OSDN Git Service

netpoll: Remove gfp parameter from __netpoll_setup
[android-x86/kernel.git] / include / linux / netdevice.h
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Definitions for the Interfaces handler.
7  *
8  * Version:     @(#)dev.h       1.0.10  08/12/93
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *              Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *              This program is free software; you can redistribute it and/or
19  *              modify it under the terms of the GNU General Public License
20  *              as published by the Free Software Foundation; either version
21  *              2 of the License, or (at your option) any later version.
22  *
23  *              Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59                                         /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61         ( (netdev)->ethtool_ops = (ops) )
62
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64                                     const struct ethtool_ops *ops);
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM           0       /* address is permanent (default) */
68 #define NET_ADDR_RANDOM         1       /* address is generated randomly */
69 #define NET_ADDR_STOLEN         2       /* address is stolen from other device */
70 #define NET_ADDR_SET            3       /* address is set using
71                                          * dev_set_mac_address() */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
75 #define NET_RX_DROP             1       /* packet dropped */
76
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously, in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
91  * others are propagated to higher layers.
92  */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS        0x00
96 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
97 #define NET_XMIT_CN             0x02    /* congestion notification      */
98 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
99 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK          0xf0
109
110 enum netdev_tx {
111         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
112         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
113         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
114         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124         /*
125          * Positive cases with an skb consumed by a driver:
126          * - successful transmission (rc == NETDEV_TX_OK)
127          * - error while transmitting (rc < 0)
128          * - error while queueing to a different device (rc & NET_XMIT_MASK)
129          */
130         if (likely(rc < NET_XMIT_MASK))
131                 return true;
132
133         return false;
134 }
135
136 /*
137  *      Compute the worst case header length according to the protocols
138  *      used.
139  */
140
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159  *      Old network device statistics. Fields are native words
160  *      (unsigned long) so they can be read and written atomically.
161  */
162
163 struct net_device_stats {
164         unsigned long   rx_packets;
165         unsigned long   tx_packets;
166         unsigned long   rx_bytes;
167         unsigned long   tx_bytes;
168         unsigned long   rx_errors;
169         unsigned long   tx_errors;
170         unsigned long   rx_dropped;
171         unsigned long   tx_dropped;
172         unsigned long   multicast;
173         unsigned long   collisions;
174         unsigned long   rx_length_errors;
175         unsigned long   rx_over_errors;
176         unsigned long   rx_crc_errors;
177         unsigned long   rx_frame_errors;
178         unsigned long   rx_fifo_errors;
179         unsigned long   rx_missed_errors;
180         unsigned long   tx_aborted_errors;
181         unsigned long   tx_carrier_errors;
182         unsigned long   tx_fifo_errors;
183         unsigned long   tx_heartbeat_errors;
184         unsigned long   tx_window_errors;
185         unsigned long   rx_compressed;
186         unsigned long   tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203         struct list_head        list;
204         unsigned char           addr[MAX_ADDR_LEN];
205         unsigned char           type;
206 #define NETDEV_HW_ADDR_T_LAN            1
207 #define NETDEV_HW_ADDR_T_SAN            2
208 #define NETDEV_HW_ADDR_T_SLAVE          3
209 #define NETDEV_HW_ADDR_T_UNICAST        4
210 #define NETDEV_HW_ADDR_T_MULTICAST      5
211         bool                    global_use;
212         int                     sync_cnt;
213         int                     refcount;
214         int                     synced;
215         struct rcu_head         rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219         struct list_head        list;
220         int                     count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226         list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239         u16             hh_len;
240         u16             __pad;
241         seqlock_t       hh_lock;
242
243         /* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD     16
245 #define HH_DATA_OFF(__len) \
246         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266         int     (*create) (struct sk_buff *skb, struct net_device *dev,
267                            unsigned short type, const void *daddr,
268                            const void *saddr, unsigned int len);
269         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270         int     (*rebuild)(struct sk_buff *skb);
271         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272         void    (*cache_update)(struct hh_cache *hh,
273                                 const struct net_device *dev,
274                                 const unsigned char *haddr);
275 };
276
277 /* These flag bits are private to the generic network queueing
278  * layer, they may not be explicitly referenced by any other
279  * code.
280  */
281
282 enum netdev_state_t {
283         __LINK_STATE_START,
284         __LINK_STATE_PRESENT,
285         __LINK_STATE_NOCARRIER,
286         __LINK_STATE_LINKWATCH_PENDING,
287         __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292  * This structure holds at boot time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296         char name[IFNAMSIZ];
297         struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307         /* The poll_list must only be managed by the entity which
308          * changes the state of the NAPI_STATE_SCHED bit.  This means
309          * whoever atomically sets that bit can add this napi_struct
310          * to the per-cpu poll_list, and whoever clears that bit
311          * can remove from the list right before clearing the bit.
312          */
313         struct list_head        poll_list;
314
315         unsigned long           state;
316         int                     weight;
317         unsigned int            gro_count;
318         int                     (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320         spinlock_t              poll_lock;
321         int                     poll_owner;
322 #endif
323         struct net_device       *dev;
324         struct sk_buff          *gro_list;
325         struct sk_buff          *skb;
326         struct list_head        dev_list;
327         struct hlist_node       napi_hash_node;
328         unsigned int            napi_id;
329 };
330
331 enum {
332         NAPI_STATE_SCHED,       /* Poll is scheduled */
333         NAPI_STATE_DISABLE,     /* Disable pending */
334         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
335         NAPI_STATE_HASHED,      /* In NAPI hash */
336 };
337
338 enum gro_result {
339         GRO_MERGED,
340         GRO_MERGED_FREE,
341         GRO_HELD,
342         GRO_NORMAL,
343         GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed to skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other ways.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler consider the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387
388 enum rx_handler_result {
389         RX_HANDLER_CONSUMED,
390         RX_HANDLER_ANOTHER,
391         RX_HANDLER_EXACT,
392         RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 void __napi_schedule(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401         return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405  *      napi_schedule_prep - check if napi can be scheduled
406  *      @n: napi context
407  *
408  * Test if NAPI routine is already running, and if not mark
409  * it as running.  This is used as a condition variable
410  * insure only one NAPI poll instance runs.  We also make
411  * sure there is no pending NAPI disable.
412  */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415         return !napi_disable_pending(n) &&
416                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420  *      napi_schedule - schedule NAPI poll
421  *      @n: napi context
422  *
423  * Schedule NAPI poll routine to be called if it is not already
424  * running.
425  */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428         if (napi_schedule_prep(n))
429                 __napi_schedule(n);
430 }
431
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435         if (napi_schedule_prep(napi)) {
436                 __napi_schedule(napi);
437                 return true;
438         }
439         return false;
440 }
441
442 /**
443  *      napi_complete - NAPI processing complete
444  *      @n: napi context
445  *
446  * Mark NAPI processing as complete.
447  */
448 void __napi_complete(struct napi_struct *n);
449 void napi_complete(struct napi_struct *n);
450
451 /**
452  *      napi_by_id - lookup a NAPI by napi_id
453  *      @napi_id: hashed napi_id
454  *
455  * lookup @napi_id in napi_hash table
456  * must be called under rcu_read_lock()
457  */
458 struct napi_struct *napi_by_id(unsigned int napi_id);
459
460 /**
461  *      napi_hash_add - add a NAPI to global hashtable
462  *      @napi: napi context
463  *
464  * generate a new napi_id and store a @napi under it in napi_hash
465  */
466 void napi_hash_add(struct napi_struct *napi);
467
468 /**
469  *      napi_hash_del - remove a NAPI from global table
470  *      @napi: napi context
471  *
472  * Warning: caller must observe rcu grace period
473  * before freeing memory containing @napi
474  */
475 void napi_hash_del(struct napi_struct *napi);
476
477 /**
478  *      napi_disable - prevent NAPI from scheduling
479  *      @n: napi context
480  *
481  * Stop NAPI from being scheduled on this context.
482  * Waits till any outstanding processing completes.
483  */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486         might_sleep();
487         set_bit(NAPI_STATE_DISABLE, &n->state);
488         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
489                 msleep(1);
490         clear_bit(NAPI_STATE_DISABLE, &n->state);
491 }
492
493 /**
494  *      napi_enable - enable NAPI scheduling
495  *      @n: napi context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503         smp_mb__before_clear_bit();
504         clear_bit(NAPI_STATE_SCHED, &n->state);
505 }
506
507 #ifdef CONFIG_SMP
508 /**
509  *      napi_synchronize - wait until NAPI is not running
510  *      @n: napi context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518         while (test_bit(NAPI_STATE_SCHED, &n->state))
519                 msleep(1);
520 }
521 #else
522 # define napi_synchronize(n)    barrier()
523 #endif
524
525 enum netdev_queue_state_t {
526         __QUEUE_STATE_DRV_XOFF,
527         __QUEUE_STATE_STACK_XOFF,
528         __QUEUE_STATE_FROZEN,
529 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)             | \
530                               (1 << __QUEUE_STATE_STACK_XOFF))
531 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF            | \
532                                         (1 << __QUEUE_STATE_FROZEN))
533 };
534 /*
535  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
536  * netif_tx_* functions below are used to manipulate this flag.  The
537  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538  * queue independently.  The netif_xmit_*stopped functions below are called
539  * to check if the queue has been stopped by the driver or stack (either
540  * of the XOFF bits are set in the state).  Drivers should not need to call
541  * netif_xmit*stopped functions, they should only be using netif_tx_*.
542  */
543
544 struct netdev_queue {
545 /*
546  * read mostly part
547  */
548         struct net_device       *dev;
549         struct Qdisc            *qdisc;
550         struct Qdisc            *qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552         struct kobject          kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555         int                     numa_node;
556 #endif
557 /*
558  * write mostly part
559  */
560         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
561         int                     xmit_lock_owner;
562         /*
563          * please use this field instead of dev->trans_start
564          */
565         unsigned long           trans_start;
566
567         /*
568          * Number of TX timeouts for this queue
569          * (/sys/class/net/DEV/Q/trans_timeout)
570          */
571         unsigned long           trans_timeout;
572
573         unsigned long           state;
574
575 #ifdef CONFIG_BQL
576         struct dql              dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583         return q->numa_node;
584 #else
585         return NUMA_NO_NODE;
586 #endif
587 }
588
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592         q->numa_node = node;
593 #endif
594 }
595
596 #ifdef CONFIG_RPS
597 /*
598  * This structure holds an RPS map which can be of variable length.  The
599  * map is an array of CPUs.
600  */
601 struct rps_map {
602         unsigned int len;
603         struct rcu_head rcu;
604         u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607
608 /*
609  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610  * tail pointer for that CPU's input queue at the time of last enqueue, and
611  * a hardware filter index.
612  */
613 struct rps_dev_flow {
614         u16 cpu;
615         u16 filter;
616         unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619
620 /*
621  * The rps_dev_flow_table structure contains a table of flow mappings.
622  */
623 struct rps_dev_flow_table {
624         unsigned int mask;
625         struct rcu_head rcu;
626         struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629     ((_num) * sizeof(struct rps_dev_flow)))
630
631 /*
632  * The rps_sock_flow_table contains mappings of flows to the last CPU
633  * on which they were processed by the application (set in recvmsg).
634  */
635 struct rps_sock_flow_table {
636         unsigned int mask;
637         u16 ents[0];
638 };
639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640     ((_num) * sizeof(u16)))
641
642 #define RPS_NO_CPU 0xffff
643
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645                                         u32 hash)
646 {
647         if (table && hash) {
648                 unsigned int cpu, index = hash & table->mask;
649
650                 /* We only give a hint, preemption can change cpu under us */
651                 cpu = raw_smp_processor_id();
652
653                 if (table->ents[index] != cpu)
654                         table->ents[index] = cpu;
655         }
656 }
657
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659                                        u32 hash)
660 {
661         if (table && hash)
662                 table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669                          u16 filter_id);
670 #endif
671 #endif /* CONFIG_RPS */
672
673 /* This structure contains an instance of an RX queue. */
674 struct netdev_rx_queue {
675 #ifdef CONFIG_RPS
676         struct rps_map __rcu            *rps_map;
677         struct rps_dev_flow_table __rcu *rps_flow_table;
678 #endif
679         struct kobject                  kobj;
680         struct net_device               *dev;
681 } ____cacheline_aligned_in_smp;
682
683 /*
684  * RX queue sysfs structures and functions.
