OSDN Git Service

30cceb33c4e63f830bb22faeb440042f44a8d3de
[android-x86/kernel.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 /*
592  * State based event timekeeping...
593  *
594  * The basic idea is to use event->state to determine which (if any) time
595  * fields to increment with the current delta. This means we only need to
596  * update timestamps when we change state or when they are explicitly requested
597  * (read).
598  *
599  * Event groups make things a little more complicated, but not terribly so. The
600  * rules for a group are that if the group leader is OFF the entire group is
601  * OFF, irrespecive of what the group member states are. This results in
602  * __perf_effective_state().
603  *
604  * A futher ramification is that when a group leader flips between OFF and
605  * !OFF, we need to update all group member times.
606  *
607  *
608  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
609  * need to make sure the relevant context time is updated before we try and
610  * update our timestamps.
611  */
612
613 static __always_inline enum perf_event_state
614 __perf_effective_state(struct perf_event *event)
615 {
616         struct perf_event *leader = event->group_leader;
617
618         if (leader->state <= PERF_EVENT_STATE_OFF)
619                 return leader->state;
620
621         return event->state;
622 }
623
624 static __always_inline void
625 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
626 {
627         enum perf_event_state state = __perf_effective_state(event);
628         u64 delta = now - event->tstamp;
629
630         *enabled = event->total_time_enabled;
631         if (state >= PERF_EVENT_STATE_INACTIVE)
632                 *enabled += delta;
633
634         *running = event->total_time_running;
635         if (state >= PERF_EVENT_STATE_ACTIVE)
636                 *running += delta;
637 }
638
639 static void perf_event_update_time(struct perf_event *event)
640 {
641         u64 now = perf_event_time(event);
642
643         __perf_update_times(event, now, &event->total_time_enabled,
644                                         &event->total_time_running);
645         event->tstamp = now;
646 }
647
648 static void perf_event_update_sibling_time(struct perf_event *leader)
649 {
650         struct perf_event *sibling;
651
652         for_each_sibling_event(sibling, leader)
653                 perf_event_update_time(sibling);
654 }
655
656 static void
657 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
658 {
659         if (event->state == state)
660                 return;
661
662         perf_event_update_time(event);
663         /*
664          * If a group leader gets enabled/disabled all its siblings
665          * are affected too.
666          */
667         if ((event->state < 0) ^ (state < 0))
668                 perf_event_update_sibling_time(event);
669
670         WRITE_ONCE(event->state, state);
671 }
672
673 #ifdef CONFIG_CGROUP_PERF
674
675 static inline bool
676 perf_cgroup_match(struct perf_event *event)
677 {
678         struct perf_event_context *ctx = event->ctx;
679         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
680
681         /* @event doesn't care about cgroup */
682         if (!event->cgrp)
683                 return true;
684
685         /* wants specific cgroup scope but @cpuctx isn't associated with any */
686         if (!cpuctx->cgrp)
687                 return false;
688
689         /*
690          * Cgroup scoping is recursive.  An event enabled for a cgroup is
691          * also enabled for all its descendant cgroups.  If @cpuctx's
692          * cgroup is a descendant of @event's (the test covers identity
693          * case), it's a match.
694          */
695         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
696                                     event->cgrp->css.cgroup);
697 }
698
699 static inline void perf_detach_cgroup(struct perf_event *event)
700 {
701         css_put(&event->cgrp->css);
702         event->cgrp = NULL;
703 }
704
705 static inline int is_cgroup_event(struct perf_event *event)
706 {
707         return event->cgrp != NULL;
708 }
709
710 static inline u64 perf_cgroup_event_time(struct perf_event *event)
711 {
712         struct perf_cgroup_info *t;
713
714         t = per_cpu_ptr(event->cgrp->info, event->cpu);
715         return t->time;
716 }
717
718 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
719 {
720         struct perf_cgroup_info *info;
721         u64 now;
722
723         now = perf_clock();
724
725         info = this_cpu_ptr(cgrp->info);
726
727         info->time += now - info->timestamp;
728         info->timestamp = now;
729 }
730
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733         struct perf_cgroup *cgrp = cpuctx->cgrp;
734         struct cgroup_subsys_state *css;
735
736         if (cgrp) {
737                 for (css = &cgrp->css; css; css = css->parent) {
738                         cgrp = container_of(css, struct perf_cgroup, css);
739                         __update_cgrp_time(cgrp);
740                 }
741         }
742 }
743
744 static inline void update_cgrp_time_from_event(struct perf_event *event)
745 {
746         struct perf_cgroup *cgrp;
747
748         /*
749          * ensure we access cgroup data only when needed and
750          * when we know the cgroup is pinned (css_get)
751          */
752         if (!is_cgroup_event(event))
753                 return;
754
755         cgrp = perf_cgroup_from_task(current, event->ctx);
756         /*
757          * Do not update time when cgroup is not active
758          */
759        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
760                 __update_cgrp_time(event->cgrp);
761 }
762
763 static inline void
764 perf_cgroup_set_timestamp(struct task_struct *task,
765                           struct perf_event_context *ctx)
766 {
767         struct perf_cgroup *cgrp;
768         struct perf_cgroup_info *info;
769         struct cgroup_subsys_state *css;
770
771         /*
772          * ctx->lock held by caller
773          * ensure we do not access cgroup data
774          * unless we have the cgroup pinned (css_get)
775          */
776         if (!task || !ctx->nr_cgroups)
777                 return;
778
779         cgrp = perf_cgroup_from_task(task, ctx);
780
781         for (css = &cgrp->css; css; css = css->parent) {
782                 cgrp = container_of(css, struct perf_cgroup, css);
783                 info = this_cpu_ptr(cgrp->info);
784                 info->timestamp = ctx->timestamp;
785         }
786 }
787
788 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
789
790 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
791 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
792
793 /*
794  * reschedule events based on the cgroup constraint of task.
795  *
796  * mode SWOUT : schedule out everything
797  * mode SWIN : schedule in based on cgroup for next
798  */
799 static void perf_cgroup_switch(struct task_struct *task, int mode)
800 {
801         struct perf_cpu_context *cpuctx;
802         struct list_head *list;
803         unsigned long flags;
804
805         /*
806          * Disable interrupts and preemption to avoid this CPU's
807          * cgrp_cpuctx_entry to change under us.
808          */
809         local_irq_save(flags);
810
811         list = this_cpu_ptr(&cgrp_cpuctx_list);
812         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
813                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
814
815                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
816                 perf_pmu_disable(cpuctx->ctx.pmu);
817
818                 if (mode & PERF_CGROUP_SWOUT) {
819                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
820                         /*
821                          * must not be done before ctxswout due
822                          * to event_filter_match() in event_sched_out()
823                          */
824                         cpuctx->cgrp = NULL;
825                 }
826
827                 if (mode & PERF_CGROUP_SWIN) {
828                         WARN_ON_ONCE(cpuctx->cgrp);
829                         /*
830                          * set cgrp before ctxsw in to allow
831                          * event_filter_match() to not have to pass
832                          * task around
833                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
834                          * because cgorup events are only per-cpu
835                          */
836                         cpuctx->cgrp = perf_cgroup_from_task(task,
837                                                              &cpuctx->ctx);
838                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
839                 }
840                 perf_pmu_enable(cpuctx->ctx.pmu);
841                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
842         }
843
844         local_irq_restore(flags);
845 }
846
847 static inline void perf_cgroup_sched_out(struct task_struct *task,
848                                          struct task_struct *next)
849 {
850         struct perf_cgroup *cgrp1;
851         struct perf_cgroup *cgrp2 = NULL;
852
853         rcu_read_lock();
854         /*
855          * we come here when we know perf_cgroup_events > 0
856          * we do not need to pass the ctx here because we know
857          * we are holding the rcu lock
858          */
859         cgrp1 = perf_cgroup_from_task(task, NULL);
860         cgrp2 = perf_cgroup_from_task(next, NULL);
861
862         /*
863          * only schedule out current cgroup events if we know
864          * that we are switching to a different cgroup. Otherwise,
865          * do no touch the cgroup events.
866          */
867         if (cgrp1 != cgrp2)
868                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
869
870         rcu_read_unlock();
871 }
872
873 static inline void perf_cgroup_sched_in(struct task_struct *prev,
874                                         struct task_struct *task)
875 {
876         struct perf_cgroup *cgrp1;
877         struct perf_cgroup *cgrp2 = NULL;
878
879         rcu_read_lock();
880         /*
881          * we come here when we know perf_cgroup_events > 0
882          * we do not need to pass the ctx here because we know
883          * we are holding the rcu lock
884          */
885         cgrp1 = perf_cgroup_from_task(task, NULL);
886         cgrp2 = perf_cgroup_from_task(prev, NULL);
887
888         /*
889          * only need to schedule in cgroup events if we are changing
890          * cgroup during ctxsw. Cgroup events were not scheduled
891          * out of ctxsw out if that was not the case.
892          */
893         if (cgrp1 != cgrp2)
894                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
895
896         rcu_read_unlock();
897 }
898
899 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
900                                       struct perf_event_attr *attr,
901                                       struct perf_event *group_leader)
902 {
903         struct perf_cgroup *cgrp;
904         struct cgroup_subsys_state *css;
905         struct fd f = fdget(fd);
906         int ret = 0;
907
908         if (!f.file)
909                 return -EBADF;
910
911         css = css_tryget_online_from_dir(f.file->f_path.dentry,
912                                          &perf_event_cgrp_subsys);
913         if (IS_ERR(css)) {
914                 ret = PTR_ERR(css);
915                 goto out;
916         }
917
918         cgrp = container_of(css, struct perf_cgroup, css);
919         event->cgrp = cgrp;
920
921         /*
922          * all events in a group must monitor
923          * the same cgroup because a task belongs
924          * to only one perf cgroup at a time
925          */
926         if (group_leader && group_leader->cgrp != cgrp) {
927                 perf_detach_cgroup(event);
928                 ret = -EINVAL;
929         }
930 out:
931         fdput(f);
932         return ret;
933 }
934
935 static inline void
936 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
937 {
938         struct perf_cgroup_info *t;
939         t = per_cpu_ptr(event->cgrp->info, event->cpu);
940         event->shadow_ctx_time = now - t->timestamp;
941 }
942
943 /*
944  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
945  * cleared when last cgroup event is removed.
946  */
947 static inline void
948 list_update_cgroup_event(struct perf_event *event,
949                          struct perf_event_context *ctx, bool add)
950 {
951         struct perf_cpu_context *cpuctx;
952         struct list_head *cpuctx_entry;
953
954         if (!is_cgroup_event(event))
955                 return;
956
957         /*
958          * Because cgroup events are always per-cpu events,
959          * this will always be called from the right CPU.
960          */
961         cpuctx = __get_cpu_context(ctx);
962
963         /*
964          * Since setting cpuctx->cgrp is conditional on the current @cgrp
965          * matching the event's cgroup, we must do this for every new event,
966          * because if the first would mismatch, the second would not try again
967          * and we would leave cpuctx->cgrp unset.
968          */
969         if (add && !cpuctx->cgrp) {
970                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
971
972                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
973                         cpuctx->cgrp = cgrp;
974         }
975
976         if (add && ctx->nr_cgroups++)
977                 return;
978         else if (!add && --ctx->nr_cgroups)
979                 return;
980
981         /* no cgroup running */
982         if (!add)
983                 cpuctx->cgrp = NULL;
984
985         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
986         if (add)
987                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
988         else
989                 list_del(cpuctx_entry);
990 }
991
992 #else /* !CONFIG_CGROUP_PERF */
993
994 static inline bool
995 perf_cgroup_match(struct perf_event *event)
996 {
997         return true;
998 }
999
1000 static inline void perf_detach_cgroup(struct perf_event *event)
1001 {}
1002
1003 static inline int is_cgroup_event(struct perf_event *event)
1004 {
1005         return 0;
1006 }
1007
1008 static inline void update_cgrp_time_from_event(struct perf_event *event)
1009 {
1010 }
1011
1012 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_out(struct task_struct *task,
1017                                          struct task_struct *next)
1018 {
1019 }
1020
1021 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1022                                         struct task_struct *task)
1023 {
1024 }
1025
1026 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1027                                       struct perf_event_attr *attr,
1028                                       struct perf_event *group_leader)
1029 {
1030         return -EINVAL;
1031 }
1032
1033 static inline void
1034 perf_cgroup_set_timestamp(struct task_struct *task,
1035                           struct perf_event_context *ctx)
1036 {
1037 }
1038
1039 void
1040 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1041 {
1042 }
1043
1044 static inline void
1045 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1046 {
1047 }
1048
1049 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1050 {
1051         return 0;
1052 }
1053
1054 static inline void
1055 list_update_cgroup_event(struct perf_event *event,
1056                          struct perf_event_context *ctx, bool add)
1057 {
1058 }
1059
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_context *cpuctx;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078         rotations = perf_rotate_context(cpuctx);
1079
1080         raw_spin_lock(&cpuctx->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083         else
1084                 cpuctx->hrtimer_active = 0;
1085         raw_spin_unlock(&cpuctx->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092         struct hrtimer *timer = &cpuctx->hrtimer;
1093         struct pmu *pmu = cpuctx->ctx.pmu;
1094         u64 interval;
1095
1096         /* no multiplexing needed for SW PMU */
1097         if (pmu->task_ctx_nr == perf_sw_context)
1098                 return;
1099
1100         /*
1101          * check default is sane, if not set then force to
1102          * default interval (1/tick)
1103          */
1104         interval = pmu->hrtimer_interval_ms;
1105         if (interval < 1)
1106                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107
1108         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109
1110         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1112         timer->function = perf_mux_hrtimer_handler;
1113 }
1114
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117         struct hrtimer *timer = &cpuctx->hrtimer;
1118         struct pmu *pmu = cpuctx->ctx.pmu;
1119         unsigned long flags;
1120
1121         /* not for SW PMU */
1122         if (pmu->task_ctx_nr == perf_sw_context)
1123                 return 0;
1124
1125         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126         if (!cpuctx->hrtimer_active) {
1127                 cpuctx->hrtimer_active = 1;
1128                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1130         }
1131         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132
1133         return 0;
1134 }
1135
1136 void perf_pmu_disable(struct pmu *pmu)
1137 {
1138         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1139         if (!(*count)++)
1140                 pmu->pmu_disable(pmu);
1141 }
1142
1143 void perf_pmu_enable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!--(*count))
1147                 pmu->pmu_enable(pmu);
1148 }
1149
1150 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1151
1152 /*
1153  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1154  * perf_event_task_tick() are fully serialized because they're strictly cpu
1155  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1156  * disabled, while perf_event_task_tick is called from IRQ context.
1157  */
1158 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1159 {
1160         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1161
1162         lockdep_assert_irqs_disabled();
1163
1164         WARN_ON(!list_empty(&ctx->active_ctx_list));
1165
1166         list_add(&ctx->active_ctx_list, head);
1167 }
1168
1169 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1170 {
1171         lockdep_assert_irqs_disabled();
1172
1173         WARN_ON(list_empty(&ctx->active_ctx_list));
1174
1175         list_del_init(&ctx->active_ctx_list);
1176 }
1177
1178 static void get_ctx(struct perf_event_context *ctx)
1179 {
1180         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1181 }
1182
1183 static void free_ctx(struct rcu_head *head)
1184 {
1185         struct perf_event_context *ctx;
1186
1187         ctx = container_of(head, struct perf_event_context, rcu_head);
1188         kfree(ctx->task_ctx_data);
1189         kfree(ctx);
1190 }
1191
1192 static void put_ctx(struct perf_event_context *ctx)
1193 {
1194         if (atomic_dec_and_test(&ctx->refcount)) {
1195                 if (ctx->parent_ctx)
1196                         put_ctx(ctx->parent_ctx);
1197                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1198                         put_task_struct(ctx->task);
1199                 call_rcu(&ctx->rcu_head, free_ctx);
1200         }
1201 }
1202
1203 /*
1204  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1205  * perf_pmu_migrate_context() we need some magic.
1206  *
1207  * Those places that change perf_event::ctx will hold both
1208  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1209  *
1210  * Lock ordering is by mutex address. There are two other sites where
1211  * perf_event_context::mutex nests and those are:
1212  *
1213  *  - perf_event_exit_task_context()    [ child , 0 ]
1214  *      perf_event_exit_event()
1215  *        put_event()                   [ parent, 1 ]
1216  *
1217  *  - perf_event_init_context()         [ parent, 0 ]
1218  *      inherit_task_group()
1219  *        inherit_group()
1220  *          inherit_event()
1221  *            perf_event_alloc()
1222  *              perf_init_event()
1223  *                perf_try_init_event() [ child , 1 ]
1224  *
1225  * While it appears there is an obvious deadlock here -- the parent and child
1226  * nesting levels are inverted between the two. This is in fact safe because
1227  * life-time rules separate them. That is an exiting task cannot fork, and a
1228  * spawning task cannot (yet) exit.
1229  *
1230  * But remember that that these are parent<->child context relations, and
1231  * migration does not affect children, therefore these two orderings should not
1232  * interact.
1233  *
1234  * The change in perf_event::ctx does not affect children (as claimed above)
1235  * because the sys_perf_event_open() case will install a new event and break
1236  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1237  * concerned with cpuctx and that doesn't have children.
1238  *
1239  * The places that change perf_event::ctx will issue:
1240  *
1241  *   perf_remove_from_context();
1242  *   synchronize_rcu();
1243  *   perf_install_in_context();
1244  *
1245  * to affect the change. The remove_from_context() + synchronize_rcu() should
1246  * quiesce the event, after which we can install it in the new location. This
1247  * means that only external vectors (perf_fops, prctl) can perturb the event
1248  * while in transit. Therefore all such accessors should also acquire
1249  * perf_event_context::mutex to serialize against this.
1250  *
1251  * However; because event->ctx can change while we're waiting to acquire
1252  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1253  * function.
1254  *
1255  * Lock order:
1256  *    cred_guard_mutex
1257  *      task_struct::perf_event_mutex
1258  *        perf_event_context::mutex
1259  *          perf_event::child_mutex;
1260  *            perf_event_context::lock
1261  *          perf_event::mmap_mutex
1262  *          mmap_sem
1263  *            perf_addr_filters_head::lock
1264  *
1265  *    cpu_hotplug_lock
1266  *      pmus_lock
1267  *        cpuctx->mutex / perf_event_context::mutex
1268  */
1269 static struct perf_event_context *
1270 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1271 {
1272         struct perf_event_context *ctx;
1273
1274 again:
1275         rcu_read_lock();
1276         ctx = READ_ONCE(event->ctx);
1277         if (!atomic_inc_not_zero(&ctx->refcount)) {
1278                 rcu_read_unlock();
1279                 goto again;
1280         }
1281         rcu_read_unlock();
1282
1283         mutex_lock_nested(&ctx->mutex, nesting);
1284         if (event->ctx != ctx) {
1285                 mutex_unlock(&ctx->mutex);
1286                 put_ctx(ctx);
1287                 goto again;
1288         }
1289
1290         return ctx;
1291 }
1292
1293 static inline struct perf_event_context *
1294 perf_event_ctx_lock(struct perf_event *event)
1295 {
1296         return perf_event_ctx_lock_nested(event, 0);
1297 }
1298
1299 static void perf_event_ctx_unlock(struct perf_event *event,
1300                                   struct perf_event_context *ctx)
1301 {
1302         mutex_unlock(&ctx->mutex);
1303         put_ctx(ctx);
1304 }
1305
1306 /*
1307  * This must be done under the ctx->lock, such as to serialize against
1308  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1309  * calling scheduler related locks and ctx->lock nests inside those.
1310  */
1311 static __must_check struct perf_event_context *
1312 unclone_ctx(struct perf_event_context *ctx)
1313 {
1314         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1315
1316         lockdep_assert_held(&ctx->lock);
1317
1318         if (parent_ctx)
1319                 ctx->parent_ctx = NULL;
1320         ctx->generation++;
1321
1322         return parent_ctx;
1323 }
1324
1325 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1326                                 enum pid_type type)
1327 {
1328         u32 nr;
1329         /*
1330          * only top level events have the pid namespace they were created in
1331          */
1332         if (event->parent)
1333                 event = event->parent;
1334
1335         nr = __task_pid_nr_ns(p, type, event->ns);
1336         /* avoid -1 if it is idle thread or runs in another ns */
1337         if (!nr && !pid_alive(p))
1338                 nr = -1;
1339         return nr;
1340 }
1341
1342 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1345 }
1346
1347 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1348 {
1349         return perf_event_pid_type(event, p, PIDTYPE_PID);
1350 }
1351
1352 /*
1353  * If we inherit events we want to return the parent event id
1354  * to userspace.
1355  */
1356 static u64 primary_event_id(struct perf_event *event)
1357 {
1358         u64 id = event->id;
1359
1360         if (event->parent)
1361                 id = event->parent->id;
1362
1363         return id;
1364 }
1365
1366 /*
1367  * Get the perf_event_context for a task and lock it.
1368  *
1369  * This has to cope with with the fact that until it is locked,
1370  * the context could get moved to another task.
1371  */
1372 static struct perf_event_context *
1373 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1374 {
1375         struct perf_event_context *ctx;
1376
1377 retry:
1378         /*
1379          * One of the few rules of preemptible RCU is that one cannot do
1380          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1381          * part of the read side critical section was irqs-enabled -- see
1382          * rcu_read_unlock_special().
1383          *
1384          * Since ctx->lock nests under rq->lock we must ensure the entire read
1385          * side critical section has interrupts disabled.
1386          */
1387         local_irq_save(*flags);
1388         rcu_read_lock();
1389         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1390         if (ctx) {
1391                 /*
1392                  * If this context is a clone of another, it might
1393                  * get swapped for another underneath us by
1394                  * perf_event_task_sched_out, though the
1395                  * rcu_read_lock() protects us from any context
1396                  * getting freed.  Lock the context and check if it
1397                  * got swapped before we could get the lock, and retry
1398                  * if so.  If we locked the right context, then it
1399                  * can't get swapped on us any more.
1400                  */
1401                 raw_spin_lock(&ctx->lock);
1402                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1403                         raw_spin_unlock(&ctx->lock);
1404                         rcu_read_unlock();
1405                         local_irq_restore(*flags);
1406                         goto retry;
1407                 }
1408
1409                 if (ctx->task == TASK_TOMBSTONE ||
1410                     !atomic_inc_not_zero(&ctx->refcount)) {
1411                         raw_spin_unlock(&ctx->lock);
1412                         ctx = NULL;
1413                 } else {
1414                         WARN_ON_ONCE(ctx->task != task);
1415                 }
1416         }
1417         rcu_read_unlock();
1418         if (!ctx)
1419                 local_irq_restore(*flags);
1420         return ctx;
1421 }
1422
1423 /*
1424  * Get the context for a task and increment its pin_count so it
1425  * can't get swapped to another task.  This also increments its
1426  * reference count so that the context can't get freed.
1427  */
1428 static struct perf_event_context *
1429 perf_pin_task_context(struct task_struct *task, int ctxn)
1430 {
1431         struct perf_event_context *ctx;
1432         unsigned long flags;
1433
1434         ctx = perf_lock_task_context(task, ctxn, &flags);
1435         if (ctx) {
1436                 ++ctx->pin_count;
1437                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1438         }
1439         return ctx;
1440 }
1441
1442 static void perf_unpin_context(struct perf_event_context *ctx)
1443 {
1444         unsigned long flags;
1445
1446         raw_spin_lock_irqsave(&ctx->lock, flags);
1447         --ctx->pin_count;
1448         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1449 }
1450
1451 /*
1452  * Update the record of the current time in a context.
1453  */
1454 static void update_context_time(struct perf_event_context *ctx)
1455 {
1456         u64 now = perf_clock();
1457
1458         ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460 }
1461
1462 static u64 perf_event_time(struct perf_event *event)
1463 {
1464         struct perf_event_context *ctx = event->ctx;
1465
1466         if (is_cgroup_event(event))
1467                 return perf_cgroup_event_time(event);
1468
1469         return ctx ? ctx->time : 0;
1470 }
1471
1472 static enum event_type_t get_event_type(struct perf_event *event)
1473 {
1474         struct perf_event_context *ctx = event->ctx;
1475         enum event_type_t event_type;
1476
1477         lockdep_assert_held(&ctx->lock);
1478
1479         /*
1480          * It's 'group type', really, because if our group leader is
1481          * pinned, so are we.
1482          */
1483         if (event->group_leader != event)
1484                 event = event->group_leader;
1485
1486         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1487         if (!ctx->task)
1488                 event_type |= EVENT_CPU;
1489
1490         return event_type;
1491 }
1492
1493 /*
1494  * Helper function to initialize event group nodes.
1495  */
1496 static void init_event_group(struct perf_event *event)
1497 {
1498         RB_CLEAR_NODE(&event->group_node);
1499         event->group_index = 0;
1500 }
1501
1502 /*
1503  * Extract pinned or flexible groups from the context
1504  * based on event attrs bits.
1505  */
1506 static struct perf_event_groups *
1507 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1508 {
1509         if (event->attr.pinned)
1510                 return &ctx->pinned_groups;
1511         else
1512                 return &ctx->flexible_groups;
1513 }
1514
1515 /*
1516  * Helper function to initializes perf_event_group trees.
