry,
2126                                        dentry->d_name.len, dentry->d_name.name,
2127                                        name) == 0;
2128 }
2129
2130 /**
2131  * __d_lookup_rcu - search for a dentry (racy, store-free)
2132  * @parent: parent dentry
2133  * @name: qstr of name we wish to find
2134  * @seqp: returns d_seq value at the point where the dentry was found
2135  * Returns: dentry, or NULL
2136  *
2137  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2138  * resolution (store-free path walking) design described in
2139  * Documentation/filesystems/path-lookup.txt.
2140  *
2141  * This is not to be used outside core vfs.
2142  *
2143  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2144  * held, and rcu_read_lock held. The returned dentry must not be stored into
2145  * without taking d_lock and checking d_seq sequence count against @seq
2146  * returned here.
2147  *
2148  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2149  * function.
2150  *
2151  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2152  * the returned dentry, so long as its parent's seqlock is checked after the
2153  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2154  * is formed, giving integrity down the path walk.
2155  *
2156  * NOTE! The caller *has* to check the resulting dentry against the sequence
2157  * number we've returned before using any of the resulting dentry state!
2158  */
2159 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2160                                 const struct qstr *name,
2161                                 unsigned *seqp)
2162 {
2163         u64 hashlen = name->hash_len;
2164         const unsigned char *str = name->name;
2165         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2166         struct hlist_bl_node *node;
2167         struct dentry *dentry;
2168
2169         /*
2170          * Note: There is significant duplication with __d_lookup_rcu which is
2171          * required to prevent single threaded performance regressions
2172          * especially on architectures where smp_rmb (in seqcounts) are costly.
2173          * Keep the two functions in sync.
2174          */
2175
2176         /*
2177          * The hash list is protected using RCU.
2178          *
2179          * Carefully use d_seq when comparing a candidate dentry, to avoid
2180          * races with d_move().
2181          *
2182          * It is possible that concurrent renames can mess up our list
2183          * walk here and result in missing our dentry, resulting in the
2184          * false-negative result. d_lookup() protects against concurrent
2185          * renames using rename_lock seqlock.
2186          *
2187          * See Documentation/filesystems/path-lookup.txt for more details.
2188          */
2189         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2190                 unsigned seq;
2191
2192 seqretry:
2193                 /*
2194                  * The dentry sequence count protects us from concurrent
2195                  * renames, and thus protects parent and name fields.
2196                  *
2197                  * The caller must perform a seqcount check in order
2198                  * to do anything useful with the returned dentry.
2199                  *
2200                  * NOTE! We do a "raw" seqcount_begin here. That means that
2201                  * we don't wait for the sequence count to stabilize if it
2202                  * is in the middle of a sequence change. If we do the slow
2203                  * dentry compare, we will do seqretries until it is stable,
2204                  * and if we end up with a successful lookup, we actually
2205                  * want to exit RCU lookup anyway.
2206                  *
2207                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2208                  * we are still guaranteed NUL-termination of ->d_name.name.
2209                  */
2210                 seq = raw_seqcount_begin(&dentry->d_seq);
2211                 if (dentry->d_parent != parent)
2212                         continue;
2213                 if (d_unhashed(dentry))
2214                         continue;
2215
2216                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2217                         int tlen;
2218                         const char *tname;
2219                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2220                                 continue;
2221                         tlen = dentry->d_name.len;
2222                         tname = dentry->d_name.name;
2223                         /* we want a consistent (name,len) pair */
2224                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2225                                 cpu_relax();
2226                                 goto seqretry;
2227                         }
2228                         if (parent->d_op->d_compare(dentry,
2229                                                     tlen, tname, name) != 0)
2230                                 continue;
2231                 } else {
2232                         if (dentry->d_name.hash_len != hashlen)
2233                                 continue;
2234                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2235                                 continue;
2236                 }
2237                 *seqp = seq;
2238                 return dentry;
2239         }
2240         return NULL;
2241 }
2242
2243 /**
2244  * d_lookup - search for a dentry
2245  * @parent: parent dentry
2246  * @name: qstr of name we wish to find
2247  * Returns: dentry, or NULL
2248  *
2249  * d_lookup searches the children of the parent dentry for the name in
2250  * question. If the dentry is found its reference count is incremented and the
2251  * dentry is returned. The caller must use dput to free the entry when it has
2252  * finished using it. %NULL is returned if the dentry does not exist.