685  */
686 struct rx_queue_attribute {
687         struct attribute attr;
688         ssize_t (*show)(struct netdev_rx_queue *queue,
689             struct rx_queue_attribute *attr, char *buf);
690         ssize_t (*store)(struct netdev_rx_queue *queue,
691             struct rx_queue_attribute *attr, const char *buf, size_t len);
692 };
693
694 #ifdef CONFIG_XPS
695 /*
696  * This structure holds an XPS map which can be of variable length.  The
697  * map is an array of queues.
698  */
699 struct xps_map {
700         unsigned int len;
701         unsigned int alloc_len;
702         struct rcu_head rcu;
703         u16 queues[0];
704 };
705 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
706 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
707     / sizeof(u16))
708
709 /*
710  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
711  */
712 struct xps_dev_maps {
713         struct rcu_head rcu;
714         struct xps_map __rcu *cpu_map[0];
715 };
716 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
717     (nr_cpu_ids * sizeof(struct xps_map *)))
718 #endif /* CONFIG_XPS */
719
720 #define TC_MAX_QUEUE    16
721 #define TC_BITMASK      15
722 /* HW offloaded queuing disciplines txq count and offset maps */
723 struct netdev_tc_txq {
724         u16 count;
725         u16 offset;
726 };
727
728 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
729 /*
730  * This structure is to hold information about the device
731  * configured to run FCoE protocol stack.
732  */
733 struct netdev_fcoe_hbainfo {
734         char    manufacturer[64];
735         char    serial_number[64];
736         char    hardware_version[64];
737         char    driver_version[64];
738         char    optionrom_version[64];
739         char    firmware_version[64];
740         char    model[256];
741         char    model_description[256];
742 };
743 #endif
744
745 #define MAX_PHYS_PORT_ID_LEN 32
746
747 /* This structure holds a unique identifier to identify the
748  * physical port used by a netdevice.
749  */
750 struct netdev_phys_port_id {
751         unsigned char id[MAX_PHYS_PORT_ID_LEN];
752         unsigned char id_len;
753 };
754
755 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
756                                        struct sk_buff *skb);
757
758 /*
759  * This structure defines the management hooks for network devices.
760  * The following hooks can be defined; unless noted otherwise, they are
761  * optional and can be filled with a null pointer.
762  *
763  * int (*ndo_init)(struct net_device *dev);
764  *     This function is called once when network device is registered.
765  *     The network device can use this to any late stage initializaton
766  *     or semantic validattion. It can fail with an error code which will
767  *     be propogated back to register_netdev
768  *
769  * void (*ndo_uninit)(struct net_device *dev);
770  *     This function is called when device is unregistered or when registration
771  *     fails. It is not called if init fails.
772  *
773  * int (*ndo_open)(struct net_device *dev);
774  *     This function is called when network device transistions to the up
775  *     state.
776  *
777  * int (*ndo_stop)(struct net_device *dev);
778  *     This function is called when network device transistions to the down
779  *     state.
780  *
781  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
782  *                               struct net_device *dev);
783  *      Called when a packet needs to be transmitted.
784  *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
785  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
786  *      Required can not be NULL.
787  *
788  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
789  *                         void *accel_priv, select_queue_fallback_t fallback);
790  *      Called to decide which queue to when device supports multiple
791  *      transmit queues.
792  *
793  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
794  *      This function is called to allow device receiver to make
795  *      changes to configuration when multicast or promiscious is enabled.
796  *
797  * void (*ndo_set_rx_mode)(struct net_device *dev);
798  *      This function is called device changes address list filtering.
799  *      If driver handles unicast address filtering, it should set
800  *      IFF_UNICAST_FLT to its priv_flags.
801  *
802  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
803  *      This function  is called when the Media Access Control address
804  *      needs to be changed. If this interface is not defined, the
805  *      mac address can not be changed.
806  *
807  * int (*ndo_validate_addr)(struct net_device *dev);
808  *      Test if Media Access Control address is valid for the device.
809  *
810  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
811  *      Called when a user request an ioctl which can't be handled by
812  *      the generic interface code. If not defined ioctl's return
813  *      not supported error code.
814  *
815  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
816  *      Used to set network devices bus interface parameters. This interface
817  *      is retained for legacy reason, new devices should use the bus
818  *      interface (PCI) for low level management.
819  *
820  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
821  *      Called when a user wants to change the Maximum Transfer Unit
822  *      of a device. If not defined, any request to change MTU will
823  *      will return an error.
824  *
825  * void (*ndo_tx_timeout)(struct net_device *dev);
826  *      Callback uses when the transmitter has not made any progress
827  *      for dev->watchdog ticks.
828  *
829  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
830  *                      struct rtnl_link_stats64 *storage);
831  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
832  *      Called when a user wants to get the network device usage
833  *      statistics. Drivers must do one of the following:
834  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
835  *         rtnl_link_stats64 structure passed by the caller.
836  *      2. Define @ndo_get_stats to update a net_device_stats structure
837  *         (which should normally be dev->stats) and return a pointer to
838  *         it. The structure may be changed asynchronously only if each
839  *         field is written atomically.
840  *      3. Update dev->stats asynchronously and atomically, and define
841  *         neither operation.
842  *
843  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
844  *      If device support VLAN filtering this function is called when a
845  *      VLAN id is registered.
846  *
847  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
848  *      If device support VLAN filtering this function is called when a
849  *      VLAN id is unregistered.
850  *
851  * void (*ndo_poll_controller)(struct net_device *dev);
852  *
853  *      SR-IOV management functions.
854  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
855  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
856  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
857  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
858  * int (*ndo_get_vf_config)(struct net_device *dev,
859  *                          int vf, struct ifla_vf_info *ivf);
860  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
861  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
862  *                        struct nlattr *port[]);
863  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
864  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
865  *      Called to setup 'tc' number of traffic classes in the net device. This
866  *      is always called from the stack with the rtnl lock held and netif tx
867  *      queues stopped. This allows the netdevice to perform queue management
868  *      safely.
869  *
870  *      Fiber Channel over Ethernet (FCoE) offload functions.
871  * int (*ndo_fcoe_enable)(struct net_device *dev);
872  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
873  *      so the underlying device can perform whatever needed configuration or
874  *      initialization to support acceleration of FCoE traffic.
875  *
876  * int (*ndo_fcoe_disable)(struct net_device *dev);
877  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
878  *      so the underlying device can perform whatever needed clean-ups to
879  *      stop supporting acceleration of FCoE traffic.
880  *
881  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
882  *                           struct scatterlist *sgl, unsigned int sgc);
883  *      Called when the FCoE Initiator wants to initialize an I/O that
884  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
885  *      perform necessary setup and returns 1 to indicate the device is set up
886  *      successfully to perform DDP on this I/O, otherwise this returns 0.
887  *
888  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
889  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
890  *      indicated by the FC exchange id 'xid', so the underlying device can
891  *      clean up and reuse resources for later DDP requests.
892  *
893  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
894  *                            struct scatterlist *sgl, unsigned int sgc);
895  *      Called when the FCoE Target wants to initialize an I/O that
896  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
897  *      perform necessary setup and returns 1 to indicate the device is set up
898  *      successfully to perform DDP on this I/O, otherwise this returns 0.
899  *
900  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
901  *                             struct netdev_fcoe_hbainfo *hbainfo);
902  *      Called when the FCoE Protocol stack wants information on the underlying
903  *      device. This information is utilized by the FCoE protocol stack to
904  *      register attributes with Fiber Channel management service as per the
905  *      FC-GS Fabric Device Management Information(FDMI) specification.
906  *
907  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
908  *      Called when the underlying device wants to override default World Wide
909  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
910  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
911  *      protocol stack to use.
912  *
913  *      RFS acceleration.
914  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
915  *                          u16 rxq_index, u32 flow_id);
916  *      Set hardware filter for RFS.  rxq_index is the target queue index;
917  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
918  *      Return the filter ID on success, or a negative error code.
919  *
920  *      Slave management functions (for bridge, bonding, etc).
921  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
922  *      Called to make another netdev an underling.
923  *
924  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
925  *      Called to release previously enslaved netdev.
926  *
927  *      Feature/offload setting functions.
928  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
929  *              netdev_features_t features);
930  *      Adjusts the requested feature flags according to device-specific
931  *      constraints, and returns the resulting flags. Must not modify
932  *      the device state.
933  *
934  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
935  *      Called to update device configuration to new features. Passed
936  *      feature set might be less than what was returned by ndo_fix_features()).
937  *      Must return >0 or -errno if it changed dev->features itself.
938  *
939  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
940  *                    struct net_device *dev,
941  *                    const unsigned char *addr, u16 flags)
942  *      Adds an FDB entry to dev for addr.
943  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
944  *                    struct net_device *dev,
945  *                    const unsigned char *addr)
946  *      Deletes the FDB entry from dev coresponding to addr.
947  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
948  *                     struct net_device *dev, int idx)
949  *      Used to add FDB entries to dump requests. Implementers should add
950  *      entries to skb and update idx with the number of entries.
951  *
952  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954  *                           struct net_device *dev, u32 filter_mask)
955  *
956  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
958  *      which do not represent real hardware may define this to allow their
959  *      userspace components to manage their virtual carrier state. Devices
960  *      that determine carrier state from physical hardware properties (eg
961  *      network cables) or protocol-dependent mechanisms (eg
962  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963  *
964  * int (*ndo_get_phys_port_id)(struct net_device *dev,
965  *                             struct netdev_phys_port_id *ppid);
966  *      Called to get ID of physical port of this device. If driver does
967  *      not implement this, it is assumed that the hw is not able to have
968  *      multiple net devices on single physical port.
969  *
970  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
971  *                            sa_family_t sa_family, __be16 port);
972  *      Called by vxlan to notiy a driver about the UDP port and socket
973  *      address family that vxlan is listnening to. It is called only when
974  *      a new port starts listening. The operation is protected by the
975  *      vxlan_net->sock_lock.
976  *
977  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
978  *                            sa_family_t sa_family, __be16 port);
979  *      Called by vxlan to notify the driver about a UDP port and socket
980  *      address family that vxlan is not listening to anymore. The operation
981  *      is protected by the vxlan_net->sock_lock.
982  *
983  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984  *                               struct net_device *dev)
985  *      Called by upper layer devices to accelerate switching or other
986  *      station functionality into hardware. 'pdev is the lowerdev
987  *      to use for the offload and 'dev' is the net device that will
988  *      back the offload. Returns a pointer to the private structure
989  *      the upper layer will maintain.
990  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991  *      Called by upper layer device to delete the station created
992  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993  *      the station and priv is the structure returned by the add
994  *      operation.
995  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996  *                                    struct net_device *dev,
997  *                                    void *priv);
998  *      Callback to use for xmit over the accelerated station. This
999  *      is used in place of ndo_start_xmit on accelerated net
1000  *      devices.
