OSDN Git Service

drm/vmwgfx: Fix double free in vmw_recv_msg()
[android-x86/kernel.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177                                   struct wb_writeback_work *work)
178 {
179         struct wb_completion *done = work->done;
180
181         if (work->auto_free)
182                 kfree(work);
183         if (done && atomic_dec_and_test(&done->cnt))
184                 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188                           struct wb_writeback_work *work)
189 {
190         trace_writeback_queue(wb, work);
191
192         if (work->done)
193                 atomic_inc(&work->done->cnt);
194
195         spin_lock_bh(&wb->work_lock);
196
197         if (test_bit(WB_registered, &wb->state)) {
198                 list_add_tail(&work->list, &wb->work_list);
199                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200         } else
201                 finish_writeback_work(wb, work);
202
203         spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218                                    struct wb_completion *done)
219 {
220         atomic_dec(&done->cnt);         /* put down the initial count */
221         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
231
232 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234                                         /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
236                                         /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238                                         /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245         struct backing_dev_info *bdi = inode_to_bdi(inode);
246         struct bdi_writeback *wb = NULL;
247
248         if (inode_cgwb_enabled(inode)) {
249                 struct cgroup_subsys_state *memcg_css;
250
251                 if (page) {
252                         memcg_css = mem_cgroup_css_from_page(page);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                 } else {
255                         /* must pin memcg_css, see wb_get_create() */
256                         memcg_css = task_get_css(current, memory_cgrp_id);
257                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258                         css_put(memcg_css);
259                 }
260         }
261
262         if (!wb)
263                 wb = &bdi->wb;
264
265         /*
266          * There may be multiple instances of this function racing to
267          * update the same inode.  Use cmpxchg() to tell the winner.
268          */
269         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270                 wb_put(wb);
271 }
272
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283         __releases(&inode->i_lock)
284         __acquires(&wb->list_lock)
285 {
286         while (true) {
287                 struct bdi_writeback *wb = inode_to_wb(inode);
288
289                 /*
290                  * inode_to_wb() association is protected by both
291                  * @inode->i_lock and @wb->list_lock but list_lock nests
292                  * outside i_lock.  Drop i_lock and verify that the
293                  * association hasn't changed after acquiring list_lock.
294                  */
295                 wb_get(wb);
296                 spin_unlock(&inode->i_lock);
297                 spin_lock(&wb->list_lock);
298
299                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300                 if (likely(wb == inode->i_wb)) {
301                         wb_put(wb);     /* @inode already has ref */
302                         return wb;
303                 }
304
305                 spin_unlock(&wb->list_lock);
306                 wb_put(wb);
307                 cpu_relax();
308                 spin_lock(&inode->i_lock);
309         }
310 }
311
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320         __acquires(&wb->list_lock)
321 {
322         spin_lock(&inode->i_lock);
323         return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327         struct inode            *inode;
328         struct bdi_writeback    *new_wb;
329
330         struct rcu_head         rcu_head;
331         struct work_struct      work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336         down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341         up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346         struct inode_switch_wbs_context *isw =
347                 container_of(work, struct inode_switch_wbs_context, work);
348         struct inode *inode = isw->inode;
349         struct backing_dev_info *bdi = inode_to_bdi(inode);
350         struct address_space *mapping = inode->i_mapping;
351         struct bdi_writeback *old_wb = inode->i_wb;
352         struct bdi_writeback *new_wb = isw->new_wb;
353         struct radix_tree_iter iter;
354         bool switched = false;
355         void **slot;
356
357         /*
358          * If @inode switches cgwb membership while sync_inodes_sb() is
359          * being issued, sync_inodes_sb() might miss it.  Synchronize.
360          */
361         down_read(&bdi->wb_switch_rwsem);
362
363         /*
364          * By the time control reaches here, RCU grace period has passed
365          * since I_WB_SWITCH assertion and all wb stat update transactions
366          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367          * synchronizing against mapping->tree_lock.
368          *
369          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370          * gives us exclusion against all wb related operations on @inode
371          * including IO list manipulations and stat updates.
372          */
373         if (old_wb < new_wb) {
374                 spin_lock(&old_wb->list_lock);
375                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376         } else {
377                 spin_lock(&new_wb->list_lock);
378                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379         }
380         spin_lock(&inode->i_lock);
381         spin_lock_irq(&mapping->tree_lock);
382
383         /*
384          * Once I_FREEING is visible under i_lock, the eviction path owns
385          * the inode and we shouldn't modify ->i_io_list.
386          */
387         if (unlikely(inode->i_state & I_FREEING))
388                 goto skip_switch;
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under underwriteback.
394          */
395         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396                                    PAGECACHE_TAG_DIRTY) {
397                 struct page *page = radix_tree_deref_slot_protected(slot,
398                                                         &mapping->tree_lock);
399                 if (likely(page) && PageDirty(page)) {
400                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
401                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
402                 }
403         }
404
405         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406                                    PAGECACHE_TAG_WRITEBACK) {
407                 struct page *page = radix_tree_deref_slot_protected(slot,
408                                                         &mapping->tree_lock);
409                 if (likely(page)) {
410                         WARN_ON_ONCE(!PageWriteback(page));
411                         __dec_wb_stat(old_wb, WB_WRITEBACK);
412                         __inc_wb_stat(new_wb, WB_WRITEBACK);
413                 }
414         }
415
416         wb_get(new_wb);
417
418         /*
419          * Transfer to @new_wb's IO list if necessary.  The specific list
420          * @inode was on is ignored and the inode is put on ->b_dirty which
421          * is always correct including from ->b_dirty_time.  The transfer
422          * preserves @inode->dirtied_when ordering.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 struct inode *pos;
426
427                 inode_io_list_del_locked(inode, old_wb);
428                 inode->i_wb = new_wb;
429                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430                         if (time_after_eq(inode->dirtied_when,
431                                           pos->dirtied_when))
432                                 break;
433                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         spin_unlock_irq(&mapping->tree_lock);
451         spin_unlock(&inode->i_lock);
452         spin_unlock(&new_wb->list_lock);
453         spin_unlock(&old_wb->list_lock);
454
455         up_read(&bdi->wb_switch_rwsem);
456
457         if (switched) {
458                 wb_wakeup(new_wb);
459                 wb_put(old_wb);
460         }
461         wb_put(new_wb);
462
463         iput(inode);
464         kfree(isw);
465
466         atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471         struct inode_switch_wbs_context *isw = container_of(rcu_head,
472                                 struct inode_switch_wbs_context, rcu_head);
473
474         /* needs to grab bh-unsafe locks, bounce to work item */
475         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476         queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480  * inode_switch_wbs - change the wb association of an inode
481  * @inode: target inode
482  * @new_wb_id: ID of the new wb
483  *
484  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
485  * switching is performed asynchronously and may fail silently.
486  */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489         struct backing_dev_info *bdi = inode_to_bdi(inode);
490         struct cgroup_subsys_state *memcg_css;
491         struct inode_switch_wbs_context *isw;
492
493         /* noop if seems to be already in progress */
494         if (inode->i_state & I_WB_SWITCH)
495                 return;
496
497         /*
498          * Avoid starting new switches while sync_inodes_sb() is in
499          * progress.  Otherwise, if the down_write protected issue path
500          * blocks heavily, we might end up starting a large number of
501          * switches which will block on the rwsem.
502          */
503         if (!down_read_trylock(&bdi->wb_switch_rwsem))
504                 return;
505
506         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507         if (!isw)
508                 goto out_unlock;
509
510         /* find and pin the new wb */
511         rcu_read_lock();
512         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513         if (memcg_css)
514                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515         rcu_read_unlock();
516         if (!isw->new_wb)
517                 goto out_free;
518
519         /* while holding I_WB_SWITCH, no one else can update the association */
520         spin_lock(&inode->i_lock);
521         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
522             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523             inode_to_wb(inode) == isw->new_wb) {
524                 spin_unlock(&inode->i_lock);
525                 goto out_free;
526         }
527         inode->i_state |= I_WB_SWITCH;
528         __iget(inode);
529         spin_unlock(&inode->i_lock);
530
531         isw->inode = inode;
532
533         /*
534          * In addition to synchronizing among switchers, I_WB_SWITCH tells
535          * the RCU protected stat update paths to grab the mapping's
536          * tree_lock so that stat transfer can synchronize against them.
537          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538          */
539         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541         atomic_inc(&isw_nr_in_flight);
542
543         goto out_unlock;
544
545 out_free:
546         if (isw->new_wb)
547                 wb_put(isw->new_wb);
548         kfree(isw);
549 out_unlock:
550         up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555  * @wbc: writeback_control of interest
556  * @inode: target inode
557  *
558  * @inode is locked and about to be written back under the control of @wbc.
559  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
560  * writeback completion, wbc_detach_inode() should be called.  This is used
561  * to track the cgroup writeback context.