2253  */
2254 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2255 {
2256         struct dentry *dentry;
2257         unsigned seq;
2258
2259         do {
2260                 seq = read_seqbegin(&rename_lock);
2261                 dentry = __d_lookup(parent, name);
2262                 if (dentry)
2263                         break;
2264         } while (read_seqretry(&rename_lock, seq));
2265         return dentry;
2266 }
2267 EXPORT_SYMBOL(d_lookup);
2268
2269 /**
2270  * __d_lookup - search for a dentry (racy)
2271  * @parent: parent dentry
2272  * @name: qstr of name we wish to find
2273  * Returns: dentry, or NULL
2274  *
2275  * __d_lookup is like d_lookup, however it may (rarely) return a
2276  * false-negative result due to unrelated rename activity.
2277  *
2278  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2279  * however it must be used carefully, eg. with a following d_lookup in
2280  * the case of failure.
2281  *
2282  * __d_lookup callers must be commented.
2283  */
2284 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2285 {
2286         unsigned int hash = name->hash;
2287         struct hlist_bl_head *b = d_hash(hash);
2288         struct hlist_bl_node *node;
2289         struct dentry *found = NULL;
2290         struct dentry *dentry;
2291
2292         /*
2293          * Note: There is significant duplication with __d_lookup_rcu which is
2294          * required to prevent single threaded performance regressions
2295          * especially on architectures where smp_rmb (in seqcounts) are costly.
2296          * Keep the two functions in sync.
2297          */
2298
2299         /*
2300          * The hash list is protected using RCU.
2301          *
2302          * Take d_lock when comparing a candidate dentry, to avoid races
2303          * with d_move().
2304          *
2305          * It is possible that concurrent renames can mess up our list
2306          * walk here and result in missing our dentry, resulting in the
2307          * false-negative result. d_lookup() protects against concurrent
2308          * renames using rename_lock seqlock.
2309          *
2310          * See Documentation/filesystems/path-lookup.txt for more details.
2311          */
2312         rcu_read_lock();
2313         
2314         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2315
2316                 if (dentry->d_name.hash != hash)
2317                         continue;
2318
2319                 spin_lock(&dentry->d_lock);
2320                 if (dentry->d_parent != parent)
2321                         goto next;
2322                 if (d_unhashed(dentry))
2323                         goto next;
2324
2325                 if (!d_same_name(dentry, parent, name))
2326                         goto next;
2327
2328                 dentry->d_lockref.count++;
2329                 found = dentry;
2330                 spin_unlock(&dentry->d_lock);
2331                 break;
2332 next:
2333                 spin_unlock(&dentry->d_lock);
2334         }
2335         rcu_read_unlock();
2336
2337         return found;
2338 }
2339
2340 /**
2341  * d_hash_and_lookup - hash the qstr then search for a dentry
2342  * @dir: Directory to search in
2343  * @name: qstr of name we wish to find
2344  *
2345  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2346  */
2347 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2348 {
2349         /*
2350          * Check for a fs-specific hash function. Note that we must
2351          * calculate the standard hash first, as the d_op->d_hash()
2352          * routine may choose to leave the hash value unchanged.
2353          */
2354         name->hash = full_name_hash(dir, name->name, name->len);
2355         if (dir->d_flags & DCACHE_OP_HASH) {
2356                 int err = dir->d_op->d_hash(dir, name);
2357                 if (unlikely(err < 0))
2358                         return ERR_PTR(err);
2359         }
2360         return d_lookup(dir, name);
2361 }
2362 EXPORT_SYMBOL(d_hash_and_lookup);
2363
2364 /*
2365  * When a file is deleted, we have two options:
2366  * - turn this dentry into a negative dentry
2367  * - unhash this dentry and free it.
2368  *
2369  * Usually, we want to just turn this into
2370  * a negative dentry, but if anybody else is
2371  * currently using the dentry or the inode
2372  * we can't do that and we fall back on removing
2373  * it from the hash queues and waiting for
2374  * it to be deleted later when it has no users
2375  */
2376  
2377 /**
2378  * d_delete - delete a dentry
2379  * @dentry: The dentry to delete
2380  *
2381  * Turn the dentry into a negative dentry if possible, otherwise
2382  * remove it from the hash queues so it can be deleted later
2383  */
2384  
2385 void d_delete(struct dentry * dentry)
2386 {
2387         struct inode *inode = dentry->d_inode;
2388         int isdir = d_is_dir(dentry);
2389
2390         spin_lock(&inode->i_lock);
2391         spin_lock(&dentry->d_lock);
2392         /*
2393          * Are we the only user?