1001  */
1002 struct net_device_ops {
1003         int                     (*ndo_init)(struct net_device *dev);
1004         void                    (*ndo_uninit)(struct net_device *dev);
1005         int                     (*ndo_open)(struct net_device *dev);
1006         int                     (*ndo_stop)(struct net_device *dev);
1007         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1008                                                    struct net_device *dev);
1009         u16                     (*ndo_select_queue)(struct net_device *dev,
1010                                                     struct sk_buff *skb,
1011                                                     void *accel_priv,
1012                                                     select_queue_fallback_t fallback);
1013         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1014                                                        int flags);
1015         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1016         int                     (*ndo_set_mac_address)(struct net_device *dev,
1017                                                        void *addr);
1018         int                     (*ndo_validate_addr)(struct net_device *dev);
1019         int                     (*ndo_do_ioctl)(struct net_device *dev,
1020                                                 struct ifreq *ifr, int cmd);
1021         int                     (*ndo_set_config)(struct net_device *dev,
1022                                                   struct ifmap *map);
1023         int                     (*ndo_change_mtu)(struct net_device *dev,
1024                                                   int new_mtu);
1025         int                     (*ndo_neigh_setup)(struct net_device *dev,
1026                                                    struct neigh_parms *);
1027         void                    (*ndo_tx_timeout) (struct net_device *dev);
1028
1029         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030                                                      struct rtnl_link_stats64 *storage);
1031         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032
1033         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034                                                        __be16 proto, u16 vid);
1035         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036                                                         __be16 proto, u16 vid);
1037 #ifdef CONFIG_NET_POLL_CONTROLLER
1038         void                    (*ndo_poll_controller)(struct net_device *dev);
1039         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1040                                                      struct netpoll_info *info);
1041         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1042 #endif
1043 #ifdef CONFIG_NET_RX_BUSY_POLL
1044         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1045 #endif
1046         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1047                                                   int queue, u8 *mac);
1048         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1049                                                    int queue, u16 vlan, u8 qos);
1050         int                     (*ndo_set_vf_tx_rate)(struct net_device *dev,
1051                                                       int vf, int rate);
1052         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1053                                                        int vf, bool setting);
1054         int                     (*ndo_get_vf_config)(struct net_device *dev,
1055                                                      int vf,
1056                                                      struct ifla_vf_info *ivf);
1057         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1058                                                          int vf, int link_state);
1059         int                     (*ndo_set_vf_port)(struct net_device *dev,
1060                                                    int vf,
1061                                                    struct nlattr *port[]);
1062         int                     (*ndo_get_vf_port)(struct net_device *dev,
1063                                                    int vf, struct sk_buff *skb);
1064         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1065 #if IS_ENABLED(CONFIG_FCOE)
1066         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1067         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1068         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1069                                                       u16 xid,
1070                                                       struct scatterlist *sgl,
1071                                                       unsigned int sgc);
1072         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1073                                                      u16 xid);
1074         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1075                                                        u16 xid,
1076                                                        struct scatterlist *sgl,
1077                                                        unsigned int sgc);
1078         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1079                                                         struct netdev_fcoe_hbainfo *hbainfo);
1080 #endif
1081
1082 #if IS_ENABLED(CONFIG_LIBFCOE)
1083 #define NETDEV_FCOE_WWNN 0
1084 #define NETDEV_FCOE_WWPN 1
1085         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1086                                                     u64 *wwn, int type);
1087 #endif
1088
1089 #ifdef CONFIG_RFS_ACCEL
1090         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1091                                                      const struct sk_buff *skb,
1092                                                      u16 rxq_index,
1093                                                      u32 flow_id);
1094 #endif
1095         int                     (*ndo_add_slave)(struct net_device *dev,
1096                                                  struct net_device *slave_dev);
1097         int                     (*ndo_del_slave)(struct net_device *dev,
1098                                                  struct net_device *slave_dev);
1099         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1100                                                     netdev_features_t features);
1101         int                     (*ndo_set_features)(struct net_device *dev,
1102                                                     netdev_features_t features);
1103         int                     (*ndo_neigh_construct)(struct neighbour *n);
1104         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1105
1106         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1107                                                struct nlattr *tb[],
1108                                                struct net_device *dev,
1109                                                const unsigned char *addr,
1110                                                u16 flags);
1111         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1112                                                struct nlattr *tb[],
1113                                                struct net_device *dev,
1114                                                const unsigned char *addr);
1115         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1116                                                 struct netlink_callback *cb,
1117                                                 struct net_device *dev,
1118                                                 int idx);
1119
1120         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1121                                                       struct nlmsghdr *nlh);
1122         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1123                                                       u32 pid, u32 seq,
1124                                                       struct net_device *dev,
1125                                                       u32 filter_mask);
1126         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1127                                                       struct nlmsghdr *nlh);
1128         int                     (*ndo_change_carrier)(struct net_device *dev,
1129                                                       bool new_carrier);
1130         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1131                                                         struct netdev_phys_port_id *ppid);
1132         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1133                                                       sa_family_t sa_family,
1134                                                       __be16 port);
1135         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1136                                                       sa_family_t sa_family,
1137                                                       __be16 port);
1138
1139         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1140                                                         struct net_device *dev);
1141         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1142                                                         void *priv);
1143
1144         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1145                                                         struct net_device *dev,
1146                                                         void *priv);
1147 };
1148
1149 /**
1150  * enum net_device_priv_flags - &struct net_device priv_flags
1151  *
1152  * These are the &struct net_device, they are only set internally
1153  * by drivers and used in the kernel. These flags are invisible to
1154  * userspace, this means that the order of these flags can change
1155  * during any kernel release.
1156  *
1157  * You should have a pretty good reason to be extending these flags.
1158  *
1159  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1160  * @IFF_EBRIDGE: Ethernet bridging device
1161  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1162  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1163  * @IFF_MASTER_ALB: bonding master, balance-alb
1164  * @IFF_BONDING: bonding master or slave
1165  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1166  * @IFF_ISATAP: ISATAP interface (RFC4214)
1167  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1168  * @IFF_WAN_HDLC: WAN HDLC device
1169  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1170  *      release skb->dst
1171  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1172  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1173  * @IFF_MACVLAN_PORT: device used as macvlan port
1174  * @IFF_BRIDGE_PORT: device used as bridge port
1175  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1176  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1177  * @IFF_UNICAST_FLT: Supports unicast filtering
1178  * @IFF_TEAM_PORT: device used as team port
1179  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1180  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1181  *      change when it's running
1182  * @IFF_MACVLAN: Macvlan device
1183  */
1184 enum netdev_priv_flags {
1185         IFF_802_1Q_VLAN                 = 1<<0,
1186         IFF_EBRIDGE                     = 1<<1,
1187         IFF_SLAVE_INACTIVE              = 1<<2,
1188         IFF_MASTER_8023AD               = 1<<3,
1189         IFF_MASTER_ALB                  = 1<<4,
1190         IFF_BONDING                     = 1<<5,
1191         IFF_SLAVE_NEEDARP               = 1<<6,
1192         IFF_ISATAP                      = 1<<7,
1193         IFF_MASTER_ARPMON               = 1<<8,
1194         IFF_WAN_HDLC                    = 1<<9,
1195         IFF_XMIT_DST_RELEASE            = 1<<10,
1196         IFF_DONT_BRIDGE                 = 1<<11,
1197         IFF_DISABLE_NETPOLL             = 1<<12,
1198         IFF_MACVLAN_PORT                = 1<<13,
1199         IFF_BRIDGE_PORT                 = 1<<14,
1200         IFF_OVS_DATAPATH                = 1<<15,
1201         IFF_TX_SKB_SHARING              = 1<<16,
1202         IFF_UNICAST_FLT                 = 1<<17,
1203         IFF_TEAM_PORT                   = 1<<18,
1204         IFF_SUPP_NOFCS                  = 1<<19,
1205         IFF_LIVE_ADDR_CHANGE            = 1<<20,
1206         IFF_MACVLAN                     = 1<<21,
1207 };
1208
1209 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1210 #define IFF_EBRIDGE                     IFF_EBRIDGE
1211 #define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1212 #define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1213 #define IFF_MASTER_ALB                  IFF_MASTER_ALB
1214 #define IFF_BONDING                     IFF_BONDING
1215 #define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1216 #define IFF_ISATAP                      IFF_ISATAP
1217 #define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1218 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1219 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1220 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1221 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1222 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1223 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1224 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1225 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1226 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1227 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1228 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1229 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1230 #define IFF_MACVLAN                     IFF_MACVLAN
1231
1232 /*
1233  *      The DEVICE structure.
1234  *      Actually, this whole structure is a big mistake.  It mixes I/O
1235  *      data with strictly "high-level" data, and it has to know about
1236  *      almost every data structure used in the INET module.
1237  *
1238  *      FIXME: cleanup struct net_device such that network protocol info
1239  *      moves out.
1240  */
1241
1242 struct net_device {
1243
1244         /*
1245          * This is the first field of the "visible" part of this structure
1246          * (i.e. as seen by users in the "Space.c" file).  It is the name
1247          * of the interface.
1248          */
1249         char                    name[IFNAMSIZ];
1250
1251         /* device name hash chain, please keep it close to name[] */
1252         struct hlist_node       name_hlist;
1253
1254         /* snmp alias */
1255         char                    *ifalias;
1256
1257         /*
1258          *      I/O specific fields
1259          *      FIXME: Merge these and struct ifmap into one
1260          */
1261         unsigned long           mem_end;        /* shared mem end       */
1262         unsigned long           mem_start;      /* shared mem start     */
1263         unsigned long           base_addr;      /* device I/O address   */
1264         int                     irq;            /* device IRQ number    */
1265
1266         /*
1267          *      Some hardware also needs these fields, but they are not
1268          *      part of the usual set specified in Space.c.
1269          */
1270
1271         unsigned long           state;
1272
1273         struct list_head        dev_list;
1274         struct list_head        napi_list;
1275         struct list_head        unreg_list;
1276         struct list_head        close_list;
1277
1278         /* directly linked devices, like slaves for bonding */
1279         struct {
1280                 struct list_head upper;
1281                 struct list_head lower;
1282         } adj_list;
1283
1284         /* all linked devices, *including* neighbours */
1285         struct {
1286                 struct list_head upper;
1287                 struct list_head lower;
1288         } all_adj_list;
1289
1290
1291         /* currently active device features */
1292         netdev_features_t       features;
1293         /* user-changeable features */
1294         netdev_features_t       hw_features;
1295         /* user-requested features */
1296         netdev_features_t       wanted_features;
1297         /* mask of features inheritable by VLAN devices */
1298         netdev_features_t       vlan_features;
1299         /* mask of features inherited by encapsulating devices
1300          * This field indicates what encapsulation offloads
1301          * the hardware is capable of doing, and drivers will
1302          * need to set them appropriately.
1303          */
1304         netdev_features_t       hw_enc_features;
1305         /* mask of fetures inheritable by MPLS */
1306         netdev_features_t       mpls_features;
1307
1308         /* Interface index. Unique device identifier    */
1309         int                     ifindex;
1310         int                     iflink;
1311
1312         struct net_device_stats stats;
1313
1314         /* dropped packets by core network, Do not use this in drivers */
1315         atomic_long_t           rx_dropped;
1316         atomic_long_t           tx_dropped;
1317
1318 #ifdef CONFIG_WIRELESS_EXT
1319         /* List of functions to handle Wireless Extensions (instead of ioctl).
1320          * See <net/iw_handler.h> for details. Jean II */
1321         const struct iw_handler_def *   wireless_handlers;
1322         /* Instance data managed by the core of Wireless Extensions. */
1323         struct iw_public_data * wireless_data;
1324 #endif
1325         /* Management operations */
1326         const struct net_device_ops *netdev_ops;
1327         const struct ethtool_ops *ethtool_ops;
1328         const struct forwarding_accel_ops *fwd_ops;
1329
1330         /* Hardware header description */
1331         const struct header_ops *header_ops;
1332
1333         unsigned int            flags;  /* interface flags (a la BSD)   */
1334         unsigned int            priv_flags; /* Like 'flags' but invisible to userspace.
1335                                              * See if.h for definitions. */
1336         unsigned short          gflags;
1337         unsigned short          padded; /* How much padding added by alloc_netdev() */
1338
1339         unsigned char           operstate; /* RFC2863 operstate */
1340         unsigned char           link_mode; /* mapping policy to operstate */
1341
1342         unsigned char           if_port;        /* Selectable AUI, TP,..*/
1343         unsigned char           dma;            /* DMA channel          */
1344
1345         unsigned int            mtu;    /* interface MTU value          */
1346         unsigned short          type;   /* interface hardware type      */
1347         unsigned short          hard_header_len;        /* hardware hdr length  */
1348
1349         /* extra head- and tailroom the hardware may need, but not in all cases
1350          * can this be guaranteed, especially tailroom. Some cases also use
1351          * LL_MAX_HEADER instead to allocate the skb.