562  */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564                                  struct inode *inode)
565 {
566         if (!inode_cgwb_enabled(inode)) {
567                 spin_unlock(&inode->i_lock);
568                 return;
569         }
570
571         wbc->wb = inode_to_wb(inode);
572         wbc->inode = inode;
573
574         wbc->wb_id = wbc->wb->memcg_css->id;
575         wbc->wb_lcand_id = inode->i_wb_frn_winner;
576         wbc->wb_tcand_id = 0;
577         wbc->wb_bytes = 0;
578         wbc->wb_lcand_bytes = 0;
579         wbc->wb_tcand_bytes = 0;
580
581         wb_get(wbc->wb);
582         spin_unlock(&inode->i_lock);
583
584         /*
585          * A dying wb indicates that the memcg-blkcg mapping has changed
586          * and a new wb is already serving the memcg.  Switch immediately.
587          */
588         if (unlikely(wb_dying(wbc->wb)))
589                 inode_switch_wbs(inode, wbc->wb_id);
590 }
591
592 /**
593  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594  * @wbc: writeback_control of the just finished writeback
595  *
596  * To be called after a writeback attempt of an inode finishes and undoes
597  * wbc_attach_and_unlock_inode().  Can be called under any context.
598  *
599  * As concurrent write sharing of an inode is expected to be very rare and
600  * memcg only tracks page ownership on first-use basis severely confining
601  * the usefulness of such sharing, cgroup writeback tracks ownership
602  * per-inode.  While the support for concurrent write sharing of an inode
603  * is deemed unnecessary, an inode being written to by different cgroups at
604  * different points in time is a lot more common, and, more importantly,
605  * charging only by first-use can too readily lead to grossly incorrect
606  * behaviors (single foreign page can lead to gigabytes of writeback to be
607  * incorrectly attributed).
608  *
609  * To resolve this issue, cgroup writeback detects the majority dirtier of
610  * an inode and transfers the ownership to it.  To avoid unnnecessary
611  * oscillation, the detection mechanism keeps track of history and gives
612  * out the switch verdict only if the foreign usage pattern is stable over
613  * a certain amount of time and/or writeback attempts.
614  *
615  * On each writeback attempt, @wbc tries to detect the majority writer
616  * using Boyer-Moore majority vote algorithm.  In addition to the byte
617  * count from the majority voting, it also counts the bytes written for the
618  * current wb and the last round's winner wb (max of last round's current
619  * wb, the winner from two rounds ago, and the last round's majority
620  * candidate).  Keeping track of the historical winner helps the algorithm
621  * to semi-reliably detect the most active writer even when it's not the
622  * absolute majority.
623  *
624  * Once the winner of the round is determined, whether the winner is
625  * foreign or not and how much IO time the round consumed is recorded in
626  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
627  * over a certain threshold, the switch verdict is given.
628  */
629 void wbc_detach_inode(struct writeback_control *wbc)
630 {
631         struct bdi_writeback *wb = wbc->wb;
632         struct inode *inode = wbc->inode;
633         unsigned long avg_time, max_bytes, max_time;
634         u16 history;
635         int max_id;
636
637         if (!wb)
638                 return;
639
640         history = inode->i_wb_frn_history;
641         avg_time = inode->i_wb_frn_avg_time;
642
643         /* pick the winner of this round */
644         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646                 max_id = wbc->wb_id;
647                 max_bytes = wbc->wb_bytes;
648         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649                 max_id = wbc->wb_lcand_id;
650                 max_bytes = wbc->wb_lcand_bytes;
651         } else {
652                 max_id = wbc->wb_tcand_id;
653                 max_bytes = wbc->wb_tcand_bytes;
654         }
655
656         /*
657          * Calculate the amount of IO time the winner consumed and fold it
658          * into the running average kept per inode.  If the consumed IO
659          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660          * deciding whether to switch or not.  This is to prevent one-off
661          * small dirtiers from skewing the verdict.
662          */
663         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664                                 wb->avg_write_bandwidth);
665         if (avg_time)
666                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668         else
669                 avg_time = max_time;    /* immediate catch up on first run */
670
671         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672                 int slots;
673
674                 /*
675                  * The switch verdict is reached if foreign wb's consume
676                  * more than a certain proportion of IO time in a
677                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
678                  * history mask where each bit represents one sixteenth of
679                  * the period.  Determine the number of slots to shift into
680                  * history from @max_time.
681                  */
682                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684                 history <<= slots;
685                 if (wbc->wb_id != max_id)
686                         history |= (1U << slots) - 1;
687
688                 /*
689                  * Switch if the current wb isn't the consistent winner.
690                  * If there are multiple closely competing dirtiers, the
691                  * inode may switch across them repeatedly over time, which
692                  * is okay.  The main goal is avoiding keeping an inode on
693                  * the wrong wb for an extended period of time.
694                  */
695                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
696                         inode_switch_wbs(inode, max_id);
697         }
698
699         /*
700          * Multiple instances of this function may race to update the
701          * following fields but we don't mind occassional inaccuracies.
702          */
703         inode->i_wb_frn_winner = max_id;
704         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
705         inode->i_wb_frn_history = history;
706
707         wb_put(wbc->wb);
708         wbc->wb = NULL;
709 }
710
711 /**
712  * wbc_account_io - account IO issued during writeback
713  * @wbc: writeback_control of the writeback in progress
714  * @page: page being written out
715  * @bytes: number of bytes being written out
716  *
717  * @bytes from @page are about to written out during the writeback
718  * controlled by @wbc.  Keep the book for foreign inode detection.  See
719  * wbc_detach_inode().
720  */
721 void wbc_account_io(struct writeback_control *wbc, struct page *page,
722                     size_t bytes)
723 {
724         struct cgroup_subsys_state *css;
725         int id;
726
727         /*
728          * pageout() path doesn't attach @wbc to the inode being written
729          * out.  This is intentional as we don't want the function to block
730          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
731          * regular writeback instead of writing things out itself.
732          */
733         if (!wbc->wb)
734                 return;
735
736         css = mem_cgroup_css_from_page(page);
737         /* dead cgroups shouldn't contribute to inode ownership arbitration */
738         if (!(css->flags & CSS_ONLINE))
739                 return;
740
741         id = css->id;
742
743         if (id == wbc->wb_id) {
744                 wbc->wb_bytes += bytes;
745                 return;
746         }
747
748         if (id == wbc->wb_lcand_id)
749                 wbc->wb_lcand_bytes += bytes;
750
751         /* Boyer-Moore majority vote algorithm */
752         if (!wbc->wb_tcand_bytes)
753                 wbc->wb_tcand_id = id;
754         if (id == wbc->wb_tcand_id)
755                 wbc->wb_tcand_bytes += bytes;
756         else
757                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
758 }
759 EXPORT_SYMBOL_GPL(wbc_account_io);
760
761 /**
762  * inode_congested - test whether an inode is congested
763  * @inode: inode to test for congestion (may be NULL)
764  * @cong_bits: mask of WB_[a]sync_congested bits to test
765  *
766  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
767  * bits to test and the return value is the mask of set bits.
768  *
769  * If cgroup writeback is enabled for @inode, the congestion state is
770  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
771  * associated with @inode is congested; otherwise, the root wb's congestion
772  * state is used.
773  *
774  * @inode is allowed to be NULL as this function is often called on
775  * mapping->host which is NULL for the swapper space.
776  */
777 int inode_congested(struct inode *inode, int cong_bits)
778 {
779         /*
780          * Once set, ->i_wb never becomes NULL while the inode is alive.
781          * Start transaction iff ->i_wb is visible.
782          */
783         if (inode && inode_to_wb_is_valid(inode)) {
784                 struct bdi_writeback *wb;
785                 struct wb_lock_cookie lock_cookie = {};
786                 bool congested;
787
788                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
789                 congested = wb_congested(wb, cong_bits);
790                 unlocked_inode_to_wb_end(inode, &lock_cookie);
791                 return congested;
792         }
793
794         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
795 }
796 EXPORT_SYMBOL_GPL(inode_congested);
797
798 /**
799  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
800  * @wb: target bdi_writeback to split @nr_pages to
801  * @nr_pages: number of pages to write for the whole bdi
802  *
803  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
804  * relation to the total write bandwidth of all wb's w/ dirty inodes on
805  * @wb->bdi.
806  */
807 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
808 {
809         unsigned long this_bw = wb->avg_write_bandwidth;
810         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
811
812         if (nr_pages == LONG_MAX)
813                 return LONG_MAX;
814
815         /*
816          * This may be called on clean wb's and proportional distribution
817          * may not make sense, just use the original @nr_pages in those
818          * cases.  In general, we wanna err on the side of writing more.
819          */
820         if (!tot_bw || this_bw >= tot_bw)
821                 return nr_pages;
822         else
823                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
824 }
825
826 /**
827  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
828  * @bdi: target backing_dev_info
829  * @base_work: wb_writeback_work to issue
830  * @skip_if_busy: skip wb's which already have writeback in progress
831  *
832  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
833  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
834  * distributed to the busy wbs according to each wb's proportion in the
835  * total active write bandwidth of @bdi.