2394          */
2395         if (dentry->d_lockref.count == 1) {
2396                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2397                 dentry_unlink_inode(dentry);
2398         } else {
2399                 __d_drop(dentry);
2400                 spin_unlock(&dentry->d_lock);
2401                 spin_unlock(&inode->i_lock);
2402         }
2403         fsnotify_nameremove(dentry, isdir);
2404 }
2405 EXPORT_SYMBOL(d_delete);
2406
2407 static void __d_rehash(struct dentry *entry)
2408 {
2409         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2410
2411         hlist_bl_lock(b);
2412         hlist_bl_add_head_rcu(&entry->d_hash, b);
2413         hlist_bl_unlock(b);
2414 }
2415
2416 /**
2417  * d_rehash     - add an entry back to the hash
2418  * @entry: dentry to add to the hash
2419  *
2420  * Adds a dentry to the hash according to its name.
2421  */
2422  
2423 void d_rehash(struct dentry * entry)
2424 {
2425         spin_lock(&entry->d_lock);
2426         __d_rehash(entry);
2427         spin_unlock(&entry->d_lock);
2428 }
2429 EXPORT_SYMBOL(d_rehash);
2430
2431 static inline unsigned start_dir_add(struct inode *dir)
2432 {
2433
2434         for (;;) {
2435                 unsigned n = dir->i_dir_seq;
2436                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2437                         return n;
2438                 cpu_relax();
2439         }
2440 }
2441
2442 static inline void end_dir_add(struct inode *dir, unsigned n)
2443 {
2444         smp_store_release(&dir->i_dir_seq, n + 2);
2445 }
2446
2447 static void d_wait_lookup(struct dentry *dentry)
2448 {
2449         if (d_in_lookup(dentry)) {
2450                 DECLARE_WAITQUEUE(wait, current);
2451                 add_wait_queue(dentry->d_wait, &wait);
2452                 do {
2453                         set_current_state(TASK_UNINTERRUPTIBLE);
2454                         spin_unlock(&dentry->d_lock);
2455                         schedule();
2456                         spin_lock(&dentry->d_lock);
2457                 } while (d_in_lookup(dentry));
2458         }
2459 }
2460
2461 struct dentry *d_alloc_parallel(struct dentry *parent,
2462                                 const struct qstr *name,
2463                                 wait_queue_head_t *wq)
2464 {
2465         unsigned int hash = name->hash;
2466         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2467         struct hlist_bl_node *node;
2468         struct dentry *new = d_alloc(parent, name);
2469         struct dentry *dentry;
2470         unsigned seq, r_seq, d_seq;
2471
2472         if (unlikely(!new))
2473                 return ERR_PTR(-ENOMEM);
2474
2475 retry:
2476         rcu_read_lock();
2477         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2478         r_seq = read_seqbegin(&rename_lock);
2479         dentry = __d_lookup_rcu(parent, name, &d_seq);
2480         if (unlikely(dentry)) {
2481                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2482                         rcu_read_unlock();
2483                         goto retry;
2484                 }
2485                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2486                         rcu_read_unlock();
2487                         dput(dentry);
2488                         goto retry;
2489                 }
2490                 rcu_read_unlock();
2491                 dput(new);
2492                 return dentry;
2493         }
2494         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2495                 rcu_read_unlock();
2496                 goto retry;
2497         }
2498
2499         if (unlikely(seq & 1)) {
2500                 rcu_read_unlock();
2501                 goto retry;
2502         }
2503
2504         hlist_bl_lock(b);
2505         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2506                 hlist_bl_unlock(b);
2507                 rcu_read_unlock();
2508                 goto retry;
2509         }
2510         /*
2511          * No changes for the parent since the beginning of d_lookup().
2512          * Since all removals from the chain happen with hlist_bl_lock(),
2513          * any potential in-lookup matches are going to stay here until
2514          * we unlock the chain.  All fields are stable in everything
2515          * we encounter.