1517  */
1518 static void perf_event_groups_init(struct perf_event_groups *groups)
1519 {
1520         groups->tree = RB_ROOT;
1521         groups->index = 0;
1522 }
1523
1524 /*
1525  * Compare function for event groups;
1526  *
1527  * Implements complex key that first sorts by CPU and then by virtual index
1528  * which provides ordering when rotating groups for the same CPU.
1529  */
1530 static bool
1531 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1532 {
1533         if (left->cpu < right->cpu)
1534                 return true;
1535         if (left->cpu > right->cpu)
1536                 return false;
1537
1538         if (left->group_index < right->group_index)
1539                 return true;
1540         if (left->group_index > right->group_index)
1541                 return false;
1542
1543         return false;
1544 }
1545
1546 /*
1547  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1548  * key (see perf_event_groups_less). This places it last inside the CPU
1549  * subtree.
1550  */
1551 static void
1552 perf_event_groups_insert(struct perf_event_groups *groups,
1553                          struct perf_event *event)
1554 {
1555         struct perf_event *node_event;
1556         struct rb_node *parent;
1557         struct rb_node **node;
1558
1559         event->group_index = ++groups->index;
1560
1561         node = &groups->tree.rb_node;
1562         parent = *node;
1563
1564         while (*node) {
1565                 parent = *node;
1566                 node_event = container_of(*node, struct perf_event, group_node);
1567
1568                 if (perf_event_groups_less(event, node_event))
1569                         node = &parent->rb_left;
1570                 else
1571                         node = &parent->rb_right;
1572         }
1573
1574         rb_link_node(&event->group_node, parent, node);
1575         rb_insert_color(&event->group_node, &groups->tree);
1576 }
1577
1578 /*
1579  * Helper function to insert event into the pinned or flexible groups.
1580  */
1581 static void
1582 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584         struct perf_event_groups *groups;
1585
1586         groups = get_event_groups(event, ctx);
1587         perf_event_groups_insert(groups, event);
1588 }
1589
1590 /*
1591  * Delete a group from a tree.
1592  */
1593 static void
1594 perf_event_groups_delete(struct perf_event_groups *groups,
1595                          struct perf_event *event)
1596 {
1597         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1598                      RB_EMPTY_ROOT(&groups->tree));
1599
1600         rb_erase(&event->group_node, &groups->tree);
1601         init_event_group(event);
1602 }
1603
1604 /*
1605  * Helper function to delete event from its groups.
1606  */
1607 static void
1608 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1609 {
1610         struct perf_event_groups *groups;
1611
1612         groups = get_event_groups(event, ctx);
1613         perf_event_groups_delete(groups, event);
1614 }
1615
1616 /*
1617  * Get the leftmost event in the @cpu subtree.
1618  */
1619 static struct perf_event *
1620 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1621 {
1622         struct perf_event *node_event = NULL, *match = NULL;
1623         struct rb_node *node = groups->tree.rb_node;
1624
1625         while (node) {
1626                 node_event = container_of(node, struct perf_event, group_node);
1627
1628                 if (cpu < node_event->cpu) {
1629                         node = node->rb_left;
1630                 } else if (cpu > node_event->cpu) {
1631                         node = node->rb_right;
1632                 } else {
1633                         match = node_event;
1634                         node = node->rb_left;
1635                 }
1636         }
1637
1638         return match;
1639 }
1640
1641 /*
1642  * Like rb_entry_next_safe() for the @cpu subtree.
1643  */
1644 static struct perf_event *
1645 perf_event_groups_next(struct perf_event *event)
1646 {
1647         struct perf_event *next;
1648
1649         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1650         if (next && next->cpu == event->cpu)
1651                 return next;
1652
1653         return NULL;
1654 }
1655
1656 /*
1657  * Iterate through the whole groups tree.
1658  */
1659 #define perf_event_groups_for_each(event, groups)                       \
1660         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1661                                 typeof(*event), group_node); event;     \
1662                 event = rb_entry_safe(rb_next(&event->group_node),      \
1663                                 typeof(*event), group_node))
1664
1665 /*
1666  * Add an event from the lists for its context.
1667  * Must be called with ctx->mutex and ctx->lock held.
1668  */
1669 static void
1670 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672         lockdep_assert_held(&ctx->lock);
1673
1674         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1675         event->attach_state |= PERF_ATTACH_CONTEXT;
1676
1677         event->tstamp = perf_event_time(event);
1678
1679         /*
1680          * If we're a stand alone event or group leader, we go to the context
1681          * list, group events are kept attached to the group so that
1682          * perf_group_detach can, at all times, locate all siblings.
1683          */
1684         if (event->group_leader == event) {
1685                 event->group_caps = event->event_caps;
1686                 add_event_to_groups(event, ctx);
1687         }
1688
1689         list_update_cgroup_event(event, ctx, true);
1690
1691         list_add_rcu(&event->event_entry, &ctx->event_list);
1692         ctx->nr_events++;
1693         if (event->attr.inherit_stat)
1694                 ctx->nr_stat++;
1695
1696         ctx->generation++;
1697 }
1698
1699 /*
1700  * Initialize event state based on the perf_event_attr::disabled.
1701  */
1702 static inline void perf_event__state_init(struct perf_event *event)
1703 {
1704         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1705                                               PERF_EVENT_STATE_INACTIVE;
1706 }
1707
1708 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1709 {
1710         int entry = sizeof(u64); /* value */
1711         int size = 0;
1712         int nr = 1;
1713
1714         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1715                 size += sizeof(u64);
1716
1717         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1718                 size += sizeof(u64);
1719
1720         if (event->attr.read_format & PERF_FORMAT_ID)
1721                 entry += sizeof(u64);
1722
1723         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1724                 nr += nr_siblings;
1725                 size += sizeof(u64);
1726         }
1727
1728         size += entry * nr;
1729         event->read_size = size;
1730 }
1731
1732 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1733 {
1734         struct perf_sample_data *data;
1735         u16 size = 0;
1736
1737         if (sample_type & PERF_SAMPLE_IP)
1738                 size += sizeof(data->ip);
1739
1740         if (sample_type & PERF_SAMPLE_ADDR)
1741                 size += sizeof(data->addr);
1742
1743         if (sample_type & PERF_SAMPLE_PERIOD)
1744                 size += sizeof(data->period);
1745
1746         if (sample_type & PERF_SAMPLE_WEIGHT)
1747                 size += sizeof(data->weight);
1748
1749         if (sample_type & PERF_SAMPLE_READ)
1750                 size += event->read_size;
1751
1752         if (sample_type & PERF_SAMPLE_DATA_SRC)
1753                 size += sizeof(data->data_src.val);
1754
1755         if (sample_type & PERF_SAMPLE_TRANSACTION)
1756                 size += sizeof(data->txn);
1757
1758         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1759                 size += sizeof(data->phys_addr);
1760
1761         event->header_size = size;
1762 }
1763
1764 /*
1765  * Called at perf_event creation and when events are attached/detached from a
1766  * group.
1767  */
1768 static void perf_event__header_size(struct perf_event *event)
1769 {
1770         __perf_event_read_size(event,
1771                                event->group_leader->nr_siblings);
1772         __perf_event_header_size(event, event->attr.sample_type);
1773 }
1774
1775 static void perf_event__id_header_size(struct perf_event *event)
1776 {
1777         struct perf_sample_data *data;
1778         u64 sample_type = event->attr.sample_type;
1779         u16 size = 0;
1780
1781         if (sample_type & PERF_SAMPLE_TID)
1782                 size += sizeof(data->tid_entry);
1783
1784         if (sample_type & PERF_SAMPLE_TIME)
1785                 size += sizeof(data->time);
1786
1787         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1788                 size += sizeof(data->id);
1789
1790         if (sample_type & PERF_SAMPLE_ID)
1791                 size += sizeof(data->id);
1792
1793         if (sample_type & PERF_SAMPLE_STREAM_ID)
1794                 size += sizeof(data->stream_id);
1795
1796         if (sample_type & PERF_SAMPLE_CPU)
1797                 size += sizeof(data->cpu_entry);
1798
1799         event->id_header_size = size;
1800 }
1801
1802 static bool perf_event_validate_size(struct perf_event *event)
1803 {
1804         /*
1805          * The values computed here will be over-written when we actually
1806          * attach the event.
1807          */
1808         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1809         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1810         perf_event__id_header_size(event);
1811
1812         /*
1813          * Sum the lot; should not exceed the 64k limit we have on records.
1814          * Conservative limit to allow for callchains and other variable fields.
1815          */
1816         if (event->read_size + event->header_size +
1817             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1818                 return false;
1819
1820         return true;
1821 }
1822
1823 static void perf_group_attach(struct perf_event *event)
1824 {
1825         struct perf_event *group_leader = event->group_leader, *pos;
1826
1827         lockdep_assert_held(&event->ctx->lock);
1828
1829         /*
1830          * We can have double attach due to group movement in perf_event_open.
1831          */
1832         if (event->attach_state & PERF_ATTACH_GROUP)
1833                 return;
1834
1835         event->attach_state |= PERF_ATTACH_GROUP;
1836
1837         if (group_leader == event)
1838                 return;
1839
1840         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1841
1842         group_leader->group_caps &= event->event_caps;
1843
1844         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1845         group_leader->nr_siblings++;
1846
1847         perf_event__header_size(group_leader);
1848
1849         for_each_sibling_event(pos, group_leader)
1850                 perf_event__header_size(pos);
1851 }
1852
1853 /*
1854  * Remove an event from the lists for its context.
1855  * Must be called with ctx->mutex and ctx->lock held.
1856  */
1857 static void
1858 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1859 {
1860         WARN_ON_ONCE(event->ctx != ctx);
1861         lockdep_assert_held(&ctx->lock);
1862
1863         /*
1864          * We can have double detach due to exit/hot-unplug + close.
1865          */
1866         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1867                 return;
1868
1869         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1870
1871         list_update_cgroup_event(event, ctx, false);
1872
1873         ctx->nr_events--;
1874         if (event->attr.inherit_stat)
1875                 ctx->nr_stat--;
1876
1877         list_del_rcu(&event->event_entry);
1878
1879         if (event->group_leader == event)
1880                 del_event_from_groups(event, ctx);
1881
1882         /*
1883          * If event was in error state, then keep it
1884          * that way, otherwise bogus counts will be
1885          * returned on read(). The only way to get out
1886          * of error state is by explicit re-enabling
1887          * of the event
1888          */
1889         if (event->state > PERF_EVENT_STATE_OFF)
1890                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1891
1892         ctx->generation++;
1893 }
1894
1895 static void perf_group_detach(struct perf_event *event)
1896 {
1897         struct perf_event *sibling, *tmp;
1898         struct perf_event_context *ctx = event->ctx;
1899
1900         lockdep_assert_held(&ctx->lock);
1901
1902         /*
1903          * We can have double detach due to exit/hot-unplug + close.
1904          */
1905         if (!(event->attach_state & PERF_ATTACH_GROUP))
1906                 return;
1907
1908         event->attach_state &= ~PERF_ATTACH_GROUP;
1909
1910         /*
1911          * If this is a sibling, remove it from its group.
1912          */
1913         if (event->group_leader != event) {
1914                 list_del_init(&event->sibling_list);
1915                 event->group_leader->nr_siblings--;
1916                 goto out;
1917         }
1918
1919         /*
1920          * If this was a group event with sibling events then
1921          * upgrade the siblings to singleton events by adding them
1922          * to whatever list we are on.
1923          */
1924         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1925
1926                 sibling->group_leader = sibling;
1927                 list_del_init(&sibling->sibling_list);
1928
1929                 /* Inherit group flags from the previous leader */
1930                 sibling->group_caps = event->group_caps;
1931
1932                 if (!RB_EMPTY_NODE(&event->group_node)) {
1933                         add_event_to_groups(sibling, event->ctx);
1934
1935                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1936                                 struct list_head *list = sibling->attr.pinned ?
1937                                         &ctx->pinned_active : &ctx->flexible_active;
1938
1939                                 list_add_tail(&sibling->active_list, list);
1940                         }
1941                 }
1942
1943                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1944         }
1945
1946 out:
1947         perf_event__header_size(event->group_leader);
1948
1949         for_each_sibling_event(tmp, event->group_leader)
1950                 perf_event__header_size(tmp);
1951 }
1952
1953 static bool is_orphaned_event(struct perf_event *event)
1954 {
1955         return event->state == PERF_EVENT_STATE_DEAD;
1956 }
1957
1958 static inline int __pmu_filter_match(struct perf_event *event)
1959 {
1960         struct pmu *pmu = event->pmu;
1961         return pmu->filter_match ? pmu->filter_match(event) : 1;
1962 }
1963
1964 /*
1965  * Check whether we should attempt to schedule an event group based on
1966  * PMU-specific filtering. An event group can consist of HW and SW events,
1967  * potentially with a SW leader, so we must check all the filters, to
1968  * determine whether a group is schedulable:
1969  */
1970 static inline int pmu_filter_match(struct perf_event *event)
1971 {
1972         struct perf_event *sibling;
1973
1974         if (!__pmu_filter_match(event))
1975                 return 0;
1976
1977         for_each_sibling_event(sibling, event) {
1978                 if (!__pmu_filter_match(sibling))
1979                         return 0;
1980         }
1981
1982         return 1;
1983 }
1984
1985 static inline int
1986 event_filter_match(struct perf_event *event)
1987 {
1988         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1989                perf_cgroup_match(event) && pmu_filter_match(event);
1990 }
1991
1992 static void
1993 event_sched_out(struct perf_event *event,
1994                   struct perf_cpu_context *cpuctx,
1995                   struct perf_event_context *ctx)
1996 {
1997         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1998
1999         WARN_ON_ONCE(event->ctx != ctx);
2000         lockdep_assert_held(&ctx->lock);
2001
2002         if (event->state != PERF_EVENT_STATE_ACTIVE)
2003                 return;
2004
2005         /*
2006          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2007          * we can schedule events _OUT_ individually through things like
2008          * __perf_remove_from_context().
2009          */
2010         list_del_init(&event->active_list);
2011
2012         perf_pmu_disable(event->pmu);
2013
2014         event->pmu->del(event, 0);
2015         event->oncpu = -1;
2016
2017         if (READ_ONCE(event->pending_disable) >= 0) {
2018                 WRITE_ONCE(event->pending_disable, -1);
2019                 state = PERF_EVENT_STATE_OFF;
2020         }
2021         perf_event_set_state(event, state);
2022
2023         if (!is_software_event(event))
2024                 cpuctx->active_oncpu--;
2025         if (!--ctx->nr_active)
2026                 perf_event_ctx_deactivate(ctx);
2027         if (event->attr.freq && event->attr.sample_freq)
2028                 ctx->nr_freq--;
2029         if (event->attr.exclusive || !cpuctx->active_oncpu)
2030                 cpuctx->exclusive = 0;
2031
2032         perf_pmu_enable(event->pmu);
2033 }
2034
2035 static void
2036 group_sched_out(struct perf_event *group_event,
2037                 struct perf_cpu_context *cpuctx,
2038                 struct perf_event_context *ctx)
2039 {
2040         struct perf_event *event;
2041
2042         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2043                 return;
2044
2045         perf_pmu_disable(ctx->pmu);
2046
2047         event_sched_out(group_event, cpuctx, ctx);
2048
2049         /*
2050          * Schedule out siblings (if any):
2051          */
2052         for_each_sibling_event(event, group_event)
2053                 event_sched_out(event, cpuctx, ctx);
2054
2055         perf_pmu_enable(ctx->pmu);
2056
2057         if (group_event->attr.exclusive)
2058                 cpuctx->exclusive = 0;
2059 }
2060
2061 #define DETACH_GROUP    0x01UL
2062
2063 /*
2064  * Cross CPU call to remove a performance event
2065  *
2066  * We disable the event on the hardware level first. After that we
2067  * remove it from the context list.
2068  */
2069 static void
2070 __perf_remove_from_context(struct perf_event *event,
2071                            struct perf_cpu_context *cpuctx,
2072                            struct perf_event_context *ctx,
2073                            void *info)
2074 {
2075         unsigned long flags = (unsigned long)info;
2076
2077         if (ctx->is_active & EVENT_TIME) {
2078                 update_context_time(ctx);
2079                 update_cgrp_time_from_cpuctx(cpuctx);
2080         }
2081
2082         event_sched_out(event, cpuctx, ctx);
2083         if (flags & DETACH_GROUP)
2084                 perf_group_detach(event);
2085         list_del_event(event, ctx);
2086
2087         if (!ctx->nr_events && ctx->is_active) {
2088                 ctx->is_active = 0;
2089                 ctx->rotate_necessary = 0;
2090                 if (ctx->task) {
2091                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2092                         cpuctx->task_ctx = NULL;
2093                 }
2094         }
2095 }
2096
2097 /*
2098  * Remove the event from a task's (or a CPU's) list of events.
2099  *
2100  * If event->ctx is a cloned context, callers must make sure that
2101  * every task struct that event->ctx->task could possibly point to
2102  * remains valid.  This is OK when called from perf_release since
2103  * that only calls us on the top-level context, which can't be a clone.
2104  * When called from perf_event_exit_task, it's OK because the
2105  * context has been detached from its task.
2106  */
2107 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2108 {
2109         struct perf_event_context *ctx = event->ctx;
2110
2111         lockdep_assert_held(&ctx->mutex);
2112
2113         event_function_call(event, __perf_remove_from_context, (void *)flags);
2114
2115         /*
2116          * The above event_function_call() can NO-OP when it hits
2117          * TASK_TOMBSTONE. In that case we must already have been detached
2118          * from the context (by perf_event_exit_event()) but the grouping
2119          * might still be in-tact.
2120          */
2121         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2122         if ((flags & DETACH_GROUP) &&
2123             (event->attach_state & PERF_ATTACH_GROUP)) {
2124                 /*
2125                  * Since in that case we cannot possibly be scheduled, simply
2126                  * detach now.
2127                  */
2128                 raw_spin_lock_irq(&ctx->lock);
2129                 perf_group_detach(event);
2130                 raw_spin_unlock_irq(&ctx->lock);
2131         }
2132 }
2133
2134 /*
2135  * Cross CPU call to disable a performance event
2136  */
2137 static void __perf_event_disable(struct perf_event *event,
2138                                  struct perf_cpu_context *cpuctx,
2139                                  struct perf_event_context *ctx,
2140                                  void *info)
2141 {
2142         if (event->state < PERF_EVENT_STATE_INACTIVE)
2143                 return;
2144
2145         if (ctx->is_active & EVENT_TIME) {
2146                 update_context_time(ctx);
2147                 update_cgrp_time_from_event(event);
2148         }
2149
2150         if (event == event->group_leader)
2151                 group_sched_out(event, cpuctx, ctx);
2152         else
2153                 event_sched_out(event, cpuctx, ctx);
2154
2155         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2156 }
2157
2158 /*
2159  * Disable an event.
2160  *
2161  * If event->ctx is a cloned context, callers must make sure that
2162  * every task struct that event->ctx->task could possibly point to
2163  * remains valid.  This condition is satisifed when called through
2164  * perf_event_for_each_child or perf_event_for_each because they
2165  * hold the top-level event's child_mutex, so any descendant that
2166  * goes to exit will block in perf_event_exit_event().
2167  *
2168  * When called from perf_pending_event it's OK because event->ctx
2169  * is the current context on this CPU and preemption is disabled,
2170  * hence we can't get into perf_event_task_sched_out for this context.
2171  */
2172 static void _perf_event_disable(struct perf_event *event)
2173 {
2174         struct perf_event_context *ctx = event->ctx;
2175
2176         raw_spin_lock_irq(&ctx->lock);
2177         if (event->state <= PERF_EVENT_STATE_OFF) {
2178                 raw_spin_unlock_irq(&ctx->lock);
2179                 return;
2180         }
2181         raw_spin_unlock_irq(&ctx->lock);
2182
2183         event_function_call(event, __perf_event_disable, NULL);
2184 }
2185
2186 void perf_event_disable_local(struct perf_event *event)
2187 {
2188         event_function_local(event, __perf_event_disable, NULL);
2189 }
2190
2191 /*
2192  * Strictly speaking kernel users cannot create groups and therefore this
2193  * interface does not need the perf_event_ctx_lock() magic.
2194  */
2195 void perf_event_disable(struct perf_event *event)
2196 {
2197         struct perf_event_context *ctx;
2198
2199         ctx = perf_event_ctx_lock(event);
2200         _perf_event_disable(event);
2201         perf_event_ctx_unlock(event, ctx);
2202 }
2203 EXPORT_SYMBOL_GPL(perf_event_disable);
2204
2205 void perf_event_disable_inatomic(struct perf_event *event)
2206 {
2207         WRITE_ONCE(event->pending_disable, smp_processor_id());
2208         /* can fail, see perf_pending_event_disable() */
2209         irq_work_queue(&event->pending);
2210 }
2211
2212 static void perf_set_shadow_time(struct perf_event *event,
2213                                  struct perf_event_context *ctx)
2214 {
2215         /*
2216          * use the correct time source for the time snapshot
2217          *
2218          * We could get by without this by leveraging the
2219          * fact that to get to this function, the caller
2220          * has most likely already called update_context_time()
2221          * and update_cgrp_time_xx() and thus both timestamp
2222          * are identical (or very close). Given that tstamp is,
2223          * already adjusted for cgroup, we could say that:
2224          *    tstamp - ctx->timestamp
2225          * is equivalent to
2226          *    tstamp - cgrp->timestamp.
2227          *
2228          * Then, in perf_output_read(), the calculation would
2229          * work with no changes because:
2230          * - event is guaranteed scheduled in
2231          * - no scheduled out in between
2232          * - thus the timestamp would be the same
2233          *
2234          * But this is a bit hairy.
2235          *
2236          * So instead, we have an explicit cgroup call to remain
2237          * within the time time source all along. We believe it
2238          * is cleaner and simpler to understand.
2239          */
2240         if (is_cgroup_event(event))
2241                 perf_cgroup_set_shadow_time(event, event->tstamp);
2242         else
2243                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2244 }
2245
2246 #define MAX_INTERRUPTS (~0ULL)
2247
2248 static void perf_log_throttle(struct perf_event *event, int enable);
2249 static void perf_log_itrace_start(struct perf_event *event);
2250
2251 static int
2252 event_sched_in(struct perf_event *event,
2253                  struct perf_cpu_context *cpuctx,
2254                  struct perf_event_context *ctx)
2255 {
2256         int ret = 0;
2257
2258         lockdep_assert_held(&ctx->lock);
2259
2260         if (event->state <= PERF_EVENT_STATE_OFF)
2261                 return 0;
2262
2263         WRITE_ONCE(event->oncpu, smp_processor_id());
2264         /*
2265          * Order event::oncpu write to happen before the ACTIVE state is
2266          * visible. This allows perf_event_{stop,read}() to observe the correct
2267          * ->oncpu if it sees ACTIVE.
2268          */
2269         smp_wmb();
2270         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2271
2272         /*
2273          * Unthrottle events, since we scheduled we might have missed several
2274          * ticks already, also for a heavily scheduling task there is little
2275          * guarantee it'll get a tick in a timely manner.
2276          */
2277         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2278                 perf_log_throttle(event, 1);
2279                 event->hw.interrupts = 0;
2280         }
2281
2282         perf_pmu_disable(event->pmu);
2283
2284         perf_set_shadow_time(event, ctx);
2285
2286         perf_log_itrace_start(event);
2287
2288         if (event->pmu->add(event, PERF_EF_START)) {
2289                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2290                 event->oncpu = -1;
2291                 ret = -EAGAIN;
2292                 goto out;
2293         }
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu++;
2297         if (!ctx->nr_active++)
2298                 perf_event_ctx_activate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq++;
2301
2302         if (event->attr.exclusive)
2303                 cpuctx->exclusive = 1;
2304
2305 out:
2306         perf_pmu_enable(event->pmu);
2307
2308         return ret;
2309 }
2310
2311 static int
2312 group_sched_in(struct perf_event *group_event,
2313                struct perf_cpu_context *cpuctx,
2314                struct perf_event_context *ctx)
2315 {
2316         struct perf_event *event, *partial_group = NULL;
2317         struct pmu *pmu = ctx->pmu;
2318
2319         if (group_event->state == PERF_EVENT_STATE_OFF)
2320                 return 0;
2321
2322         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2323
2324         if (event_sched_in(group_event, cpuctx, ctx)) {
2325                 pmu->cancel_txn(pmu);
2326                 perf_mux_hrtimer_restart(cpuctx);
2327                 return -EAGAIN;
2328         }
2329
2330         /*
2331          * Schedule in siblings as one group (if any):
2332          */
2333         for_each_sibling_event(event, group_event) {
2334                 if (event_sched_in(event, cpuctx, ctx)) {
2335                         partial_group = event;
2336                         goto group_error;
2337                 }
2338         }
2339
2340         if (!pmu->commit_txn(pmu))
2341                 return 0;
2342
2343 group_error:
2344         /*
2345          * Groups can be scheduled in as one unit only, so undo any
2346          * partial group before returning:
2347          * The events up to the failed event are scheduled out normally.