836  */
837 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
838                                   struct wb_writeback_work *base_work,
839                                   bool skip_if_busy)
840 {
841         struct bdi_writeback *last_wb = NULL;
842         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
843                                               struct bdi_writeback, bdi_node);
844
845         might_sleep();
846 restart:
847         rcu_read_lock();
848         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
849                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
850                 struct wb_writeback_work fallback_work;
851                 struct wb_writeback_work *work;
852                 long nr_pages;
853
854                 if (last_wb) {
855                         wb_put(last_wb);
856                         last_wb = NULL;
857                 }
858
859                 /* SYNC_ALL writes out I_DIRTY_TIME too */
860                 if (!wb_has_dirty_io(wb) &&
861                     (base_work->sync_mode == WB_SYNC_NONE ||
862                      list_empty(&wb->b_dirty_time)))
863                         continue;
864                 if (skip_if_busy && writeback_in_progress(wb))
865                         continue;
866
867                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
868
869                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
870                 if (work) {
871                         *work = *base_work;
872                         work->nr_pages = nr_pages;
873                         work->auto_free = 1;
874                         wb_queue_work(wb, work);
875                         continue;
876                 }
877
878                 /* alloc failed, execute synchronously using on-stack fallback */
879                 work = &fallback_work;
880                 *work = *base_work;
881                 work->nr_pages = nr_pages;
882                 work->auto_free = 0;
883                 work->done = &fallback_work_done;
884
885                 wb_queue_work(wb, work);
886
887                 /*
888                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
889                  * continuing iteration from @wb after dropping and
890                  * regrabbing rcu read lock.
891                  */
892                 wb_get(wb);
893                 last_wb = wb;
894
895                 rcu_read_unlock();
896                 wb_wait_for_completion(bdi, &fallback_work_done);
897                 goto restart;
898         }
899         rcu_read_unlock();
900
901         if (last_wb)
902                 wb_put(last_wb);
903 }
904
905 /**
906  * cgroup_writeback_umount - flush inode wb switches for umount
907  *
908  * This function is called when a super_block is about to be destroyed and
909  * flushes in-flight inode wb switches.  An inode wb switch goes through
910  * RCU and then workqueue, so the two need to be flushed in order to ensure
911  * that all previously scheduled switches are finished.  As wb switches are
912  * rare occurrences and synchronize_rcu() can take a while, perform
913  * flushing iff wb switches are in flight.
914  */
915 void cgroup_writeback_umount(void)
916 {
917         if (atomic_read(&isw_nr_in_flight)) {
918                 /*
919                  * Use rcu_barrier() to wait for all pending callbacks to
920                  * ensure that all in-flight wb switches are in the workqueue.
921                  */
922                 rcu_barrier();
923                 flush_workqueue(isw_wq);
924         }
925 }
926
927 static int __init cgroup_writeback_init(void)
928 {
929         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
930         if (!isw_wq)
931                 return -ENOMEM;
932         return 0;
933 }
934 fs_initcall(cgroup_writeback_init);
935
936 #else   /* CONFIG_CGROUP_WRITEBACK */
937
938 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
939 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
940
941 static struct bdi_writeback *
942 locked_inode_to_wb_and_lock_list(struct inode *inode)
943         __releases(&inode->i_lock)
944         __acquires(&wb->list_lock)
945 {
946         struct bdi_writeback *wb = inode_to_wb(inode);
947
948         spin_unlock(&inode->i_lock);
949         spin_lock(&wb->list_lock);
950         return wb;
951 }
952
953 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
954         __acquires(&wb->list_lock)
955 {
956         struct bdi_writeback *wb = inode_to_wb(inode);
957
958         spin_lock(&wb->list_lock);
959         return wb;
960 }
961
962 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
963 {
964         return nr_pages;
965 }
966
967 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
968                                   struct wb_writeback_work *base_work,
969                                   bool skip_if_busy)
970 {
971         might_sleep();
972
973         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
974                 base_work->auto_free = 0;
975                 wb_queue_work(&bdi->wb, base_work);
976         }
977 }
978
979 #endif  /* CONFIG_CGROUP_WRITEBACK */
980
981 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
982                         bool range_cyclic, enum wb_reason reason)
983 {
984         struct wb_writeback_work *work;
985
986         if (!wb_has_dirty_io(wb))
987                 return;
988
989         /*
990          * This is WB_SYNC_NONE writeback, so if allocation fails just
991          * wakeup the thread for old dirty data writeback
992          */
993         work = kzalloc(sizeof(*work),
994                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
995         if (!work) {
996                 trace_writeback_nowork(wb);
997                 wb_wakeup(wb);
998                 return;
999         }
1000
1001         work->sync_mode = WB_SYNC_NONE;
1002         work->nr_pages  = nr_pages;
1003         work->range_cyclic = range_cyclic;
1004         work->reason    = reason;
1005         work->auto_free = 1;
1006
1007         wb_queue_work(wb, work);
1008 }
1009
1010 /**
1011  * wb_start_background_writeback - start background writeback
1012  * @wb: bdi_writback to write from
1013  *
1014  * Description:
1015  *   This makes sure WB_SYNC_NONE background writeback happens. When
1016  *   this function returns, it is only guaranteed that for given wb
1017  *   some IO is happening if we are over background dirty threshold.
1018  *   Caller need not hold sb s_umount semaphore.
1019  */
1020 void wb_start_background_writeback(struct bdi_writeback *wb)
1021 {
1022         /*
1023          * We just wake up the flusher thread. It will perform background
1024          * writeback as soon as there is no other work to do.
1025          */
1026         trace_writeback_wake_background(wb);
1027         wb_wakeup(wb);
1028 }
1029
1030 /*
1031  * Remove the inode from the writeback list it is on.
1032  */
1033 void inode_io_list_del(struct inode *inode)
1034 {
1035         struct bdi_writeback *wb;
1036
1037         wb = inode_to_wb_and_lock_list(inode);
1038         inode_io_list_del_locked(inode, wb);
1039         spin_unlock(&wb->list_lock);
1040 }
1041
1042 /*
1043  * mark an inode as under writeback on the sb
1044  */
1045 void sb_mark_inode_writeback(struct inode *inode)
1046 {
1047         struct super_block *sb = inode->i_sb;
1048         unsigned long flags;
1049
1050         if (list_empty(&inode->i_wb_list)) {
1051                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1052                 if (list_empty(&inode->i_wb_list)) {
1053                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1054                         trace_sb_mark_inode_writeback(inode);
1055                 }
1056                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1057         }
1058 }
1059
1060 /*
1061  * clear an inode as under writeback on the sb
1062  */
1063 void sb_clear_inode_writeback(struct inode *inode)
1064 {
1065         struct super_block *sb = inode->i_sb;
1066         unsigned long flags;
1067
1068         if (!list_empty(&inode->i_wb_list)) {
1069                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1070                 if (!list_empty(&inode->i_wb_list)) {
1071                         list_del_init(&inode->i_wb_list);
1072                         trace_sb_clear_inode_writeback(inode);
1073                 }
1074                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1075         }
1076 }
1077
1078 /*
1079  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1080  * furthest end of its superblock's dirty-inode list.
1081  *
1082  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1083  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1084  * the case then the inode must have been redirtied while it was being written
1085  * out and we don't reset its dirtied_when.
1086  */
1087 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1088 {
1089         if (!list_empty(&wb->b_dirty)) {
1090                 struct inode *tail;
1091
1092                 tail = wb_inode(wb->b_dirty.next);
1093                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1094                         inode->dirtied_when = jiffies;
1095         }
1096         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1097 }
1098
1099 /*
1100  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1101  */
1102 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1103 {
1104         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1105 }
1106
1107 static void inode_sync_complete(struct inode *inode)
1108 {
1109         inode->i_state &= ~I_SYNC;
1110         /* If inode is clean an unused, put it into LRU now... */
1111         inode_add_lru(inode);
1112         /* Waiters must see I_SYNC cleared before being woken up */
1113         smp_mb();
1114         wake_up_bit(&inode->i_state, __I_SYNC);
1115 }
1116
1117 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1118 {
1119         bool ret = time_after(inode->dirtied_when, t);
1120 #ifndef CONFIG_64BIT
1121         /*
1122          * For inodes being constantly redirtied, dirtied_when can get stuck.
1123          * It _appears_ to be in the future, but is actually in distant past.
1124          * This test is necessary to prevent such wrapped-around relative times
1125          * from permanently stopping the whole bdi writeback.
1126          */
1127         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1128 #endif
1129         return ret;
1130 }
1131
1132 #define EXPIRE_DIRTY_ATIME 0x0001
1133
1134 /*
1135  * Move expired (dirtied before work->older_than_this) dirty inodes from
1136  * @delaying_queue to @dispatch_queue.