2516          */
2517         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2518                 if (dentry->d_name.hash != hash)
2519                         continue;
2520                 if (dentry->d_parent != parent)
2521                         continue;
2522                 if (!d_same_name(dentry, parent, name))
2523                         continue;
2524                 hlist_bl_unlock(b);
2525                 /* now we can try to grab a reference */
2526                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2527                         rcu_read_unlock();
2528                         goto retry;
2529                 }
2530
2531                 rcu_read_unlock();
2532                 /*
2533                  * somebody is likely to be still doing lookup for it;
2534                  * wait for them to finish
2535                  */
2536                 spin_lock(&dentry->d_lock);
2537                 d_wait_lookup(dentry);
2538                 /*
2539                  * it's not in-lookup anymore; in principle we should repeat
2540                  * everything from dcache lookup, but it's likely to be what
2541                  * d_lookup() would've found anyway.  If it is, just return it;
2542                  * otherwise we really have to repeat the whole thing.
2543                  */
2544                 if (unlikely(dentry->d_name.hash != hash))
2545                         goto mismatch;
2546                 if (unlikely(dentry->d_parent != parent))
2547                         goto mismatch;
2548                 if (unlikely(d_unhashed(dentry)))
2549                         goto mismatch;
2550                 if (unlikely(!d_same_name(dentry, parent, name)))
2551                         goto mismatch;
2552                 /* OK, it *is* a hashed match; return it */
2553                 spin_unlock(&dentry->d_lock);
2554                 dput(new);
2555                 return dentry;
2556         }
2557         rcu_read_unlock();
2558         /* we can't take ->d_lock here; it's OK, though. */
2559         new->d_flags |= DCACHE_PAR_LOOKUP;
2560         new->d_wait = wq;
2561         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2562         hlist_bl_unlock(b);
2563         return new;
2564 mismatch:
2565         spin_unlock(&dentry->d_lock);
2566         dput(dentry);
2567         goto retry;
2568 }
2569 EXPORT_SYMBOL(d_alloc_parallel);
2570
2571 void __d_lookup_done(struct dentry *dentry)
2572 {
2573         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2574                                                  dentry->d_name.hash);
2575         hlist_bl_lock(b);
2576         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2577         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2578         wake_up_all(dentry->d_wait);
2579         dentry->d_wait = NULL;
2580         hlist_bl_unlock(b);
2581         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2582         INIT_LIST_HEAD(&dentry->d_lru);
2583 }
2584 EXPORT_SYMBOL(__d_lookup_done);
2585
2586 /* inode->i_lock held if inode is non-NULL */
2587
2588 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2589 {
2590         struct inode *dir = NULL;
2591         unsigned n;
2592         spin_lock(&dentry->d_lock);
2593         if (unlikely(d_in_lookup(dentry))) {
2594                 dir = dentry->d_parent->d_inode;
2595                 n = start_dir_add(dir);
2596                 __d_lookup_done(dentry);
2597         }
2598         if (inode) {
2599                 unsigned add_flags = d_flags_for_inode(inode);
2600                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2601                 raw_write_seqcount_begin(&dentry->d_seq);
2602                 __d_set_inode_and_type(dentry, inode, add_flags);
2603                 raw_write_seqcount_end(&dentry->d_seq);
2604                 fsnotify_update_flags(dentry);
2605         }
2606         __d_rehash(dentry);
2607         if (dir)
2608                 end_dir_add(dir, n);
2609         spin_unlock(&dentry->d_lock);
2610         if (inode)
2611                 spin_unlock(&inode->i_lock);
2612 }
2613
2614 /**
2615  * d_add - add dentry to hash queues
2616  * @entry: dentry to add
2617  * @inode: The inode to attach to this dentry
2618  *
2619  * This adds the entry to the hash queues and initializes @inode.
2620  * The entry was actually filled in earlier during d_alloc().
2621  */
2622
2623 void d_add(struct dentry *entry, struct inode *inode)
2624 {
2625         if (inode) {
2626                 security_d_instantiate(entry, inode);
2627                 spin_lock(&inode->i_lock);
2628         }
2629         __d_add(entry, inode);
2630 }
2631 EXPORT_SYMBOL(d_add);
2632
2633 /**
2634  * d_exact_alias - find and hash an exact unhashed alias
2635  * @entry: dentry to add
2636  * @inode: The inode to go with this dentry
2637  *
2638  * If an unhashed dentry with the same name/parent and desired
2639  * inode already exists, hash and return it.  Otherwise, return
2640  * NULL.
2641  *
2642  * Parent directory should be locked.
2643  */
2644 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2645 {
2646         struct dentry *alias;
2647         unsigned int hash = entry->d_name.hash;
2648
2649         spin_lock(&inode->i_lock);
2650         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2651                 /*
2652                  * Don't need alias->d_lock here, because aliases with
2653                  * d_parent == entry->d_parent are not subject to name or
2654                  * parent changes, because the parent inode i_mutex is held.