2348          */
2349         for_each_sibling_event(event, group_event) {
2350                 if (event == partial_group)
2351                         break;
2352
2353                 event_sched_out(event, cpuctx, ctx);
2354         }
2355         event_sched_out(group_event, cpuctx, ctx);
2356
2357         pmu->cancel_txn(pmu);
2358
2359         perf_mux_hrtimer_restart(cpuctx);
2360
2361         return -EAGAIN;
2362 }
2363
2364 /*
2365  * Work out whether we can put this event group on the CPU now.
2366  */
2367 static int group_can_go_on(struct perf_event *event,
2368                            struct perf_cpu_context *cpuctx,
2369                            int can_add_hw)
2370 {
2371         /*
2372          * Groups consisting entirely of software events can always go on.
2373          */
2374         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2375                 return 1;
2376         /*
2377          * If an exclusive group is already on, no other hardware
2378          * events can go on.
2379          */
2380         if (cpuctx->exclusive)
2381                 return 0;
2382         /*
2383          * If this group is exclusive and there are already
2384          * events on the CPU, it can't go on.
2385          */
2386         if (event->attr.exclusive && cpuctx->active_oncpu)
2387                 return 0;
2388         /*
2389          * Otherwise, try to add it if all previous groups were able
2390          * to go on.
2391          */
2392         return can_add_hw;
2393 }
2394
2395 static void add_event_to_ctx(struct perf_event *event,
2396                                struct perf_event_context *ctx)
2397 {
2398         list_add_event(event, ctx);
2399         perf_group_attach(event);
2400 }
2401
2402 static void ctx_sched_out(struct perf_event_context *ctx,
2403                           struct perf_cpu_context *cpuctx,
2404                           enum event_type_t event_type);
2405 static void
2406 ctx_sched_in(struct perf_event_context *ctx,
2407              struct perf_cpu_context *cpuctx,
2408              enum event_type_t event_type,
2409              struct task_struct *task);
2410
2411 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2412                                struct perf_event_context *ctx,
2413                                enum event_type_t event_type)
2414 {
2415         if (!cpuctx->task_ctx)
2416                 return;
2417
2418         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2419                 return;
2420
2421         ctx_sched_out(ctx, cpuctx, event_type);
2422 }
2423
2424 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2425                                 struct perf_event_context *ctx,
2426                                 struct task_struct *task)
2427 {
2428         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2429         if (ctx)
2430                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2431         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2432         if (ctx)
2433                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2434 }
2435
2436 /*
2437  * We want to maintain the following priority of scheduling:
2438  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2439  *  - task pinned (EVENT_PINNED)
2440  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2441  *  - task flexible (EVENT_FLEXIBLE).
2442  *
2443  * In order to avoid unscheduling and scheduling back in everything every
2444  * time an event is added, only do it for the groups of equal priority and
2445  * below.
2446  *
2447  * This can be called after a batch operation on task events, in which case
2448  * event_type is a bit mask of the types of events involved. For CPU events,
2449  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2450  */
2451 static void ctx_resched(struct perf_cpu_context *cpuctx,
2452                         struct perf_event_context *task_ctx,
2453                         enum event_type_t event_type)
2454 {
2455         enum event_type_t ctx_event_type;
2456         bool cpu_event = !!(event_type & EVENT_CPU);
2457
2458         /*
2459          * If pinned groups are involved, flexible groups also need to be
2460          * scheduled out.
2461          */
2462         if (event_type & EVENT_PINNED)
2463                 event_type |= EVENT_FLEXIBLE;
2464
2465         ctx_event_type = event_type & EVENT_ALL;
2466
2467         perf_pmu_disable(cpuctx->ctx.pmu);
2468         if (task_ctx)
2469                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2470
2471         /*
2472          * Decide which cpu ctx groups to schedule out based on the types
2473          * of events that caused rescheduling:
2474          *  - EVENT_CPU: schedule out corresponding groups;
2475          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2476          *  - otherwise, do nothing more.
2477          */
2478         if (cpu_event)
2479                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2480         else if (ctx_event_type & EVENT_PINNED)
2481                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2482
2483         perf_event_sched_in(cpuctx, task_ctx, current);
2484         perf_pmu_enable(cpuctx->ctx.pmu);
2485 }
2486
2487 /*
2488  * Cross CPU call to install and enable a performance event
2489  *
2490  * Very similar to remote_function() + event_function() but cannot assume that
2491  * things like ctx->is_active and cpuctx->task_ctx are set.
2492  */
2493 static int  __perf_install_in_context(void *info)
2494 {
2495         struct perf_event *event = info;
2496         struct perf_event_context *ctx = event->ctx;
2497         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2498         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2499         bool reprogram = true;
2500         int ret = 0;
2501
2502         raw_spin_lock(&cpuctx->ctx.lock);
2503         if (ctx->task) {
2504                 raw_spin_lock(&ctx->lock);
2505                 task_ctx = ctx;
2506
2507                 reprogram = (ctx->task == current);
2508
2509                 /*
2510                  * If the task is running, it must be running on this CPU,
2511                  * otherwise we cannot reprogram things.
2512                  *
2513                  * If its not running, we don't care, ctx->lock will
2514                  * serialize against it becoming runnable.
2515                  */
2516                 if (task_curr(ctx->task) && !reprogram) {
2517                         ret = -ESRCH;
2518                         goto unlock;
2519                 }
2520
2521                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2522         } else if (task_ctx) {
2523                 raw_spin_lock(&task_ctx->lock);
2524         }
2525
2526 #ifdef CONFIG_CGROUP_PERF
2527         if (is_cgroup_event(event)) {
2528                 /*
2529                  * If the current cgroup doesn't match the event's
2530                  * cgroup, we should not try to schedule it.
2531                  */
2532                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2533                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2534                                         event->cgrp->css.cgroup);
2535         }
2536 #endif
2537
2538         if (reprogram) {
2539                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2540                 add_event_to_ctx(event, ctx);
2541                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2542         } else {
2543                 add_event_to_ctx(event, ctx);
2544         }
2545
2546 unlock:
2547         perf_ctx_unlock(cpuctx, task_ctx);
2548
2549         return ret;
2550 }
2551
2552 static bool exclusive_event_installable(struct perf_event *event,
2553                                         struct perf_event_context *ctx);
2554
2555 /*
2556  * Attach a performance event to a context.
2557  *
2558  * Very similar to event_function_call, see comment there.
2559  */
2560 static void
2561 perf_install_in_context(struct perf_event_context *ctx,
2562                         struct perf_event *event,
2563                         int cpu)
2564 {
2565         struct task_struct *task = READ_ONCE(ctx->task);
2566
2567         lockdep_assert_held(&ctx->mutex);
2568
2569         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2570
2571         if (event->cpu != -1)
2572                 event->cpu = cpu;
2573
2574         /*
2575          * Ensures that if we can observe event->ctx, both the event and ctx
2576          * will be 'complete'. See perf_iterate_sb_cpu().
2577          */
2578         smp_store_release(&event->ctx, ctx);
2579
2580         if (!task) {
2581                 cpu_function_call(cpu, __perf_install_in_context, event);
2582                 return;
2583         }
2584
2585         /*
2586          * Should not happen, we validate the ctx is still alive before calling.
2587          */
2588         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2589                 return;
2590
2591         /*
2592          * Installing events is tricky because we cannot rely on ctx->is_active
2593          * to be set in case this is the nr_events 0 -> 1 transition.
2594          *
2595          * Instead we use task_curr(), which tells us if the task is running.
2596          * However, since we use task_curr() outside of rq::lock, we can race
2597          * against the actual state. This means the result can be wrong.
2598          *
2599          * If we get a false positive, we retry, this is harmless.
2600          *
2601          * If we get a false negative, things are complicated. If we are after
2602          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2603          * value must be correct. If we're before, it doesn't matter since
2604          * perf_event_context_sched_in() will program the counter.
2605          *
2606          * However, this hinges on the remote context switch having observed
2607          * our task->perf_event_ctxp[] store, such that it will in fact take
2608          * ctx::lock in perf_event_context_sched_in().
2609          *
2610          * We do this by task_function_call(), if the IPI fails to hit the task
2611          * we know any future context switch of task must see the
2612          * perf_event_ctpx[] store.
2613          */
2614
2615         /*
2616          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2617          * task_cpu() load, such that if the IPI then does not find the task
2618          * running, a future context switch of that task must observe the
2619          * store.
2620          */
2621         smp_mb();
2622 again:
2623         if (!task_function_call(task, __perf_install_in_context, event))
2624                 return;
2625
2626         raw_spin_lock_irq(&ctx->lock);
2627         task = ctx->task;
2628         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2629                 /*
2630                  * Cannot happen because we already checked above (which also
2631                  * cannot happen), and we hold ctx->mutex, which serializes us
2632                  * against perf_event_exit_task_context().
2633                  */
2634                 raw_spin_unlock_irq(&ctx->lock);
2635                 return;
2636         }
2637         /*
2638          * If the task is not running, ctx->lock will avoid it becoming so,
2639          * thus we can safely install the event.
2640          */
2641         if (task_curr(task)) {
2642                 raw_spin_unlock_irq(&ctx->lock);
2643                 goto again;
2644         }
2645         add_event_to_ctx(event, ctx);
2646         raw_spin_unlock_irq(&ctx->lock);
2647 }
2648
2649 /*
2650  * Cross CPU call to enable a performance event
2651  */
2652 static void __perf_event_enable(struct perf_event *event,
2653                                 struct perf_cpu_context *cpuctx,
2654                                 struct perf_event_context *ctx,
2655                                 void *info)
2656 {
2657         struct perf_event *leader = event->group_leader;
2658         struct perf_event_context *task_ctx;
2659
2660         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2661             event->state <= PERF_EVENT_STATE_ERROR)
2662                 return;
2663
2664         if (ctx->is_active)
2665                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2666
2667         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2668
2669         if (!ctx->is_active)
2670                 return;
2671
2672         if (!event_filter_match(event)) {
2673                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2674                 return;
2675         }
2676
2677         /*
2678          * If the event is in a group and isn't the group leader,
2679          * then don't put it on unless the group is on.
2680          */
2681         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2682                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2683                 return;
2684         }
2685
2686         task_ctx = cpuctx->task_ctx;
2687         if (ctx->task)
2688                 WARN_ON_ONCE(task_ctx != ctx);
2689
2690         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2691 }
2692
2693 /*
2694  * Enable an event.
2695  *
2696  * If event->ctx is a cloned context, callers must make sure that
2697  * every task struct that event->ctx->task could possibly point to
2698  * remains valid.  This condition is satisfied when called through
2699  * perf_event_for_each_child or perf_event_for_each as described
2700  * for perf_event_disable.
2701  */
2702 static void _perf_event_enable(struct perf_event *event)
2703 {
2704         struct perf_event_context *ctx = event->ctx;
2705
2706         raw_spin_lock_irq(&ctx->lock);
2707         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2708             event->state <  PERF_EVENT_STATE_ERROR) {
2709                 raw_spin_unlock_irq(&ctx->lock);
2710                 return;
2711         }
2712
2713         /*
2714          * If the event is in error state, clear that first.
2715          *
2716          * That way, if we see the event in error state below, we know that it
2717          * has gone back into error state, as distinct from the task having
2718          * been scheduled away before the cross-call arrived.
2719          */
2720         if (event->state == PERF_EVENT_STATE_ERROR)
2721                 event->state = PERF_EVENT_STATE_OFF;
2722         raw_spin_unlock_irq(&ctx->lock);
2723
2724         event_function_call(event, __perf_event_enable, NULL);
2725 }
2726
2727 /*
2728  * See perf_event_disable();
2729  */
2730 void perf_event_enable(struct perf_event *event)
2731 {
2732         struct perf_event_context *ctx;
2733
2734         ctx = perf_event_ctx_lock(event);
2735         _perf_event_enable(event);
2736         perf_event_ctx_unlock(event, ctx);
2737 }
2738 EXPORT_SYMBOL_GPL(perf_event_enable);
2739
2740 struct stop_event_data {
2741         struct perf_event       *event;
2742         unsigned int            restart;
2743 };
2744
2745 static int __perf_event_stop(void *info)
2746 {
2747         struct stop_event_data *sd = info;
2748         struct perf_event *event = sd->event;
2749
2750         /* if it's already INACTIVE, do nothing */
2751         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2752                 return 0;
2753
2754         /* matches smp_wmb() in event_sched_in() */
2755         smp_rmb();
2756
2757         /*
2758          * There is a window with interrupts enabled before we get here,
2759          * so we need to check again lest we try to stop another CPU's event.
2760          */
2761         if (READ_ONCE(event->oncpu) != smp_processor_id())
2762                 return -EAGAIN;
2763
2764         event->pmu->stop(event, PERF_EF_UPDATE);
2765
2766         /*
2767          * May race with the actual stop (through perf_pmu_output_stop()),
2768          * but it is only used for events with AUX ring buffer, and such
2769          * events will refuse to restart because of rb::aux_mmap_count==0,
2770          * see comments in perf_aux_output_begin().
2771          *
2772          * Since this is happening on an event-local CPU, no trace is lost
2773          * while restarting.
2774          */
2775         if (sd->restart)
2776                 event->pmu->start(event, 0);
2777
2778         return 0;
2779 }
2780
2781 static int perf_event_stop(struct perf_event *event, int restart)
2782 {
2783         struct stop_event_data sd = {
2784                 .event          = event,
2785                 .restart        = restart,
2786         };
2787         int ret = 0;
2788
2789         do {
2790                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2791                         return 0;
2792
2793                 /* matches smp_wmb() in event_sched_in() */
2794                 smp_rmb();
2795
2796                 /*
2797                  * We only want to restart ACTIVE events, so if the event goes
2798                  * inactive here (event->oncpu==-1), there's nothing more to do;
2799                  * fall through with ret==-ENXIO.
2800                  */
2801                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2802                                         __perf_event_stop, &sd);
2803         } while (ret == -EAGAIN);
2804
2805         return ret;
2806 }
2807
2808 /*
2809  * In order to contain the amount of racy and tricky in the address filter
2810  * configuration management, it is a two part process:
2811  *
2812  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2813  *      we update the addresses of corresponding vmas in
2814  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2815  * (p2) when an event is scheduled in (pmu::add), it calls
2816  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2817  *      if the generation has changed since the previous call.
2818  *
2819  * If (p1) happens while the event is active, we restart it to force (p2).
2820  *
2821  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2822  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2823  *     ioctl;
2824  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2825  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2826  *     for reading;
2827  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2828  *     of exec.
2829  */
2830 void perf_event_addr_filters_sync(struct perf_event *event)
2831 {
2832         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2833
2834         if (!has_addr_filter(event))
2835                 return;
2836
2837         raw_spin_lock(&ifh->lock);
2838         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2839                 event->pmu->addr_filters_sync(event);
2840                 event->hw.addr_filters_gen = event->addr_filters_gen;
2841         }
2842         raw_spin_unlock(&ifh->lock);
2843 }
2844 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2845
2846 static int _perf_event_refresh(struct perf_event *event, int refresh)
2847 {
2848         /*
2849          * not supported on inherited events
2850          */
2851         if (event->attr.inherit || !is_sampling_event(event))
2852                 return -EINVAL;
2853
2854         atomic_add(refresh, &event->event_limit);
2855         _perf_event_enable(event);
2856
2857         return 0;
2858 }
2859
2860 /*
2861  * See perf_event_disable()
2862  */
2863 int perf_event_refresh(struct perf_event *event, int refresh)
2864 {
2865         struct perf_event_context *ctx;
2866         int ret;
2867
2868         ctx = perf_event_ctx_lock(event);
2869         ret = _perf_event_refresh(event, refresh);
2870         perf_event_ctx_unlock(event, ctx);
2871
2872         return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(perf_event_refresh);
2875
2876 static int perf_event_modify_breakpoint(struct perf_event *bp,
2877                                          struct perf_event_attr *attr)
2878 {
2879         int err;
2880
2881         _perf_event_disable(bp);
2882
2883         err = modify_user_hw_breakpoint_check(bp, attr, true);
2884
2885         if (!bp->attr.disabled)
2886                 _perf_event_enable(bp);
2887
2888         return err;
2889 }
2890
2891 static int perf_event_modify_attr(struct perf_event *event,
2892                                   struct perf_event_attr *attr)
2893 {
2894         if (event->attr.type != attr->type)
2895                 return -EINVAL;
2896
2897         switch (event->attr.type) {
2898         case PERF_TYPE_BREAKPOINT:
2899                 return perf_event_modify_breakpoint(event, attr);
2900         default:
2901                 /* Place holder for future additions. */
2902                 return -EOPNOTSUPP;
2903         }
2904 }
2905
2906 static void ctx_sched_out(struct perf_event_context *ctx,
2907                           struct perf_cpu_context *cpuctx,
2908                           enum event_type_t event_type)
2909 {
2910         struct perf_event *event, *tmp;
2911         int is_active = ctx->is_active;
2912
2913         lockdep_assert_held(&ctx->lock);
2914
2915         if (likely(!ctx->nr_events)) {
2916                 /*
2917                  * See __perf_remove_from_context().
2918                  */
2919                 WARN_ON_ONCE(ctx->is_active);
2920                 if (ctx->task)
2921                         WARN_ON_ONCE(cpuctx->task_ctx);
2922                 return;
2923         }
2924
2925         ctx->is_active &= ~event_type;
2926         if (!(ctx->is_active & EVENT_ALL))
2927                 ctx->is_active = 0;
2928
2929         if (ctx->task) {
2930                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2931                 if (!ctx->is_active)
2932                         cpuctx->task_ctx = NULL;
2933         }
2934
2935         /*
2936          * Always update time if it was set; not only when it changes.
2937          * Otherwise we can 'forget' to update time for any but the last
2938          * context we sched out. For example:
2939          *
2940          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2941          *   ctx_sched_out(.event_type = EVENT_PINNED)
2942          *
2943          * would only update time for the pinned events.
2944          */
2945         if (is_active & EVENT_TIME) {
2946                 /* update (and stop) ctx time */
2947                 update_context_time(ctx);
2948                 update_cgrp_time_from_cpuctx(cpuctx);
2949         }
2950
2951         is_active ^= ctx->is_active; /* changed bits */
2952
2953         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2954                 return;
2955
2956         perf_pmu_disable(ctx->pmu);
2957         if (is_active & EVENT_PINNED) {
2958                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2959                         group_sched_out(event, cpuctx, ctx);
2960         }
2961
2962         if (is_active & EVENT_FLEXIBLE) {
2963                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2964                         group_sched_out(event, cpuctx, ctx);
2965
2966                 /*
2967                  * Since we cleared EVENT_FLEXIBLE, also clear
2968                  * rotate_necessary, is will be reset by
2969                  * ctx_flexible_sched_in() when needed.
2970                  */
2971                 ctx->rotate_necessary = 0;
2972         }
2973         perf_pmu_enable(ctx->pmu);
2974 }
2975
2976 /*
2977  * Test whether two contexts are equivalent, i.e. whether they have both been
2978  * cloned from the same version of the same context.
2979  *
2980  * Equivalence is measured using a generation number in the context that is
2981  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2982  * and list_del_event().
2983  */
2984 static int context_equiv(struct perf_event_context *ctx1,
2985                          struct perf_event_context *ctx2)
2986 {
2987         lockdep_assert_held(&ctx1->lock);
2988         lockdep_assert_held(&ctx2->lock);
2989
2990         /* Pinning disables the swap optimization */
2991         if (ctx1->pin_count || ctx2->pin_count)
2992                 return 0;
2993
2994         /* If ctx1 is the parent of ctx2 */
2995         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2996                 return 1;
2997
2998         /* If ctx2 is the parent of ctx1 */
2999         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3000                 return 1;
3001
3002         /*
3003          * If ctx1 and ctx2 have the same parent; we flatten the parent
3004          * hierarchy, see perf_event_init_context().
3005          */
3006         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3007                         ctx1->parent_gen == ctx2->parent_gen)
3008                 return 1;
3009
3010         /* Unmatched */
3011         return 0;
3012 }
3013
3014 static void __perf_event_sync_stat(struct perf_event *event,
3015                                      struct perf_event *next_event)
3016 {
3017         u64 value;
3018
3019         if (!event->attr.inherit_stat)
3020                 return;
3021
3022         /*
3023          * Update the event value, we cannot use perf_event_read()
3024          * because we're in the middle of a context switch and have IRQs
3025          * disabled, which upsets smp_call_function_single(), however
3026          * we know the event must be on the current CPU, therefore we
3027          * don't need to use it.
3028          */
3029         if (event->state == PERF_EVENT_STATE_ACTIVE)
3030                 event->pmu->read(event);
3031
3032         perf_event_update_time(event);
3033
3034         /*
3035          * In order to keep per-task stats reliable we need to flip the event
3036          * values when we flip the contexts.
3037          */
3038         value = local64_read(&next_event->count);
3039         value = local64_xchg(&event->count, value);
3040         local64_set(&next_event->count, value);
3041
3042         swap(event->total_time_enabled, next_event->total_time_enabled);
3043         swap(event->total_time_running, next_event->total_time_running);
3044
3045         /*
3046          * Since we swizzled the values, update the user visible data too.
3047          */
3048         perf_event_update_userpage(event);
3049         perf_event_update_userpage(next_event);
3050 }
3051
3052 static void perf_event_sync_stat(struct perf_event_context *ctx,
3053                                    struct perf_event_context *next_ctx)
3054 {
3055         struct perf_event *event, *next_event;
3056
3057         if (!ctx->nr_stat)
3058                 return;
3059
3060         update_context_time(ctx);
3061
3062         event = list_first_entry(&ctx->event_list,
3063                                    struct perf_event, event_entry);
3064
3065         next_event = list_first_entry(&next_ctx->event_list,
3066                                         struct perf_event, event_entry);
3067
3068         while (&event->event_entry != &ctx->event_list &&
3069                &next_event->event_entry != &next_ctx->event_list) {
3070
3071                 __perf_event_sync_stat(event, next_event);
3072
3073                 event = list_next_entry(event, event_entry);
3074                 next_event = list_next_entry(next_event, event_entry);
3075         }
3076 }
3077
3078 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3079                                          struct task_struct *next)
3080 {
3081         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3082         struct perf_event_context *next_ctx;
3083         struct perf_event_context *parent, *next_parent;
3084         struct perf_cpu_context *cpuctx;
3085         int do_switch = 1;
3086
3087         if (likely(!ctx))
3088                 return;
3089
3090         cpuctx = __get_cpu_context(ctx);
3091         if (!cpuctx->task_ctx)
3092                 return;
3093
3094         rcu_read_lock();
3095         next_ctx = next->perf_event_ctxp[ctxn];
3096         if (!next_ctx)
3097                 goto unlock;
3098
3099         parent = rcu_dereference(ctx->parent_ctx);
3100         next_parent = rcu_dereference(next_ctx->parent_ctx);
3101
3102         /* If neither context have a parent context; they cannot be clones. */
3103         if (!parent && !next_parent)
3104                 goto unlock;
3105
3106         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3107                 /*
3108                  * Looks like the two contexts are clones, so we might be
3109                  * able to optimize the context switch.  We lock both
3110                  * contexts and check that they are clones under the
3111                  * lock (including re-checking that neither has been
3112                  * uncloned in the meantime).  It doesn't matter which
3113                  * order we take the locks because no other cpu could
3114                  * be trying to lock both of these tasks.
3115                  */
3116                 raw_spin_lock(&ctx->lock);
3117                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3118                 if (context_equiv(ctx, next_ctx)) {
3119                         WRITE_ONCE(ctx->task, next);
3120                         WRITE_ONCE(next_ctx->task, task);
3121
3122                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3123
3124                         /*
3125                          * RCU_INIT_POINTER here is safe because we've not
3126                          * modified the ctx and the above modification of
3127                          * ctx->task and ctx->task_ctx_data are immaterial
3128                          * since those values are always verified under
3129                          * ctx->lock which we're now holding.
3130                          */
3131                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3132                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3133
3134                         do_switch = 0;
3135
3136                         perf_event_sync_stat(ctx, next_ctx);
3137                 }
3138                 raw_spin_unlock(&next_ctx->lock);
3139                 raw_spin_unlock(&ctx->lock);
3140         }
3141 unlock:
3142         rcu_read_unlock();
3143
3144         if (do_switch) {
3145                 raw_spin_lock(&ctx->lock);
3146                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3147                 raw_spin_unlock(&ctx->lock);
3148         }
3149 }
3150
3151 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3152
3153 void perf_sched_cb_dec(struct pmu *pmu)
3154 {
3155         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3156
3157         this_cpu_dec(perf_sched_cb_usages);
3158
3159         if (!--cpuctx->sched_cb_usage)
3160                 list_del(&cpuctx->sched_cb_entry);
3161 }
3162
3163
3164 void perf_sched_cb_inc(struct pmu *pmu)
3165 {
3166         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3167
3168         if (!cpuctx->sched_cb_usage++)
3169                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3170
3171         this_cpu_inc(perf_sched_cb_usages);
3172 }
3173
3174 /*
3175  * This function provides the context switch callback to the lower code
3176  * layer. It is invoked ONLY when the context switch callback is enabled.
3177  *
3178  * This callback is relevant even to per-cpu events; for example multi event
3179  * PEBS requires this to provide PID/TID information. This requires we flush
3180  * all queued PEBS records before we context switch to a new task.