1137  */
1138 static int move_expired_inodes(struct list_head *delaying_queue,
1139                                struct list_head *dispatch_queue,
1140                                int flags,
1141                                struct wb_writeback_work *work)
1142 {
1143         unsigned long *older_than_this = NULL;
1144         unsigned long expire_time;
1145         LIST_HEAD(tmp);
1146         struct list_head *pos, *node;
1147         struct super_block *sb = NULL;
1148         struct inode *inode;
1149         int do_sb_sort = 0;
1150         int moved = 0;
1151
1152         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1153                 older_than_this = work->older_than_this;
1154         else if (!work->for_sync) {
1155                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1156                 older_than_this = &expire_time;
1157         }
1158         while (!list_empty(delaying_queue)) {
1159                 inode = wb_inode(delaying_queue->prev);
1160                 if (older_than_this &&
1161                     inode_dirtied_after(inode, *older_than_this))
1162                         break;
1163                 list_move(&inode->i_io_list, &tmp);
1164                 moved++;
1165                 if (flags & EXPIRE_DIRTY_ATIME)
1166                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1167                 if (sb_is_blkdev_sb(inode->i_sb))
1168                         continue;
1169                 if (sb && sb != inode->i_sb)
1170                         do_sb_sort = 1;
1171                 sb = inode->i_sb;
1172         }
1173
1174         /* just one sb in list, splice to dispatch_queue and we're done */
1175         if (!do_sb_sort) {
1176                 list_splice(&tmp, dispatch_queue);
1177                 goto out;
1178         }
1179
1180         /* Move inodes from one superblock together */
1181         while (!list_empty(&tmp)) {
1182                 sb = wb_inode(tmp.prev)->i_sb;
1183                 list_for_each_prev_safe(pos, node, &tmp) {
1184                         inode = wb_inode(pos);
1185                         if (inode->i_sb == sb)
1186                                 list_move(&inode->i_io_list, dispatch_queue);
1187                 }
1188         }
1189 out:
1190         return moved;
1191 }
1192
1193 /*
1194  * Queue all expired dirty inodes for io, eldest first.
1195  * Before
1196  *         newly dirtied     b_dirty    b_io    b_more_io
1197  *         =============>    gf         edc     BA
1198  * After
1199  *         newly dirtied     b_dirty    b_io    b_more_io
1200  *         =============>    g          fBAedc
1201  *                                           |
1202  *                                           +--> dequeue for IO
1203  */
1204 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1205 {
1206         int moved;
1207
1208         assert_spin_locked(&wb->list_lock);
1209         list_splice_init(&wb->b_more_io, &wb->b_io);
1210         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1211         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1212                                      EXPIRE_DIRTY_ATIME, work);
1213         if (moved)
1214                 wb_io_lists_populated(wb);
1215         trace_writeback_queue_io(wb, work, moved);
1216 }
1217
1218 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1219 {
1220         int ret;
1221
1222         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1223                 trace_writeback_write_inode_start(inode, wbc);
1224                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1225                 trace_writeback_write_inode(inode, wbc);
1226                 return ret;
1227         }
1228         return 0;
1229 }
1230
1231 /*
1232  * Wait for writeback on an inode to complete. Called with i_lock held.
1233  * Caller must make sure inode cannot go away when we drop i_lock.
1234  */
1235 static void __inode_wait_for_writeback(struct inode *inode)
1236         __releases(inode->i_lock)
1237         __acquires(inode->i_lock)
1238 {
1239         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1240         wait_queue_head_t *wqh;
1241
1242         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1243         while (inode->i_state & I_SYNC) {
1244                 spin_unlock(&inode->i_lock);
1245                 __wait_on_bit(wqh, &wq, bit_wait,
1246                               TASK_UNINTERRUPTIBLE);
1247                 spin_lock(&inode->i_lock);
1248         }
1249 }
1250
1251 /*
1252  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1253  */
1254 void inode_wait_for_writeback(struct inode *inode)
1255 {
1256         spin_lock(&inode->i_lock);
1257         __inode_wait_for_writeback(inode);
1258         spin_unlock(&inode->i_lock);
1259 }
1260
1261 /*
1262  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1263  * held and drops it. It is aimed for callers not holding any inode reference
1264  * so once i_lock is dropped, inode can go away.
1265  */
1266 static void inode_sleep_on_writeback(struct inode *inode)
1267         __releases(inode->i_lock)
1268 {
1269         DEFINE_WAIT(wait);
1270         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1271         int sleep;
1272
1273         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1274         sleep = inode->i_state & I_SYNC;
1275         spin_unlock(&inode->i_lock);
1276         if (sleep)
1277                 schedule();
1278         finish_wait(wqh, &wait);
1279 }
1280
1281 /*
1282  * Find proper writeback list for the inode depending on its current state and
1283  * possibly also change of its state while we were doing writeback.  Here we
1284  * handle things such as livelock prevention or fairness of writeback among
1285  * inodes. This function can be called only by flusher thread - noone else
1286  * processes all inodes in writeback lists and requeueing inodes behind flusher
1287  * thread's back can have unexpected consequences.
1288  */
1289 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1290                           struct writeback_control *wbc)
1291 {
1292         if (inode->i_state & I_FREEING)
1293                 return;
1294
1295         /*
1296          * Sync livelock prevention. Each inode is tagged and synced in one
1297          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1298          * the dirty time to prevent enqueue and sync it again.
1299          */
1300         if ((inode->i_state & I_DIRTY) &&
1301             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1302                 inode->dirtied_when = jiffies;
1303
1304         if (wbc->pages_skipped) {
1305                 /*
1306                  * writeback is not making progress due to locked
1307                  * buffers. Skip this inode for now.
1308                  */
1309                 redirty_tail(inode, wb);
1310                 return;
1311         }
1312
1313         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1314                 /*
1315                  * We didn't write back all the pages.  nfs_writepages()
1316                  * sometimes bales out without doing anything.
1317                  */
1318                 if (wbc->nr_to_write <= 0) {
1319                         /* Slice used up. Queue for next turn. */
1320                         requeue_io(inode, wb);
1321                 } else {
1322                         /*
1323                          * Writeback blocked by something other than
1324                          * congestion. Delay the inode for some time to
1325                          * avoid spinning on the CPU (100% iowait)
1326                          * retrying writeback of the dirty page/inode
1327                          * that cannot be performed immediately.
1328                          */
1329                         redirty_tail(inode, wb);
1330                 }
1331         } else if (inode->i_state & I_DIRTY) {
1332                 /*
1333                  * Filesystems can dirty the inode during writeback operations,
1334                  * such as delayed allocation during submission or metadata
1335                  * updates after data IO completion.
1336                  */
1337                 redirty_tail(inode, wb);
1338         } else if (inode->i_state & I_DIRTY_TIME) {
1339                 inode->dirtied_when = jiffies;
1340                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1341         } else {
1342                 /* The inode is clean. Remove from writeback lists. */
1343                 inode_io_list_del_locked(inode, wb);
1344         }
1345 }
1346
1347 /*
1348  * Write out an inode and its dirty pages. Do not update the writeback list
1349  * linkage. That is left to the caller. The caller is also responsible for
1350  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1351  */
1352 static int
1353 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1354 {
1355         struct address_space *mapping = inode->i_mapping;
1356         long nr_to_write = wbc->nr_to_write;
1357         unsigned dirty;
1358         int ret;
1359
1360         WARN_ON(!(inode->i_state & I_SYNC));
1361
1362         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1363
1364         ret = do_writepages(mapping, wbc);
1365
1366         /*
1367          * Make sure to wait on the data before writing out the metadata.
1368          * This is important for filesystems that modify metadata on data
1369          * I/O completion. We don't do it for sync(2) writeback because it has a
1370          * separate, external IO completion path and ->sync_fs for guaranteeing
1371          * inode metadata is written back correctly.
1372          */
1373         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1374                 int err = filemap_fdatawait(mapping);
1375                 if (ret == 0)
1376                         ret = err;
1377         }
1378
1379         /*
1380          * Some filesystems may redirty the inode during the writeback
1381          * due to delalloc, clear dirty metadata flags right before
1382          * write_inode()
1383          */
1384         spin_lock(&inode->i_lock);
1385
1386         dirty = inode->i_state & I_DIRTY;
1387         if (inode->i_state & I_DIRTY_TIME) {
1388                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1389                     wbc->sync_mode == WB_SYNC_ALL ||
1390                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1391                     unlikely(time_after(jiffies,
1392                                         (inode->dirtied_time_when +
1393                                          dirtytime_expire_interval * HZ)))) {
1394                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1395                         trace_writeback_lazytime(inode);
1396                 }
1397         } else
1398                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1399         inode->i_state &= ~dirty;
1400
1401         /*
1402          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1403          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1404          * either they see the I_DIRTY bits cleared or we see the dirtied
1405          * inode.
1406          *
1407          * I_DIRTY_PAGES is always cleared together above even if @mapping
1408          * still has dirty pages.  The flag is reinstated after smp_mb() if
1409          * necessary.  This guarantees that either __mark_inode_dirty()
1410          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1411          */
1412         smp_mb();
1413
1414         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1415                 inode->i_state |= I_DIRTY_PAGES;
1416
1417         spin_unlock(&inode->i_lock);
1418
1419         if (dirty & I_DIRTY_TIME)
1420                 mark_inode_dirty_sync(inode);
1421         /* Don't write the inode if only I_DIRTY_PAGES was set */
1422         if (dirty & ~I_DIRTY_PAGES) {
1423                 int err = write_inode(inode, wbc);
1424                 if (ret == 0)
1425                         ret = err;
1426         }
1427         trace_writeback_single_inode(inode, wbc, nr_to_write);
1428         return ret;
1429 }
1430
1431 /*
1432  * Write out an inode's dirty pages. Either the caller has an active reference
1433  * on the inode or the inode has I_WILL_FREE set.