2655                  */
2656                 if (alias->d_name.hash != hash)
2657                         continue;
2658                 if (alias->d_parent != entry->d_parent)
2659                         continue;
2660                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2661                         continue;
2662                 spin_lock(&alias->d_lock);
2663                 if (!d_unhashed(alias)) {
2664                         spin_unlock(&alias->d_lock);
2665                         alias = NULL;
2666                 } else {
2667                         __dget_dlock(alias);
2668                         __d_rehash(alias);
2669                         spin_unlock(&alias->d_lock);
2670                 }
2671                 spin_unlock(&inode->i_lock);
2672                 return alias;
2673         }
2674         spin_unlock(&inode->i_lock);
2675         return NULL;
2676 }
2677 EXPORT_SYMBOL(d_exact_alias);
2678
2679 /**
2680  * dentry_update_name_case - update case insensitive dentry with a new name
2681  * @dentry: dentry to be updated
2682  * @name: new name
2683  *
2684  * Update a case insensitive dentry with new case of name.
2685  *
2686  * dentry must have been returned by d_lookup with name @name. Old and new
2687  * name lengths must match (ie. no d_compare which allows mismatched name
2688  * lengths).
2689  *
2690  * Parent inode i_mutex must be held over d_lookup and into this call (to
2691  * keep renames and concurrent inserts, and readdir(2) away).
2692  */
2693 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2694 {
2695         BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2696         BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2697
2698         spin_lock(&dentry->d_lock);
2699         write_seqcount_begin(&dentry->d_seq);
2700         memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2701         write_seqcount_end(&dentry->d_seq);
2702         spin_unlock(&dentry->d_lock);
2703 }
2704 EXPORT_SYMBOL(dentry_update_name_case);
2705
2706 static void swap_names(struct dentry *dentry, struct dentry *target)
2707 {
2708         if (unlikely(dname_external(target))) {
2709                 if (unlikely(dname_external(dentry))) {
2710                         /*
2711                          * Both external: swap the pointers
2712                          */
2713                         swap(target->d_name.name, dentry->d_name.name);
2714                 } else {
2715                         /*
2716                          * dentry:internal, target:external.  Steal target's
2717                          * storage and make target internal.
2718                          */
2719                         memcpy(target->d_iname, dentry->d_name.name,
2720                                         dentry->d_name.len + 1);
2721                         dentry->d_name.name = target->d_name.name;
2722                         target->d_name.name = target->d_iname;
2723                 }
2724         } else {
2725                 if (unlikely(dname_external(dentry))) {
2726                         /*
2727                          * dentry:external, target:internal.  Give dentry's
2728                          * storage to target and make dentry internal
2729                          */
2730                         memcpy(dentry->d_iname, target->d_name.name,
2731                                         target->d_name.len + 1);
2732                         target->d_name.name = dentry->d_name.name;
2733                         dentry->d_name.name = dentry->d_iname;
2734                 } else {
2735                         /*
2736                          * Both are internal.
2737                          */
2738                         unsigned int i;
2739                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2740                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2741                                 swap(((long *) &dentry->d_iname)[i],
2742                                      ((long *) &target->d_iname)[i]);
2743                         }
2744                 }
2745         }
2746         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2747 }
2748
2749 static void copy_name(struct dentry *dentry, struct dentry *target)
2750 {
2751         struct external_name *old_name = NULL;
2752         if (unlikely(dname_external(dentry)))
2753                 old_name = external_name(dentry);
2754         if (unlikely(dname_external(target))) {
2755                 atomic_inc(&external_name(target)->u.count);
2756                 dentry->d_name = target->d_name;
2757         } else {
2758                 memcpy(dentry->d_iname, target->d_name.name,
2759                                 target->d_name.len + 1);
2760                 dentry->d_name.name = dentry->d_iname;
2761                 dentry->d_name.hash_len = target->d_name.hash_len;
2762         }
2763         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2764                 call_rcu(&old_name->u.head, __d_free_external_name);