1352          */
1353         unsigned short          needed_headroom;
1354         unsigned short          needed_tailroom;
1355
1356         /* Interface address info. */
1357         unsigned char           perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1358         unsigned char           addr_assign_type; /* hw address assignment type */
1359         unsigned char           addr_len;       /* hardware address length      */
1360         unsigned short          neigh_priv_len;
1361         unsigned short          dev_id;         /* Used to differentiate devices
1362                                                  * that share the same link
1363                                                  * layer address
1364                                                  */
1365         unsigned short          dev_port;       /* Used to differentiate
1366                                                  * devices that share the same
1367                                                  * function
1368                                                  */
1369         spinlock_t              addr_list_lock;
1370         struct netdev_hw_addr_list      uc;     /* Unicast mac addresses */
1371         struct netdev_hw_addr_list      mc;     /* Multicast mac addresses */
1372         struct netdev_hw_addr_list      dev_addrs; /* list of device
1373                                                     * hw addresses
1374                                                     */
1375 #ifdef CONFIG_SYSFS
1376         struct kset             *queues_kset;
1377 #endif
1378
1379         bool                    uc_promisc;
1380         unsigned int            promiscuity;
1381         unsigned int            allmulti;
1382
1383
1384         /* Protocol specific pointers */
1385
1386 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1387         struct vlan_info __rcu  *vlan_info;     /* VLAN info */
1388 #endif
1389 #if IS_ENABLED(CONFIG_NET_DSA)
1390         struct dsa_switch_tree  *dsa_ptr;       /* dsa specific data */
1391 #endif
1392 #if IS_ENABLED(CONFIG_TIPC)
1393         struct tipc_bearer __rcu *tipc_ptr;     /* TIPC specific data */
1394 #endif
1395         void                    *atalk_ptr;     /* AppleTalk link       */
1396         struct in_device __rcu  *ip_ptr;        /* IPv4 specific data   */
1397         struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1398         struct inet6_dev __rcu  *ip6_ptr;       /* IPv6 specific data */
1399         void                    *ax25_ptr;      /* AX.25 specific data */
1400         struct wireless_dev     *ieee80211_ptr; /* IEEE 802.11 specific data,
1401                                                    assign before registering */
1402
1403 /*
1404  * Cache lines mostly used on receive path (including eth_type_trans())
1405  */
1406         unsigned long           last_rx;        /* Time of last Rx */
1407
1408         /* Interface address info used in eth_type_trans() */
1409         unsigned char           *dev_addr;      /* hw address, (before bcast
1410                                                    because most packets are
1411                                                    unicast) */
1412
1413
1414 #ifdef CONFIG_SYSFS
1415         struct netdev_rx_queue  *_rx;
1416
1417         /* Number of RX queues allocated at register_netdev() time */
1418         unsigned int            num_rx_queues;
1419
1420         /* Number of RX queues currently active in device */
1421         unsigned int            real_num_rx_queues;
1422
1423 #endif
1424
1425         rx_handler_func_t __rcu *rx_handler;
1426         void __rcu              *rx_handler_data;
1427
1428         struct netdev_queue __rcu *ingress_queue;
1429         unsigned char           broadcast[MAX_ADDR_LEN];        /* hw bcast add */
1430
1431
1432 /*
1433  * Cache lines mostly used on transmit path
1434  */
1435         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1436
1437         /* Number of TX queues allocated at alloc_netdev_mq() time  */
1438         unsigned int            num_tx_queues;
1439
1440         /* Number of TX queues currently active in device  */
1441         unsigned int            real_num_tx_queues;
1442
1443         /* root qdisc from userspace point of view */
1444         struct Qdisc            *qdisc;
1445
1446         unsigned long           tx_queue_len;   /* Max frames per queue allowed */
1447         spinlock_t              tx_global_lock;
1448
1449 #ifdef CONFIG_XPS
1450         struct xps_dev_maps __rcu *xps_maps;
1451 #endif
1452 #ifdef CONFIG_RFS_ACCEL
1453         /* CPU reverse-mapping for RX completion interrupts, indexed
1454          * by RX queue number.  Assigned by driver.  This must only be
1455          * set if the ndo_rx_flow_steer operation is defined. */
1456         struct cpu_rmap         *rx_cpu_rmap;
1457 #endif
1458
1459         /* These may be needed for future network-power-down code. */
1460
1461         /*
1462          * trans_start here is expensive for high speed devices on SMP,
1463          * please use netdev_queue->trans_start instead.
1464          */
1465         unsigned long           trans_start;    /* Time (in jiffies) of last Tx */
1466
1467         int                     watchdog_timeo; /* used by dev_watchdog() */
1468         struct timer_list       watchdog_timer;
1469
1470         /* Number of references to this device */
1471         int __percpu            *pcpu_refcnt;
1472
1473         /* delayed register/unregister */
1474         struct list_head        todo_list;
1475         /* device index hash chain */
1476         struct hlist_node       index_hlist;
1477
1478         struct list_head        link_watch_list;
1479
1480         /* register/unregister state machine */
1481         enum { NETREG_UNINITIALIZED=0,
1482                NETREG_REGISTERED,       /* completed register_netdevice */
1483                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1484                NETREG_UNREGISTERED,     /* completed unregister todo */
1485                NETREG_RELEASED,         /* called free_netdev */
1486                NETREG_DUMMY,            /* dummy device for NAPI poll */
1487         } reg_state:8;
1488
1489         bool dismantle; /* device is going do be freed */
1490
1491         enum {
1492                 RTNL_LINK_INITIALIZED,
1493                 RTNL_LINK_INITIALIZING,
1494         } rtnl_link_state:16;
1495
1496         /* Called from unregister, can be used to call free_netdev */
1497         void (*destructor)(struct net_device *dev);
1498
1499 #ifdef CONFIG_NETPOLL
1500         struct netpoll_info __rcu       *npinfo;
1501 #endif
1502
1503 #ifdef CONFIG_NET_NS
1504         /* Network namespace this network device is inside */
1505         struct net              *nd_net;
1506 #endif
1507
1508         /* mid-layer private */
1509         union {
1510                 void                            *ml_priv;
1511                 struct pcpu_lstats __percpu     *lstats; /* loopback stats */
1512                 struct pcpu_sw_netstats __percpu        *tstats;
1513                 struct pcpu_dstats __percpu     *dstats; /* dummy stats */
1514                 struct pcpu_vstats __percpu     *vstats; /* veth stats */
1515         };
1516         /* GARP */
1517         struct garp_port __rcu  *garp_port;
1518         /* MRP */
1519         struct mrp_port __rcu   *mrp_port;
1520
1521         /* class/net/name entry */
1522         struct device           dev;
1523         /* space for optional device, statistics, and wireless sysfs groups */
1524         const struct attribute_group *sysfs_groups[4];
1525         /* space for optional per-rx queue attributes */
1526         const struct attribute_group *sysfs_rx_queue_group;
1527
1528         /* rtnetlink link ops */
1529         const struct rtnl_link_ops *rtnl_link_ops;
1530
1531         /* for setting kernel sock attribute on TCP connection setup */
1532 #define GSO_MAX_SIZE            65536
1533         unsigned int            gso_max_size;
1534 #define GSO_MAX_SEGS            65535
1535         u16                     gso_max_segs;
1536
1537 #ifdef CONFIG_DCB
1538         /* Data Center Bridging netlink ops */
1539         const struct dcbnl_rtnl_ops *dcbnl_ops;
1540 #endif
1541         u8 num_tc;
1542         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1543         u8 prio_tc_map[TC_BITMASK + 1];
1544
1545 #if IS_ENABLED(CONFIG_FCOE)
1546         /* max exchange id for FCoE LRO by ddp */
1547         unsigned int            fcoe_ddp_xid;
1548 #endif
1549 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1550         struct netprio_map __rcu *priomap;
1551 #endif
1552         /* phy device may attach itself for hardware timestamping */
1553         struct phy_device *phydev;
1554
1555         struct lock_class_key *qdisc_tx_busylock;
1556
1557         /* group the device belongs to */
1558         int group;
1559
1560         struct pm_qos_request   pm_qos_req;
1561 };
1562 #define to_net_dev(d) container_of(d, struct net_device, dev)
1563
1564 #define NETDEV_ALIGN            32
1565
1566 static inline
1567 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1568 {
1569         return dev->prio_tc_map[prio & TC_BITMASK];
1570 }
1571
1572 static inline
1573 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1574 {
1575         if (tc >= dev->num_tc)
1576                 return -EINVAL;
1577
1578         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1579         return 0;
1580 }
1581
1582 static inline
1583 void netdev_reset_tc(struct net_device *dev)
1584 {
1585         dev->num_tc = 0;
1586         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1587         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1588 }
1589
1590 static inline
1591 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1592 {
1593         if (tc >= dev->num_tc)
1594                 return -EINVAL;
1595
1596         dev->tc_to_txq[tc].count = count;
1597         dev->tc_to_txq[tc].offset = offset;
1598         return 0;
1599 }
1600
1601 static inline
1602 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1603 {
1604         if (num_tc > TC_MAX_QUEUE)
1605                 return -EINVAL;
1606
1607         dev->num_tc = num_tc;
1608         return 0;
1609 }
1610
1611 static inline
1612 int netdev_get_num_tc(struct net_device *dev)
1613 {
1614         return dev->num_tc;
1615 }
1616
1617 static inline
1618 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1619                                          unsigned int index)
1620 {
1621         return &dev->_tx[index];
1622 }
1623
1624 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1625                                             void (*f)(struct net_device *,
1626                                                       struct netdev_queue *,
1627                                                       void *),
1628                                             void *arg)
1629 {
1630         unsigned int i;
1631
1632         for (i = 0; i < dev->num_tx_queues; i++)
1633                 f(dev, &dev->_tx[i], arg);
1634 }
1635
1636 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1637                                     struct sk_buff *skb,
1638                                     void *accel_priv);
1639
1640 /*
1641  * Net namespace inlines
1642  */
1643 static inline
1644 struct net *dev_net(const struct net_device *dev)
1645 {
1646         return read_pnet(&dev->nd_net);
1647 }
1648
1649 static inline
1650 void dev_net_set(struct net_device *dev, struct net *net)
1651 {
1652 #ifdef CONFIG_NET_NS
1653         release_net(dev->nd_net);
1654         dev->nd_net = hold_net(net);
1655 #endif
1656 }
1657
1658 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1659 {
1660 #ifdef CONFIG_NET_DSA_TAG_DSA
1661         if (dev->dsa_ptr != NULL)
1662                 return dsa_uses_dsa_tags(dev->dsa_ptr);
1663 #endif
1664
1665         return 0;
1666 }
1667
1668 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1669 {
1670 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1671         if (dev->dsa_ptr != NULL)
1672                 return dsa_uses_trailer_tags(dev->dsa_ptr);
1673 #endif
1674
1675         return 0;
1676 }
1677
1678 /**
1679  *      netdev_priv - access network device private data
1680  *      @dev: network device
1681  *
1682  * Get network device private data
1683  */
1684 static inline void *netdev_priv(const struct net_device *dev)
1685 {
1686         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1687 }
1688
1689 /* Set the sysfs physical device reference for the network logical device
1690  * if set prior to registration will cause a symlink during initialization.
1691  */
1692 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1693
1694 /* Set the sysfs device type for the network logical device to allow
1695  * fine-grained identification of different network device types. For
1696  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1697  */
1698 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1699
1700 /* Default NAPI poll() weight
1701  * Device drivers are strongly advised to not use bigger value
1702  */
1703 #define NAPI_POLL_WEIGHT 64
1704
1705 /**
1706  *      netif_napi_add - initialize a napi context
1707  *      @dev:  network device
1708  *      @napi: napi context
1709  *      @poll: polling function
1710  *      @weight: default weight
1711  *
1712  * netif_napi_add() must be used to initialize a napi context prior to calling
1713  * *any* of the other napi related functions.