1434  *
1435  * This function is designed to be called for writing back one inode which
1436  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1437  * and does more profound writeback list handling in writeback_sb_inodes().
1438  */
1439 static int writeback_single_inode(struct inode *inode,
1440                                   struct writeback_control *wbc)
1441 {
1442         struct bdi_writeback *wb;
1443         int ret = 0;
1444
1445         spin_lock(&inode->i_lock);
1446         if (!atomic_read(&inode->i_count))
1447                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1448         else
1449                 WARN_ON(inode->i_state & I_WILL_FREE);
1450
1451         if (inode->i_state & I_SYNC) {
1452                 if (wbc->sync_mode != WB_SYNC_ALL)
1453                         goto out;
1454                 /*
1455                  * It's a data-integrity sync. We must wait. Since callers hold
1456                  * inode reference or inode has I_WILL_FREE set, it cannot go
1457                  * away under us.
1458                  */
1459                 __inode_wait_for_writeback(inode);
1460         }
1461         WARN_ON(inode->i_state & I_SYNC);
1462         /*
1463          * Skip inode if it is clean and we have no outstanding writeback in
1464          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1465          * function since flusher thread may be doing for example sync in
1466          * parallel and if we move the inode, it could get skipped. So here we
1467          * make sure inode is on some writeback list and leave it there unless
1468          * we have completely cleaned the inode.
1469          */
1470         if (!(inode->i_state & I_DIRTY_ALL) &&
1471             (wbc->sync_mode != WB_SYNC_ALL ||
1472              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1473                 goto out;
1474         inode->i_state |= I_SYNC;
1475         wbc_attach_and_unlock_inode(wbc, inode);
1476
1477         ret = __writeback_single_inode(inode, wbc);
1478
1479         wbc_detach_inode(wbc);
1480
1481         wb = inode_to_wb_and_lock_list(inode);
1482         spin_lock(&inode->i_lock);
1483         /*
1484          * If inode is clean, remove it from writeback lists. Otherwise don't
1485          * touch it. See comment above for explanation.
1486          */
1487         if (!(inode->i_state & I_DIRTY_ALL))
1488                 inode_io_list_del_locked(inode, wb);
1489         spin_unlock(&wb->list_lock);
1490         inode_sync_complete(inode);
1491 out:
1492         spin_unlock(&inode->i_lock);
1493         return ret;
1494 }
1495
1496 static long writeback_chunk_size(struct bdi_writeback *wb,
1497                                  struct wb_writeback_work *work)
1498 {
1499         long pages;
1500
1501         /*
1502          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1503          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1504          * here avoids calling into writeback_inodes_wb() more than once.
1505          *
1506          * The intended call sequence for WB_SYNC_ALL writeback is:
1507          *
1508          *      wb_writeback()
1509          *          writeback_sb_inodes()       <== called only once
1510          *              write_cache_pages()     <== called once for each inode
1511          *                   (quickly) tag currently dirty pages
1512          *                   (maybe slowly) sync all tagged pages
1513          */
1514         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1515                 pages = LONG_MAX;
1516         else {
1517                 pages = min(wb->avg_write_bandwidth / 2,
1518                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1519                 pages = min(pages, work->nr_pages);
1520                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1521                                    MIN_WRITEBACK_PAGES);
1522         }
1523
1524         return pages;
1525 }
1526
1527 /*
1528  * Write a portion of b_io inodes which belong to @sb.
1529  *
1530  * Return the number of pages and/or inodes written.
1531  *
1532  * NOTE! This is called with wb->list_lock held, and will
1533  * unlock and relock that for each inode it ends up doing
1534  * IO for.
1535  */
1536 static long writeback_sb_inodes(struct super_block *sb,
1537                                 struct bdi_writeback *wb,
1538                                 struct wb_writeback_work *work)
1539 {
1540         struct writeback_control wbc = {
1541                 .sync_mode              = work->sync_mode,
1542                 .tagged_writepages      = work->tagged_writepages,
1543                 .for_kupdate            = work->for_kupdate,
1544                 .for_background         = work->for_background,
1545                 .for_sync               = work->for_sync,
1546                 .range_cyclic           = work->range_cyclic,
1547                 .range_start            = 0,
1548                 .range_end              = LLONG_MAX,
1549         };
1550         unsigned long start_time = jiffies;
1551         long write_chunk;
1552         long wrote = 0;  /* count both pages and inodes */
1553
1554         while (!list_empty(&wb->b_io)) {
1555                 struct inode *inode = wb_inode(wb->b_io.prev);
1556                 struct bdi_writeback *tmp_wb;
1557
1558                 if (inode->i_sb != sb) {
1559                         if (work->sb) {
1560                                 /*
1561                                  * We only want to write back data for this
1562                                  * superblock, move all inodes not belonging
1563                                  * to it back onto the dirty list.
1564                                  */
1565                                 redirty_tail(inode, wb);
1566                                 continue;
1567                         }
1568
1569                         /*
1570                          * The inode belongs to a different superblock.
1571                          * Bounce back to the caller to unpin this and
1572                          * pin the next superblock.
1573                          */
1574                         break;
1575                 }
1576
1577                 /*
1578                  * Don't bother with new inodes or inodes being freed, first
1579                  * kind does not need periodic writeout yet, and for the latter
1580                  * kind writeout is handled by the freer.
1581                  */
1582                 spin_lock(&inode->i_lock);
1583                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1584                         spin_unlock(&inode->i_lock);
1585                         redirty_tail(inode, wb);
1586                         continue;
1587                 }
1588                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1589                         /*
1590                          * If this inode is locked for writeback and we are not
1591                          * doing writeback-for-data-integrity, move it to
1592                          * b_more_io so that writeback can proceed with the
1593                          * other inodes on s_io.
1594                          *
1595                          * We'll have another go at writing back this inode
1596                          * when we completed a full scan of b_io.
1597                          */
1598                         spin_unlock(&inode->i_lock);
1599                         requeue_io(inode, wb);
1600                         trace_writeback_sb_inodes_requeue(inode);
1601                         continue;
1602                 }
1603                 spin_unlock(&wb->list_lock);
1604
1605                 /*
1606                  * We already requeued the inode if it had I_SYNC set and we
1607                  * are doing WB_SYNC_NONE writeback. So this catches only the
1608                  * WB_SYNC_ALL case.
1609                  */
1610                 if (inode->i_state & I_SYNC) {
1611                         /* Wait for I_SYNC. This function drops i_lock... */
1612                         inode_sleep_on_writeback(inode);
1613                         /* Inode may be gone, start again */
1614                         spin_lock(&wb->list_lock);
1615                         continue;
1616                 }
1617                 inode->i_state |= I_SYNC;
1618                 wbc_attach_and_unlock_inode(&wbc, inode);
1619
1620                 write_chunk = writeback_chunk_size(wb, work);
1621                 wbc.nr_to_write = write_chunk;
1622                 wbc.pages_skipped = 0;
1623
1624                 /*
1625                  * We use I_SYNC to pin the inode in memory. While it is set
1626                  * evict_inode() will wait so the inode cannot be freed.
1627                  */
1628                 __writeback_single_inode(inode, &wbc);
1629
1630                 wbc_detach_inode(&wbc);
1631                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1632                 wrote += write_chunk - wbc.nr_to_write;
1633
1634                 if (need_resched()) {
1635                         /*
1636                          * We're trying to balance between building up a nice
1637                          * long list of IOs to improve our merge rate, and
1638                          * getting those IOs out quickly for anyone throttling
1639                          * in balance_dirty_pages().  cond_resched() doesn't
1640                          * unplug, so get our IOs out the door before we
1641                          * give up the CPU.
1642                          */
1643                         blk_flush_plug(current);
1644                         cond_resched();
1645                 }
1646
1647                 /*
1648                  * Requeue @inode if still dirty.  Be careful as @inode may
1649                  * have been switched to another wb in the meantime.
1650                  */
1651                 tmp_wb = inode_to_wb_and_lock_list(inode);
1652                 spin_lock(&inode->i_lock);
1653                 if (!(inode->i_state & I_DIRTY_ALL))
1654                         wrote++;
1655                 requeue_inode(inode, tmp_wb, &wbc);
1656                 inode_sync_complete(inode);
1657                 spin_unlock(&inode->i_lock);
1658
1659                 if (unlikely(tmp_wb != wb)) {
1660                         spin_unlock(&tmp_wb->list_lock);
1661                         spin_lock(&wb->list_lock);
1662                 }
1663
1664                 /*
1665                  * bail out to wb_writeback() often enough to check
1666                  * background threshold and other termination conditions.
1667                  */
1668                 if (wrote) {
1669                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1670                                 break;
1671                         if (work->nr_pages <= 0)
1672                                 break;
1673                 }
1674         }
1675         return wrote;
1676 }
1677
1678 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1679                                   struct wb_writeback_work *work)
1680 {
1681         unsigned long start_time = jiffies;
1682         long wrote = 0;
1683
1684         while (!list_empty(&wb->b_io)) {
1685                 struct inode *inode = wb_inode(wb->b_io.prev);
1686                 struct super_block *sb = inode->i_sb;
1687
1688                 if (!trylock_super(sb)) {
1689                         /*
1690                          * trylock_super() may fail consistently due to
1691                          * s_umount being grabbed by someone else. Don't use
1692                          * requeue_io() to avoid busy retrying the inode/sb.