2765 }
2766
2767 /*
2768  * __d_move - move a dentry
2769  * @dentry: entry to move
2770  * @target: new dentry
2771  * @exchange: exchange the two dentries
2772  *
2773  * Update the dcache to reflect the move of a file name. Negative
2774  * dcache entries should not be moved in this way. Caller must hold
2775  * rename_lock, the i_mutex of the source and target directories,
2776  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2777  */
2778 static void __d_move(struct dentry *dentry, struct dentry *target,
2779                      bool exchange)
2780 {
2781         struct dentry *old_parent, *p;
2782         struct inode *dir = NULL;
2783         unsigned n;
2784
2785         WARN_ON(!dentry->d_inode);
2786         if (WARN_ON(dentry == target))
2787                 return;
2788
2789         BUG_ON(d_ancestor(target, dentry));
2790         old_parent = dentry->d_parent;
2791         p = d_ancestor(old_parent, target);
2792         if (IS_ROOT(dentry)) {
2793                 BUG_ON(p);
2794                 spin_lock(&target->d_parent->d_lock);
2795         } else if (!p) {
2796                 /* target is not a descendent of dentry->d_parent */
2797                 spin_lock(&target->d_parent->d_lock);
2798                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2799         } else {
2800                 BUG_ON(p == dentry);
2801                 spin_lock(&old_parent->d_lock);
2802                 if (p != target)
2803                         spin_lock_nested(&target->d_parent->d_lock,
2804                                         DENTRY_D_LOCK_NESTED);
2805         }
2806         spin_lock_nested(&dentry->d_lock, 2);
2807         spin_lock_nested(&target->d_lock, 3);
2808
2809         if (unlikely(d_in_lookup(target))) {
2810                 dir = target->d_parent->d_inode;
2811                 n = start_dir_add(dir);
2812                 __d_lookup_done(target);
2813         }
2814
2815         write_seqcount_begin(&dentry->d_seq);
2816         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2817
2818         /* unhash both */
2819         if (!d_unhashed(dentry))
2820                 ___d_drop(dentry);
2821         if (!d_unhashed(target))
2822                 ___d_drop(target);
2823
2824         /* ... and switch them in the tree */
2825         dentry->d_parent = target->d_parent;
2826         if (!exchange) {
2827                 copy_name(dentry, target);
2828                 target->d_hash.pprev = NULL;
2829                 dentry->d_parent->d_lockref.count++;
2830                 if (dentry == old_parent)
2831                         dentry->d_flags |= DCACHE_RCUACCESS;
2832                 else
2833                         WARN_ON(!--old_parent->d_lockref.count);
2834         } else {
2835                 target->d_parent = old_parent;
2836                 swap_names(dentry, target);
2837                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2838                 __d_rehash(target);
2839                 fsnotify_update_flags(target);
2840         }
2841         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2842         __d_rehash(dentry);
2843         fsnotify_update_flags(dentry);
2844
2845         write_seqcount_end(&target->d_seq);
2846         write_seqcount_end(&dentry->d_seq);
2847
2848         if (dir)
2849                 end_dir_add(dir, n);
2850
2851         if (dentry->d_parent != old_parent)
2852                 spin_unlock(&dentry->d_parent->d_lock);
2853         if (dentry != old_parent)
2854                 spin_unlock(&old_parent->d_lock);
2855         spin_unlock(&target->d_lock);
2856         spin_unlock(&dentry->d_lock);
2857 }
2858
2859 /*
2860  * d_move - move a dentry
2861  * @dentry: entry to move
2862  * @target: new dentry
2863  *
2864  * Update the dcache to reflect the move of a file name. Negative
2865  * dcache entries should not be moved in this way. See the locking
2866  * requirements for __d_move.
2867  */
2868 void d_move(struct dentry *dentry, struct dentry *target)
2869 {
2870         write_seqlock(&rename_lock);
2871         __d_move(dentry, target, false);
2872         write_sequnlock(&rename_lock);
2873 }
2874 EXPORT_SYMBOL(d_move);
2875
2876 /*
2877  * d_exchange - exchange two dentries
2878  * @dentry1: first dentry
2879  * @dentry2: second dentry
2880  */
2881 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2882 {
2883         write_seqlock(&rename_lock);
2884
2885         WARN_ON(!dentry1->d_inode);
2886         WARN_ON(!dentry2->d_inode);
2887         WARN_ON(IS_ROOT(dentry1));
2888         WARN_ON(IS_ROOT(dentry2));
2889
2890         __d_move(dentry1, dentry2, true);
2891
2892         write_sequnlock(&rename_lock);
2893 }
2894
2895 /**
2896  * d_ancestor - search for an ancestor
2897  * @p1: ancestor dentry
2898  * @p2: child dentry
2899  *
2900  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2901  * an ancestor of p2, else NULL.