1714  */
1715 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1716                     int (*poll)(struct napi_struct *, int), int weight);
1717
1718 /**
1719  *  netif_napi_del - remove a napi context
1720  *  @napi: napi context
1721  *
1722  *  netif_napi_del() removes a napi context from the network device napi list
1723  */
1724 void netif_napi_del(struct napi_struct *napi);
1725
1726 struct napi_gro_cb {
1727         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1728         void *frag0;
1729
1730         /* Length of frag0. */
1731         unsigned int frag0_len;
1732
1733         /* This indicates where we are processing relative to skb->data. */
1734         int data_offset;
1735
1736         /* This is non-zero if the packet cannot be merged with the new skb. */
1737         u16     flush;
1738
1739         /* Save the IP ID here and check when we get to the transport layer */
1740         u16     flush_id;
1741
1742         /* Number of segments aggregated. */
1743         u16     count;
1744
1745         /* This is non-zero if the packet may be of the same flow. */
1746         u8      same_flow;
1747
1748         /* Free the skb? */
1749         u8      free;
1750 #define NAPI_GRO_FREE             1
1751 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1752
1753         /* jiffies when first packet was created/queued */
1754         unsigned long age;
1755
1756         /* Used in ipv6_gro_receive() */
1757         u16     proto;
1758
1759         /* Used in udp_gro_receive */
1760         u16     udp_mark;
1761
1762         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1763         __wsum  csum;
1764
1765         /* used in skb_gro_receive() slow path */
1766         struct sk_buff *last;
1767 };
1768
1769 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1770
1771 struct packet_type {
1772         __be16                  type;   /* This is really htons(ether_type). */
1773         struct net_device       *dev;   /* NULL is wildcarded here           */
1774         int                     (*func) (struct sk_buff *,
1775                                          struct net_device *,
1776                                          struct packet_type *,
1777                                          struct net_device *);
1778         bool                    (*id_match)(struct packet_type *ptype,
1779                                             struct sock *sk);
1780         void                    *af_packet_priv;
1781         struct list_head        list;
1782 };
1783
1784 struct offload_callbacks {
1785         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1786                                                 netdev_features_t features);
1787         int                     (*gso_send_check)(struct sk_buff *skb);
1788         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1789                                                struct sk_buff *skb);
1790         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1791 };
1792
1793 struct packet_offload {
1794         __be16                   type;  /* This is really htons(ether_type). */
1795         struct offload_callbacks callbacks;
1796         struct list_head         list;
1797 };
1798
1799 struct udp_offload {
1800         __be16                   port;
1801         struct offload_callbacks callbacks;
1802 };
1803
1804 /* often modified stats are per cpu, other are shared (netdev->stats) */
1805 struct pcpu_sw_netstats {
1806         u64     rx_packets;
1807         u64     rx_bytes;
1808         u64     tx_packets;
1809         u64     tx_bytes;
1810         struct u64_stats_sync   syncp;
1811 };
1812
1813 #define netdev_alloc_pcpu_stats(type)                           \
1814 ({                                                              \
1815         typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1816         if (pcpu_stats) {                                       \
1817                 int i;                                          \
1818                 for_each_possible_cpu(i) {                      \
1819                         typeof(type) *stat;                     \
1820                         stat = per_cpu_ptr(pcpu_stats, i);      \
1821                         u64_stats_init(&stat->syncp);           \
1822                 }                                               \
1823         }                                                       \
1824         pcpu_stats;                                             \
1825 })
1826
1827 #include <linux/notifier.h>
1828
1829 /* netdevice notifier chain. Please remember to update the rtnetlink
1830  * notification exclusion list in rtnetlink_event() when adding new
1831  * types.
1832  */
1833 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
1834 #define NETDEV_DOWN     0x0002
1835 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
1836                                    detected a hardware crash and restarted
1837                                    - we can use this eg to kick tcp sessions
1838                                    once done */
1839 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
1840 #define NETDEV_REGISTER 0x0005
1841 #define NETDEV_UNREGISTER       0x0006
1842 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
1843 #define NETDEV_CHANGEADDR       0x0008
1844 #define NETDEV_GOING_DOWN       0x0009
1845 #define NETDEV_CHANGENAME       0x000A
1846 #define NETDEV_FEAT_CHANGE      0x000B
1847 #define NETDEV_BONDING_FAILOVER 0x000C
1848 #define NETDEV_PRE_UP           0x000D
1849 #define NETDEV_PRE_TYPE_CHANGE  0x000E
1850 #define NETDEV_POST_TYPE_CHANGE 0x000F
1851 #define NETDEV_POST_INIT        0x0010
1852 #define NETDEV_UNREGISTER_FINAL 0x0011
1853 #define NETDEV_RELEASE          0x0012
1854 #define NETDEV_NOTIFY_PEERS     0x0013
1855 #define NETDEV_JOIN             0x0014
1856 #define NETDEV_CHANGEUPPER      0x0015
1857 #define NETDEV_RESEND_IGMP      0x0016
1858 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
1859
1860 int register_netdevice_notifier(struct notifier_block *nb);
1861 int unregister_netdevice_notifier(struct notifier_block *nb);
1862
1863 struct netdev_notifier_info {
1864         struct net_device *dev;
1865 };
1866
1867 struct netdev_notifier_change_info {
1868         struct netdev_notifier_info info; /* must be first */
1869         unsigned int flags_changed;
1870 };
1871
1872 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1873                                              struct net_device *dev)
1874 {
1875         info->dev = dev;
1876 }
1877
1878 static inline struct net_device *
1879 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1880 {
1881         return info->dev;
1882 }
1883
1884 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1885
1886
1887 extern rwlock_t                         dev_base_lock;          /* Device list lock */
1888
1889 #define for_each_netdev(net, d)         \
1890                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1891 #define for_each_netdev_reverse(net, d) \
1892                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1893 #define for_each_netdev_rcu(net, d)             \
1894                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1895 #define for_each_netdev_safe(net, d, n) \
1896                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1897 #define for_each_netdev_continue(net, d)                \
1898                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1899 #define for_each_netdev_continue_rcu(net, d)            \
1900         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1901 #define for_each_netdev_in_bond_rcu(bond, slave)        \
1902                 for_each_netdev_rcu(&init_net, slave)   \
1903                         if (netdev_master_upper_dev_get_rcu(slave) == bond)
1904 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
1905
1906 static inline struct net_device *next_net_device(struct net_device *dev)
1907 {
1908         struct list_head *lh;
1909         struct net *net;
1910
1911         net = dev_net(dev);
1912         lh = dev->dev_list.next;
1913         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1914 }
1915
1916 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1917 {
1918         struct list_head *lh;
1919         struct net *net;
1920
1921         net = dev_net(dev);
1922         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1923         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1924 }
1925
1926 static inline struct net_device *first_net_device(struct net *net)
1927 {
1928         return list_empty(&net->dev_base_head) ? NULL :
1929                 net_device_entry(net->dev_base_head.next);
1930 }
1931
1932 static inline struct net_device *first_net_device_rcu(struct net *net)
1933 {
1934         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1935
1936         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1937 }
1938
1939 int netdev_boot_setup_check(struct net_device *dev);
1940 unsigned long netdev_boot_base(const char *prefix, int unit);
1941 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1942                                        const char *hwaddr);
1943 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1944 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1945 void dev_add_pack(struct packet_type *pt);
1946 void dev_remove_pack(struct packet_type *pt);
1947 void __dev_remove_pack(struct packet_type *pt);
1948 void dev_add_offload(struct packet_offload *po);
1949 void dev_remove_offload(struct packet_offload *po);
1950
1951 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1952                                         unsigned short mask);
1953 struct net_device *dev_get_by_name(struct net *net, const char *name);
1954 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1955 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1956 int dev_alloc_name(struct net_device *dev, const char *name);
1957 int dev_open(struct net_device *dev);
1958 int dev_close(struct net_device *dev);
1959 void dev_disable_lro(struct net_device *dev);
1960 int dev_loopback_xmit(struct sk_buff *newskb);
1961 int dev_queue_xmit(struct sk_buff *skb);
1962 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1963 int register_netdevice(struct net_device *dev);
1964 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1965 void unregister_netdevice_many(struct list_head *head);
1966 static inline void unregister_netdevice(struct net_device *dev)
1967 {
1968         unregister_netdevice_queue(dev, NULL);
1969 }
1970
1971 int netdev_refcnt_read(const struct net_device *dev);
1972 void free_netdev(struct net_device *dev);
1973 void netdev_freemem(struct net_device *dev);
1974 void synchronize_net(void);
1975 int init_dummy_netdev(struct net_device *dev);
1976
1977 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1978 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1979 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1980 int netdev_get_name(struct net *net, char *name, int ifindex);
1981 int dev_restart(struct net_device *dev);
1982 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1983
1984 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1985 {
1986         return NAPI_GRO_CB(skb)->data_offset;
1987 }
1988
1989 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1990 {
1991         return skb->len - NAPI_GRO_CB(skb)->data_offset;
1992 }
1993
1994 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1995 {
1996         NAPI_GRO_CB(skb)->data_offset += len;
1997 }
1998
1999 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2000                                         unsigned int offset)
2001 {
2002         return NAPI_GRO_CB(skb)->frag0 + offset;
2003 }
2004
2005 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2006 {
2007         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2008 }
2009
2010 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2011                                         unsigned int offset)
2012 {
2013         if (!pskb_may_pull(skb, hlen))
2014                 return NULL;
2015
2016         NAPI_GRO_CB(skb)->frag0 = NULL;
2017         NAPI_GRO_CB(skb)->frag0_len = 0;
2018         return skb->data + offset;
2019 }
2020
2021 static inline void *skb_gro_mac_header(struct sk_buff *skb)
2022 {
2023         return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
2024 }
2025
2026 static inline void *skb_gro_network_header(struct sk_buff *skb)
2027 {
2028         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2029                skb_network_offset(skb);
2030 }
2031
2032 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2033                                         const void *start, unsigned int len)
2034 {
2035         if (skb->ip_summed == CHECKSUM_COMPLETE)
2036                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2037                                                   csum_partial(start, len, 0));
2038 }
2039
2040 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2041                                   unsigned short type,
2042                                   const void *daddr, const void *saddr,
2043                                   unsigned int len)
2044 {
2045         if (!dev->header_ops || !dev->header_ops->create)
2046                 return 0;
2047
2048         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2049 }
2050
2051 static inline int dev_parse_header(const struct sk_buff *skb,
2052                                    unsigned char *haddr)
2053 {
2054         const struct net_device *dev = skb->dev;
2055
2056         if (!dev->header_ops || !dev->header_ops->parse)
2057                 return 0;
2058         return dev->header_ops->parse(skb, haddr);
2059 }
2060
2061 static inline int dev_rebuild_header(struct sk_buff *skb)
2062 {
2063         const struct net_device *dev = skb->dev;
2064
2065         if (!dev->header_ops || !dev->header_ops->rebuild)
2066                 return 0;
2067         return dev->header_ops->rebuild(skb);
2068 }
2069
2070 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2071 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2072 static inline int unregister_gifconf(unsigned int family)
2073 {
2074         return register_gifconf(family, NULL);
2075 }
2076
2077 #ifdef CONFIG_NET_FLOW_LIMIT
2078 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2079 struct sd_flow_limit {
2080         u64                     count;
2081         unsigned int            num_buckets;
2082         unsigned int            history_head;
2083         u16                     history[FLOW_LIMIT_HISTORY];
2084         u8                      buckets[];
2085 };
2086
2087 extern int netdev_flow_limit_table_len;
2088 #endif /* CONFIG_NET_FLOW_LIMIT */
2089
2090 /*
2091  * Incoming packets are placed on per-cpu queues
2092  */
2093 struct softnet_data {
2094         struct Qdisc            *output_queue;
2095         struct Qdisc            **output_queue_tailp;
2096         struct list_head        poll_list;
2097         struct sk_buff          *completion_queue;
2098         struct sk_buff_head     process_queue;
2099
2100         /* stats */
2101         unsigned int            processed;
2102         unsigned int            time_squeeze;
2103         unsigned int            cpu_collision;
2104         unsigned int            received_rps;
2105
2106 #ifdef CONFIG_RPS
2107         struct softnet_data     *rps_ipi_list;
2108
2109         /* Elements below can be accessed between CPUs for RPS */
2110         struct call_single_data csd ____cacheline_aligned_in_smp;
2111         struct softnet_data     *rps_ipi_next;
2112         unsigned int            cpu;
2113         unsigned int            input_queue_head;
2114         unsigned int            input_queue_tail;
2115 #endif
2116         unsigned int            dropped;
2117         struct sk_buff_head     input_pkt_queue;
2118         struct napi_struct      backlog;
2119
2120 #ifdef CONFIG_NET_FLOW_LIMIT
2121         struct sd_flow_limit __rcu *flow_limit;
2122 #endif
2123 };
2124
2125 static inline void input_queue_head_incr(struct softnet_data *sd)
2126 {
2127 #ifdef CONFIG_RPS
2128         sd->input_queue_head++;
2129 #endif
2130 }
2131
2132 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2133                                               unsigned int *qtail)
2134 {
2135 #ifdef CONFIG_RPS
2136         *qtail = ++sd->input_queue_tail;
2137 #endif
2138 }
2139
2140 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2141
2142 void __netif_schedule(struct Qdisc *q);
2143
2144 static inline void netif_schedule_queue(struct netdev_queue *txq)
2145 {
2146         if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2147                 __netif_schedule(txq->qdisc);
2148 }
2149
2150 static inline void netif_tx_schedule_all(struct net_device *dev)
2151 {
2152         unsigned int i;
2153
2154         for (i = 0; i < dev->num_tx_queues; i++)
2155                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2156 }
2157
2158 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2159 {
2160         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2161 }
2162
2163 /**
2164  *      netif_start_queue - allow transmit
2165  *      @dev: network device
2166  *
2167  *      Allow upper layers to call the device hard_start_xmit routine.