1693                          */
1694                         redirty_tail(inode, wb);
1695                         continue;
1696                 }
1697                 wrote += writeback_sb_inodes(sb, wb, work);
1698                 up_read(&sb->s_umount);
1699
1700                 /* refer to the same tests at the end of writeback_sb_inodes */
1701                 if (wrote) {
1702                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1703                                 break;
1704                         if (work->nr_pages <= 0)
1705                                 break;
1706                 }
1707         }
1708         /* Leave any unwritten inodes on b_io */
1709         return wrote;
1710 }
1711
1712 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1713                                 enum wb_reason reason)
1714 {
1715         struct wb_writeback_work work = {
1716                 .nr_pages       = nr_pages,
1717                 .sync_mode      = WB_SYNC_NONE,
1718                 .range_cyclic   = 1,
1719                 .reason         = reason,
1720         };
1721         struct blk_plug plug;
1722
1723         blk_start_plug(&plug);
1724         spin_lock(&wb->list_lock);
1725         if (list_empty(&wb->b_io))
1726                 queue_io(wb, &work);
1727         __writeback_inodes_wb(wb, &work);
1728         spin_unlock(&wb->list_lock);
1729         blk_finish_plug(&plug);
1730
1731         return nr_pages - work.nr_pages;
1732 }
1733
1734 /*
1735  * Explicit flushing or periodic writeback of "old" data.
1736  *
1737  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1738  * dirtying-time in the inode's address_space.  So this periodic writeback code
1739  * just walks the superblock inode list, writing back any inodes which are
1740  * older than a specific point in time.
1741  *
1742  * Try to run once per dirty_writeback_interval.  But if a writeback event
1743  * takes longer than a dirty_writeback_interval interval, then leave a
1744  * one-second gap.
1745  *
1746  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1747  * all dirty pages if they are all attached to "old" mappings.
1748  */
1749 static long wb_writeback(struct bdi_writeback *wb,
1750                          struct wb_writeback_work *work)
1751 {
1752         unsigned long wb_start = jiffies;
1753         long nr_pages = work->nr_pages;
1754         unsigned long oldest_jif;
1755         struct inode *inode;
1756         long progress;
1757         struct blk_plug plug;
1758
1759         oldest_jif = jiffies;
1760         work->older_than_this = &oldest_jif;
1761
1762         blk_start_plug(&plug);
1763         spin_lock(&wb->list_lock);
1764         for (;;) {
1765                 /*
1766                  * Stop writeback when nr_pages has been consumed
1767                  */
1768                 if (work->nr_pages <= 0)
1769                         break;
1770
1771                 /*
1772                  * Background writeout and kupdate-style writeback may
1773                  * run forever. Stop them if there is other work to do
1774                  * so that e.g. sync can proceed. They'll be restarted
1775                  * after the other works are all done.
1776                  */
1777                 if ((work->for_background || work->for_kupdate) &&
1778                     !list_empty(&wb->work_list))
1779                         break;
1780
1781                 /*
1782                  * For background writeout, stop when we are below the
1783                  * background dirty threshold
1784                  */
1785                 if (work->for_background && !wb_over_bg_thresh(wb))
1786                         break;
1787
1788                 /*
1789                  * Kupdate and background works are special and we want to
1790                  * include all inodes that need writing. Livelock avoidance is
1791                  * handled by these works yielding to any other work so we are
1792                  * safe.
1793                  */
1794                 if (work->for_kupdate) {
1795                         oldest_jif = jiffies -
1796                                 msecs_to_jiffies(dirty_expire_interval * 10);
1797                 } else if (work->for_background)
1798                         oldest_jif = jiffies;
1799
1800                 trace_writeback_start(wb, work);
1801                 if (list_empty(&wb->b_io))
1802                         queue_io(wb, work);
1803                 if (work->sb)
1804                         progress = writeback_sb_inodes(work->sb, wb, work);
1805                 else
1806                         progress = __writeback_inodes_wb(wb, work);
1807                 trace_writeback_written(wb, work);
1808
1809                 wb_update_bandwidth(wb, wb_start);
1810
1811                 /*
1812                  * Did we write something? Try for more
1813                  *
1814                  * Dirty inodes are moved to b_io for writeback in batches.
1815                  * The completion of the current batch does not necessarily
1816                  * mean the overall work is done. So we keep looping as long
1817                  * as made some progress on cleaning pages or inodes.
1818                  */
1819                 if (progress)
1820                         continue;
1821                 /*
1822                  * No more inodes for IO, bail
1823                  */
1824                 if (list_empty(&wb->b_more_io))
1825                         break;
1826                 /*
1827                  * Nothing written. Wait for some inode to
1828                  * become available for writeback. Otherwise
1829                  * we'll just busyloop.
1830                  */
1831                 if (!list_empty(&wb->b_more_io))  {
1832                         trace_writeback_wait(wb, work);
1833                         inode = wb_inode(wb->b_more_io.prev);
1834                         spin_lock(&inode->i_lock);
1835                         spin_unlock(&wb->list_lock);
1836                         /* This function drops i_lock... */
1837                         inode_sleep_on_writeback(inode);
1838                         spin_lock(&wb->list_lock);
1839                 }
1840         }
1841         spin_unlock(&wb->list_lock);
1842         blk_finish_plug(&plug);
1843
1844         return nr_pages - work->nr_pages;
1845 }
1846
1847 /*
1848  * Return the next wb_writeback_work struct that hasn't been processed yet.
1849  */
1850 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1851 {
1852         struct wb_writeback_work *work = NULL;
1853
1854         spin_lock_bh(&wb->work_lock);
1855         if (!list_empty(&wb->work_list)) {
1856                 work = list_entry(wb->work_list.next,
1857                                   struct wb_writeback_work, list);
1858                 list_del_init(&work->list);
1859         }
1860         spin_unlock_bh(&wb->work_lock);
1861         return work;
1862 }
1863
1864 /*
1865  * Add in the number of potentially dirty inodes, because each inode
1866  * write can dirty pagecache in the underlying blockdev.
1867  */
1868 static unsigned long get_nr_dirty_pages(void)
1869 {
1870         return global_node_page_state(NR_FILE_DIRTY) +
1871                 global_node_page_state(NR_UNSTABLE_NFS) +
1872                 get_nr_dirty_inodes();
1873 }
1874
1875 static long wb_check_background_flush(struct bdi_writeback *wb)
1876 {
1877         if (wb_over_bg_thresh(wb)) {
1878
1879                 struct wb_writeback_work work = {
1880                         .nr_pages       = LONG_MAX,
1881                         .sync_mode      = WB_SYNC_NONE,
1882                         .for_background = 1,
1883                         .range_cyclic   = 1,
1884                         .reason         = WB_REASON_BACKGROUND,
1885                 };
1886
1887                 return wb_writeback(wb, &work);
1888         }
1889
1890         return 0;
1891 }
1892
1893 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1894 {
1895         unsigned long expired;
1896         long nr_pages;
1897
1898         /*
1899          * When set to zero, disable periodic writeback
1900          */
1901         if (!dirty_writeback_interval)
1902                 return 0;
1903
1904         expired = wb->last_old_flush +
1905                         msecs_to_jiffies(dirty_writeback_interval * 10);
1906         if (time_before(jiffies, expired))
1907                 return 0;
1908
1909         wb->last_old_flush = jiffies;
1910         nr_pages = get_nr_dirty_pages();
1911
1912         if (nr_pages) {
1913                 struct wb_writeback_work work = {
1914                         .nr_pages       = nr_pages,
1915                         .sync_mode      = WB_SYNC_NONE,
1916                         .for_kupdate    = 1,
1917                         .range_cyclic   = 1,
1918                         .reason         = WB_REASON_PERIODIC,
1919                 };
1920
1921                 return wb_writeback(wb, &work);
1922         }
1923
1924         return 0;
1925 }
1926
1927 /*
1928  * Retrieve work items and do the writeback they describe
1929  */
1930 static long wb_do_writeback(struct bdi_writeback *wb)
1931 {
1932         struct wb_writeback_work *work;
1933         long wrote = 0;
1934
1935         set_bit(WB_writeback_running, &wb->state);
1936         while ((work = get_next_work_item(wb)) != NULL) {
1937                 trace_writeback_exec(wb, work);
1938                 wrote += wb_writeback(wb, work);
1939                 finish_writeback_work(wb, work);
1940         }
1941
1942         /*
1943          * Check for periodic writeback, kupdated() style
1944          */
1945         wrote += wb_check_old_data_flush(wb);
1946         wrote += wb_check_background_flush(wb);
1947         clear_bit(WB_writeback_running, &wb->state);
1948
1949         return wrote;
1950 }
1951
1952 /*
1953  * Handle writeback of dirty data for the device backed by this bdi. Also
1954  * reschedules periodically and does kupdated style flushing.