2902  */
2903 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2904 {
2905         struct dentry *p;
2906
2907         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2908                 if (p->d_parent == p1)
2909                         return p;
2910         }
2911         return NULL;
2912 }
2913
2914 /*
2915  * This helper attempts to cope with remotely renamed directories
2916  *
2917  * It assumes that the caller is already holding
2918  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2919  *
2920  * Note: If ever the locking in lock_rename() changes, then please
2921  * remember to update this too...
2922  */
2923 static int __d_unalias(struct inode *inode,
2924                 struct dentry *dentry, struct dentry *alias)
2925 {
2926         struct mutex *m1 = NULL;
2927         struct rw_semaphore *m2 = NULL;
2928         int ret = -ESTALE;
2929
2930         /* If alias and dentry share a parent, then no extra locks required */
2931         if (alias->d_parent == dentry->d_parent)
2932                 goto out_unalias;
2933
2934         /* See lock_rename() */
2935         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2936                 goto out_err;
2937         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2938         if (!inode_trylock_shared(alias->d_parent->d_inode))
2939                 goto out_err;
2940         m2 = &alias->d_parent->d_inode->i_rwsem;
2941 out_unalias:
2942         __d_move(alias, dentry, false);
2943         ret = 0;
2944 out_err:
2945         if (m2)
2946                 up_read(m2);
2947         if (m1)
2948                 mutex_unlock(m1);
2949         return ret;
2950 }
2951
2952 /**
2953  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2954  * @inode:  the inode which may have a disconnected dentry
2955  * @dentry: a negative dentry which we want to point to the inode.
2956  *
2957  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2958  * place of the given dentry and return it, else simply d_add the inode
2959  * to the dentry and return NULL.
2960  *
2961  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2962  * we should error out: directories can't have multiple aliases.
2963  *
2964  * This is needed in the lookup routine of any filesystem that is exportable
2965  * (via knfsd) so that we can build dcache paths to directories effectively.
2966  *
2967  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2968  * is returned.  This matches the expected return value of ->lookup.
2969  *
2970  * Cluster filesystems may call this function with a negative, hashed dentry.
2971  * In that case, we know that the inode will be a regular file, and also this
2972  * will only occur during atomic_open. So we need to check for the dentry
2973  * being already hashed only in the final case.
2974  */
2975 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2976 {
2977         if (IS_ERR(inode))
2978                 return ERR_CAST(inode);
2979
2980         BUG_ON(!d_unhashed(dentry));
2981
2982         if (!inode)
2983                 goto out;
2984
2985         security_d_instantiate(dentry, inode);
2986         spin_lock(&inode->i_lock);
2987         if (S_ISDIR(inode->i_mode)) {
2988                 struct dentry *new = __d_find_any_alias(inode);
2989                 if (unlikely(new)) {
2990                         /* The reference to new ensures it remains an alias */
2991                         spin_unlock(&inode->i_lock);
2992                         write_seqlock(&rename_lock);
2993                         if (unlikely(d_ancestor(new, dentry))) {
2994                                 write_sequnlock(&rename_lock);
2995                                 dput(new);
2996                                 new = ERR_PTR(-ELOOP);
2997                                 pr_warn_ratelimited(
2998                                         "VFS: Lookup of '%s' in %s %s"
2999                                         " would have caused loop\n",
3000                                         dentry->d_name.name,
3001                                         inode->i_sb->s_type->name,
3002                                         inode->i_sb->s_id);
3003                         } else if (!IS_ROOT(new)) {
3004                                 struct dentry *old_parent = dget(new->d_parent);
3005                                 int err = __d_unalias(inode, dentry, new);
3006                                 write_sequnlock(&rename_lock);
3007                                 if (err) {
3008                                         dput(new);
3009                                         new = ERR_PTR(err);
3010                                 }
3011                                 dput(old_parent);
3012                         } else {
3013                                 __d_move(new, dentry, false);
3014                                 write_sequnlock(&rename_lock);
3015                         }
3016                         iput(inode);
3017                         return new;
3018                 }
3019         }
3020 out:
3021         __d_add(dentry, inode);
3022         return NULL;
3023 }
3024 EXPORT_SYMBOL(d_splice_alias);
3025
3026 /*
3027  * Test whether new_dentry is a subdirectory of old_dentry.
3028  *
3029  * Trivially implemented using the dcache structure
3030  */
3031
3032 /**
3033  * is_subdir - is new dentry a subdirectory of old_dentry
3034  * @new_dentry: new dentry
3035  * @old_dentry: old dentry
3036  *
3037  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3038  * Returns false otherwise.