2168  */
2169 static inline void netif_start_queue(struct net_device *dev)
2170 {
2171         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2172 }
2173
2174 static inline void netif_tx_start_all_queues(struct net_device *dev)
2175 {
2176         unsigned int i;
2177
2178         for (i = 0; i < dev->num_tx_queues; i++) {
2179                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2180                 netif_tx_start_queue(txq);
2181         }
2182 }
2183
2184 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2185 {
2186         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2187                 __netif_schedule(dev_queue->qdisc);
2188 }
2189
2190 /**
2191  *      netif_wake_queue - restart transmit
2192  *      @dev: network device
2193  *
2194  *      Allow upper layers to call the device hard_start_xmit routine.
2195  *      Used for flow control when transmit resources are available.
2196  */
2197 static inline void netif_wake_queue(struct net_device *dev)
2198 {
2199         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2200 }
2201
2202 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2203 {
2204         unsigned int i;
2205
2206         for (i = 0; i < dev->num_tx_queues; i++) {
2207                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2208                 netif_tx_wake_queue(txq);
2209         }
2210 }
2211
2212 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2213 {
2214         if (WARN_ON(!dev_queue)) {
2215                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2216                 return;
2217         }
2218         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2219 }
2220
2221 /**
2222  *      netif_stop_queue - stop transmitted packets
2223  *      @dev: network device
2224  *
2225  *      Stop upper layers calling the device hard_start_xmit routine.
2226  *      Used for flow control when transmit resources are unavailable.
2227  */
2228 static inline void netif_stop_queue(struct net_device *dev)
2229 {
2230         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2231 }
2232
2233 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2234 {
2235         unsigned int i;
2236
2237         for (i = 0; i < dev->num_tx_queues; i++) {
2238                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2239                 netif_tx_stop_queue(txq);
2240         }
2241 }
2242
2243 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2244 {
2245         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2246 }
2247
2248 /**
2249  *      netif_queue_stopped - test if transmit queue is flowblocked
2250  *      @dev: network device
2251  *
2252  *      Test if transmit queue on device is currently unable to send.
2253  */
2254 static inline bool netif_queue_stopped(const struct net_device *dev)
2255 {
2256         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2257 }
2258
2259 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2260 {
2261         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2262 }
2263
2264 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2265 {
2266         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2267 }
2268
2269 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2270                                         unsigned int bytes)
2271 {
2272 #ifdef CONFIG_BQL
2273         dql_queued(&dev_queue->dql, bytes);
2274
2275         if (likely(dql_avail(&dev_queue->dql) >= 0))
2276                 return;
2277
2278         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2279
2280         /*
2281          * The XOFF flag must be set before checking the dql_avail below,
2282          * because in netdev_tx_completed_queue we update the dql_completed
2283          * before checking the XOFF flag.
2284          */
2285         smp_mb();
2286
2287         /* check again in case another CPU has just made room avail */
2288         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2289                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2290 #endif
2291 }
2292
2293 /**
2294  *      netdev_sent_queue - report the number of bytes queued to hardware
2295  *      @dev: network device
2296  *      @bytes: number of bytes queued to the hardware device queue
2297  *
2298  *      Report the number of bytes queued for sending/completion to the network
2299  *      device hardware queue. @bytes should be a good approximation and should
2300  *      exactly match netdev_completed_queue() @bytes
2301  */
2302 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2303 {
2304         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2305 }
2306
2307 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2308                                              unsigned int pkts, unsigned int bytes)
2309 {
2310 #ifdef CONFIG_BQL
2311         if (unlikely(!bytes))
2312                 return;
2313
2314         dql_completed(&dev_queue->dql, bytes);
2315
2316         /*
2317          * Without the memory barrier there is a small possiblity that
2318          * netdev_tx_sent_queue will miss the update and cause the queue to
2319          * be stopped forever
2320          */
2321         smp_mb();
2322
2323         if (dql_avail(&dev_queue->dql) < 0)
2324                 return;
2325
2326         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2327                 netif_schedule_queue(dev_queue);
2328 #endif
2329 }
2330
2331 /**
2332  *      netdev_completed_queue - report bytes and packets completed by device
2333  *      @dev: network device
2334  *      @pkts: actual number of packets sent over the medium
2335  *      @bytes: actual number of bytes sent over the medium
2336  *
2337  *      Report the number of bytes and packets transmitted by the network device
2338  *      hardware queue over the physical medium, @bytes must exactly match the
2339  *      @bytes amount passed to netdev_sent_queue()
2340  */
2341 static inline void netdev_completed_queue(struct net_device *dev,
2342                                           unsigned int pkts, unsigned int bytes)
2343 {
2344         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2345 }
2346
2347 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2348 {
2349 #ifdef CONFIG_BQL
2350         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2351         dql_reset(&q->dql);
2352 #endif
2353 }
2354
2355 /**
2356  *      netdev_reset_queue - reset the packets and bytes count of a network device
2357  *      @dev_queue: network device
2358  *
2359  *      Reset the bytes and packet count of a network device and clear the
2360  *      software flow control OFF bit for this network device
2361  */
2362 static inline void netdev_reset_queue(struct net_device *dev_queue)
2363 {
2364         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2365 }
2366
2367 /**
2368  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2369  *      @dev: network device
2370  *      @queue_index: given tx queue index
2371  *
2372  *      Returns 0 if given tx queue index >= number of device tx queues,
2373  *      otherwise returns the originally passed tx queue index.
2374  */
2375 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2376 {
2377         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2378                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2379                                      dev->name, queue_index,
2380                                      dev->real_num_tx_queues);
2381                 return 0;
2382         }
2383
2384         return queue_index;
2385 }
2386
2387 /**
2388  *      netif_running - test if up
2389  *      @dev: network device
2390  *
2391  *      Test if the device has been brought up.
2392  */
2393 static inline bool netif_running(const struct net_device *dev)
2394 {
2395         return test_bit(__LINK_STATE_START, &dev->state);
2396 }
2397
2398 /*
2399  * Routines to manage the subqueues on a device.  We only need start
2400  * stop, and a check if it's stopped.  All other device management is
2401  * done at the overall netdevice level.
2402  * Also test the device if we're multiqueue.
2403  */
2404
2405 /**
2406  *      netif_start_subqueue - allow sending packets on subqueue
2407  *      @dev: network device
2408  *      @queue_index: sub queue index
2409  *
2410  * Start individual transmit queue of a device with multiple transmit queues.
2411  */
2412 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2413 {
2414         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2415
2416         netif_tx_start_queue(txq);
2417 }
2418
2419 /**
2420  *      netif_stop_subqueue - stop sending packets on subqueue
2421  *      @dev: network device
2422  *      @queue_index: sub queue index
2423  *
2424  * Stop individual transmit queue of a device with multiple transmit queues.
2425  */
2426 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2427 {
2428         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2429         netif_tx_stop_queue(txq);
2430 }
2431
2432 /**
2433  *      netif_subqueue_stopped - test status of subqueue
2434  *      @dev: network device
2435  *      @queue_index: sub queue index
2436  *
2437  * Check individual transmit queue of a device with multiple transmit queues.
2438  */
2439 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2440                                             u16 queue_index)
2441 {
2442         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2443
2444         return netif_tx_queue_stopped(txq);
2445 }
2446
2447 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2448                                           struct sk_buff *skb)
2449 {
2450         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2451 }
2452
2453 /**
2454  *      netif_wake_subqueue - allow sending packets on subqueue
2455  *      @dev: network device
2456  *      @queue_index: sub queue index
2457  *
2458  * Resume individual transmit queue of a device with multiple transmit queues.
2459  */
2460 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2461 {
2462         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2463         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2464                 __netif_schedule(txq->qdisc);
2465 }
2466
2467 #ifdef CONFIG_XPS
2468 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2469                         u16 index);
2470 #else
2471 static inline int netif_set_xps_queue(struct net_device *dev,
2472                                       const struct cpumask *mask,
2473                                       u16 index)
2474 {
2475         return 0;
2476 }
2477 #endif
2478
2479 /*
2480  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2481  * as a distribution range limit for the returned value.
2482  */
2483 static inline u16 skb_tx_hash(const struct net_device *dev,
2484                               const struct sk_buff *skb)
2485 {
2486         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2487 }
2488
2489 /**
2490  *      netif_is_multiqueue - test if device has multiple transmit queues
2491  *      @dev: network device
2492  *
2493  * Check if device has multiple transmit queues
2494  */
2495 static inline bool netif_is_multiqueue(const struct net_device *dev)
2496 {
2497         return dev->num_tx_queues > 1;
2498 }
2499
2500 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2501
2502 #ifdef CONFIG_SYSFS
2503 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2504 #else
2505 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2506                                                 unsigned int rxq)
2507 {
2508         return 0;
2509 }
2510 #endif
2511
2512 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2513                                              const struct net_device *from_dev)
2514 {
2515         int err;
2516
2517         err = netif_set_real_num_tx_queues(to_dev,
2518                                            from_dev->real_num_tx_queues);
2519         if (err)
2520                 return err;
2521 #ifdef CONFIG_SYSFS
2522         return netif_set_real_num_rx_queues(to_dev,
2523                                             from_dev->real_num_rx_queues);
2524 #else
2525         return 0;
2526 #endif
2527 }
2528
2529 #ifdef CONFIG_SYSFS
2530 static inline unsigned int get_netdev_rx_queue_index(
2531                 struct netdev_rx_queue *queue)
2532 {
2533         struct net_device *dev = queue->dev;
2534         int index = queue - dev->_rx;
2535
2536         BUG_ON(index >= dev->num_rx_queues);
2537         return index;
2538 }
2539 #endif
2540
2541 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2542 int netif_get_num_default_rss_queues(void);
2543
2544 enum skb_free_reason {
2545         SKB_REASON_CONSUMED,
2546         SKB_REASON_DROPPED,
2547 };
2548
2549 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2550 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2551
2552 /*
2553  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2554  * interrupt context or with hardware interrupts being disabled.
2555  * (in_irq() || irqs_disabled())
2556  *
2557  * We provide four helpers that can be used in following contexts :
2558  *
2559  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2560  *  replacing kfree_skb(skb)
2561  *
2562  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2563  *  Typically used in place of consume_skb(skb) in TX completion path
2564  *
2565  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2566  *  replacing kfree_skb(skb)
2567  *
2568  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2569  *  and consumed a packet. Used in place of consume_skb(skb)
2570  */
2571 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2572 {
2573         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2574 }
2575
2576 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2577 {
2578         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2579 }
2580
2581 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2582 {
2583         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2584 }
2585
2586 static inline void dev_consume_skb_any(struct sk_buff *skb)
2587 {
2588         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2589 }
2590
2591 int netif_rx(struct sk_buff *skb);
2592 int netif_rx_ni(struct sk_buff *skb);
2593 int netif_receive_skb(struct sk_buff *skb);
2594 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2595 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2596 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2597 gro_result_t napi_gro_frags(struct napi_struct *napi);
2598 struct packet_offload *gro_find_receive_by_type(__be16 type);
2599 struct packet_offload *gro_find_complete_by_type(__be16 type);
2600
2601 static inline void napi_free_frags(struct napi_struct *napi)
2602 {
2603         kfree_skb(napi->skb);
2604         napi->skb = NULL;
2605 }
2606
2607 int netdev_rx_handler_register(struct net_device *dev,
2608                                rx_handler_func_t *rx_handler,
2609                                void *rx_handler_data);
2610 void netdev_rx_handler_unregister(struct net_device *dev);
2611
2612 bool dev_valid_name(const char *name);
2613 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2614 int dev_ethtool(struct net *net, struct ifreq *);
2615 unsigned int dev_get_flags(const struct net_device *);
2616 int __dev_change_flags(struct net_device *, unsigned int flags);
2617 int dev_change_flags(struct net_device *, unsigned int);
2618 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2619                         unsigned int gchanges);
2620 int dev_change_name(struct net_device *, const char *);
2621 int dev_set_alias(struct net_device *, const char *, size_t);
2622 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2623 int dev_set_mtu(struct net_device *, int);
2624 void dev_set_group(struct net_device *, int);
2625 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2626 int dev_change_carrier(struct net_device *, bool new_carrier);
2627 int dev_get_phys_port_id(struct net_device *dev,
2628                          struct netdev_phys_port_id *ppid);
2629 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2630                         struct netdev_queue *txq);
2631 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2632
2633 extern int              netdev_budget;
2634
2635 /* Called by rtnetlink.c:rtnl_unlock() */
2636 void netdev_run_todo(void);
2637
2638 /**
2639  *      dev_put - release reference to device
2640  *      @dev: network device
2641  *
2642  * Release reference to device to allow it to be freed.