1955  */
1956 void wb_workfn(struct work_struct *work)
1957 {
1958         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1959                                                 struct bdi_writeback, dwork);
1960         long pages_written;
1961
1962         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1963         current->flags |= PF_SWAPWRITE;
1964
1965         if (likely(!current_is_workqueue_rescuer() ||
1966                    !test_bit(WB_registered, &wb->state))) {
1967                 /*
1968                  * The normal path.  Keep writing back @wb until its
1969                  * work_list is empty.  Note that this path is also taken
1970                  * if @wb is shutting down even when we're running off the
1971                  * rescuer as work_list needs to be drained.
1972                  */
1973                 do {
1974                         pages_written = wb_do_writeback(wb);
1975                         trace_writeback_pages_written(pages_written);
1976                 } while (!list_empty(&wb->work_list));
1977         } else {
1978                 /*
1979                  * bdi_wq can't get enough workers and we're running off
1980                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1981                  * enough for efficient IO.
1982                  */
1983                 pages_written = writeback_inodes_wb(wb, 1024,
1984                                                     WB_REASON_FORKER_THREAD);
1985                 trace_writeback_pages_written(pages_written);
1986         }
1987
1988         if (!list_empty(&wb->work_list))
1989                 wb_wakeup(wb);
1990         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1991                 wb_wakeup_delayed(wb);
1992
1993         current->flags &= ~PF_SWAPWRITE;
1994 }
1995
1996 /*
1997  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1998  * the whole world.
1999  */
2000 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
2001 {
2002         struct backing_dev_info *bdi;
2003
2004         /*
2005          * If we are expecting writeback progress we must submit plugged IO.
2006          */
2007         if (blk_needs_flush_plug(current))
2008                 blk_schedule_flush_plug(current);
2009
2010         if (!nr_pages)
2011                 nr_pages = get_nr_dirty_pages();
2012
2013         rcu_read_lock();
2014         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2015                 struct bdi_writeback *wb;
2016
2017                 if (!bdi_has_dirty_io(bdi))
2018                         continue;
2019
2020                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2021                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
2022                                            false, reason);
2023         }
2024         rcu_read_unlock();
2025 }
2026
2027 /*
2028  * Wake up bdi's periodically to make sure dirtytime inodes gets
2029  * written back periodically.  We deliberately do *not* check the
2030  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2031  * kernel to be constantly waking up once there are any dirtytime
2032  * inodes on the system.  So instead we define a separate delayed work
2033  * function which gets called much more rarely.  (By default, only
2034  * once every 12 hours.)
2035  *
2036  * If there is any other write activity going on in the file system,
2037  * this function won't be necessary.  But if the only thing that has
2038  * happened on the file system is a dirtytime inode caused by an atime
2039  * update, we need this infrastructure below to make sure that inode
2040  * eventually gets pushed out to disk.
2041  */
2042 static void wakeup_dirtytime_writeback(struct work_struct *w);
2043 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2044
2045 static void wakeup_dirtytime_writeback(struct work_struct *w)
2046 {
2047         struct backing_dev_info *bdi;
2048
2049         rcu_read_lock();
2050         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2051                 struct bdi_writeback *wb;
2052
2053                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2054                         if (!list_empty(&wb->b_dirty_time))
2055                                 wb_wakeup(wb);
2056         }
2057         rcu_read_unlock();
2058         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2059 }
2060
2061 static int __init start_dirtytime_writeback(void)
2062 {
2063         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2064         return 0;
2065 }
2066 __initcall(start_dirtytime_writeback);
2067
2068 int dirtytime_interval_handler(struct ctl_table *table, int write,
2069                                void __user *buffer, size_t *lenp, loff_t *ppos)
2070 {
2071         int ret;
2072
2073         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2074         if (ret == 0 && write)
2075                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2076         return ret;
2077 }
2078
2079 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2080 {
2081         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2082                 struct dentry *dentry;
2083                 const char *name = "?";
2084
2085                 dentry = d_find_alias(inode);
2086                 if (dentry) {
2087                         spin_lock(&dentry->d_lock);
2088                         name = (const char *) dentry->d_name.name;
2089                 }
2090                 printk(KERN_DEBUG
2091                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2092                        current->comm, task_pid_nr(current), inode->i_ino,
2093                        name, inode->i_sb->s_id);
2094                 if (dentry) {
2095                         spin_unlock(&dentry->d_lock);
2096                         dput(dentry);
2097                 }
2098         }
2099 }
2100
2101 /**
2102  *      __mark_inode_dirty -    internal function
2103  *      @inode: inode to mark
2104  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2105  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2106  *      mark_inode_dirty_sync.
2107  *
2108  * Put the inode on the super block's dirty list.
2109  *
2110  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2111  * dirty list only if it is hashed or if it refers to a blockdev.
2112  * If it was not hashed, it will never be added to the dirty list
2113  * even if it is later hashed, as it will have been marked dirty already.
2114  *
2115  * In short, make sure you hash any inodes _before_ you start marking
2116  * them dirty.
2117  *
2118  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2119  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2120  * the kernel-internal blockdev inode represents the dirtying time of the
2121  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2122  * page->mapping->host, so the page-dirtying time is recorded in the internal
2123  * blockdev inode.
2124  */
2125 void __mark_inode_dirty(struct inode *inode, int flags)
2126 {
2127 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2128         struct super_block *sb = inode->i_sb;
2129         int dirtytime;
2130
2131         trace_writeback_mark_inode_dirty(inode, flags);
2132
2133         /*
2134          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2135          * dirty the inode itself
2136          */
2137         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2138                 trace_writeback_dirty_inode_start(inode, flags);
2139
2140                 if (sb->s_op->dirty_inode)
2141                         sb->s_op->dirty_inode(inode, flags);
2142
2143                 trace_writeback_dirty_inode(inode, flags);
2144         }
2145         if (flags & I_DIRTY_INODE)
2146                 flags &= ~I_DIRTY_TIME;
2147         dirtytime = flags & I_DIRTY_TIME;
2148
2149         /*
2150          * Paired with smp_mb() in __writeback_single_inode() for the
2151          * following lockless i_state test.  See there for details.
2152          */
2153         smp_mb();
2154
2155         if (((inode->i_state & flags) == flags) ||
2156             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2157                 return;
2158
2159         if (unlikely(block_dump))
2160                 block_dump___mark_inode_dirty(inode);
2161
2162         spin_lock(&inode->i_lock);
2163         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2164                 goto out_unlock_inode;
2165         if ((inode->i_state & flags) != flags) {
2166                 const int was_dirty = inode->i_state & I_DIRTY;
2167
2168                 inode_attach_wb(inode, NULL);
2169
2170                 if (flags & I_DIRTY_INODE)
2171                         inode->i_state &= ~I_DIRTY_TIME;
2172                 inode->i_state |= flags;
2173
2174                 /*
2175                  * If the inode is being synced, just update its dirty state.
2176                  * The unlocker will place the inode on the appropriate
2177                  * superblock list, based upon its state.
2178                  */
2179                 if (inode->i_state & I_SYNC)
2180                         goto out_unlock_inode;
2181
2182                 /*
2183                  * Only add valid (hashed) inodes to the superblock's
2184                  * dirty list.  Add blockdev inodes as well.
2185                  */
2186                 if (!S_ISBLK(inode->i_mode)) {
2187                         if (inode_unhashed(inode))
2188                                 goto out_unlock_inode;
2189                 }
2190                 if (inode->i_state & I_FREEING)
2191                         goto out_unlock_inode;
2192
2193                 /*
2194                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2195                  * reposition it (that would break b_dirty time-ordering).
2196                  */
2197                 if (!was_dirty) {
2198                         struct bdi_writeback *wb;
2199                         struct list_head *dirty_list;
2200                         bool wakeup_bdi = false;
2201
2202                         wb = locked_inode_to_wb_and_lock_list(inode);
2203
2204                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2205                              !test_bit(WB_registered, &wb->state),
2206                              "bdi-%s not registered\n", wb->bdi->name);
2207
2208                         inode->dirtied_when = jiffies;
2209                         if (dirtytime)
2210                                 inode->dirtied_time_when = jiffies;
2211
2212                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2213                                 dirty_list = &wb->b_dirty;
2214                         else
2215                                 dirty_list = &wb->b_dirty_time;
2216
2217                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2218                                                                dirty_list);
2219
2220                         spin_unlock(&wb->list_lock);
2221                         trace_writeback_dirty_inode_enqueue(inode);
2222
2223                         /*
2224                          * If this is the first dirty inode for this bdi,
2225                          * we have to wake-up the corresponding bdi thread
2226                          * to make sure background write-back happens
2227                          * later.
2228                          */
2229                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2230                                 wb_wakeup_delayed(wb);
2231                         return;
2232                 }
2233         }
2234 out_unlock_inode:
2235         spin_unlock(&inode->i_lock);
2236
2237 #undef I_DIRTY_INODE
2238 }
2239 EXPORT_SYMBOL(__mark_inode_dirty);
2240
2241 /*
2242  * The @s_sync_lock is used to serialise concurrent sync operations
2243  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2244  * Concurrent callers will block on the s_sync_lock rather than doing contending
2245  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2246  * has been issued up to the time this function is enter is guaranteed to be
2247  * completed by the time we have gained the lock and waited for all IO that is
2248  * in progress regardless of the order callers are granted the lock.