3181  */
3182 static void perf_pmu_sched_task(struct task_struct *prev,
3183                                 struct task_struct *next,
3184                                 bool sched_in)
3185 {
3186         struct perf_cpu_context *cpuctx;
3187         struct pmu *pmu;
3188
3189         if (prev == next)
3190                 return;
3191
3192         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3193                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3194
3195                 if (WARN_ON_ONCE(!pmu->sched_task))
3196                         continue;
3197
3198                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3199                 perf_pmu_disable(pmu);
3200
3201                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3202
3203                 perf_pmu_enable(pmu);
3204                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3205         }
3206 }
3207
3208 static void perf_event_switch(struct task_struct *task,
3209                               struct task_struct *next_prev, bool sched_in);
3210
3211 #define for_each_task_context_nr(ctxn)                                  \
3212         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3213
3214 /*
3215  * Called from scheduler to remove the events of the current task,
3216  * with interrupts disabled.
3217  *
3218  * We stop each event and update the event value in event->count.
3219  *
3220  * This does not protect us against NMI, but disable()
3221  * sets the disabled bit in the control field of event _before_
3222  * accessing the event control register. If a NMI hits, then it will
3223  * not restart the event.
3224  */
3225 void __perf_event_task_sched_out(struct task_struct *task,
3226                                  struct task_struct *next)
3227 {
3228         int ctxn;
3229
3230         if (__this_cpu_read(perf_sched_cb_usages))
3231                 perf_pmu_sched_task(task, next, false);
3232
3233         if (atomic_read(&nr_switch_events))
3234                 perf_event_switch(task, next, false);
3235
3236         for_each_task_context_nr(ctxn)
3237                 perf_event_context_sched_out(task, ctxn, next);
3238
3239         /*
3240          * if cgroup events exist on this CPU, then we need
3241          * to check if we have to switch out PMU state.
3242          * cgroup event are system-wide mode only
3243          */
3244         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3245                 perf_cgroup_sched_out(task, next);
3246 }
3247
3248 /*
3249  * Called with IRQs disabled
3250  */
3251 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3252                               enum event_type_t event_type)
3253 {
3254         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3255 }
3256
3257 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3258                               int (*func)(struct perf_event *, void *), void *data)
3259 {
3260         struct perf_event **evt, *evt1, *evt2;
3261         int ret;
3262
3263         evt1 = perf_event_groups_first(groups, -1);
3264         evt2 = perf_event_groups_first(groups, cpu);
3265
3266         while (evt1 || evt2) {
3267                 if (evt1 && evt2) {
3268                         if (evt1->group_index < evt2->group_index)
3269                                 evt = &evt1;
3270                         else
3271                                 evt = &evt2;
3272                 } else if (evt1) {
3273                         evt = &evt1;
3274                 } else {
3275                         evt = &evt2;
3276                 }
3277
3278                 ret = func(*evt, data);
3279                 if (ret)
3280                         return ret;
3281
3282                 *evt = perf_event_groups_next(*evt);
3283         }
3284
3285         return 0;
3286 }
3287
3288 struct sched_in_data {
3289         struct perf_event_context *ctx;
3290         struct perf_cpu_context *cpuctx;
3291         int can_add_hw;
3292 };
3293
3294 static int pinned_sched_in(struct perf_event *event, void *data)
3295 {
3296         struct sched_in_data *sid = data;
3297
3298         if (event->state <= PERF_EVENT_STATE_OFF)
3299                 return 0;
3300
3301         if (!event_filter_match(event))
3302                 return 0;
3303
3304         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3305                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3306                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3307         }
3308
3309         /*
3310          * If this pinned group hasn't been scheduled,
3311          * put it in error state.
3312          */
3313         if (event->state == PERF_EVENT_STATE_INACTIVE)
3314                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3315
3316         return 0;
3317 }
3318
3319 static int flexible_sched_in(struct perf_event *event, void *data)
3320 {
3321         struct sched_in_data *sid = data;
3322
3323         if (event->state <= PERF_EVENT_STATE_OFF)
3324                 return 0;
3325
3326         if (!event_filter_match(event))
3327                 return 0;
3328
3329         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3330                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3331                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3332                 else
3333                         sid->can_add_hw = 0;
3334         }
3335
3336         return 0;
3337 }
3338
3339 static void
3340 ctx_pinned_sched_in(struct perf_event_context *ctx,
3341                     struct perf_cpu_context *cpuctx)
3342 {
3343         struct sched_in_data sid = {
3344                 .ctx = ctx,
3345                 .cpuctx = cpuctx,
3346                 .can_add_hw = 1,
3347         };
3348
3349         visit_groups_merge(&ctx->pinned_groups,
3350                            smp_processor_id(),
3351                            pinned_sched_in, &sid);
3352 }
3353
3354 static void
3355 ctx_flexible_sched_in(struct perf_event_context *ctx,
3356                       struct perf_cpu_context *cpuctx)
3357 {
3358         struct sched_in_data sid = {
3359                 .ctx = ctx,
3360                 .cpuctx = cpuctx,
3361                 .can_add_hw = 1,
3362         };
3363
3364         visit_groups_merge(&ctx->flexible_groups,
3365                            smp_processor_id(),
3366                            flexible_sched_in, &sid);
3367 }
3368
3369 static void
3370 ctx_sched_in(struct perf_event_context *ctx,
3371              struct perf_cpu_context *cpuctx,
3372              enum event_type_t event_type,
3373              struct task_struct *task)
3374 {
3375         int is_active = ctx->is_active;
3376         u64 now;
3377
3378         lockdep_assert_held(&ctx->lock);
3379
3380         if (likely(!ctx->nr_events))
3381                 return;
3382
3383         ctx->is_active |= (event_type | EVENT_TIME);
3384         if (ctx->task) {
3385                 if (!is_active)
3386                         cpuctx->task_ctx = ctx;
3387                 else
3388                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3389         }
3390
3391         is_active ^= ctx->is_active; /* changed bits */
3392
3393         if (is_active & EVENT_TIME) {
3394                 /* start ctx time */
3395                 now = perf_clock();
3396                 ctx->timestamp = now;
3397                 perf_cgroup_set_timestamp(task, ctx);
3398         }
3399
3400         /*
3401          * First go through the list and put on any pinned groups
3402          * in order to give them the best chance of going on.
3403          */
3404         if (is_active & EVENT_PINNED)
3405                 ctx_pinned_sched_in(ctx, cpuctx);
3406
3407         /* Then walk through the lower prio flexible groups */
3408         if (is_active & EVENT_FLEXIBLE)
3409                 ctx_flexible_sched_in(ctx, cpuctx);
3410 }
3411
3412 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3413                              enum event_type_t event_type,
3414                              struct task_struct *task)
3415 {
3416         struct perf_event_context *ctx = &cpuctx->ctx;
3417
3418         ctx_sched_in(ctx, cpuctx, event_type, task);
3419 }
3420
3421 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3422                                         struct task_struct *task)
3423 {
3424         struct perf_cpu_context *cpuctx;
3425
3426         cpuctx = __get_cpu_context(ctx);
3427         if (cpuctx->task_ctx == ctx)
3428                 return;
3429
3430         perf_ctx_lock(cpuctx, ctx);
3431         /*
3432          * We must check ctx->nr_events while holding ctx->lock, such
3433          * that we serialize against perf_install_in_context().
3434          */
3435         if (!ctx->nr_events)
3436                 goto unlock;
3437
3438         perf_pmu_disable(ctx->pmu);
3439         /*
3440          * We want to keep the following priority order:
3441          * cpu pinned (that don't need to move), task pinned,
3442          * cpu flexible, task flexible.
3443          *
3444          * However, if task's ctx is not carrying any pinned
3445          * events, no need to flip the cpuctx's events around.
3446          */
3447         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3448                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3449         perf_event_sched_in(cpuctx, ctx, task);
3450         perf_pmu_enable(ctx->pmu);
3451
3452 unlock:
3453         perf_ctx_unlock(cpuctx, ctx);
3454 }
3455
3456 /*
3457  * Called from scheduler to add the events of the current task
3458  * with interrupts disabled.
3459  *
3460  * We restore the event value and then enable it.
3461  *
3462  * This does not protect us against NMI, but enable()
3463  * sets the enabled bit in the control field of event _before_
3464  * accessing the event control register. If a NMI hits, then it will
3465  * keep the event running.
3466  */
3467 void __perf_event_task_sched_in(struct task_struct *prev,
3468                                 struct task_struct *task)
3469 {
3470         struct perf_event_context *ctx;
3471         int ctxn;
3472
3473         /*
3474          * If cgroup events exist on this CPU, then we need to check if we have
3475          * to switch in PMU state; cgroup event are system-wide mode only.
3476          *
3477          * Since cgroup events are CPU events, we must schedule these in before
3478          * we schedule in the task events.
3479          */
3480         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3481                 perf_cgroup_sched_in(prev, task);
3482
3483         for_each_task_context_nr(ctxn) {
3484                 ctx = task->perf_event_ctxp[ctxn];
3485                 if (likely(!ctx))
3486                         continue;
3487
3488                 perf_event_context_sched_in(ctx, task);
3489         }
3490
3491         if (atomic_read(&nr_switch_events))
3492                 perf_event_switch(task, prev, true);
3493
3494         if (__this_cpu_read(perf_sched_cb_usages))
3495                 perf_pmu_sched_task(prev, task, true);
3496 }
3497
3498 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3499 {
3500         u64 frequency = event->attr.sample_freq;
3501         u64 sec = NSEC_PER_SEC;
3502         u64 divisor, dividend;
3503
3504         int count_fls, nsec_fls, frequency_fls, sec_fls;
3505
3506         count_fls = fls64(count);
3507         nsec_fls = fls64(nsec);
3508         frequency_fls = fls64(frequency);
3509         sec_fls = 30;
3510
3511         /*
3512          * We got @count in @nsec, with a target of sample_freq HZ
3513          * the target period becomes:
3514          *
3515          *             @count * 10^9
3516          * period = -------------------
3517          *          @nsec * sample_freq
3518          *
3519          */
3520
3521         /*
3522          * Reduce accuracy by one bit such that @a and @b converge
3523          * to a similar magnitude.
3524          */
3525 #define REDUCE_FLS(a, b)                \
3526 do {                                    \
3527         if (a##_fls > b##_fls) {        \
3528                 a >>= 1;                \
3529                 a##_fls--;              \
3530         } else {                        \
3531                 b >>= 1;                \
3532                 b##_fls--;              \
3533         }                               \
3534 } while (0)
3535
3536         /*
3537          * Reduce accuracy until either term fits in a u64, then proceed with
3538          * the other, so that finally we can do a u64/u64 division.
3539          */
3540         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3541                 REDUCE_FLS(nsec, frequency);
3542                 REDUCE_FLS(sec, count);
3543         }
3544
3545         if (count_fls + sec_fls > 64) {
3546                 divisor = nsec * frequency;
3547
3548                 while (count_fls + sec_fls > 64) {
3549                         REDUCE_FLS(count, sec);
3550                         divisor >>= 1;
3551                 }
3552
3553                 dividend = count * sec;
3554         } else {
3555                 dividend = count * sec;
3556
3557                 while (nsec_fls + frequency_fls > 64) {
3558                         REDUCE_FLS(nsec, frequency);
3559                         dividend >>= 1;
3560                 }
3561
3562                 divisor = nsec * frequency;
3563         }
3564
3565         if (!divisor)
3566                 return dividend;
3567
3568         return div64_u64(dividend, divisor);
3569 }
3570
3571 static DEFINE_PER_CPU(int, perf_throttled_count);
3572 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3573
3574 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3575 {
3576         struct hw_perf_event *hwc = &event->hw;
3577         s64 period, sample_period;
3578         s64 delta;
3579
3580         period = perf_calculate_period(event, nsec, count);
3581
3582         delta = (s64)(period - hwc->sample_period);
3583         delta = (delta + 7) / 8; /* low pass filter */
3584
3585         sample_period = hwc->sample_period + delta;
3586
3587         if (!sample_period)
3588                 sample_period = 1;
3589
3590         hwc->sample_period = sample_period;
3591
3592         if (local64_read(&hwc->period_left) > 8*sample_period) {
3593                 if (disable)
3594                         event->pmu->stop(event, PERF_EF_UPDATE);
3595
3596                 local64_set(&hwc->period_left, 0);
3597
3598                 if (disable)
3599                         event->pmu->start(event, PERF_EF_RELOAD);
3600         }
3601 }
3602
3603 /*
3604  * combine freq adjustment with unthrottling to avoid two passes over the
3605  * events. At the same time, make sure, having freq events does not change
3606  * the rate of unthrottling as that would introduce bias.
3607  */
3608 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3609                                            int needs_unthr)
3610 {
3611         struct perf_event *event;
3612         struct hw_perf_event *hwc;
3613         u64 now, period = TICK_NSEC;
3614         s64 delta;
3615
3616         /*
3617          * only need to iterate over all events iff:
3618          * - context have events in frequency mode (needs freq adjust)
3619          * - there are events to unthrottle on this cpu
3620          */
3621         if (!(ctx->nr_freq || needs_unthr))
3622                 return;
3623
3624         raw_spin_lock(&ctx->lock);
3625         perf_pmu_disable(ctx->pmu);
3626
3627         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3628                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3629                         continue;
3630
3631                 if (!event_filter_match(event))
3632                         continue;
3633
3634                 perf_pmu_disable(event->pmu);
3635
3636                 hwc = &event->hw;
3637
3638                 if (hwc->interrupts == MAX_INTERRUPTS) {
3639                         hwc->interrupts = 0;
3640                         perf_log_throttle(event, 1);
3641                         event->pmu->start(event, 0);
3642                 }
3643
3644                 if (!event->attr.freq || !event->attr.sample_freq)
3645                         goto next;
3646
3647                 /*
3648                  * stop the event and update event->count
3649                  */
3650                 event->pmu->stop(event, PERF_EF_UPDATE);
3651
3652                 now = local64_read(&event->count);
3653                 delta = now - hwc->freq_count_stamp;
3654                 hwc->freq_count_stamp = now;
3655
3656                 /*
3657                  * restart the event
3658                  * reload only if value has changed
3659                  * we have stopped the event so tell that
3660                  * to perf_adjust_period() to avoid stopping it
3661                  * twice.
3662                  */
3663                 if (delta > 0)
3664                         perf_adjust_period(event, period, delta, false);
3665
3666                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3667         next:
3668                 perf_pmu_enable(event->pmu);
3669         }
3670
3671         perf_pmu_enable(ctx->pmu);
3672         raw_spin_unlock(&ctx->lock);
3673 }
3674
3675 /*
3676  * Move @event to the tail of the @ctx's elegible events.
3677  */
3678 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3679 {
3680         /*
3681          * Rotate the first entry last of non-pinned groups. Rotation might be
3682          * disabled by the inheritance code.
3683          */
3684         if (ctx->rotate_disable)
3685                 return;
3686
3687         perf_event_groups_delete(&ctx->flexible_groups, event);
3688         perf_event_groups_insert(&ctx->flexible_groups, event);
3689 }
3690
3691 static inline struct perf_event *
3692 ctx_first_active(struct perf_event_context *ctx)
3693 {
3694         return list_first_entry_or_null(&ctx->flexible_active,
3695                                         struct perf_event, active_list);
3696 }
3697
3698 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3699 {
3700         struct perf_event *cpu_event = NULL, *task_event = NULL;
3701         bool cpu_rotate = false, task_rotate = false;
3702         struct perf_event_context *ctx = NULL;
3703
3704         /*
3705          * Since we run this from IRQ context, nobody can install new
3706          * events, thus the event count values are stable.
3707          */
3708
3709         if (cpuctx->ctx.nr_events) {
3710                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3711                         cpu_rotate = true;
3712         }
3713
3714         ctx = cpuctx->task_ctx;
3715         if (ctx && ctx->nr_events) {
3716                 if (ctx->nr_events != ctx->nr_active)
3717                         task_rotate = true;
3718         }
3719
3720         if (!(cpu_rotate || task_rotate))
3721                 return false;
3722
3723         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3724         perf_pmu_disable(cpuctx->ctx.pmu);
3725
3726         if (task_rotate)
3727                 task_event = ctx_first_active(ctx);
3728         if (cpu_rotate)
3729                 cpu_event = ctx_first_active(&cpuctx->ctx);
3730
3731         /*
3732          * As per the order given at ctx_resched() first 'pop' task flexible
3733          * and then, if needed CPU flexible.
3734          */
3735         if (task_event || (ctx && cpu_event))
3736                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3737         if (cpu_event)
3738                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3739
3740         if (task_event)
3741                 rotate_ctx(ctx, task_event);
3742         if (cpu_event)
3743                 rotate_ctx(&cpuctx->ctx, cpu_event);
3744
3745         perf_event_sched_in(cpuctx, ctx, current);
3746
3747         perf_pmu_enable(cpuctx->ctx.pmu);
3748         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3749
3750         return true;
3751 }
3752
3753 void perf_event_task_tick(void)
3754 {
3755         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3756         struct perf_event_context *ctx, *tmp;
3757         int throttled;
3758
3759         lockdep_assert_irqs_disabled();
3760
3761         __this_cpu_inc(perf_throttled_seq);
3762         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3763         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3764
3765         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3766                 perf_adjust_freq_unthr_context(ctx, throttled);
3767 }
3768
3769 static int event_enable_on_exec(struct perf_event *event,
3770                                 struct perf_event_context *ctx)
3771 {
3772         if (!event->attr.enable_on_exec)
3773                 return 0;
3774
3775         event->attr.enable_on_exec = 0;
3776         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3777                 return 0;
3778
3779         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3780
3781         return 1;
3782 }
3783
3784 /*
3785  * Enable all of a task's events that have been marked enable-on-exec.
3786  * This expects task == current.
3787  */
3788 static void perf_event_enable_on_exec(int ctxn)
3789 {
3790         struct perf_event_context *ctx, *clone_ctx = NULL;
3791         enum event_type_t event_type = 0;
3792         struct perf_cpu_context *cpuctx;
3793         struct perf_event *event;
3794         unsigned long flags;
3795         int enabled = 0;
3796
3797         local_irq_save(flags);
3798         ctx = current->perf_event_ctxp[ctxn];
3799         if (!ctx || !ctx->nr_events)
3800                 goto out;
3801
3802         cpuctx = __get_cpu_context(ctx);
3803         perf_ctx_lock(cpuctx, ctx);
3804         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3805         list_for_each_entry(event, &ctx->event_list, event_entry) {
3806                 enabled |= event_enable_on_exec(event, ctx);
3807                 event_type |= get_event_type(event);
3808         }
3809
3810         /*
3811          * Unclone and reschedule this context if we enabled any event.
3812          */
3813         if (enabled) {
3814                 clone_ctx = unclone_ctx(ctx);
3815                 ctx_resched(cpuctx, ctx, event_type);
3816         } else {
3817                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3818         }
3819         perf_ctx_unlock(cpuctx, ctx);
3820
3821 out:
3822         local_irq_restore(flags);
3823
3824         if (clone_ctx)
3825                 put_ctx(clone_ctx);
3826 }
3827
3828 struct perf_read_data {
3829         struct perf_event *event;
3830         bool group;
3831         int ret;
3832 };
3833
3834 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3835 {
3836         u16 local_pkg, event_pkg;
3837
3838         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3839                 int local_cpu = smp_processor_id();
3840
3841                 event_pkg = topology_physical_package_id(event_cpu);
3842                 local_pkg = topology_physical_package_id(local_cpu);
3843
3844                 if (event_pkg == local_pkg)
3845                         return local_cpu;
3846         }
3847
3848         return event_cpu;
3849 }
3850
3851 /*
3852  * Cross CPU call to read the hardware event
3853  */
3854 static void __perf_event_read(void *info)
3855 {
3856         struct perf_read_data *data = info;
3857         struct perf_event *sub, *event = data->event;
3858         struct perf_event_context *ctx = event->ctx;
3859         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3860         struct pmu *pmu = event->pmu;
3861
3862         /*
3863          * If this is a task context, we need to check whether it is
3864          * the current task context of this cpu.  If not it has been
3865          * scheduled out before the smp call arrived.  In that case
3866          * event->count would have been updated to a recent sample
3867          * when the event was scheduled out.
3868          */
3869         if (ctx->task && cpuctx->task_ctx != ctx)
3870                 return;
3871
3872         raw_spin_lock(&ctx->lock);
3873         if (ctx->is_active & EVENT_TIME) {
3874                 update_context_time(ctx);
3875                 update_cgrp_time_from_event(event);
3876         }
3877
3878         perf_event_update_time(event);
3879         if (data->group)
3880                 perf_event_update_sibling_time(event);
3881
3882         if (event->state != PERF_EVENT_STATE_ACTIVE)
3883                 goto unlock;
3884
3885         if (!data->group) {
3886                 pmu->read(event);
3887                 data->ret = 0;
3888                 goto unlock;
3889         }
3890
3891         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3892
3893         pmu->read(event);
3894
3895         for_each_sibling_event(sub, event) {
3896                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3897                         /*
3898                          * Use sibling's PMU rather than @event's since
3899                          * sibling could be on different (eg: software) PMU.
3900                          */
3901                         sub->pmu->read(sub);
3902                 }
3903         }
3904
3905         data->ret = pmu->commit_txn(pmu);
3906
3907 unlock:
3908         raw_spin_unlock(&ctx->lock);
3909 }
3910
3911 static inline u64 perf_event_count(struct perf_event *event)
3912 {
3913         return local64_read(&event->count) + atomic64_read(&event->child_count);
3914 }
3915
3916 /*
3917  * NMI-safe method to read a local event, that is an event that
3918  * is:
3919  *   - either for the current task, or for this CPU
3920  *   - does not have inherit set, for inherited task events
3921  *     will not be local and we cannot read them atomically
3922  *   - must not have a pmu::count method
3923  */
3924 int perf_event_read_local(struct perf_event *event, u64 *value,
3925                           u64 *enabled, u64 *running)
3926 {
3927         unsigned long flags;
3928         int ret = 0;
3929
3930         /*
3931          * Disabling interrupts avoids all counter scheduling (context
3932          * switches, timer based rotation and IPIs).
3933          */
3934         local_irq_save(flags);
3935
3936         /*
3937          * It must not be an event with inherit set, we cannot read
3938          * all child counters from atomic context.
3939          */
3940         if (event->attr.inherit) {
3941                 ret = -EOPNOTSUPP;
3942                 goto out;
3943         }
3944
3945         /* If this is a per-task event, it must be for current */
3946         if ((event->attach_state & PERF_ATTACH_TASK) &&
3947             event->hw.target != current) {
3948                 ret = -EINVAL;
3949                 goto out;
3950         }
3951
3952         /* If this is a per-CPU event, it must be for this CPU */
3953         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3954             event->cpu != smp_processor_id()) {
3955                 ret = -EINVAL;
3956                 goto out;
3957         }
3958
3959         /* If this is a pinned event it must be running on this CPU */
3960         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3961                 ret = -EBUSY;
3962                 goto out;
3963         }
3964
3965         /*
3966          * If the event is currently on this CPU, its either a per-task event,
3967          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3968          * oncpu == -1).
3969          */
3970         if (event->oncpu == smp_processor_id())
3971                 event->pmu->read(event);
3972
3973         *value = local64_read(&event->count);
3974         if (enabled || running) {
3975                 u64 now = event->shadow_ctx_time + perf_clock();
3976                 u64 __enabled, __running;
3977
3978                 __perf_update_times(event, now, &__enabled, &__running);
3979                 if (enabled)
3980                         *enabled = __enabled;
3981                 if (running)
3982                         *running = __running;
3983         }
3984 out:
3985         local_irq_restore(flags);
3986
3987         return ret;
3988 }
3989
3990 static int perf_event_read(struct perf_event *event, bool group)
3991 {
3992         enum perf_event_state state = READ_ONCE(event->state);
3993         int event_cpu, ret = 0;
3994
3995         /*
3996          * If event is enabled and currently active on a CPU, update the
3997          * value in the event structure:
3998          */
3999 again:
4000         if (state == PERF_EVENT_STATE_ACTIVE) {
4001                 struct perf_read_data data;
4002
4003                 /*
4004                  * Orders the ->state and ->oncpu loads such that if we see
4005                  * ACTIVE we must also see the right ->oncpu.
4006                  *
4007                  * Matches the smp_wmb() from event_sched_in().
4008                  */
4009                 smp_rmb();
4010
4011                 event_cpu = READ_ONCE(event->oncpu);
4012                 if ((unsigned)event_cpu >= nr_cpu_ids)
4013                         return 0;
4014
4015                 data = (struct perf_read_data){
4016                         .event = event,
4017                         .group = group,
4018                         .ret = 0,
4019                 };
4020
4021                 preempt_disable();
4022                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4023
4024                 /*
4025                  * Purposely ignore the smp_call_function_single() return
4026                  * value.
4027                  *
4028                  * If event_cpu isn't a valid CPU it means the event got
4029                  * scheduled out and that will have updated the event count.
4030                  *
4031                  * Therefore, either way, we'll have an up-to-date event count
4032                  * after this.