2643  */
2644 static inline void dev_put(struct net_device *dev)
2645 {
2646         this_cpu_dec(*dev->pcpu_refcnt);
2647 }
2648
2649 /**
2650  *      dev_hold - get reference to device
2651  *      @dev: network device
2652  *
2653  * Hold reference to device to keep it from being freed.
2654  */
2655 static inline void dev_hold(struct net_device *dev)
2656 {
2657         this_cpu_inc(*dev->pcpu_refcnt);
2658 }
2659
2660 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2661  * and _off may be called from IRQ context, but it is caller
2662  * who is responsible for serialization of these calls.
2663  *
2664  * The name carrier is inappropriate, these functions should really be
2665  * called netif_lowerlayer_*() because they represent the state of any
2666  * kind of lower layer not just hardware media.
2667  */
2668
2669 void linkwatch_init_dev(struct net_device *dev);
2670 void linkwatch_fire_event(struct net_device *dev);
2671 void linkwatch_forget_dev(struct net_device *dev);
2672
2673 /**
2674  *      netif_carrier_ok - test if carrier present
2675  *      @dev: network device
2676  *
2677  * Check if carrier is present on device
2678  */
2679 static inline bool netif_carrier_ok(const struct net_device *dev)
2680 {
2681         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2682 }
2683
2684 unsigned long dev_trans_start(struct net_device *dev);
2685
2686 void __netdev_watchdog_up(struct net_device *dev);
2687
2688 void netif_carrier_on(struct net_device *dev);
2689
2690 void netif_carrier_off(struct net_device *dev);
2691
2692 /**
2693  *      netif_dormant_on - mark device as dormant.
2694  *      @dev: network device
2695  *
2696  * Mark device as dormant (as per RFC2863).
2697  *
2698  * The dormant state indicates that the relevant interface is not
2699  * actually in a condition to pass packets (i.e., it is not 'up') but is
2700  * in a "pending" state, waiting for some external event.  For "on-
2701  * demand" interfaces, this new state identifies the situation where the
2702  * interface is waiting for events to place it in the up state.
2703  *
2704  */
2705 static inline void netif_dormant_on(struct net_device *dev)
2706 {
2707         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2708                 linkwatch_fire_event(dev);
2709 }
2710
2711 /**
2712  *      netif_dormant_off - set device as not dormant.
2713  *      @dev: network device
2714  *
2715  * Device is not in dormant state.
2716  */
2717 static inline void netif_dormant_off(struct net_device *dev)
2718 {
2719         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2720                 linkwatch_fire_event(dev);
2721 }
2722
2723 /**
2724  *      netif_dormant - test if carrier present
2725  *      @dev: network device
2726  *
2727  * Check if carrier is present on device
2728  */
2729 static inline bool netif_dormant(const struct net_device *dev)
2730 {
2731         return test_bit(__LINK_STATE_DORMANT, &dev->state);
2732 }
2733
2734
2735 /**
2736  *      netif_oper_up - test if device is operational
2737  *      @dev: network device
2738  *
2739  * Check if carrier is operational
2740  */
2741 static inline bool netif_oper_up(const struct net_device *dev)
2742 {
2743         return (dev->operstate == IF_OPER_UP ||
2744                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2745 }
2746
2747 /**
2748  *      netif_device_present - is device available or removed
2749  *      @dev: network device
2750  *
2751  * Check if device has not been removed from system.
2752  */
2753 static inline bool netif_device_present(struct net_device *dev)
2754 {
2755         return test_bit(__LINK_STATE_PRESENT, &dev->state);
2756 }
2757
2758 void netif_device_detach(struct net_device *dev);
2759
2760 void netif_device_attach(struct net_device *dev);
2761
2762 /*
2763  * Network interface message level settings
2764  */
2765
2766 enum {
2767         NETIF_MSG_DRV           = 0x0001,
2768         NETIF_MSG_PROBE         = 0x0002,
2769         NETIF_MSG_LINK          = 0x0004,
2770         NETIF_MSG_TIMER         = 0x0008,
2771         NETIF_MSG_IFDOWN        = 0x0010,
2772         NETIF_MSG_IFUP          = 0x0020,
2773         NETIF_MSG_RX_ERR        = 0x0040,
2774         NETIF_MSG_TX_ERR        = 0x0080,
2775         NETIF_MSG_TX_QUEUED     = 0x0100,
2776         NETIF_MSG_INTR          = 0x0200,
2777         NETIF_MSG_TX_DONE       = 0x0400,
2778         NETIF_MSG_RX_STATUS     = 0x0800,
2779         NETIF_MSG_PKTDATA       = 0x1000,
2780         NETIF_MSG_HW            = 0x2000,
2781         NETIF_MSG_WOL           = 0x4000,
2782 };
2783
2784 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
2785 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
2786 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
2787 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
2788 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
2789 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
2790 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
2791 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
2792 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2793 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
2794 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
2795 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2796 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
2797 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
2798 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
2799
2800 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2801 {
2802         /* use default */
2803         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2804                 return default_msg_enable_bits;
2805         if (debug_value == 0)   /* no output */
2806                 return 0;
2807         /* set low N bits */
2808         return (1 << debug_value) - 1;
2809 }
2810
2811 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2812 {
2813         spin_lock(&txq->_xmit_lock);
2814         txq->xmit_lock_owner = cpu;
2815 }
2816
2817 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2818 {
2819         spin_lock_bh(&txq->_xmit_lock);
2820         txq->xmit_lock_owner = smp_processor_id();
2821 }
2822
2823 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2824 {
2825         bool ok = spin_trylock(&txq->_xmit_lock);
2826         if (likely(ok))
2827                 txq->xmit_lock_owner = smp_processor_id();
2828         return ok;
2829 }
2830
2831 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2832 {
2833         txq->xmit_lock_owner = -1;
2834         spin_unlock(&txq->_xmit_lock);
2835 }
2836
2837 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2838 {
2839         txq->xmit_lock_owner = -1;
2840         spin_unlock_bh(&txq->_xmit_lock);
2841 }
2842
2843 static inline void txq_trans_update(struct netdev_queue *txq)
2844 {
2845         if (txq->xmit_lock_owner != -1)
2846                 txq->trans_start = jiffies;
2847 }
2848
2849 /**
2850  *      netif_tx_lock - grab network device transmit lock
2851  *      @dev: network device
2852  *
2853  * Get network device transmit lock
2854  */
2855 static inline void netif_tx_lock(struct net_device *dev)
2856 {
2857         unsigned int i;
2858         int cpu;
2859
2860         spin_lock(&dev->tx_global_lock);
2861         cpu = smp_processor_id();
2862         for (i = 0; i < dev->num_tx_queues; i++) {
2863                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2864
2865                 /* We are the only thread of execution doing a
2866                  * freeze, but we have to grab the _xmit_lock in
2867                  * order to synchronize with threads which are in
2868                  * the ->hard_start_xmit() handler and already
2869                  * checked the frozen bit.
2870                  */
2871                 __netif_tx_lock(txq, cpu);
2872                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2873                 __netif_tx_unlock(txq);
2874         }
2875 }
2876
2877 static inline void netif_tx_lock_bh(struct net_device *dev)
2878 {
2879         local_bh_disable();
2880         netif_tx_lock(dev);
2881 }
2882
2883 static inline void netif_tx_unlock(struct net_device *dev)
2884 {
2885         unsigned int i;
2886
2887         for (i = 0; i < dev->num_tx_queues; i++) {
2888                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2889
2890                 /* No need to grab the _xmit_lock here.  If the
2891                  * queue is not stopped for another reason, we
2892                  * force a schedule.
2893                  */
2894                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2895                 netif_schedule_queue(txq);
2896         }
2897         spin_unlock(&dev->tx_global_lock);
2898 }
2899
2900 static inline void netif_tx_unlock_bh(struct net_device *dev)
2901 {
2902         netif_tx_unlock(dev);
2903         local_bh_enable();
2904 }
2905
2906 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
2907         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2908                 __netif_tx_lock(txq, cpu);              \
2909         }                                               \
2910 }
2911
2912 #define HARD_TX_UNLOCK(dev, txq) {                      \
2913         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2914                 __netif_tx_unlock(txq);                 \
2915         }                                               \
2916 }
2917
2918 static inline void netif_tx_disable(struct net_device *dev)
2919 {
2920         unsigned int i;
2921         int cpu;
2922
2923         local_bh_disable();
2924         cpu = smp_processor_id();
2925         for (i = 0; i < dev->num_tx_queues; i++) {
2926                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2927
2928                 __netif_tx_lock(txq, cpu);
2929                 netif_tx_stop_queue(txq);
2930                 __netif_tx_unlock(txq);
2931         }
2932         local_bh_enable();
2933 }
2934
2935 static inline void netif_addr_lock(struct net_device *dev)
2936 {
2937         spin_lock(&dev->addr_list_lock);
2938 }
2939
2940 static inline void netif_addr_lock_nested(struct net_device *dev)
2941 {
2942         spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2943 }
2944
2945 static inline void netif_addr_lock_bh(struct net_device *dev)
2946 {
2947         spin_lock_bh(&dev->addr_list_lock);
2948 }
2949
2950 static inline void netif_addr_unlock(struct net_device *dev)
2951 {
2952         spin_unlock(&dev->addr_list_lock);
2953 }
2954
2955 static inline void netif_addr_unlock_bh(struct net_device *dev)
2956 {
2957         spin_unlock_bh(&dev->addr_list_lock);
2958 }
2959
2960 /*
2961  * dev_addrs walker. Should be used only for read access. Call with
2962  * rcu_read_lock held.