2249  */
2250 static void wait_sb_inodes(struct super_block *sb)
2251 {
2252         LIST_HEAD(sync_list);
2253
2254         /*
2255          * We need to be protected against the filesystem going from
2256          * r/o to r/w or vice versa.
2257          */
2258         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2259
2260         mutex_lock(&sb->s_sync_lock);
2261
2262         /*
2263          * Splice the writeback list onto a temporary list to avoid waiting on
2264          * inodes that have started writeback after this point.
2265          *
2266          * Use rcu_read_lock() to keep the inodes around until we have a
2267          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2268          * the local list because inodes can be dropped from either by writeback
2269          * completion.
2270          */
2271         rcu_read_lock();
2272         spin_lock_irq(&sb->s_inode_wblist_lock);
2273         list_splice_init(&sb->s_inodes_wb, &sync_list);
2274
2275         /*
2276          * Data integrity sync. Must wait for all pages under writeback, because
2277          * there may have been pages dirtied before our sync call, but which had
2278          * writeout started before we write it out.  In which case, the inode
2279          * may not be on the dirty list, but we still have to wait for that
2280          * writeout.
2281          */
2282         while (!list_empty(&sync_list)) {
2283                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2284                                                        i_wb_list);
2285                 struct address_space *mapping = inode->i_mapping;
2286
2287                 /*
2288                  * Move each inode back to the wb list before we drop the lock
2289                  * to preserve consistency between i_wb_list and the mapping
2290                  * writeback tag. Writeback completion is responsible to remove
2291                  * the inode from either list once the writeback tag is cleared.
2292                  */
2293                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2294
2295                 /*
2296                  * The mapping can appear untagged while still on-list since we
2297                  * do not have the mapping lock. Skip it here, wb completion
2298                  * will remove it.
2299                  */
2300                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2301                         continue;
2302
2303                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2304
2305                 spin_lock(&inode->i_lock);
2306                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2307                         spin_unlock(&inode->i_lock);
2308
2309                         spin_lock_irq(&sb->s_inode_wblist_lock);
2310                         continue;
2311                 }
2312                 __iget(inode);
2313                 spin_unlock(&inode->i_lock);
2314                 rcu_read_unlock();
2315
2316                 /*
2317                  * We keep the error status of individual mapping so that
2318                  * applications can catch the writeback error using fsync(2).
2319                  * See filemap_fdatawait_keep_errors() for details.
2320                  */
2321                 filemap_fdatawait_keep_errors(mapping);
2322
2323                 cond_resched();
2324
2325                 iput(inode);
2326
2327                 rcu_read_lock();
2328                 spin_lock_irq(&sb->s_inode_wblist_lock);
2329         }
2330         spin_unlock_irq(&sb->s_inode_wblist_lock);
2331         rcu_read_unlock();
2332         mutex_unlock(&sb->s_sync_lock);
2333 }
2334
2335 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2336                                      enum wb_reason reason, bool skip_if_busy)
2337 {
2338         DEFINE_WB_COMPLETION_ONSTACK(done);
2339         struct wb_writeback_work work = {
2340                 .sb                     = sb,
2341                 .sync_mode              = WB_SYNC_NONE,
2342                 .tagged_writepages      = 1,
2343                 .done                   = &done,
2344                 .nr_pages               = nr,
2345                 .reason                 = reason,
2346         };
2347         struct backing_dev_info *bdi = sb->s_bdi;
2348
2349         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2350                 return;
2351         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2352
2353         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2354         wb_wait_for_completion(bdi, &done);
2355 }
2356
2357 /**
2358  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2359  * @sb: the superblock
2360  * @nr: the number of pages to write
2361  * @reason: reason why some writeback work initiated
2362  *
2363  * Start writeback on some inodes on this super_block. No guarantees are made
2364  * on how many (if any) will be written, and this function does not wait
2365  * for IO completion of submitted IO.
2366  */
2367 void writeback_inodes_sb_nr(struct super_block *sb,
2368                             unsigned long nr,
2369                             enum wb_reason reason)
2370 {
2371         __writeback_inodes_sb_nr(sb, nr, reason, false);
2372 }
2373 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2374
2375 /**
2376  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2377  * @sb: the superblock
2378  * @reason: reason why some writeback work was initiated
2379  *
2380  * Start writeback on some inodes on this super_block. No guarantees are made
2381  * on how many (if any) will be written, and this function does not wait
2382  * for IO completion of submitted IO.
2383  */
2384 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2385 {
2386         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2387 }
2388 EXPORT_SYMBOL(writeback_inodes_sb);
2389
2390 /**
2391  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2392  * @sb: the superblock
2393  * @nr: the number of pages to write
2394  * @reason: the reason of writeback
2395  *
2396  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2397  * Returns 1 if writeback was started, 0 if not.
2398  */
2399 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2400                                    enum wb_reason reason)
2401 {
2402         if (!down_read_trylock(&sb->s_umount))
2403                 return false;
2404
2405         __writeback_inodes_sb_nr(sb, nr, reason, true);
2406         up_read(&sb->s_umount);
2407         return true;
2408 }
2409 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2410
2411 /**
2412  * try_to_writeback_inodes_sb - try to start writeback if none underway
2413  * @sb: the superblock
2414  * @reason: reason why some writeback work was initiated
2415  *
2416  * Implement by try_to_writeback_inodes_sb_nr()
2417  * Returns 1 if writeback was started, 0 if not.
2418  */
2419 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2420 {
2421         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2422 }
2423 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2424
2425 /**
2426  * sync_inodes_sb       -       sync sb inode pages
2427  * @sb: the superblock
2428  *
2429  * This function writes and waits on any dirty inode belonging to this
2430  * super_block.
2431  */
2432 void sync_inodes_sb(struct super_block *sb)
2433 {
2434         DEFINE_WB_COMPLETION_ONSTACK(done);
2435         struct wb_writeback_work work = {
2436                 .sb             = sb,
2437                 .sync_mode      = WB_SYNC_ALL,
2438                 .nr_pages       = LONG_MAX,
2439                 .range_cyclic   = 0,
2440                 .done           = &done,
2441                 .reason         = WB_REASON_SYNC,
2442                 .for_sync       = 1,
2443         };
2444         struct backing_dev_info *bdi = sb->s_bdi;
2445
2446         /*
2447          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2448          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2449          * bdi_has_dirty() need to be written out too.
2450          */
2451         if (bdi == &noop_backing_dev_info)
2452                 return;
2453         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2454
2455         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2456         bdi_down_write_wb_switch_rwsem(bdi);
2457         bdi_split_work_to_wbs(bdi, &work, false);
2458         wb_wait_for_completion(bdi, &done);
2459         bdi_up_write_wb_switch_rwsem(bdi);
2460
2461         wait_sb_inodes(sb);
2462 }
2463 EXPORT_SYMBOL(sync_inodes_sb);
2464
2465 /**
2466  * write_inode_now      -       write an inode to disk
2467  * @inode: inode to write to disk
2468  * @sync: whether the write should be synchronous or not
2469  *
2470  * This function commits an inode to disk immediately if it is dirty. This is
2471  * primarily needed by knfsd.
2472  *
2473  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2474  */
2475 int write_inode_now(struct inode *inode, int sync)
2476 {
2477         struct writeback_control wbc = {
2478                 .nr_to_write = LONG_MAX,
2479                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2480                 .range_start = 0,
2481                 .range_end = LLONG_MAX,
2482         };
2483
2484         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2485                 wbc.nr_to_write = 0;
2486
2487         might_sleep();
2488         return writeback_single_inode(inode, &wbc);
2489 }
2490 EXPORT_SYMBOL(write_inode_now);
2491
2492 /**
2493  * sync_inode - write an inode and its pages to disk.
2494  * @inode: the inode to sync
2495  * @wbc: controls the writeback mode
2496  *
2497  * sync_inode() will write an inode and its pages to disk.  It will also
2498  * correctly update the inode on its superblock's dirty inode lists and will
2499  * update inode->i_state.
2500  *
2501  * The caller must have a ref on the inode.
2502  */
2503 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2504 {
2505         return writeback_single_inode(inode, wbc);
2506 }
2507 EXPORT_SYMBOL(sync_inode);
2508
2509 /**
2510  * sync_inode_metadata - write an inode to disk
2511  * @inode: the inode to sync
2512  * @wait: wait for I/O to complete.
2513  *
2514  * Write an inode to disk and adjust its dirty state after completion.
2515  *
2516  * Note: only writes the actual inode, no associated data or other metadata.
2517  */
2518 int sync_inode_metadata(struct inode *inode, int wait)
2519 {
2520         struct writeback_control wbc = {
2521                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2522                 .nr_to_write = 0, /* metadata-only */
2523         };
2524
2525         return sync_inode(inode, &wbc);
2526 }
2527 EXPORT_SYMBOL(sync_inode_metadata);