4033                  */
4034                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4035                 preempt_enable();
4036                 ret = data.ret;
4037
4038         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4039                 struct perf_event_context *ctx = event->ctx;
4040                 unsigned long flags;
4041
4042                 raw_spin_lock_irqsave(&ctx->lock, flags);
4043                 state = event->state;
4044                 if (state != PERF_EVENT_STATE_INACTIVE) {
4045                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4046                         goto again;
4047                 }
4048
4049                 /*
4050                  * May read while context is not active (e.g., thread is
4051                  * blocked), in that case we cannot update context time
4052                  */
4053                 if (ctx->is_active & EVENT_TIME) {
4054                         update_context_time(ctx);
4055                         update_cgrp_time_from_event(event);
4056                 }
4057
4058                 perf_event_update_time(event);
4059                 if (group)
4060                         perf_event_update_sibling_time(event);
4061                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4062         }
4063
4064         return ret;
4065 }
4066
4067 /*
4068  * Initialize the perf_event context in a task_struct:
4069  */
4070 static void __perf_event_init_context(struct perf_event_context *ctx)
4071 {
4072         raw_spin_lock_init(&ctx->lock);
4073         mutex_init(&ctx->mutex);
4074         INIT_LIST_HEAD(&ctx->active_ctx_list);
4075         perf_event_groups_init(&ctx->pinned_groups);
4076         perf_event_groups_init(&ctx->flexible_groups);
4077         INIT_LIST_HEAD(&ctx->event_list);
4078         INIT_LIST_HEAD(&ctx->pinned_active);
4079         INIT_LIST_HEAD(&ctx->flexible_active);
4080         atomic_set(&ctx->refcount, 1);
4081 }
4082
4083 static struct perf_event_context *
4084 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4085 {
4086         struct perf_event_context *ctx;
4087
4088         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4089         if (!ctx)
4090                 return NULL;
4091
4092         __perf_event_init_context(ctx);
4093         if (task) {
4094                 ctx->task = task;
4095                 get_task_struct(task);
4096         }
4097         ctx->pmu = pmu;
4098
4099         return ctx;
4100 }
4101
4102 static struct task_struct *
4103 find_lively_task_by_vpid(pid_t vpid)
4104 {
4105         struct task_struct *task;
4106
4107         rcu_read_lock();
4108         if (!vpid)
4109                 task = current;
4110         else
4111                 task = find_task_by_vpid(vpid);
4112         if (task)
4113                 get_task_struct(task);
4114         rcu_read_unlock();
4115
4116         if (!task)
4117                 return ERR_PTR(-ESRCH);
4118
4119         return task;
4120 }
4121
4122 /*
4123  * Returns a matching context with refcount and pincount.
4124  */
4125 static struct perf_event_context *
4126 find_get_context(struct pmu *pmu, struct task_struct *task,
4127                 struct perf_event *event)
4128 {
4129         struct perf_event_context *ctx, *clone_ctx = NULL;
4130         struct perf_cpu_context *cpuctx;
4131         void *task_ctx_data = NULL;
4132         unsigned long flags;
4133         int ctxn, err;
4134         int cpu = event->cpu;
4135
4136         if (!task) {
4137                 /* Must be root to operate on a CPU event: */
4138                 err = perf_allow_cpu(&event->attr);
4139                 if (err)
4140                         return ERR_PTR(err);
4141
4142                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4143                 ctx = &cpuctx->ctx;
4144                 get_ctx(ctx);
4145                 raw_spin_lock_irqsave(&ctx->lock, flags);
4146                 ++ctx->pin_count;
4147                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4148
4149                 return ctx;
4150         }
4151
4152         err = -EINVAL;
4153         ctxn = pmu->task_ctx_nr;
4154         if (ctxn < 0)
4155                 goto errout;
4156
4157         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4158                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4159                 if (!task_ctx_data) {
4160                         err = -ENOMEM;
4161                         goto errout;
4162                 }
4163         }
4164
4165 retry:
4166         ctx = perf_lock_task_context(task, ctxn, &flags);
4167         if (ctx) {
4168                 clone_ctx = unclone_ctx(ctx);
4169                 ++ctx->pin_count;
4170
4171                 if (task_ctx_data && !ctx->task_ctx_data) {
4172                         ctx->task_ctx_data = task_ctx_data;
4173                         task_ctx_data = NULL;
4174                 }
4175                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4176
4177                 if (clone_ctx)
4178                         put_ctx(clone_ctx);
4179         } else {
4180                 ctx = alloc_perf_context(pmu, task);
4181                 err = -ENOMEM;
4182                 if (!ctx)
4183                         goto errout;
4184
4185                 if (task_ctx_data) {
4186                         ctx->task_ctx_data = task_ctx_data;
4187                         task_ctx_data = NULL;
4188                 }
4189
4190                 err = 0;
4191                 mutex_lock(&task->perf_event_mutex);
4192                 /*
4193                  * If it has already passed perf_event_exit_task().
4194                  * we must see PF_EXITING, it takes this mutex too.
4195                  */
4196                 if (task->flags & PF_EXITING)
4197                         err = -ESRCH;
4198                 else if (task->perf_event_ctxp[ctxn])
4199                         err = -EAGAIN;
4200                 else {
4201                         get_ctx(ctx);
4202                         ++ctx->pin_count;
4203                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4204                 }
4205                 mutex_unlock(&task->perf_event_mutex);
4206
4207                 if (unlikely(err)) {
4208                         put_ctx(ctx);
4209
4210                         if (err == -EAGAIN)
4211                                 goto retry;
4212                         goto errout;
4213                 }
4214         }
4215
4216         kfree(task_ctx_data);
4217         return ctx;
4218
4219 errout:
4220         kfree(task_ctx_data);
4221         return ERR_PTR(err);
4222 }
4223
4224 static void perf_event_free_filter(struct perf_event *event);
4225 static void perf_event_free_bpf_prog(struct perf_event *event);
4226
4227 static void free_event_rcu(struct rcu_head *head)
4228 {
4229         struct perf_event *event;
4230
4231         event = container_of(head, struct perf_event, rcu_head);
4232         if (event->ns)
4233                 put_pid_ns(event->ns);
4234         perf_event_free_filter(event);
4235         kfree(event);
4236 }
4237
4238 static void ring_buffer_attach(struct perf_event *event,
4239                                struct ring_buffer *rb);
4240
4241 static void detach_sb_event(struct perf_event *event)
4242 {
4243         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4244
4245         raw_spin_lock(&pel->lock);
4246         list_del_rcu(&event->sb_list);
4247         raw_spin_unlock(&pel->lock);
4248 }
4249
4250 static bool is_sb_event(struct perf_event *event)
4251 {
4252         struct perf_event_attr *attr = &event->attr;
4253
4254         if (event->parent)
4255                 return false;
4256
4257         if (event->attach_state & PERF_ATTACH_TASK)
4258                 return false;
4259
4260         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4261             attr->comm || attr->comm_exec ||
4262             attr->task ||
4263             attr->context_switch)
4264                 return true;
4265         return false;
4266 }
4267
4268 static void unaccount_pmu_sb_event(struct perf_event *event)
4269 {
4270         if (is_sb_event(event))
4271                 detach_sb_event(event);
4272 }
4273
4274 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4275 {
4276         if (event->parent)
4277                 return;
4278
4279         if (is_cgroup_event(event))
4280                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4281 }
4282
4283 #ifdef CONFIG_NO_HZ_FULL
4284 static DEFINE_SPINLOCK(nr_freq_lock);
4285 #endif
4286
4287 static void unaccount_freq_event_nohz(void)
4288 {
4289 #ifdef CONFIG_NO_HZ_FULL
4290         spin_lock(&nr_freq_lock);
4291         if (atomic_dec_and_test(&nr_freq_events))
4292                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4293         spin_unlock(&nr_freq_lock);
4294 #endif
4295 }
4296
4297 static void unaccount_freq_event(void)
4298 {
4299         if (tick_nohz_full_enabled())
4300                 unaccount_freq_event_nohz();
4301         else
4302                 atomic_dec(&nr_freq_events);
4303 }
4304
4305 static void unaccount_event(struct perf_event *event)
4306 {
4307         bool dec = false;
4308
4309         if (event->parent)
4310                 return;
4311
4312         if (event->attach_state & PERF_ATTACH_TASK)
4313                 dec = true;
4314         if (event->attr.mmap || event->attr.mmap_data)
4315                 atomic_dec(&nr_mmap_events);
4316         if (event->attr.comm)
4317                 atomic_dec(&nr_comm_events);
4318         if (event->attr.namespaces)
4319                 atomic_dec(&nr_namespaces_events);
4320         if (event->attr.task)
4321                 atomic_dec(&nr_task_events);
4322         if (event->attr.freq)
4323                 unaccount_freq_event();
4324         if (event->attr.context_switch) {
4325                 dec = true;
4326                 atomic_dec(&nr_switch_events);
4327         }
4328         if (is_cgroup_event(event))
4329                 dec = true;
4330         if (has_branch_stack(event))
4331                 dec = true;
4332
4333         if (dec) {
4334                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4335                         schedule_delayed_work(&perf_sched_work, HZ);
4336         }
4337
4338         unaccount_event_cpu(event, event->cpu);
4339
4340         unaccount_pmu_sb_event(event);
4341 }
4342
4343 static void perf_sched_delayed(struct work_struct *work)
4344 {
4345         mutex_lock(&perf_sched_mutex);
4346         if (atomic_dec_and_test(&perf_sched_count))
4347                 static_branch_disable(&perf_sched_events);
4348         mutex_unlock(&perf_sched_mutex);
4349 }
4350
4351 /*
4352  * The following implement mutual exclusion of events on "exclusive" pmus
4353  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4354  * at a time, so we disallow creating events that might conflict, namely:
4355  *
4356  *  1) cpu-wide events in the presence of per-task events,
4357  *  2) per-task events in the presence of cpu-wide events,
4358  *  3) two matching events on the same context.
4359  *
4360  * The former two cases are handled in the allocation path (perf_event_alloc(),
4361  * _free_event()), the latter -- before the first perf_install_in_context().
4362  */
4363 static int exclusive_event_init(struct perf_event *event)
4364 {
4365         struct pmu *pmu = event->pmu;
4366
4367         if (!is_exclusive_pmu(pmu))
4368                 return 0;
4369
4370         /*
4371          * Prevent co-existence of per-task and cpu-wide events on the
4372          * same exclusive pmu.
4373          *
4374          * Negative pmu::exclusive_cnt means there are cpu-wide
4375          * events on this "exclusive" pmu, positive means there are
4376          * per-task events.
4377          *
4378          * Since this is called in perf_event_alloc() path, event::ctx
4379          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4380          * to mean "per-task event", because unlike other attach states it
4381          * never gets cleared.
4382          */
4383         if (event->attach_state & PERF_ATTACH_TASK) {
4384                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4385                         return -EBUSY;
4386         } else {
4387                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4388                         return -EBUSY;
4389         }
4390
4391         return 0;
4392 }
4393
4394 static void exclusive_event_destroy(struct perf_event *event)
4395 {
4396         struct pmu *pmu = event->pmu;
4397
4398         if (!is_exclusive_pmu(pmu))
4399                 return;
4400
4401         /* see comment in exclusive_event_init() */
4402         if (event->attach_state & PERF_ATTACH_TASK)
4403                 atomic_dec(&pmu->exclusive_cnt);
4404         else
4405                 atomic_inc(&pmu->exclusive_cnt);
4406 }
4407
4408 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4409 {
4410         if ((e1->pmu == e2->pmu) &&
4411             (e1->cpu == e2->cpu ||
4412              e1->cpu == -1 ||
4413              e2->cpu == -1))
4414                 return true;
4415         return false;
4416 }
4417
4418 static bool exclusive_event_installable(struct perf_event *event,
4419                                         struct perf_event_context *ctx)
4420 {
4421         struct perf_event *iter_event;
4422         struct pmu *pmu = event->pmu;
4423
4424         lockdep_assert_held(&ctx->mutex);
4425
4426         if (!is_exclusive_pmu(pmu))
4427                 return true;
4428
4429         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4430                 if (exclusive_event_match(iter_event, event))
4431                         return false;
4432         }
4433
4434         return true;
4435 }
4436
4437 static void perf_addr_filters_splice(struct perf_event *event,
4438                                        struct list_head *head);
4439
4440 static void _free_event(struct perf_event *event)
4441 {
4442         irq_work_sync(&event->pending);
4443
4444         unaccount_event(event);
4445
4446         security_perf_event_free(event);
4447
4448         if (event->rb) {
4449                 /*
4450                  * Can happen when we close an event with re-directed output.
4451                  *
4452                  * Since we have a 0 refcount, perf_mmap_close() will skip
4453                  * over us; possibly making our ring_buffer_put() the last.
4454                  */
4455                 mutex_lock(&event->mmap_mutex);
4456                 ring_buffer_attach(event, NULL);
4457                 mutex_unlock(&event->mmap_mutex);
4458         }
4459
4460         if (is_cgroup_event(event))
4461                 perf_detach_cgroup(event);
4462
4463         if (!event->parent) {
4464                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4465                         put_callchain_buffers();
4466         }
4467
4468         perf_event_free_bpf_prog(event);
4469         perf_addr_filters_splice(event, NULL);
4470         kfree(event->addr_filter_ranges);
4471
4472         if (event->destroy)
4473                 event->destroy(event);
4474
4475         /*
4476          * Must be after ->destroy(), due to uprobe_perf_close() using
4477          * hw.target.
4478          */
4479         if (event->hw.target)
4480                 put_task_struct(event->hw.target);
4481
4482         /*
4483          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4484          * all task references must be cleaned up.
4485          */
4486         if (event->ctx)
4487                 put_ctx(event->ctx);
4488
4489         exclusive_event_destroy(event);
4490         module_put(event->pmu->module);
4491
4492         call_rcu(&event->rcu_head, free_event_rcu);
4493 }
4494
4495 /*
4496  * Used to free events which have a known refcount of 1, such as in error paths
4497  * where the event isn't exposed yet and inherited events.
4498  */
4499 static void free_event(struct perf_event *event)
4500 {
4501         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4502                                 "unexpected event refcount: %ld; ptr=%p\n",
4503                                 atomic_long_read(&event->refcount), event)) {
4504                 /* leak to avoid use-after-free */
4505                 return;
4506         }
4507
4508         _free_event(event);
4509 }
4510
4511 /*
4512  * Remove user event from the owner task.
4513  */
4514 static void perf_remove_from_owner(struct perf_event *event)
4515 {
4516         struct task_struct *owner;
4517
4518         rcu_read_lock();
4519         /*
4520          * Matches the smp_store_release() in perf_event_exit_task(). If we
4521          * observe !owner it means the list deletion is complete and we can
4522          * indeed free this event, otherwise we need to serialize on
4523          * owner->perf_event_mutex.
4524          */
4525         owner = READ_ONCE(event->owner);
4526         if (owner) {
4527                 /*
4528                  * Since delayed_put_task_struct() also drops the last
4529                  * task reference we can safely take a new reference
4530                  * while holding the rcu_read_lock().
4531                  */
4532                 get_task_struct(owner);
4533         }
4534         rcu_read_unlock();
4535
4536         if (owner) {
4537                 /*
4538                  * If we're here through perf_event_exit_task() we're already
4539                  * holding ctx->mutex which would be an inversion wrt. the
4540                  * normal lock order.
4541                  *
4542                  * However we can safely take this lock because its the child
4543                  * ctx->mutex.
4544                  */
4545                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4546
4547                 /*
4548                  * We have to re-check the event->owner field, if it is cleared
4549                  * we raced with perf_event_exit_task(), acquiring the mutex
4550                  * ensured they're done, and we can proceed with freeing the
4551                  * event.
4552                  */
4553                 if (event->owner) {
4554                         list_del_init(&event->owner_entry);
4555                         smp_store_release(&event->owner, NULL);
4556                 }
4557                 mutex_unlock(&owner->perf_event_mutex);
4558                 put_task_struct(owner);
4559         }
4560 }
4561
4562 static void put_event(struct perf_event *event)
4563 {
4564         if (!atomic_long_dec_and_test(&event->refcount))
4565                 return;
4566
4567         _free_event(event);
4568 }
4569
4570 /*
4571  * Kill an event dead; while event:refcount will preserve the event
4572  * object, it will not preserve its functionality. Once the last 'user'
4573  * gives up the object, we'll destroy the thing.
4574  */
4575 int perf_event_release_kernel(struct perf_event *event)
4576 {
4577         struct perf_event_context *ctx = event->ctx;
4578         struct perf_event *child, *tmp;
4579         LIST_HEAD(free_list);
4580
4581         /*
4582          * If we got here through err_file: fput(event_file); we will not have
4583          * attached to a context yet.
4584          */
4585         if (!ctx) {
4586                 WARN_ON_ONCE(event->attach_state &
4587                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4588                 goto no_ctx;
4589         }
4590
4591         if (!is_kernel_event(event))
4592                 perf_remove_from_owner(event);
4593
4594         ctx = perf_event_ctx_lock(event);
4595         WARN_ON_ONCE(ctx->parent_ctx);
4596         perf_remove_from_context(event, DETACH_GROUP);
4597
4598         raw_spin_lock_irq(&ctx->lock);
4599         /*
4600          * Mark this event as STATE_DEAD, there is no external reference to it
4601          * anymore.
4602          *
4603          * Anybody acquiring event->child_mutex after the below loop _must_
4604          * also see this, most importantly inherit_event() which will avoid
4605          * placing more children on the list.
4606          *
4607          * Thus this guarantees that we will in fact observe and kill _ALL_
4608          * child events.
4609          */
4610         event->state = PERF_EVENT_STATE_DEAD;
4611         raw_spin_unlock_irq(&ctx->lock);
4612
4613         perf_event_ctx_unlock(event, ctx);
4614
4615 again:
4616         mutex_lock(&event->child_mutex);
4617         list_for_each_entry(child, &event->child_list, child_list) {
4618
4619                 /*
4620                  * Cannot change, child events are not migrated, see the
4621                  * comment with perf_event_ctx_lock_nested().
4622                  */
4623                 ctx = READ_ONCE(child->ctx);
4624                 /*
4625                  * Since child_mutex nests inside ctx::mutex, we must jump
4626                  * through hoops. We start by grabbing a reference on the ctx.
4627                  *
4628                  * Since the event cannot get freed while we hold the
4629                  * child_mutex, the context must also exist and have a !0
4630                  * reference count.
4631                  */
4632                 get_ctx(ctx);
4633
4634                 /*
4635                  * Now that we have a ctx ref, we can drop child_mutex, and
4636                  * acquire ctx::mutex without fear of it going away. Then we
4637                  * can re-acquire child_mutex.
4638                  */
4639                 mutex_unlock(&event->child_mutex);
4640                 mutex_lock(&ctx->mutex);
4641                 mutex_lock(&event->child_mutex);
4642
4643                 /*
4644                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4645                  * state, if child is still the first entry, it didn't get freed
4646                  * and we can continue doing so.
4647                  */
4648                 tmp = list_first_entry_or_null(&event->child_list,
4649                                                struct perf_event, child_list);
4650                 if (tmp == child) {
4651                         perf_remove_from_context(child, DETACH_GROUP);
4652                         list_move(&child->child_list, &free_list);
4653                         /*
4654                          * This matches the refcount bump in inherit_event();
4655                          * this can't be the last reference.
4656                          */
4657                         put_event(event);
4658                 }
4659
4660                 mutex_unlock(&event->child_mutex);
4661                 mutex_unlock(&ctx->mutex);
4662                 put_ctx(ctx);
4663                 goto again;
4664         }
4665         mutex_unlock(&event->child_mutex);
4666
4667         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4668                 void *var = &child->ctx->refcount;
4669
4670                 list_del(&child->child_list);
4671                 free_event(child);
4672
4673                 /*
4674                  * Wake any perf_event_free_task() waiting for this event to be
4675                  * freed.
4676                  */
4677                 smp_mb(); /* pairs with wait_var_event() */
4678                 wake_up_var(var);
4679         }
4680
4681 no_ctx:
4682         put_event(event); /* Must be the 'last' reference */
4683         return 0;
4684 }
4685 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4686
4687 /*
4688  * Called when the last reference to the file is gone.
4689  */
4690 static int perf_release(struct inode *inode, struct file *file)
4691 {
4692         perf_event_release_kernel(file->private_data);
4693         return 0;
4694 }
4695
4696 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4697 {
4698         struct perf_event *child;
4699         u64 total = 0;
4700
4701         *enabled = 0;
4702         *running = 0;
4703
4704         mutex_lock(&event->child_mutex);
4705
4706         (void)perf_event_read(event, false);
4707         total += perf_event_count(event);
4708
4709         *enabled += event->total_time_enabled +
4710                         atomic64_read(&event->child_total_time_enabled);
4711         *running += event->total_time_running +
4712                         atomic64_read(&event->child_total_time_running);
4713
4714         list_for_each_entry(child, &event->child_list, child_list) {
4715                 (void)perf_event_read(child, false);
4716                 total += perf_event_count(child);
4717                 *enabled += child->total_time_enabled;
4718                 *running += child->total_time_running;
4719         }
4720         mutex_unlock(&event->child_mutex);
4721
4722         return total;
4723 }
4724
4725 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4726 {
4727         struct perf_event_context *ctx;
4728         u64 count;
4729
4730         ctx = perf_event_ctx_lock(event);
4731         count = __perf_event_read_value(event, enabled, running);
4732         perf_event_ctx_unlock(event, ctx);
4733
4734         return count;
4735 }
4736 EXPORT_SYMBOL_GPL(perf_event_read_value);
4737
4738 static int __perf_read_group_add(struct perf_event *leader,
4739                                         u64 read_format, u64 *values)
4740 {
4741         struct perf_event_context *ctx = leader->ctx;
4742         struct perf_event *sub;
4743         unsigned long flags;
4744         int n = 1; /* skip @nr */
4745         int ret;
4746
4747         ret = perf_event_read(leader, true);
4748         if (ret)
4749                 return ret;
4750
4751         raw_spin_lock_irqsave(&ctx->lock, flags);
4752
4753         /*
4754          * Since we co-schedule groups, {enabled,running} times of siblings
4755          * will be identical to those of the leader, so we only publish one
4756          * set.
4757          */
4758         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4759                 values[n++] += leader->total_time_enabled +
4760                         atomic64_read(&leader->child_total_time_enabled);
4761         }
4762
4763         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4764                 values[n++] += leader->total_time_running +
4765                         atomic64_read(&leader->child_total_time_running);
4766         }
4767
4768         /*
4769          * Write {count,id} tuples for every sibling.
4770          */
4771         values[n++] += perf_event_count(leader);
4772         if (read_format & PERF_FORMAT_ID)
4773                 values[n++] = primary_event_id(leader);
4774
4775         for_each_sibling_event(sub, leader) {
4776                 values[n++] += perf_event_count(sub);
4777                 if (read_format & PERF_FORMAT_ID)
4778                         values[n++] = primary_event_id(sub);
4779         }
4780
4781         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4782         return 0;
4783 }
4784
4785 static int perf_read_group(struct perf_event *event,
4786                                    u64 read_format, char __user *buf)
4787 {
4788         struct perf_event *leader = event->group_leader, *child;
4789         struct perf_event_context *ctx = leader->ctx;
4790         int ret;
4791         u64 *values;
4792
4793         lockdep_assert_held(&ctx->mutex);
4794
4795         values = kzalloc(event->read_size, GFP_KERNEL);
4796         if (!values)
4797                 return -ENOMEM;
4798
4799         values[0] = 1 + leader->nr_siblings;
4800
4801         /*
4802          * By locking the child_mutex of the leader we effectively
4803          * lock the child list of all siblings.. XXX explain how.
4804          */
4805         mutex_lock(&leader->child_mutex);
4806
4807         ret = __perf_read_group_add(leader, read_format, values);
4808         if (ret)
4809                 goto unlock;
4810
4811         list_for_each_entry(child, &leader->child_list, child_list) {
4812                 ret = __perf_read_group_add(child, read_format, values);
4813                 if (ret)
4814                         goto unlock;
4815         }
4816
4817         mutex_unlock(&leader->child_mutex);
4818
4819         ret = event->read_size;
4820         if (copy_to_user(buf, values, event->read_size))
4821                 ret = -EFAULT;
4822         goto out;
4823
4824 unlock:
4825         mutex_unlock(&leader->child_mutex);
4826 out:
4827         kfree(values);
4828         return ret;
4829 }
4830
4831 static int perf_read_one(struct perf_event *event,
4832                                  u64 read_format, char __user *buf)
4833 {
4834         u64 enabled, running;
4835         u64 values[4];
4836         int n = 0;
4837
4838         values[n++] = __perf_event_read_value(event, &enabled, &running);
4839         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4840                 values[n++] = enabled;
4841         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4842                 values[n++] = running;
4843         if (read_format & PERF_FORMAT_ID)
4844                 values[n++] = primary_event_id(event);
4845
4846         if (copy_to_user(buf, values, n * sizeof(u64)))
4847                 return -EFAULT;
4848
4849         return n * sizeof(u64);
4850 }
4851
4852 static bool is_event_hup(struct perf_event *event)
4853 {
4854         bool no_children;
4855
4856         if (event->state > PERF_EVENT_STATE_EXIT)
4857                 return false;
4858
4859         mutex_lock(&event->child_mutex);
4860         no_children = list_empty(&event->child_list);
4861         mutex_unlock(&event->child_mutex);
4862         return no_children;
4863 }
4864
4865 /*
4866  * Read the performance event - simple non blocking version for now
4867  */
4868 static ssize_t
4869 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4870 {
4871         u64 read_format = event->attr.read_format;
4872         int ret;
4873
4874         /*
4875          * Return end-of-file for a read on an event that is in
4876          * error state (i.e. because it was pinned but it couldn't be
4877          * scheduled on to the CPU at some point).