2963  */
2964 #define for_each_dev_addr(dev, ha) \
2965                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2966
2967 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2968
2969 void ether_setup(struct net_device *dev);
2970
2971 /* Support for loadable net-drivers */
2972 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2973                                     void (*setup)(struct net_device *),
2974                                     unsigned int txqs, unsigned int rxqs);
2975 #define alloc_netdev(sizeof_priv, name, setup) \
2976         alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2977
2978 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2979         alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2980
2981 int register_netdev(struct net_device *dev);
2982 void unregister_netdev(struct net_device *dev);
2983
2984 /* General hardware address lists handling functions */
2985 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2986                    struct netdev_hw_addr_list *from_list, int addr_len);
2987 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2988                       struct netdev_hw_addr_list *from_list, int addr_len);
2989 void __hw_addr_init(struct netdev_hw_addr_list *list);
2990
2991 /* Functions used for device addresses handling */
2992 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2993                  unsigned char addr_type);
2994 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2995                  unsigned char addr_type);
2996 void dev_addr_flush(struct net_device *dev);
2997 int dev_addr_init(struct net_device *dev);
2998
2999 /* Functions used for unicast addresses handling */
3000 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3001 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3002 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3003 int dev_uc_sync(struct net_device *to, struct net_device *from);
3004 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3005 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3006 void dev_uc_flush(struct net_device *dev);
3007 void dev_uc_init(struct net_device *dev);
3008
3009 /* Functions used for multicast addresses handling */
3010 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3011 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3012 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3013 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3014 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3015 int dev_mc_sync(struct net_device *to, struct net_device *from);
3016 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3017 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3018 void dev_mc_flush(struct net_device *dev);
3019 void dev_mc_init(struct net_device *dev);
3020
3021 /* Functions used for secondary unicast and multicast support */
3022 void dev_set_rx_mode(struct net_device *dev);
3023 void __dev_set_rx_mode(struct net_device *dev);
3024 int dev_set_promiscuity(struct net_device *dev, int inc);
3025 int dev_set_allmulti(struct net_device *dev, int inc);
3026 void netdev_state_change(struct net_device *dev);
3027 void netdev_notify_peers(struct net_device *dev);
3028 void netdev_features_change(struct net_device *dev);
3029 /* Load a device via the kmod */
3030 void dev_load(struct net *net, const char *name);
3031 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3032                                         struct rtnl_link_stats64 *storage);
3033 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3034                              const struct net_device_stats *netdev_stats);
3035
3036 extern int              netdev_max_backlog;
3037 extern int              netdev_tstamp_prequeue;
3038 extern int              weight_p;
3039 extern int              bpf_jit_enable;
3040
3041 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3042 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3043                                                      struct list_head **iter);
3044
3045 /* iterate through upper list, must be called under RCU read lock */
3046 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3047         for (iter = &(dev)->all_adj_list.upper, \
3048              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3049              updev; \
3050              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3051
3052 void *netdev_lower_get_next_private(struct net_device *dev,
3053                                     struct list_head **iter);
3054 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3055                                         struct list_head **iter);
3056
3057 #define netdev_for_each_lower_private(dev, priv, iter) \
3058         for (iter = (dev)->adj_list.lower.next, \
3059              priv = netdev_lower_get_next_private(dev, &(iter)); \
3060              priv; \
3061              priv = netdev_lower_get_next_private(dev, &(iter)))
3062
3063 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3064         for (iter = &(dev)->adj_list.lower, \
3065              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3066              priv; \
3067              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3068
3069 void *netdev_adjacent_get_private(struct list_head *adj_list);
3070 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3071 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3072 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3073 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3074 int netdev_master_upper_dev_link(struct net_device *dev,
3075                                  struct net_device *upper_dev);
3076 int netdev_master_upper_dev_link_private(struct net_device *dev,
3077                                          struct net_device *upper_dev,
3078                                          void *private);
3079 void netdev_upper_dev_unlink(struct net_device *dev,
3080                              struct net_device *upper_dev);
3081 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3082 void *netdev_lower_dev_get_private(struct net_device *dev,
3083                                    struct net_device *lower_dev);
3084 int skb_checksum_help(struct sk_buff *skb);
3085 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3086                                   netdev_features_t features, bool tx_path);
3087 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3088                                     netdev_features_t features);
3089
3090 static inline
3091 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3092 {
3093         return __skb_gso_segment(skb, features, true);
3094 }
3095 __be16 skb_network_protocol(struct sk_buff *skb);
3096
3097 static inline bool can_checksum_protocol(netdev_features_t features,
3098                                          __be16 protocol)
3099 {
3100         return ((features & NETIF_F_GEN_CSUM) ||
3101                 ((features & NETIF_F_V4_CSUM) &&
3102                  protocol == htons(ETH_P_IP)) ||
3103                 ((features & NETIF_F_V6_CSUM) &&
3104                  protocol == htons(ETH_P_IPV6)) ||
3105                 ((features & NETIF_F_FCOE_CRC) &&
3106                  protocol == htons(ETH_P_FCOE)));
3107 }
3108
3109 #ifdef CONFIG_BUG
3110 void netdev_rx_csum_fault(struct net_device *dev);
3111 #else
3112 static inline void netdev_rx_csum_fault(struct net_device *dev)
3113 {
3114 }
3115 #endif
3116 /* rx skb timestamps */
3117 void net_enable_timestamp(void);
3118 void net_disable_timestamp(void);
3119
3120 #ifdef CONFIG_PROC_FS
3121 int __init dev_proc_init(void);
3122 #else
3123 #define dev_proc_init() 0
3124 #endif
3125
3126 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3127                                 const void *ns);
3128 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3129                                  const void *ns);
3130
3131 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3132 {
3133         return netdev_class_create_file_ns(class_attr, NULL);
3134 }
3135
3136 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3137 {
3138         netdev_class_remove_file_ns(class_attr, NULL);
3139 }
3140
3141 extern struct kobj_ns_type_operations net_ns_type_operations;
3142
3143 const char *netdev_drivername(const struct net_device *dev);
3144
3145 void linkwatch_run_queue(void);
3146
3147 static inline netdev_features_t netdev_get_wanted_features(
3148         struct net_device *dev)
3149 {
3150         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3151 }
3152 netdev_features_t netdev_increment_features(netdev_features_t all,
3153         netdev_features_t one, netdev_features_t mask);
3154
3155 /* Allow TSO being used on stacked device :
3156  * Performing the GSO segmentation before last device
3157  * is a performance improvement.
3158  */
3159 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3160                                                         netdev_features_t mask)
3161 {
3162         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3163 }
3164
3165 int __netdev_update_features(struct net_device *dev);
3166 void netdev_update_features(struct net_device *dev);
3167 void netdev_change_features(struct net_device *dev);
3168
3169 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3170                                         struct net_device *dev);
3171
3172 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
3173                                          const struct net_device *dev);
3174 static inline netdev_features_t netif_skb_features(struct sk_buff *skb)
3175 {
3176         return netif_skb_dev_features(skb, skb->dev);
3177 }
3178
3179 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3180 {
3181         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3182
3183         /* check flags correspondence */
3184         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3185         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3186         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3187         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3188         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3189         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3190
3191         return (features & feature) == feature;
3192 }
3193
3194 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3195 {
3196         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3197                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3198 }
3199
3200 static inline bool netif_needs_gso(struct sk_buff *skb,
3201                                    netdev_features_t features)
3202 {
3203         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3204                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3205                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3206 }
3207
3208 static inline void netif_set_gso_max_size(struct net_device *dev,
3209                                           unsigned int size)
3210 {
3211         dev->gso_max_size = size;
3212 }
3213
3214 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3215                                         int pulled_hlen, u16 mac_offset,
3216                                         int mac_len)
3217 {
3218         skb->protocol = protocol;
3219         skb->encapsulation = 1;
3220         skb_push(skb, pulled_hlen);
3221         skb_reset_transport_header(skb);
3222         skb->mac_header = mac_offset;
3223         skb->network_header = skb->mac_header + mac_len;
3224         skb->mac_len = mac_len;
3225 }
3226
3227 static inline bool netif_is_macvlan(struct net_device *dev)
3228 {
3229         return dev->priv_flags & IFF_MACVLAN;
3230 }
3231
3232 static inline bool netif_is_bond_master(struct net_device *dev)
3233 {
3234         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3235 }
3236
3237 static inline bool netif_is_bond_slave(struct net_device *dev)
3238 {
3239         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3240 }
3241
3242 static inline bool netif_supports_nofcs(struct net_device *dev)
3243 {
3244         return dev->priv_flags & IFF_SUPP_NOFCS;
3245 }
3246
3247 extern struct pernet_operations __net_initdata loopback_net_ops;
3248
3249 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3250
3251 /* netdev_printk helpers, similar to dev_printk */
3252
3253 static inline const char *netdev_name(const struct net_device *dev)
3254 {
3255         if (dev->reg_state != NETREG_REGISTERED)
3256                 return "(unregistered net_device)";
3257         return dev->name;
3258 }
3259
3260 __printf(3, 4)
3261 int netdev_printk(const char *level, const struct net_device *dev,
3262                   const char *format, ...);
3263 __printf(2, 3)
3264 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3265 __printf(2, 3)
3266 int netdev_alert(const struct net_device *dev, const char *format, ...);
3267 __printf(2, 3)
3268 int netdev_crit(const struct net_device *dev, const char *format, ...);
3269 __printf(2, 3)
3270 int netdev_err(const struct net_device *dev, const char *format, ...);
3271 __printf(2, 3)
3272 int netdev_warn(const struct net_device *dev, const char *format, ...);
3273 __printf(2, 3)
3274 int netdev_notice(const struct net_device *dev, const char *format, ...);
3275 __printf(2, 3)
3276 int netdev_info(const struct net_device *dev, const char *format, ...);
3277
3278 #define MODULE_ALIAS_NETDEV(device) \
3279         MODULE_ALIAS("netdev-" device)
3280
3281 #if defined(CONFIG_DYNAMIC_DEBUG)
3282 #define netdev_dbg(__dev, format, args...)                      \
3283 do {                                                            \
3284         dynamic_netdev_dbg(__dev, format, ##args);              \
3285 } while (0)
3286 #elif defined(DEBUG)
3287 #define netdev_dbg(__dev, format, args...)                      \
3288         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3289 #else
3290 #define netdev_dbg(__dev, format, args...)                      \
3291 ({                                                              \
3292         if (0)                                                  \
3293                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3294         0;                                                      \
3295 })
3296 #endif
3297
3298 #if defined(VERBOSE_DEBUG)
3299 #define netdev_vdbg     netdev_dbg
3300 #else
3301
3302 #define netdev_vdbg(dev, format, args...)                       \
3303 ({                                                              \
3304         if (0)                                                  \
3305                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3306         0;                                                      \
3307 })
3308 #endif
3309
3310 /*
3311  * netdev_WARN() acts like dev_printk(), but with the key difference
3312  * of using a WARN/WARN_ON to get the message out, including the
3313  * file/line information and a backtrace.
3314  */
3315 #define netdev_WARN(dev, format, args...)                       \
3316         WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3317
3318 /* netif printk helpers, similar to netdev_printk */
3319
3320 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3321 do {                                                            \
3322         if (netif_msg_##type(priv))                             \
3323                 netdev_printk(level, (dev), fmt, ##args);       \
3324 } while (0)
3325
3326 #define netif_level(level, priv, type, dev, fmt, args...)       \
3327 do {                                                            \
3328         if (netif_msg_##type(priv))                             \
3329                 netdev_##level(dev, fmt, ##args);               \
3330 } while (0)
3331
3332 #define netif_emerg(priv, type, dev, fmt, args...)              \
3333         netif_level(emerg, priv, type, dev, fmt, ##args)
3334 #define netif_alert(priv, type, dev, fmt, args...)              \
3335         netif_level(alert, priv, type, dev, fmt, ##args)
3336 #define netif_crit(priv, type, dev, fmt, args...)               \
3337         netif_level(crit, priv, type, dev, fmt, ##args)
3338 #define netif_err(priv, type, dev, fmt, args...)                \
3339         netif_level(err, priv, type, dev, fmt, ##args)
3340 #define netif_warn(priv, type, dev, fmt, args...)               \
3341         netif_level(warn, priv, type, dev, fmt, ##args)
3342 #define netif_notice(priv, type, dev, fmt, args...)             \
3343         netif_level(notice, priv, type, dev, fmt, ##args)
3344 #define netif_info(priv, type, dev, fmt, args...)               \
3345         netif_level(info, priv, type, dev, fmt, ##args)
3346
3347 #if defined(CONFIG_DYNAMIC_DEBUG)
3348 #define netif_dbg(priv, type, netdev, format, args...)          \
3349 do {                                                            \
3350         if (netif_msg_##type(priv))                             \
3351                 dynamic_netdev_dbg(netdev, format, ##args);     \
3352 } while (0)
3353 #elif defined(DEBUG)
3354 #define netif_dbg(priv, type, dev, format, args...)             \
3355         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3356 #else
3357 #define netif_dbg(priv, type, dev, format, args...)                     \
3358 ({                                                                      \
3359         if (0)                                                          \
3360                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3361         0;                                                              \
3362 })
3363 #endif
3364
3365 #if defined(VERBOSE_DEBUG)
3366 #define netif_vdbg      netif_dbg
3367 #else
3368 #define netif_vdbg(priv, type, dev, format, args...)            \
3369 ({                                                              \
3370         if (0)                                                  \
3371                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3372         0;                                                      \
3373 })
3374 #endif
3375
3376 /*
3377  *      The list of packet types we will receive (as opposed to discard)
3378  *      and the routines to invoke.
3379  *
3380  *      Why 16. Because with 16 the only overlap we get on a hash of the
3381  *      low nibble of the protocol value is RARP/SNAP/X.25.
3382  *
3383  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3384  *             sure which should go first, but I bet it won't make much
3385  *             difference if we are running VLANs.  The good news is that
3386  *             this protocol won't be in the list unless compiled in, so
3387  *             the average user (w/out VLANs) will not be adversely affected.
3388  *             --BLG
3389  *
3390  *              0800    IP
3391  *              8100    802.1Q VLAN
3392  *              0001    802.3
3393  *              0002    AX.25
3394  *              0004    802.2
3395  *              8035    RARP
3396  *              0005    SNAP
3397  *              0805    X.25
3398  *              0806    ARP
3399  *              8137    IPX
3400  *              0009    Localtalk
3401  *              86DD    IPv6
3402  */
3403 #define PTYPE_HASH_SIZE (16)
3404 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3405
3406 #endif  /* _LINUX_NETDEVICE_H */