3039  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3040  */
3041   
3042 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3043 {
3044         bool result;
3045         unsigned seq;
3046
3047         if (new_dentry == old_dentry)
3048                 return true;
3049
3050         do {
3051                 /* for restarting inner loop in case of seq retry */
3052                 seq = read_seqbegin(&rename_lock);
3053                 /*
3054                  * Need rcu_readlock to protect against the d_parent trashing
3055                  * due to d_move
3056                  */
3057                 rcu_read_lock();
3058                 if (d_ancestor(old_dentry, new_dentry))
3059                         result = true;
3060                 else
3061                         result = false;
3062                 rcu_read_unlock();
3063         } while (read_seqretry(&rename_lock, seq));
3064
3065         return result;
3066 }
3067 EXPORT_SYMBOL(is_subdir);
3068
3069 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3070 {
3071         struct dentry *root = data;
3072         if (dentry != root) {
3073                 if (d_unhashed(dentry) || !dentry->d_inode)
3074                         return D_WALK_SKIP;
3075
3076                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3077                         dentry->d_flags |= DCACHE_GENOCIDE;
3078                         dentry->d_lockref.count--;
3079                 }
3080         }
3081         return D_WALK_CONTINUE;
3082 }
3083
3084 void d_genocide(struct dentry *parent)
3085 {
3086         d_walk(parent, parent, d_genocide_kill);
3087 }
3088
3089 EXPORT_SYMBOL(d_genocide);
3090
3091 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3092 {
3093         inode_dec_link_count(inode);
3094         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3095                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3096                 !d_unlinked(dentry));
3097         spin_lock(&dentry->d_parent->d_lock);
3098         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3099         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3100                                 (unsigned long long)inode->i_ino);
3101         spin_unlock(&dentry->d_lock);
3102         spin_unlock(&dentry->d_parent->d_lock);
3103         d_instantiate(dentry, inode);
3104 }
3105 EXPORT_SYMBOL(d_tmpfile);
3106
3107 static __initdata unsigned long dhash_entries;
3108 static int __init set_dhash_entries(char *str)
3109 {
3110         if (!str)
3111                 return 0;
3112         dhash_entries = simple_strtoul(str, &str, 0);
3113         return 1;
3114 }
3115 __setup("dhash_entries=", set_dhash_entries);
3116
3117 static void __init dcache_init_early(void)
3118 {
3119         /* If hashes are distributed across NUMA nodes, defer
3120          * hash allocation until vmalloc space is available.
3121          */
3122         if (hashdist)
3123                 return;
3124
3125         dentry_hashtable =
3126                 alloc_large_system_hash("Dentry cache",
3127                                         sizeof(struct hlist_bl_head),
3128                                         dhash_entries,
3129                                         13,
3130                                         HASH_EARLY | HASH_ZERO,
3131                                         &d_hash_shift,
3132                                         NULL,
3133                                         0,
3134                                         0);
3135         d_hash_shift = 32 - d_hash_shift;
3136 }
3137
3138 static void __init dcache_init(void)
3139 {
3140         /*
3141          * A constructor could be added for stable state like the lists,
3142          * but it is probably not worth it because of the cache nature
3143          * of the dcache.
3144          */
3145         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3146                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3147                 d_iname);
3148
3149         /* Hash may have been set up in dcache_init_early */
3150         if (!hashdist)
3151                 return;
3152
3153         dentry_hashtable =
3154                 alloc_large_system_hash("Dentry cache",
3155                                         sizeof(struct hlist_bl_head),
3156                                         dhash_entries,
3157                                         13,
3158                                         HASH_ZERO,
3159                                         &d_hash_shift,
3160                                         NULL,
3161                                         0,
3162                                         0);
3163         d_hash_shift = 32 - d_hash_shift;
3164 }
3165
3166 /* SLAB cache for __getname() consumers */
3167 struct kmem_cache *names_cachep __read_mostly;
3168 EXPORT_SYMBOL(names_cachep);
3169
3170 void __init vfs_caches_init_early(void)
3171 {
3172         int i;
3173
3174         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3175                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3176
3177         dcache_init_early();
3178         inode_init_early();
3179 }
3180
3181 void __init vfs_caches_init(void)
3182 {
3183         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3184                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3185
3186         dcache_init();
3187         inode_init();
3188         files_init();
3189         files_maxfiles_init();
3190         mnt_init();
3191         bdev_cache_init();
3192         chrdev_init();
3193 }