4878          */
4879         if (event->state == PERF_EVENT_STATE_ERROR)
4880                 return 0;
4881
4882         if (count < event->read_size)
4883                 return -ENOSPC;
4884
4885         WARN_ON_ONCE(event->ctx->parent_ctx);
4886         if (read_format & PERF_FORMAT_GROUP)
4887                 ret = perf_read_group(event, read_format, buf);
4888         else
4889                 ret = perf_read_one(event, read_format, buf);
4890
4891         return ret;
4892 }
4893
4894 static ssize_t
4895 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4896 {
4897         struct perf_event *event = file->private_data;
4898         struct perf_event_context *ctx;
4899         int ret;
4900
4901         ret = security_perf_event_read(event);
4902         if (ret)
4903                 return ret;
4904
4905         ctx = perf_event_ctx_lock(event);
4906         ret = __perf_read(event, buf, count);
4907         perf_event_ctx_unlock(event, ctx);
4908
4909         return ret;
4910 }
4911
4912 static __poll_t perf_poll(struct file *file, poll_table *wait)
4913 {
4914         struct perf_event *event = file->private_data;
4915         struct ring_buffer *rb;
4916         __poll_t events = EPOLLHUP;
4917
4918         poll_wait(file, &event->waitq, wait);
4919
4920         if (is_event_hup(event))
4921                 return events;
4922
4923         /*
4924          * Pin the event->rb by taking event->mmap_mutex; otherwise
4925          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4926          */
4927         mutex_lock(&event->mmap_mutex);
4928         rb = event->rb;
4929         if (rb)
4930                 events = atomic_xchg(&rb->poll, 0);
4931         mutex_unlock(&event->mmap_mutex);
4932         return events;
4933 }
4934
4935 static void _perf_event_reset(struct perf_event *event)
4936 {
4937         (void)perf_event_read(event, false);
4938         local64_set(&event->count, 0);
4939         perf_event_update_userpage(event);
4940 }
4941
4942 /*
4943  * Holding the top-level event's child_mutex means that any
4944  * descendant process that has inherited this event will block
4945  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4946  * task existence requirements of perf_event_enable/disable.
4947  */
4948 static void perf_event_for_each_child(struct perf_event *event,
4949                                         void (*func)(struct perf_event *))
4950 {
4951         struct perf_event *child;
4952
4953         WARN_ON_ONCE(event->ctx->parent_ctx);
4954
4955         mutex_lock(&event->child_mutex);
4956         func(event);
4957         list_for_each_entry(child, &event->child_list, child_list)
4958                 func(child);
4959         mutex_unlock(&event->child_mutex);
4960 }
4961
4962 static void perf_event_for_each(struct perf_event *event,
4963                                   void (*func)(struct perf_event *))
4964 {
4965         struct perf_event_context *ctx = event->ctx;
4966         struct perf_event *sibling;
4967
4968         lockdep_assert_held(&ctx->mutex);
4969
4970         event = event->group_leader;
4971
4972         perf_event_for_each_child(event, func);
4973         for_each_sibling_event(sibling, event)
4974                 perf_event_for_each_child(sibling, func);
4975 }
4976
4977 static void __perf_event_period(struct perf_event *event,
4978                                 struct perf_cpu_context *cpuctx,
4979                                 struct perf_event_context *ctx,
4980                                 void *info)
4981 {
4982         u64 value = *((u64 *)info);
4983         bool active;
4984
4985         if (event->attr.freq) {
4986                 event->attr.sample_freq = value;
4987         } else {
4988                 event->attr.sample_period = value;
4989                 event->hw.sample_period = value;
4990         }
4991
4992         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4993         if (active) {
4994                 perf_pmu_disable(ctx->pmu);
4995                 /*
4996                  * We could be throttled; unthrottle now to avoid the tick
4997                  * trying to unthrottle while we already re-started the event.
4998                  */
4999                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5000                         event->hw.interrupts = 0;
5001                         perf_log_throttle(event, 1);
5002                 }
5003                 event->pmu->stop(event, PERF_EF_UPDATE);
5004         }
5005
5006         local64_set(&event->hw.period_left, 0);
5007
5008         if (active) {
5009                 event->pmu->start(event, PERF_EF_RELOAD);
5010                 perf_pmu_enable(ctx->pmu);
5011         }
5012 }
5013
5014 static int perf_event_check_period(struct perf_event *event, u64 value)
5015 {
5016         return event->pmu->check_period(event, value);
5017 }
5018
5019 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5020 {
5021         u64 value;
5022
5023         if (!is_sampling_event(event))
5024                 return -EINVAL;
5025
5026         if (copy_from_user(&value, arg, sizeof(value)))
5027                 return -EFAULT;
5028
5029         if (!value)
5030                 return -EINVAL;
5031
5032         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5033                 return -EINVAL;
5034
5035         if (perf_event_check_period(event, value))
5036                 return -EINVAL;
5037
5038         if (!event->attr.freq && (value & (1ULL << 63)))
5039                 return -EINVAL;
5040
5041         event_function_call(event, __perf_event_period, &value);
5042
5043         return 0;
5044 }
5045
5046 static const struct file_operations perf_fops;
5047
5048 static inline int perf_fget_light(int fd, struct fd *p)
5049 {
5050         struct fd f = fdget(fd);
5051         if (!f.file)
5052                 return -EBADF;
5053
5054         if (f.file->f_op != &perf_fops) {
5055                 fdput(f);
5056                 return -EBADF;
5057         }
5058         *p = f;
5059         return 0;
5060 }
5061
5062 static int perf_event_set_output(struct perf_event *event,
5063                                  struct perf_event *output_event);
5064 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5065 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5066 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5067                           struct perf_event_attr *attr);
5068
5069 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5070 {
5071         void (*func)(struct perf_event *);
5072         u32 flags = arg;
5073
5074         switch (cmd) {
5075         case PERF_EVENT_IOC_ENABLE:
5076                 func = _perf_event_enable;
5077                 break;
5078         case PERF_EVENT_IOC_DISABLE:
5079                 func = _perf_event_disable;
5080                 break;
5081         case PERF_EVENT_IOC_RESET:
5082                 func = _perf_event_reset;
5083                 break;
5084
5085         case PERF_EVENT_IOC_REFRESH:
5086                 return _perf_event_refresh(event, arg);
5087
5088         case PERF_EVENT_IOC_PERIOD:
5089                 return perf_event_period(event, (u64 __user *)arg);
5090
5091         case PERF_EVENT_IOC_ID:
5092         {
5093                 u64 id = primary_event_id(event);
5094
5095                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5096                         return -EFAULT;
5097                 return 0;
5098         }
5099
5100         case PERF_EVENT_IOC_SET_OUTPUT:
5101         {
5102                 int ret;
5103                 if (arg != -1) {
5104                         struct perf_event *output_event;
5105                         struct fd output;
5106                         ret = perf_fget_light(arg, &output);
5107                         if (ret)
5108                                 return ret;
5109                         output_event = output.file->private_data;
5110                         ret = perf_event_set_output(event, output_event);
5111                         fdput(output);
5112                 } else {
5113                         ret = perf_event_set_output(event, NULL);
5114                 }
5115                 return ret;
5116         }
5117
5118         case PERF_EVENT_IOC_SET_FILTER:
5119                 return perf_event_set_filter(event, (void __user *)arg);
5120
5121         case PERF_EVENT_IOC_SET_BPF:
5122                 return perf_event_set_bpf_prog(event, arg);
5123
5124         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5125                 struct ring_buffer *rb;
5126
5127                 rcu_read_lock();
5128                 rb = rcu_dereference(event->rb);
5129                 if (!rb || !rb->nr_pages) {
5130                         rcu_read_unlock();
5131                         return -EINVAL;
5132                 }
5133                 rb_toggle_paused(rb, !!arg);
5134                 rcu_read_unlock();
5135                 return 0;
5136         }
5137
5138         case PERF_EVENT_IOC_QUERY_BPF:
5139                 return perf_event_query_prog_array(event, (void __user *)arg);
5140
5141         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5142                 struct perf_event_attr new_attr;
5143                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5144                                          &new_attr);
5145
5146                 if (err)
5147                         return err;
5148
5149                 return perf_event_modify_attr(event,  &new_attr);
5150         }
5151         default:
5152                 return -ENOTTY;
5153         }
5154
5155         if (flags & PERF_IOC_FLAG_GROUP)
5156                 perf_event_for_each(event, func);
5157         else
5158                 perf_event_for_each_child(event, func);
5159
5160         return 0;
5161 }
5162
5163 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5164 {
5165         struct perf_event *event = file->private_data;
5166         struct perf_event_context *ctx;
5167         long ret;
5168
5169         /* Treat ioctl like writes as it is likely a mutating operation. */
5170         ret = security_perf_event_write(event);
5171         if (ret)
5172                 return ret;
5173
5174         ctx = perf_event_ctx_lock(event);
5175         ret = _perf_ioctl(event, cmd, arg);
5176         perf_event_ctx_unlock(event, ctx);
5177
5178         return ret;
5179 }
5180
5181 #ifdef CONFIG_COMPAT
5182 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5183                                 unsigned long arg)
5184 {
5185         switch (_IOC_NR(cmd)) {
5186         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5187         case _IOC_NR(PERF_EVENT_IOC_ID):
5188         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5189         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5190                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5191                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5192                         cmd &= ~IOCSIZE_MASK;
5193                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5194                 }
5195                 break;
5196         }
5197         return perf_ioctl(file, cmd, arg);
5198 }
5199 #else
5200 # define perf_compat_ioctl NULL
5201 #endif
5202
5203 int perf_event_task_enable(void)
5204 {
5205         struct perf_event_context *ctx;
5206         struct perf_event *event;
5207
5208         mutex_lock(&current->perf_event_mutex);
5209         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5210                 ctx = perf_event_ctx_lock(event);
5211                 perf_event_for_each_child(event, _perf_event_enable);
5212                 perf_event_ctx_unlock(event, ctx);
5213         }
5214         mutex_unlock(&current->perf_event_mutex);
5215
5216         return 0;
5217 }
5218
5219 int perf_event_task_disable(void)
5220 {
5221         struct perf_event_context *ctx;
5222         struct perf_event *event;
5223
5224         mutex_lock(&current->perf_event_mutex);
5225         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5226                 ctx = perf_event_ctx_lock(event);
5227                 perf_event_for_each_child(event, _perf_event_disable);
5228                 perf_event_ctx_unlock(event, ctx);
5229         }
5230         mutex_unlock(&current->perf_event_mutex);
5231
5232         return 0;
5233 }
5234
5235 static int perf_event_index(struct perf_event *event)
5236 {
5237         if (event->hw.state & PERF_HES_STOPPED)
5238                 return 0;
5239
5240         if (event->state != PERF_EVENT_STATE_ACTIVE)
5241                 return 0;
5242
5243         return event->pmu->event_idx(event);
5244 }
5245
5246 static void calc_timer_values(struct perf_event *event,
5247                                 u64 *now,
5248                                 u64 *enabled,
5249                                 u64 *running)
5250 {
5251         u64 ctx_time;
5252
5253         *now = perf_clock();
5254         ctx_time = event->shadow_ctx_time + *now;
5255         __perf_update_times(event, ctx_time, enabled, running);
5256 }
5257
5258 static void perf_event_init_userpage(struct perf_event *event)
5259 {
5260         struct perf_event_mmap_page *userpg;
5261         struct ring_buffer *rb;
5262
5263         rcu_read_lock();
5264         rb = rcu_dereference(event->rb);
5265         if (!rb)
5266                 goto unlock;
5267
5268         userpg = rb->user_page;
5269
5270         /* Allow new userspace to detect that bit 0 is deprecated */
5271         userpg->cap_bit0_is_deprecated = 1;
5272         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5273         userpg->data_offset = PAGE_SIZE;
5274         userpg->data_size = perf_data_size(rb);
5275
5276 unlock:
5277         rcu_read_unlock();
5278 }
5279
5280 void __weak arch_perf_update_userpage(
5281         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5282 {
5283 }
5284
5285 /*
5286  * Callers need to ensure there can be no nesting of this function, otherwise
5287  * the seqlock logic goes bad. We can not serialize this because the arch
5288  * code calls this from NMI context.
5289  */
5290 void perf_event_update_userpage(struct perf_event *event)
5291 {
5292         struct perf_event_mmap_page *userpg;
5293         struct ring_buffer *rb;
5294         u64 enabled, running, now;
5295
5296         rcu_read_lock();
5297         rb = rcu_dereference(event->rb);
5298         if (!rb)
5299                 goto unlock;
5300
5301         /*
5302          * compute total_time_enabled, total_time_running
5303          * based on snapshot values taken when the event
5304          * was last scheduled in.
5305          *
5306          * we cannot simply called update_context_time()
5307          * because of locking issue as we can be called in
5308          * NMI context
5309          */
5310         calc_timer_values(event, &now, &enabled, &running);
5311
5312         userpg = rb->user_page;
5313         /*
5314          * Disable preemption to guarantee consistent time stamps are stored to
5315          * the user page.
5316          */
5317         preempt_disable();
5318         ++userpg->lock;
5319         barrier();
5320         userpg->index = perf_event_index(event);
5321         userpg->offset = perf_event_count(event);
5322         if (userpg->index)
5323                 userpg->offset -= local64_read(&event->hw.prev_count);
5324
5325         userpg->time_enabled = enabled +
5326                         atomic64_read(&event->child_total_time_enabled);
5327
5328         userpg->time_running = running +
5329                         atomic64_read(&event->child_total_time_running);
5330
5331         arch_perf_update_userpage(event, userpg, now);
5332
5333         barrier();
5334         ++userpg->lock;
5335         preempt_enable();
5336 unlock:
5337         rcu_read_unlock();
5338 }
5339 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5340
5341 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5342 {
5343         struct perf_event *event = vmf->vma->vm_file->private_data;
5344         struct ring_buffer *rb;
5345         vm_fault_t ret = VM_FAULT_SIGBUS;
5346
5347         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5348                 if (vmf->pgoff == 0)
5349                         ret = 0;
5350                 return ret;
5351         }
5352
5353         rcu_read_lock();
5354         rb = rcu_dereference(event->rb);
5355         if (!rb)
5356                 goto unlock;
5357
5358         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5359                 goto unlock;
5360
5361         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5362         if (!vmf->page)
5363                 goto unlock;
5364
5365         get_page(vmf->page);
5366         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5367         vmf->page->index   = vmf->pgoff;
5368
5369         ret = 0;
5370 unlock:
5371         rcu_read_unlock();
5372
5373         return ret;
5374 }
5375
5376 static void ring_buffer_attach(struct perf_event *event,
5377                                struct ring_buffer *rb)
5378 {
5379         struct ring_buffer *old_rb = NULL;
5380         unsigned long flags;
5381
5382         if (event->rb) {
5383                 /*
5384                  * Should be impossible, we set this when removing
5385                  * event->rb_entry and wait/clear when adding event->rb_entry.
5386                  */
5387                 WARN_ON_ONCE(event->rcu_pending);
5388
5389                 old_rb = event->rb;
5390                 spin_lock_irqsave(&old_rb->event_lock, flags);
5391                 list_del_rcu(&event->rb_entry);
5392                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5393
5394                 event->rcu_batches = get_state_synchronize_rcu();
5395                 event->rcu_pending = 1;
5396         }
5397
5398         if (rb) {
5399                 if (event->rcu_pending) {
5400                         cond_synchronize_rcu(event->rcu_batches);
5401                         event->rcu_pending = 0;
5402                 }
5403
5404                 spin_lock_irqsave(&rb->event_lock, flags);
5405                 list_add_rcu(&event->rb_entry, &rb->event_list);
5406                 spin_unlock_irqrestore(&rb->event_lock, flags);
5407         }
5408
5409         /*
5410          * Avoid racing with perf_mmap_close(AUX): stop the event
5411          * before swizzling the event::rb pointer; if it's getting
5412          * unmapped, its aux_mmap_count will be 0 and it won't
5413          * restart. See the comment in __perf_pmu_output_stop().
5414          *
5415          * Data will inevitably be lost when set_output is done in
5416          * mid-air, but then again, whoever does it like this is
5417          * not in for the data anyway.
5418          */
5419         if (has_aux(event))
5420                 perf_event_stop(event, 0);
5421
5422         rcu_assign_pointer(event->rb, rb);
5423
5424         if (old_rb) {
5425                 ring_buffer_put(old_rb);
5426                 /*
5427                  * Since we detached before setting the new rb, so that we
5428                  * could attach the new rb, we could have missed a wakeup.
5429                  * Provide it now.
5430                  */
5431                 wake_up_all(&event->waitq);
5432         }
5433 }
5434
5435 static void ring_buffer_wakeup(struct perf_event *event)
5436 {
5437         struct ring_buffer *rb;
5438
5439         rcu_read_lock();
5440         rb = rcu_dereference(event->rb);
5441         if (rb) {
5442                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5443                         wake_up_all(&event->waitq);
5444         }
5445         rcu_read_unlock();
5446 }
5447
5448 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5449 {
5450         struct ring_buffer *rb;
5451
5452         rcu_read_lock();
5453         rb = rcu_dereference(event->rb);
5454         if (rb) {
5455                 if (!atomic_inc_not_zero(&rb->refcount))
5456                         rb = NULL;
5457         }
5458         rcu_read_unlock();
5459
5460         return rb;
5461 }
5462
5463 void ring_buffer_put(struct ring_buffer *rb)
5464 {
5465         if (!atomic_dec_and_test(&rb->refcount))
5466                 return;
5467
5468         WARN_ON_ONCE(!list_empty(&rb->event_list));
5469
5470         call_rcu(&rb->rcu_head, rb_free_rcu);
5471 }
5472
5473 static void perf_mmap_open(struct vm_area_struct *vma)
5474 {
5475         struct perf_event *event = vma->vm_file->private_data;
5476
5477         atomic_inc(&event->mmap_count);
5478         atomic_inc(&event->rb->mmap_count);
5479
5480         if (vma->vm_pgoff)
5481                 atomic_inc(&event->rb->aux_mmap_count);
5482
5483         if (event->pmu->event_mapped)
5484                 event->pmu->event_mapped(event, vma->vm_mm);
5485 }
5486
5487 static void perf_pmu_output_stop(struct perf_event *event);
5488
5489 /*
5490  * A buffer can be mmap()ed multiple times; either directly through the same
5491  * event, or through other events by use of perf_event_set_output().
5492  *
5493  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5494  * the buffer here, where we still have a VM context. This means we need
5495  * to detach all events redirecting to us.
5496  */
5497 static void perf_mmap_close(struct vm_area_struct *vma)
5498 {
5499         struct perf_event *event = vma->vm_file->private_data;
5500         struct ring_buffer *rb = ring_buffer_get(event);
5501         struct user_struct *mmap_user = rb->mmap_user;
5502         int mmap_locked = rb->mmap_locked;
5503         unsigned long size = perf_data_size(rb);
5504         bool detach_rest = false;
5505
5506         if (event->pmu->event_unmapped)
5507                 event->pmu->event_unmapped(event, vma->vm_mm);
5508
5509         /*
5510          * rb->aux_mmap_count will always drop before rb->mmap_count and
5511          * event->mmap_count, so it is ok to use event->mmap_mutex to
5512          * serialize with perf_mmap here.
5513          */
5514         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5515             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5516                 /*
5517                  * Stop all AUX events that are writing to this buffer,
5518                  * so that we can free its AUX pages and corresponding PMU
5519                  * data. Note that after rb::aux_mmap_count dropped to zero,
5520                  * they won't start any more (see perf_aux_output_begin()).
5521                  */
5522                 perf_pmu_output_stop(event);
5523
5524                 /* now it's safe to free the pages */
5525                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5526                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5527
5528                 /* this has to be the last one */
5529                 rb_free_aux(rb);
5530                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5531
5532                 mutex_unlock(&event->mmap_mutex);
5533         }
5534
5535         if (atomic_dec_and_test(&rb->mmap_count))
5536                 detach_rest = true;
5537
5538         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5539                 goto out_put;
5540
5541         ring_buffer_attach(event, NULL);
5542         mutex_unlock(&event->mmap_mutex);
5543
5544         /* If there's still other mmap()s of this buffer, we're done. */
5545         if (!detach_rest)
5546                 goto out_put;
5547
5548         /*
5549          * No other mmap()s, detach from all other events that might redirect
5550          * into the now unreachable buffer. Somewhat complicated by the
5551          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5552          */
5553 again:
5554         rcu_read_lock();
5555         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5556                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5557                         /*
5558                          * This event is en-route to free_event() which will
5559                          * detach it and remove it from the list.
5560                          */
5561                         continue;
5562                 }
5563                 rcu_read_unlock();
5564
5565                 mutex_lock(&event->mmap_mutex);
5566                 /*
5567                  * Check we didn't race with perf_event_set_output() which can
5568                  * swizzle the rb from under us while we were waiting to
5569                  * acquire mmap_mutex.
5570                  *
5571                  * If we find a different rb; ignore this event, a next
5572                  * iteration will no longer find it on the list. We have to
5573                  * still restart the iteration to make sure we're not now
5574                  * iterating the wrong list.
5575                  */
5576                 if (event->rb == rb)
5577                         ring_buffer_attach(event, NULL);
5578
5579                 mutex_unlock(&event->mmap_mutex);
5580                 put_event(event);
5581
5582                 /*
5583                  * Restart the iteration; either we're on the wrong list or
5584                  * destroyed its integrity by doing a deletion.
5585                  */
5586                 goto again;
5587         }
5588         rcu_read_unlock();
5589
5590         /*
5591          * It could be there's still a few 0-ref events on the list; they'll
5592          * get cleaned up by free_event() -- they'll also still have their
5593          * ref on the rb and will free it whenever they are done with it.
5594          *
5595          * Aside from that, this buffer is 'fully' detached and unmapped,
5596          * undo the VM accounting.
5597          */
5598
5599         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5600         vma->vm_mm->pinned_vm -= mmap_locked;
5601         free_uid(mmap_user);
5602
5603 out_put:
5604         ring_buffer_put(rb); /* could be last */
5605 }
5606
5607 static const struct vm_operations_struct perf_mmap_vmops = {
5608         .open           = perf_mmap_open,
5609         .close          = perf_mmap_close, /* non mergable */
5610         .fault          = perf_mmap_fault,
5611         .page_mkwrite   = perf_mmap_fault,
5612 };
5613
5614 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5615 {
5616         struct perf_event *event = file->private_data;
5617         unsigned long user_locked, user_lock_limit;
5618         struct user_struct *user = current_user();
5619         unsigned long locked, lock_limit;
5620         struct ring_buffer *rb = NULL;
5621         unsigned long vma_size;
5622         unsigned long nr_pages;
5623         long user_extra = 0, extra = 0;
5624         int ret = 0, flags = 0;
5625
5626         /*
5627          * Don't allow mmap() of inherited per-task counters. This would
5628          * create a performance issue due to all children writing to the
5629          * same rb.
5630          */
5631         if (event->cpu == -1 && event->attr.inherit)
5632                 return -EINVAL;
5633
5634         if (!(vma->vm_flags & VM_SHARED))
5635                 return -EINVAL;
5636
5637         ret = security_perf_event_read(event);
5638         if (ret)
5639                 return ret;
5640
5641         vma_size = vma->vm_end - vma->vm_start;
5642
5643         if (vma->vm_pgoff == 0) {
5644                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5645         } else {
5646                 /*
5647                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5648                  * mapped, all subsequent mappings should have the same size
5649                  * and offset. Must be above the normal perf buffer.
5650                  */
5651                 u64 aux_offset, aux_size;
5652
5653                 if (!event->rb)
5654                         return -EINVAL;
5655
5656                 nr_pages = vma_size / PAGE_SIZE;
5657
5658                 mutex_lock(&event->mmap_mutex);
5659                 ret = -EINVAL;
5660
5661                 rb = event->rb;
5662                 if (!rb)
5663                         goto aux_unlock;
5664
5665                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5666                 aux_size = READ_ONCE(rb->user_page->aux_size);
5667
5668                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5669                         goto aux_unlock;
5670
5671                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5672                         goto aux_unlock;
5673
5674                 /* already mapped with a different offset */
5675                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5676                         goto aux_unlock;
5677
5678                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5679                         goto aux_unlock;
5680
5681                 /* already mapped with a different size */
5682                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5683                         goto aux_unlock;
5684
5685                 if (!is_power_of_2(nr_pages))
5686                         goto aux_unlock;
5687
5688                 if (!atomic_inc_not_zero(&rb->mmap_count))
5689                         goto aux_unlock;
5690
5691                 if (rb_has_aux(rb)) {
5692                         atomic_inc(&rb->aux_mmap_count);
5693                         ret = 0;
5694                         goto unlock;
5695                 }
5696
5697                 atomic_set(&rb->aux_mmap_count, 1);
5698                 user_extra = nr_pages;
5699
5700                 goto accounting;
5701         }
5702
5703         /*
5704          * If we have rb pages ensure they're a power-of-two number, so we
5705          * can do bitmasks instead of modulo.
5706          */
5707         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5708                 return -EINVAL;
5709
5710         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5711                 return -EINVAL;
5712
5713         WARN_ON_ONCE(event->ctx->parent_ctx);
5714 again:
5715         mutex_lock(&event->mmap_mutex);
5716         if (event->rb) {
5717                 if (event->rb->nr_pages != nr_pages) {
5718                         ret = -EINVAL;
5719                         goto unlock;
5720                 }
5721
5722                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5723                         /*
5724                          * Raced against perf_mmap_close() through
5725                          * perf_event_set_output(). Try again, hope for better
5726                          * luck.
5727                          */
5728                         mutex_unlock(&event->mmap_mutex);
5729                         goto again;
5730                 }
5731
5732                 goto unlock;
5733         }
5734
5735         user_extra = nr_pages + 1;
5736
5737 accounting:
5738         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5739
5740         /*
5741          * Increase the limit linearly with more CPUs:
5742          */
5743         user_lock_limit *= num_online_cpus();
5744
5745         user_locked = atomic_long_read(&user->locked_vm);
5746
5747         /*
5748          * sysctl_perf_event_mlock may have changed, so that
5749          *     user->locked_vm > user_lock_limit
5750          */
5751         if (user_locked > user_lock_limit)
5752                 user_locked = user_lock_limit;
5753         user_locked += user_extra;
5754
5755         if (user_locked > user_lock_limit)
5756                 extra = user_locked - user_lock_limit;
5757
5758         lock_limit = rlimit(RLIMIT_MEMLOCK);
5759         lock_limit >>= PAGE_SHIFT;
5760         locked = vma->vm_mm->pinned_vm + extra;
5761
5762         if ((locked > lock_limit) && perf_is_paranoid() &&
5763                 !capable(CAP_IPC_LOCK)) {
5764                 ret = -EPERM;
5765                 goto unlock;
5766         }
5767
5768         WARN_ON(!rb && event->rb);
5769
5770         if (vma->vm_flags & VM_WRITE)
5771                 flags |= RING_BUFFER_WRITABLE;
5772
5773         if (!rb) {
5774                 rb = rb_alloc(nr_pages,
5775                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5776                               event->cpu, flags);
5777
5778                 if (!rb) {
5779                         ret = -ENOMEM;
5780                         goto unlock;
5781                 }
5782
5783                 atomic_set(&rb->mmap_count, 1);
5784                 rb->mmap_user = get_current_user();
5785                 rb->mmap_locked = extra;
5786
5787                 ring_buffer_attach(event, rb);
5788
5789                 perf_event_init_userpage(event);
5790                 perf_event_update_userpage(event);
5791         } else {
5792                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5793                                    event->attr.aux_watermark, flags);
5794                 if (!ret)
5795                         rb->aux_mmap_locked = extra;
5796         }
5797
5798 unlock:
5799         if (!ret) {
5800                 atomic_long_add(user_extra, &user->locked_vm);
5801                 vma->vm_mm->pinned_vm += extra;
5802
5803                 atomic_inc(&event->mmap_count);
5804         } else if (rb) {
5805                 atomic_dec(&rb->mmap_count);
5806         }
5807 aux_unlock:
5808         mutex_unlock(&event->mmap_mutex);
5809
5810         /*
5811          * Since pinned accounting is per vm we cannot allow fork() to copy our
5812          * vma.
5813          */
5814         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5815         vma->vm_ops = &perf_mmap_vmops;
5816
5817         if (event->pmu->event_mapped)
5818                 event->pmu->event_mapped(event, vma->vm_mm);
5819
5820         return ret;
5821 }
5822
5823 static int perf_fasync(int fd, struct file *filp, int on)
5824 {
5825         struct inode *inode = file_inode(filp);
5826         struct perf_event *event = filp->private_data;
5827         int retval;
5828
5829         inode_lock(inode);
5830         retval = fasync_helper(fd, filp, on, &event->fasync);
5831         inode_unlock(inode);
5832
5833         if (retval < 0)
5834                 return retval;
5835
5836         return 0;
5837 }
5838
5839 static const struct file_operations perf_fops = {
5840         .llseek                 = no_llseek,
5841         .release                = perf_release,
5842         .read                   = perf_read,
5843         .poll                   = perf_poll,
5844         .unlocked_ioctl         = perf_ioctl,
5845         .compat_ioctl           = perf_compat_ioctl,
5846         .mmap                   = perf_mmap,
5847         .fasync                 = perf_fasync,
5848 };
5849
5850 /*
5851  * Perf event wakeup
5852  *
5853  * If there's data, ensure we set the poll() state and publish everything
5854  * to user-space before waking everybody up.
5855  */
5856
5857 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5858 {
5859         /* only the parent has fasync state */
5860         if (event->parent)
5861                 event = event->parent;
5862         return &event->fasync;
5863 }
5864
5865 void perf_event_wakeup(struct perf_event *event)
5866 {
5867         ring_buffer_wakeup(event);
5868
5869         if (event->pending_kill) {
5870                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5871                 event->pending_kill = 0;
5872         }
5873 }
5874
5875 static void perf_pending_event_disable(struct perf_event *event)
5876 {
5877         int cpu = READ_ONCE(event->pending_disable);
5878
5879         if (cpu < 0)
5880                 return;
5881
5882         if (cpu == smp_processor_id()) {
5883                 WRITE_ONCE(event->pending_disable, -1);
5884                 perf_event_disable_local(event);
5885                 return;
5886         }
5887
5888         /*
5889          *  CPU-A                       CPU-B
5890          *
5891          *  perf_event_disable_inatomic()
5892          *    @pending_disable = CPU-A;
5893          *    irq_work_queue();
5894          *
5895          *  sched-out
5896          *    @pending_disable = -1;
5897          *
5898          *                              sched-in
5899          *                              perf_event_disable_inatomic()
5900          *                                @pending_disable = CPU-B;
5901          *                                irq_work_queue(); // FAILS
5902          *
5903          *  irq_work_run()
5904          *    perf_pending_event()
5905          *
5906          * But the event runs on CPU-B and wants disabling there.
5907          */
5908         irq_work_queue_on(&event->pending, cpu);
5909 }
5910
5911 static void perf_pending_event(struct irq_work *entry)
5912 {
5913         struct perf_event *event = container_of(entry, struct perf_event, pending);
5914         int rctx;
5915
5916         rctx = perf_swevent_get_recursion_context();
5917         /*
5918          * If we 'fail' here, that's OK, it means recursion is already disabled
5919          * and we won't recurse 'further'.
5920          */
5921
5922         perf_pending_event_disable(event);
5923
5924         if (event->pending_wakeup) {
5925                 event->pending_wakeup = 0;
5926                 perf_event_wakeup(event);
5927         }
5928
5929         if (rctx >= 0)
5930                 perf_swevent_put_recursion_context(rctx);
5931 }
5932
5933 /*
5934  * We assume there is only KVM supporting the callbacks.
5935  * Later on, we might change it to a list if there is
5936  * another virtualization implementation supporting the callbacks.
5937  */
5938 struct perf_guest_info_callbacks *perf_guest_cbs;
5939
5940 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5941 {
5942         perf_guest_cbs = cbs;
5943         return 0;
5944 }
5945 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5946
5947 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5948 {
5949         perf_guest_cbs = NULL;
5950         return 0;
5951 }
5952 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5953
5954 static void
5955 perf_output_sample_regs(struct perf_output_handle *handle,
5956                         struct pt_regs *regs, u64 mask)
5957 {
5958         int bit;
5959         DECLARE_BITMAP(_mask, 64);
5960
5961         bitmap_from_u64(_mask, mask);
5962         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5963                 u64 val;
5964
5965                 val = perf_reg_value(regs, bit);
5966                 perf_output_put(handle, val);
5967         }
5968 }
5969
5970 static void perf_sample_regs_user(struct perf_regs *regs_user,
5971                                   struct pt_regs *regs,
5972                                   struct pt_regs *regs_user_copy)
5973 {
5974         if (user_mode(regs)) {
5975                 regs_user->abi = perf_reg_abi(current);
5976                 regs_user->regs = regs;
5977         } else if (!(current->flags & PF_KTHREAD)) {
5978                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5979         } else {
5980                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5981                 regs_user->regs = NULL;
5982         }
5983 }
5984
5985 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5986                                   struct pt_regs *regs)
5987 {
5988         regs_intr->regs = regs;
5989         regs_intr->abi  = perf_reg_abi(current);
5990 }
5991
5992
5993 /*
5994  * Get remaining task size from user stack pointer.
5995  *
5996  * It'd be better to take stack vma map and limit this more
5997  * precisly, but there's no way to get it safely under interrupt,
5998  * so using TASK_SIZE as limit.
5999  */
6000 static u64 perf_ustack_task_size(struct pt_regs *regs)
6001 {
6002         unsigned long addr = perf_user_stack_pointer(regs);
6003
6004         if (!addr || addr >= TASK_SIZE)
6005                 return 0;
6006
6007         return TASK_SIZE - addr;
6008 }
6009
6010 static u16
6011 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6012                         struct pt_regs *regs)
6013 {
6014         u64 task_size;
6015
6016         /* No regs, no stack pointer, no dump. */
6017         if (!regs)
6018                 return 0;
6019
6020         /*
6021          * Check if we fit in with the requested stack size into the:
6022          * - TASK_SIZE
6023          *   If we don't, we limit the size to the TASK_SIZE.
6024          *
6025          * - remaining sample size
6026          *   If we don't, we customize the stack size to
6027          *   fit in to the remaining sample size.
6028          */
6029
6030         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6031         stack_size = min(stack_size, (u16) task_size);
6032
6033         /* Current header size plus static size and dynamic size. */
6034         header_size += 2 * sizeof(u64);
6035
6036         /* Do we fit in with the current stack dump size? */
6037         if ((u16) (header_size + stack_size) < header_size) {
6038                 /*
6039                  * If we overflow the maximum size for the sample,
6040                  * we customize the stack dump size to fit in.
6041                  */
6042                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6043                 stack_size = round_up(stack_size, sizeof(u64));
6044         }
6045
6046         return stack_size;
6047 }
6048
6049 static void
6050 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6051                           struct pt_regs *regs)
6052 {
6053         /* Case of a kernel thread, nothing to dump */
6054         if (!regs) {
6055                 u64 size = 0;
6056                 perf_output_put(handle, size);
6057         } else {
6058                 unsigned long sp;
6059                 unsigned int rem;
6060                 u64 dyn_size;
6061                 mm_segment_t fs;
6062
6063                 /*
6064                  * We dump:
6065                  * static size
6066                  *   - the size requested by user or the best one we can fit
6067                  *     in to the sample max size
6068                  * data
6069                  *   - user stack dump data
6070                  * dynamic size
6071                  *   - the actual dumped size
6072                  */
6073
6074                 /* Static size. */
6075                 perf_output_put(handle, dump_size);
6076
6077                 /* Data. */
6078                 sp = perf_user_stack_pointer(regs);
6079                 fs = get_fs();
6080                 set_fs(USER_DS);
6081                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6082                 set_fs(fs);
6083                 dyn_size = dump_size - rem;
6084
6085                 perf_output_skip(handle, rem);
6086
6087                 /* Dynamic size. */
6088                 perf_output_put(handle, dyn_size);
6089         }
6090 }
6091
6092 static void __perf_event_header__init_id(struct perf_event_header *header,
6093                                          struct perf_sample_data *data,
6094                                          struct perf_event *event)
6095 {
6096         u64 sample_type = event->attr.sample_type;
6097
6098         data->type = sample_type;
6099         header->size += event->id_header_size;
6100
6101         if (sample_type & PERF_SAMPLE_TID) {
6102                 /* namespace issues */
6103                 data->tid_entry.pid = perf_event_pid(event, current);
6104                 data->tid_entry.tid = perf_event_tid(event, current);
6105         }
6106
6107         if (sample_type & PERF_SAMPLE_TIME)
6108                 data->time = perf_event_clock(event);
6109
6110         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6111                 data->id = primary_event_id(event);
6112
6113         if (sample_type & PERF_SAMPLE_STREAM_ID)
6114                 data->stream_id = event->id;
6115
6116         if (sample_type & PERF_SAMPLE_CPU) {
6117                 data->cpu_entry.cpu      = raw_smp_processor_id();
6118                 data->cpu_entry.reserved = 0;
6119         }
6120 }
6121
6122 void perf_event_header__init_id(struct perf_event_header *header,
6123                                 struct perf_sample_data *data,
6124                                 struct perf_event *event)
6125 {
6126         if (event->attr.sample_id_all)
6127                 __perf_event_header__init_id(header, data, event);
6128 }
6129
6130 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6131                                            struct perf_sample_data *data)
6132 {
6133         u64 sample_type = data->type;
6134
6135         if (sample_type & PERF_SAMPLE_TID)
6136                 perf_output_put(handle, data->tid_entry);
6137
6138         if (sample_type & PERF_SAMPLE_TIME)
6139                 perf_output_put(handle, data->time);
6140
6141         if (sample_type & PERF_SAMPLE_ID)
6142                 perf_output_put(handle, data->id);
6143
6144         if (sample_type & PERF_SAMPLE_STREAM_ID)
6145                 perf_output_put(handle, data->stream_id);
6146
6147         if (sample_type & PERF_SAMPLE_CPU)
6148                 perf_output_put(handle, data->cpu_entry);
6149
6150         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6151                 perf_output_put(handle, data->id);
6152 }
6153
6154 void perf_event__output_id_sample(struct perf_event *event,
6155                                   struct perf_output_handle *handle,
6156                                   struct perf_sample_data *sample)
6157 {
6158         if (event->attr.sample_id_all)
6159                 __perf_event__output_id_sample(handle, sample);
6160 }
6161
6162 static void perf_output_read_one(struct perf_output_handle *handle,
6163                                  struct perf_event *event,
6164                                  u64 enabled, u64 running)
6165 {
6166         u64 read_format = event->attr.read_format;
6167         u64 values[4];
6168         int n = 0;
6169
6170         values[n++] = perf_event_count(event);
6171         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6172                 values[n++] = enabled +
6173                         atomic64_read(&event->child_total_time_enabled);
6174         }
6175         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6176                 values[n++] = running +
6177                         atomic64_read(&event->child_total_time_running);
6178         }
6179         if (read_format & PERF_FORMAT_ID)
6180                 values[n++] = primary_event_id(event);
6181
6182         __output_copy(handle, values, n * sizeof(u64));
6183 }
6184
6185 static void perf_output_read_group(struct perf_output_handle *handle,
6186                             struct perf_event *event,
6187                             u64 enabled, u64 running)
6188 {
6189         struct perf_event *leader = event->group_leader, *sub;
6190         u64 read_format = event->attr.read_format;
6191         u64 values[5];
6192         int n = 0;
6193
6194         values[n++] = 1 + leader->nr_siblings;
6195
6196         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6197                 values[n++] = enabled;
6198
6199         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6200                 values[n++] = running;
6201
6202         if ((leader != event) &&
6203             (leader->state == PERF_EVENT_STATE_ACTIVE))
6204                 leader->pmu->read(leader);
6205
6206         values[n++] = perf_event_count(leader);
6207         if (read_format & PERF_FORMAT_ID)
6208                 values[n++] = primary_event_id(leader);
6209
6210         __output_copy(handle, values, n * sizeof(u64));
6211
6212         for_each_sibling_event(sub, leader) {
6213                 n = 0;
6214
6215                 if ((sub != event) &&
6216                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6217                         sub->pmu->read(sub);
6218
6219                 values[n++] = perf_event_count(sub);
6220                 if (read_format & PERF_FORMAT_ID)
6221                         values[n++] = primary_event_id(sub);
6222
6223                 __output_copy(handle, values, n * sizeof(u64));
6224         }
6225 }
6226
6227 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6228                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6229
6230 /*
6231  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6232  *
6233  * The problem is that its both hard and excessively expensive to iterate the
6234  * child list, not to mention that its impossible to IPI the children running
6235  * on another CPU, from interrupt/NMI context.
6236  */
6237 static void perf_output_read(struct perf_output_handle *handle,
6238                              struct perf_event *event)
6239 {
6240         u64 enabled = 0, running = 0, now;
6241         u64 read_format = event->attr.read_format;
6242
6243         /*
6244          * compute total_time_enabled, total_time_running
6245          * based on snapshot values taken when the event
6246          * was last scheduled in.
6247          *
6248          * we cannot simply called update_context_time()
6249          * because of locking issue as we are called in
6250          * NMI context
6251          */
6252         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6253                 calc_timer_values(event, &now, &enabled, &running);
6254
6255         if (event->attr.read_format & PERF_FORMAT_GROUP)
6256                 perf_output_read_group(handle, event, enabled, running);
6257         else
6258                 perf_output_read_one(handle, event, enabled, running);
6259 }
6260
6261 void perf_output_sample(struct perf_output_handle *handle,
6262                         struct perf_event_header *header,
6263                         struct perf_sample_data *data,
6264                         struct perf_event *event)
6265 {
6266         u64 sample_type = data->type;
6267
6268         perf_output_put(handle, *header);
6269
6270         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6271                 perf_output_put(handle, data->id);
6272
6273         if (sample_type & PERF_SAMPLE_IP)
6274                 perf_output_put(handle, data->ip);
6275
6276         if (sample_type & PERF_SAMPLE_TID)
6277                 perf_output_put(handle, data->tid_entry);
6278
6279         if (sample_type & PERF_SAMPLE_TIME)
6280                 perf_output_put(handle, data->time);
6281
6282         if (sample_type & PERF_SAMPLE_ADDR)
6283                 perf_output_put(handle, data->addr);
6284
6285         if (sample_type & PERF_SAMPLE_ID)
6286                 perf_output_put(handle, data->id);
6287
6288         if (sample_type & PERF_SAMPLE_STREAM_ID)
6289                 perf_output_put(handle, data->stream_id);
6290
6291         if (sample_type & PERF_SAMPLE_CPU)
6292                 perf_output_put(handle, data->cpu_entry);
6293
6294         if (sample_type & PERF_SAMPLE_PERIOD)
6295                 perf_output_put(handle, data->period);
6296
6297         if (sample_type & PERF_SAMPLE_READ)
6298                 perf_output_read(handle, event);
6299
6300         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6301                 int size = 1;
6302
6303                 size += data->callchain->nr;
6304                 size *= sizeof(u64);
6305                 __output_copy(handle, data->callchain, size);
6306         }
6307
6308         if (sample_type & PERF_SAMPLE_RAW) {
6309                 struct perf_raw_record *raw = data->raw;
6310
6311                 if (raw) {
6312                         struct perf_raw_frag *frag = &raw->frag;
6313
6314                         perf_output_put(handle, raw->size);
6315                         do {
6316                                 if (frag->copy) {
6317                                         __output_custom(handle, frag->copy,
6318                                                         frag->data, frag->size);
6319                                 } else {
6320                                         __output_copy(handle, frag->data,
6321                                                       frag->size);
6322                                 }
6323                                 if (perf_raw_frag_last(frag))
6324                                         break;
6325                                 frag = frag->next;
6326                         } while (1);
6327                         if (frag->pad)
6328                                 __output_skip(handle, NULL, frag->pad);
6329                 } else {
6330                         struct {
6331                                 u32     size;
6332                                 u32     data;
6333                         } raw = {
6334                                 .size = sizeof(u32),
6335                                 .data = 0,
6336                         };
6337                         perf_output_put(handle, raw);
6338                 }
6339         }
6340
6341         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6342                 if (data->br_stack) {
6343                         size_t size;
6344
6345                         size = data->br_stack->nr
6346                              * sizeof(struct perf_branch_entry);
6347
6348                         perf_output_put(handle, data->br_stack->nr);
6349                         perf_output_copy(handle, data->br_stack->entries, size);
6350                 } else {
6351                         /*
6352                          * we always store at least the value of nr
6353                          */
6354                         u64 nr = 0;
6355                         perf_output_put(handle, nr);
6356                 }
6357         }
6358
6359         if (sample_type & PERF_SAMPLE_REGS_USER) {
6360                 u64 abi = data->regs_user.abi;
6361
6362                 /*
6363                  * If there are no regs to dump, notice it through
6364                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6365                  */
6366                 perf_output_put(handle, abi);
6367
6368                 if (abi) {
6369                         u64 mask = event->attr.sample_regs_user;
6370                         perf_output_sample_regs(handle,
6371                                                 data->regs_user.regs,
6372                                                 mask);
6373                 }
6374         }
6375
6376         if (sample_type & PERF_SAMPLE_STACK_USER) {
6377                 perf_output_sample_ustack(handle,
6378                                           data->stack_user_size,
6379                                           data->regs_user.regs);
6380         }
6381
6382         if (sample_type & PERF_SAMPLE_WEIGHT)
6383                 perf_output_put(handle, data->weight);
6384
6385         if (sample_type & PERF_SAMPLE_DATA_SRC)
6386                 perf_output_put(handle, data->data_src.val);
6387
6388         if (sample_type & PERF_SAMPLE_TRANSACTION)
6389                 perf_output_put(handle, data->txn);
6390
6391         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6392                 u64 abi = data->regs_intr.abi;
6393                 /*
6394                  * If there are no regs to dump, notice it through
6395                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6396                  */
6397                 perf_output_put(handle, abi);
6398
6399                 if (abi) {
6400                         u64 mask = event->attr.sample_regs_intr;
6401
6402                         perf_output_sample_regs(handle,
6403                                                 data->regs_intr.regs,
6404                                                 mask);
6405                 }
6406         }
6407
6408         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6409                 perf_output_put(handle, data->phys_addr);
6410
6411         if (!event->attr.watermark) {
6412                 int wakeup_events = event->attr.wakeup_events;
6413
6414                 if (wakeup_events) {
6415                         struct ring_buffer *rb = handle->rb;
6416                         int events = local_inc_return(&rb->events);
6417
6418                         if (events >= wakeup_events) {
6419                                 local_sub(wakeup_events, &rb->events);
6420                                 local_inc(&rb->wakeup);
6421                         }
6422                 }
6423         }
6424 }
6425
6426 static u64 perf_virt_to_phys(u64 virt)
6427 {
6428         u64 phys_addr = 0;
6429         struct page *p = NULL;
6430
6431         if (!virt)
6432                 return 0;
6433
6434         if (virt >= TASK_SIZE) {
6435                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6436                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6437                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6438                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6439         } else {
6440                 /*
6441                  * Walking the pages tables for user address.
6442                  * Interrupts are disabled, so it prevents any tear down
6443                  * of the page tables.
6444                  * Try IRQ-safe __get_user_pages_fast first.
6445                  * If failed, leave phys_addr as 0.
6446                  */
6447                 if (current->mm != NULL) {
6448                         pagefault_disable();
6449                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6450                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6451                         pagefault_enable();
6452                 }
6453
6454                 if (p)
6455                         put_page(p);
6456         }
6457
6458         return phys_addr;
6459 }
6460
6461 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6462
6463 struct perf_callchain_entry *
6464 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6465 {
6466         bool kernel = !event->attr.exclude_callchain_kernel;
6467         bool user   = !event->attr.exclude_callchain_user;
6468         /* Disallow cross-task user callchains. */
6469         bool crosstask = event->ctx->task && event->ctx->task != current;
6470         const u32 max_stack = event->attr.sample_max_stack;
6471         struct perf_callchain_entry *callchain;
6472
6473         if (!kernel && !user)
6474                 return &__empty_callchain;
6475
6476         callchain = get_perf_callchain(regs, 0, kernel, user,
6477                                        max_stack, crosstask, true);
6478         return callchain ?: &__empty_callchain;
6479 }
6480
6481 void perf_prepare_sample(struct perf_event_header *header,
6482                          struct perf_sample_data *data,
6483                          struct perf_event *event,
6484                          struct pt_regs *regs)
6485 {
6486         u64 sample_type = event->attr.sample_type;
6487
6488         header->type = PERF_RECORD_SAMPLE;
6489         header->size = sizeof(*header) + event->header_size;
6490
6491         header->misc = 0;
6492         header->misc |= perf_misc_flags(regs);
6493
6494         __perf_event_header__init_id(header, data, event);
6495
6496         if (sample_type & PERF_SAMPLE_IP)
6497                 data->ip = perf_instruction_pointer(regs);
6498
6499         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6500                 int size = 1;
6501
6502                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6503                         data->callchain = perf_callchain(event, regs);
6504
6505                 size += data->callchain->nr;
6506
6507                 header->size += size * sizeof(u64);
6508         }
6509
6510         if (sample_type & PERF_SAMPLE_RAW) {
6511                 struct perf_raw_record *raw = data->raw;
6512                 int size;
6513
6514                 if (raw) {
6515                         struct perf_raw_frag *frag = &raw->frag;
6516                         u32 sum = 0;
6517
6518                         do {
6519                                 sum += frag->size;
6520                                 if (perf_raw_frag_last(frag))
6521                                         break;
6522                                 frag = frag->next;
6523                         } while (1);
6524
6525                         size = round_up(sum + sizeof(u32), sizeof(u64));
6526                         raw->size = size - sizeof(u32);
6527                         frag->pad = raw->size - sum;
6528                 } else {
6529                         size = sizeof(u64);
6530                 }
6531
6532                 header->size += size;
6533         }
6534
6535         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6536                 int size = sizeof(u64); /* nr */
6537                 if (data->br_stack) {
6538                         size += data->br_stack->nr
6539                               * sizeof(struct perf_branch_entry);
6540                 }
6541                 header->size += size;
6542         }
6543
6544         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6545                 perf_sample_regs_user(&data->regs_user, regs,
6546                                       &data->regs_user_copy);
6547
6548         if (sample_type & PERF_SAMPLE_REGS_USER) {
6549                 /* regs dump ABI info */
6550                 int size = sizeof(u64);
6551
6552                 if (data->regs_user.regs) {
6553                         u64 mask = event->attr.sample_regs_user;
6554                         size += hweight64(mask) * sizeof(u64);
6555                 }
6556
6557                 header->size += size;
6558         }
6559
6560         if (sample_type & PERF_SAMPLE_STACK_USER) {
6561                 /*
6562                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6563                  * processed as the last one or have additional check added
6564                  * in case new sample type is added, because we could eat
6565                  * up the rest of the sample size.
6566                  */
6567                 u16 stack_size = event->attr.sample_stack_user;
6568                 u16 size = sizeof(u64);
6569
6570                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6571                                                      data->regs_user.regs);
6572
6573                 /*
6574                  * If there is something to dump, add space for the dump
6575                  * itself and for the field that tells the dynamic size,
6576                  * which is how many have been actually dumped.
6577                  */
6578                 if (stack_size)
6579                         size += sizeof(u64) + stack_size;
6580
6581                 data->stack_user_size = stack_size;
6582                 header->size += size;
6583         }
6584
6585         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6586                 /* regs dump ABI info */
6587                 int size = sizeof(u64);
6588
6589                 perf_sample_regs_intr(&data->regs_intr, regs);
6590
6591                 if (data->regs_intr.regs) {
6592                         u64 mask = event->attr.sample_regs_intr;
6593
6594                         size += hweight64(mask) * sizeof(u64);
6595                 }
6596
6597                 header->size += size;
6598         }
6599
6600         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6601                 data->phys_addr = perf_virt_to_phys(data->addr);
6602 }
6603
6604 static __always_inline void
6605 __perf_event_output(struct perf_event *event,
6606                     struct perf_sample_data *data,
6607                     struct pt_regs *regs,
6608                     int (*output_begin)(struct perf_output_handle *,
6609                                         struct perf_event *,
6610                                         unsigned int))
6611 {
6612         struct perf_output_handle handle;
6613         struct perf_event_header header;
6614
6615         /* protect the callchain buffers */
6616         rcu_read_lock();
6617
6618         perf_prepare_sample(&header, data, event, regs);
6619
6620         if (output_begin(&handle, event, header.size))
6621                 goto exit;
6622
6623         perf_output_sample(&handle, &header, data, event);
6624
6625         perf_output_end(&handle);
6626
6627 exit:
6628         rcu_read_unlock();
6629 }
6630
6631 void
6632 perf_event_output_forward(struct perf_event *event,
6633                          struct perf_sample_data *data,
6634                          struct pt_regs *regs)
6635 {
6636         __perf_event_output(event, data, regs, perf_output_begin_forward);
6637 }
6638
6639 void
6640 perf_event_output_backward(struct perf_event *event,
6641                            struct perf_sample_data *data,
6642                            struct pt_regs *regs)
6643 {
6644         __perf_event_output(event, data, regs, perf_output_begin_backward);
6645 }
6646
6647 void
6648 perf_event_output(struct perf_event *event,
6649                   struct perf_sample_data *data,
6650                   struct pt_regs *regs)
6651 {
6652         __perf_event_output(event, data, regs, perf_output_begin);
6653 }
6654
6655 /*
6656  * read event_id
6657  */
6658
6659 struct perf_read_event {
6660         struct perf_event_header        header;
6661
6662         u32                             pid;
6663         u32                             tid;
6664 };
6665
6666 static void
6667 perf_event_read_event(struct perf_event *event,
6668                         struct task_struct *task)
6669 {
6670         struct perf_output_handle handle;
6671         struct perf_sample_data sample;
6672         struct perf_read_event read_event = {
6673                 .header = {
6674                         .type = PERF_RECORD_READ,
6675                         .misc = 0,
6676                         .size = sizeof(read_event) + event->read_size,
6677                 },
6678                 .pid = perf_event_pid(event, task),
6679                 .tid = perf_event_tid(event, task),
6680         };
6681         int ret;
6682
6683         perf_event_header__init_id(&read_event.header, &sample, event);
6684         ret = perf_output_begin(&handle, event, read_event.header.size);
6685         if (ret)
6686                 return;
6687
6688         perf_output_put(&handle, read_event);
6689         perf_output_read(&handle, event);
6690         perf_event__output_id_sample(event, &handle, &sample);
6691
6692         perf_output_end(&handle);
6693 }
6694
6695 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6696
6697 static void
6698 perf_iterate_ctx(struct perf_event_context *ctx,
6699                    perf_iterate_f output,
6700                    void *data, bool all)
6701 {
6702         struct perf_event *event;
6703
6704         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6705                 if (!all) {
6706                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6707                                 continue;
6708                         if (!event_filter_match(event))
6709                                 continue;
6710                 }
6711
6712                 output(event, data);
6713         }
6714 }
6715
6716 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6717 {
6718         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6719         struct perf_event *event;
6720
6721         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6722                 /*
6723                  * Skip events that are not fully formed yet; ensure that
6724                  * if we observe event->ctx, both event and ctx will be
6725                  * complete enough. See perf_install_in_context().
6726                  */
6727                 if (!smp_load_acquire(&event->ctx))
6728                         continue;
6729
6730                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6731                         continue;
6732                 if (!event_filter_match(event))
6733                         continue;
6734                 output(event, data);
6735         }
6736 }
6737
6738 /*
6739  * Iterate all events that need to receive side-band events.
6740  *
6741  * For new callers; ensure that account_pmu_sb_event() includes
6742  * your event, otherwise it might not get delivered.
6743  */
6744 static void
6745 perf_iterate_sb(perf_iterate_f output, void *data,
6746                struct perf_event_context *task_ctx)
6747 {
6748         struct perf_event_context *ctx;
6749         int ctxn;
6750
6751         rcu_read_lock();
6752         preempt_disable();
6753
6754         /*
6755          * If we have task_ctx != NULL we only notify the task context itself.
6756          * The task_ctx is set only for EXIT events before releasing task
6757          * context.
6758          */
6759         if (task_ctx) {
6760                 perf_iterate_ctx(task_ctx, output, data, false);
6761                 goto done;
6762         }
6763
6764         perf_iterate_sb_cpu(output, data);
6765
6766         for_each_task_context_nr(ctxn) {
6767                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6768                 if (ctx)
6769                         perf_iterate_ctx(ctx, output, data, false);
6770         }
6771 done:
6772         preempt_enable();
6773         rcu_read_unlock();
6774 }
6775
6776 /*
6777  * Clear all file-based filters at exec, they'll have to be
6778  * re-instated when/if these objects are mmapped again.
6779  */
6780 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6781 {
6782         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6783         struct perf_addr_filter *filter;
6784         unsigned int restart = 0, count = 0;
6785         unsigned long flags;
6786
6787         if (!has_addr_filter(event))
6788                 return;
6789
6790         raw_spin_lock_irqsave(&ifh->lock, flags);
6791         list_for_each_entry(filter, &ifh->list, entry) {
6792                 if (filter->path.dentry) {
6793                         event->addr_filter_ranges[count].start = 0;
6794                         event->addr_filter_ranges[count].size = 0;
6795                         restart++;
6796                 }
6797
6798                 count++;
6799         }
6800
6801         if (restart)
6802                 event->addr_filters_gen++;
6803         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6804
6805         if (restart)
6806                 perf_event_stop(event, 1);
6807 }
6808
6809 void perf_event_exec(void)
6810 {
6811         struct perf_event_context *ctx;
6812         int ctxn;
6813
6814         rcu_read_lock();
6815         for_each_task_context_nr(ctxn) {
6816                 ctx = current->perf_event_ctxp[ctxn];
6817                 if (!ctx)
6818                         continue;
6819
6820                 perf_event_enable_on_exec(ctxn);
6821
6822                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6823                                    true);
6824         }
6825         rcu_read_unlock();
6826 }
6827
6828 struct remote_output {
6829         struct ring_buffer      *rb;
6830         int                     err;
6831 };
6832
6833 static void __perf_event_output_stop(struct perf_event *event, void *data)
6834 {
6835         struct perf_event *parent = event->parent;
6836         struct remote_output *ro = data;
6837         struct ring_buffer *rb = ro->rb;
6838         struct stop_event_data sd = {
6839                 .event  = event,
6840         };
6841
6842         if (!has_aux(event))
6843                 return;
6844
6845         if (!parent)
6846                 parent = event;
6847
6848         /*
6849          * In case of inheritance, it will be the parent that links to the
6850          * ring-buffer, but it will be the child that's actually using it.
6851          *
6852          * We are using event::rb to determine if the event should be stopped,
6853          * however this may race with ring_buffer_attach() (through set_output),
6854          * which will make us skip the event that actually needs to be stopped.
6855          * So ring_buffer_attach() has to stop an aux event before re-assigning
6856          * its rb pointer.
6857          */
6858         if (rcu_dereference(parent->rb) == rb)
6859                 ro->err = __perf_event_stop(&sd);
6860 }
6861
6862 static int __perf_pmu_output_stop(void *info)
6863 {
6864         struct perf_event *event = info;
6865         struct pmu *pmu = event->ctx->pmu;
6866         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6867         struct remote_output ro = {
6868                 .rb     = event->rb,
6869         };
6870
6871         rcu_read_lock();
6872         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6873         if (cpuctx->task_ctx)
6874                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6875                                    &ro, false);
6876         rcu_read_unlock();
6877
6878         return ro.err;
6879 }
6880
6881 static void perf_pmu_output_stop(struct perf_event *event)
6882 {
6883         struct perf_event *iter;
6884         int err, cpu;
6885
6886 restart:
6887         rcu_read_lock();
6888         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6889                 /*
6890                  * For per-CPU events, we need to make sure that neither they
6891                  * nor their children are running; for cpu==-1 events it's
6892                  * sufficient to stop the event itself if it's active, since
6893                  * it can't have children.
6894                  */
6895                 cpu = iter->cpu;
6896                 if (cpu == -1)
6897                         cpu = READ_ONCE(iter->oncpu);
6898
6899                 if (cpu == -1)
6900                         continue;
6901
6902                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6903                 if (err == -EAGAIN) {
6904                         rcu_read_unlock();
6905                         goto restart;
6906                 }
6907         }
6908         rcu_read_unlock();
6909 }
6910
6911 /*
6912  * task tracking -- fork/exit
6913  *
6914  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6915  */
6916
6917 struct perf_task_event {
6918         struct task_struct              *task;
6919         struct perf_event_context       *task_ctx;
6920
6921         struct {
6922                 struct perf_event_header        header;
6923
6924                 u32                             pid;
6925                 u32                             ppid;
6926                 u32                             tid;
6927                 u32                             ptid;
6928                 u64                             time;
6929         } event_id;
6930 };
6931
6932 static int perf_event_task_match(struct perf_event *event)
6933 {
6934         return event->attr.comm  || event->attr.mmap ||
6935                event->attr.mmap2 || event->attr.mmap_data ||
6936                event->attr.task;
6937 }
6938
6939 static void perf_event_task_output(struct perf_event *event,
6940                                    void *data)
6941 {
6942         struct perf_task_event *task_event = data;
6943         struct perf_output_handle handle;
6944         struct perf_sample_data sample;
6945         struct task_struct *task = task_event->task;
6946         int ret, size = task_event->event_id.header.size;
6947
6948         if (!perf_event_task_match(event))
6949                 return;
6950
6951         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6952
6953         ret = perf_output_begin(&handle, event,
6954                                 task_event->event_id.header.size);
6955         if (ret)
6956                 goto out;
6957
6958         task_event->event_id.pid = perf_event_pid(event, task);
6959         task_event->event_id.tid = perf_event_tid(event, task);
6960
6961         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
6962                 task_event->event_id.ppid = perf_event_pid(event,
6963                                                         task->real_parent);
6964                 task_event->event_id.ptid = perf_event_pid(event,
6965                                                         task->real_parent);
6966         } else {  /* PERF_RECORD_FORK */
6967                 task_event->event_id.ppid = perf_event_pid(event, current);
6968                 task_event->event_id.ptid = perf_event_tid(event, current);
6969         }
6970
6971         task_event->event_id.time = perf_event_clock(event);
6972
6973         perf_output_put(&handle, task_event->event_id);
6974
6975         perf_event__output_id_sample(event, &handle, &sample);
6976
6977         perf_output_end(&handle);
6978 out:
6979         task_event->event_id.header.size = size;
6980 }
6981
6982 static void perf_event_task(struct task_struct *task,
6983                               struct perf_event_context *task_ctx,
6984                               int new)
6985 {
6986         struct perf_task_event task_event;
6987
6988         if (!atomic_read(&nr_comm_events) &&
6989             !atomic_read(&nr_mmap_events) &&
6990             !atomic_read(&nr_task_events))
6991                 return;
6992
6993         task_event = (struct perf_task_event){
6994                 .task     = task,
6995                 .task_ctx = task_ctx,
6996                 .event_id    = {
6997                         .header = {
6998                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6999                                 .misc = 0,
7000                                 .size = sizeof(task_event.event_id),
7001                         },
7002                         /* .pid  */
7003                         /* .ppid */
7004                         /* .tid  */
7005                         /* .ptid */
7006                         /* .time */
7007                 },
7008         };
7009
7010         perf_iterate_sb(perf_event_task_output,
7011                        &task_event,
7012                        task_ctx);
7013 }
7014
7015 void perf_event_fork(struct task_struct *task)
7016 {
7017         perf_event_task(task, NULL, 1);
7018         perf_event_namespaces(task);
7019 }
7020
7021 /*
7022  * comm tracking
7023  */
7024
7025 struct perf_comm_event {
7026         struct task_struct      *task;
7027         char                    *comm;
7028         int                     comm_size;
7029
7030         struct {
7031                 struct perf_event_header        header;
7032
7033                 u32                             pid;
7034                 u32                             tid;
7035         } event_id;
7036 };
7037
7038 static int perf_event_comm_match(struct perf_event *event)
7039 {
7040         return event->attr.comm;
7041 }
7042
7043 static void perf_event_comm_output(struct perf_event *event,
7044                                    void *data)
7045 {
7046         struct perf_comm_event *comm_event = data;
7047         struct perf_output_handle handle;
7048         struct perf_sample_data sample;
7049         int size = comm_event->event_id.header.size;
7050         int ret;
7051
7052         if (!perf_event_comm_match(event))
7053                 return;
7054
7055         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7056         ret = perf_output_begin(&handle, event,
7057                                 comm_event->event_id.header.size);
7058
7059         if (ret)
7060                 goto out;
7061
7062         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7063         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7064
7065         perf_output_put(&handle, comm_event->event_id);
7066         __output_copy(&handle, comm_event->comm,
7067                                    comm_event->comm_size);
7068
7069         perf_event__output_id_sample(event, &handle, &sample);
7070
7071         perf_output_end(&handle);
7072 out:
7073         comm_event->event_id.header.size = size;
7074 }
7075
7076 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7077 {
7078         char comm[TASK_COMM_LEN];
7079         unsigned int size;
7080
7081         memset(comm, 0, sizeof(comm));
7082         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7083         size = ALIGN(strlen(comm)+1, sizeof(u64));
7084
7085         comm_event->comm = comm;
7086         comm_event->comm_size = size;
7087
7088         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7089
7090         perf_iterate_sb(perf_event_comm_output,
7091                        comm_event,
7092                        NULL);
7093 }
7094
7095 void perf_event_comm(struct task_struct *task, bool exec)
7096 {
7097         struct perf_comm_event comm_event;
7098
7099         if (!atomic_read(&nr_comm_events))
7100                 return;
7101
7102         comm_event = (struct perf_comm_event){
7103                 .task   = task,
7104                 /* .comm      */
7105                 /* .comm_size */
7106                 .event_id  = {
7107                         .header = {
7108                                 .type = PERF_RECORD_COMM,
7109                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7110                                 /* .size */
7111                         },
7112                         /* .pid */
7113                         /* .tid */
7114                 },
7115         };
7116
7117         perf_event_comm_event(&comm_event);
7118 }
7119
7120 /*
7121  * namespaces tracking
7122  */
7123
7124 struct perf_namespaces_event {
7125         struct task_struct              *task;
7126
7127         struct {
7128                 struct perf_event_header        header;
7129
7130                 u32                             pid;
7131                 u32                             tid;
7132                 u64                             nr_namespaces;
7133                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7134         } event_id;
7135 };
7136
7137 static int perf_event_namespaces_match(struct perf_event *event)
7138 {
7139         return event->attr.namespaces;
7140 }
7141
7142 static void perf_event_namespaces_output(struct perf_event *event,
7143                                          void *data)
7144 {
7145         struct perf_namespaces_event *namespaces_event = data;
7146         struct perf_output_handle handle;
7147         struct perf_sample_data sample;
7148         u16 header_size = namespaces_event->event_id.header.size;
7149         int ret;
7150
7151         if (!perf_event_namespaces_match(event))
7152                 return;
7153
7154         perf_event_header__init_id(&namespaces_event->event_id.header,
7155                                    &sample, event);
7156         ret = perf_output_begin(&handle, event,
7157                                 namespaces_event->event_id.header.size);
7158         if (ret)
7159                 goto out;
7160
7161         namespaces_event->event_id.pid = perf_event_pid(event,
7162                                                         namespaces_event->task);
7163         namespaces_event->event_id.tid = perf_event_tid(event,
7164                                                         namespaces_event->task);
7165
7166         perf_output_put(&handle, namespaces_event->event_id);
7167
7168         perf_event__output_id_sample(event, &handle, &sample);
7169
7170         perf_output_end(&handle);
7171 out:
7172         namespaces_event->event_id.header.size = header_size;
7173 }
7174
7175 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7176                                    struct task_struct *task,
7177                                    const struct proc_ns_operations *ns_ops)
7178 {
7179         struct path ns_path;
7180         struct inode *ns_inode;
7181         void *error;
7182
7183         error = ns_get_path(&ns_path, task, ns_ops);
7184         if (!error) {
7185                 ns_inode = ns_path.dentry->d_inode;
7186                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7187                 ns_link_info->ino = ns_inode->i_ino;
7188                 path_put(&ns_path);
7189         }
7190 }
7191
7192 void perf_event_namespaces(struct task_struct *task)
7193 {
7194         struct perf_namespaces_event namespaces_event;
7195         struct perf_ns_link_info *ns_link_info;
7196
7197         if (!atomic_read(&nr_namespaces_events))
7198                 return;
7199
7200         namespaces_event = (struct perf_namespaces_event){
7201                 .task   = task,
7202                 .event_id  = {
7203                         .header = {
7204                                 .type = PERF_RECORD_NAMESPACES,
7205                                 .misc = 0,
7206                                 .size = sizeof(namespaces_event.event_id),
7207                         },
7208                         /* .pid */
7209                         /* .tid */
7210                         .nr_namespaces = NR_NAMESPACES,
7211                         /* .link_info[NR_NAMESPACES] */
7212                 },
7213         };
7214
7215         ns_link_info = namespaces_event.event_id.link_info;
7216
7217         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7218                                task, &mntns_operations);
7219
7220 #ifdef CONFIG_USER_NS
7221         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7222                                task, &userns_operations);
7223 #endif
7224 #ifdef CONFIG_NET_NS
7225         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7226                                task, &netns_operations);
7227 #endif
7228 #ifdef CONFIG_UTS_NS
7229         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7230                                task, &utsns_operations);
7231 #endif
7232 #ifdef CONFIG_IPC_NS
7233         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7234                                task, &ipcns_operations);
7235 #endif
7236 #ifdef CONFIG_PID_NS
7237         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7238                                task, &pidns_operations);
7239 #endif
7240 #ifdef CONFIG_CGROUPS
7241         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7242                                task, &cgroupns_operations);
7243 #endif
7244
7245         perf_iterate_sb(perf_event_namespaces_output,
7246                         &namespaces_event,
7247                         NULL);
7248 }
7249
7250 /*
7251  * mmap tracking
7252  */
7253
7254 struct perf_mmap_event {
7255         struct vm_area_struct   *vma;
7256
7257         const char              *file_name;
7258         int                     file_size;
7259         int                     maj, min;
7260         u64                     ino;
7261         u64                     ino_generation;
7262         u32                     prot, flags;
7263
7264         struct {
7265                 struct perf_event_header        header;
7266
7267                 u32                             pid;
7268                 u32                             tid;
7269                 u64                             start;
7270                 u64                             len;
7271                 u64                             pgoff;
7272         } event_id;
7273 };
7274
7275 static int perf_event_mmap_match(struct perf_event *event,
7276                                  void *data)
7277 {
7278         struct perf_mmap_event *mmap_event = data;
7279         struct vm_area_struct *vma = mmap_event->vma;
7280         int executable = vma->vm_flags & VM_EXEC;
7281
7282         return (!executable && event->attr.mmap_data) ||
7283                (executable && (event->attr.mmap || event->attr.mmap2));
7284 }
7285
7286 static void perf_event_mmap_output(struct perf_event *event,
7287                                    void *data)
7288 {
7289         struct perf_mmap_event *mmap_event = data;
7290         struct perf_output_handle handle;
7291         struct perf_sample_data sample;
7292         int size = mmap_event->event_id.header.size;
7293         u32 type = mmap_event->event_id.header.type;
7294         int ret;
7295
7296         if (!perf_event_mmap_match(event, data))
7297                 return;
7298
7299         if (event->attr.mmap2) {
7300                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7301                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7302                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7303                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7304                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7305                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7306                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7307         }
7308
7309         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7310         ret = perf_output_begin(&handle, event,
7311                                 mmap_event->event_id.header.size);
7312         if (ret)
7313                 goto out;
7314
7315         mmap_event->event_id.pid = perf_event_pid(event, current);
7316         mmap_event->event_id.tid = perf_event_tid(event, current);
7317
7318         perf_output_put(&handle, mmap_event->event_id);
7319
7320         if (event->attr.mmap2) {
7321                 perf_output_put(&handle, mmap_event->maj);
7322                 perf_output_put(&handle, mmap_event->min);
7323                 perf_output_put(&handle, mmap_event->ino);
7324                 perf_output_put(&handle, mmap_event->ino_generation);
7325                 perf_output_put(&handle, mmap_event->prot);
7326                 perf_output_put(&handle, mmap_event->flags);
7327         }
7328
7329         __output_copy(&handle, mmap_event->file_name,
7330                                    mmap_event->file_size);
7331
7332         perf_event__output_id_sample(event, &handle, &sample);
7333
7334         perf_output_end(&handle);
7335 out:
7336         mmap_event->event_id.header.size = size;
7337         mmap_event->event_id.header.type = type;
7338 }
7339
7340 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7341 {
7342         struct vm_area_struct *vma = mmap_event->vma;
7343         struct file *file = vma->vm_file;
7344         int maj = 0, min = 0;
7345         u64 ino = 0, gen = 0;
7346         u32 prot = 0, flags = 0;
7347         unsigned int size;
7348         char tmp[16];
7349         char *buf = NULL;
7350         char *name;
7351
7352         if (vma->vm_flags & VM_READ)
7353                 prot |= PROT_READ;
7354         if (vma->vm_flags & VM_WRITE)
7355                 prot |= PROT_WRITE;
7356         if (vma->vm_flags & VM_EXEC)
7357                 prot |= PROT_EXEC;
7358
7359         if (vma->vm_flags & VM_MAYSHARE)
7360                 flags = MAP_SHARED;
7361         else
7362                 flags = MAP_PRIVATE;
7363
7364         if (vma->vm_flags & VM_DENYWRITE)
7365                 flags |= MAP_DENYWRITE;
7366         if (vma->vm_flags & VM_MAYEXEC)
7367                 flags |= MAP_EXECUTABLE;
7368         if (vma->vm_flags & VM_LOCKED)
7369                 flags |= MAP_LOCKED;
7370         if (vma->vm_flags & VM_HUGETLB)
7371                 flags |= MAP_HUGETLB;
7372
7373         if (file) {
7374                 struct inode *inode;
7375                 dev_t dev;
7376
7377                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7378                 if (!buf) {
7379                         name = "//enomem";
7380                         goto cpy_name;
7381                 }
7382                 /*
7383                  * d_path() works from the end of the rb backwards, so we
7384                  * need to add enough zero bytes after the string to handle
7385                  * the 64bit alignment we do later.
7386                  */
7387                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7388                 if (IS_ERR(name)) {
7389                         name = "//toolong";
7390                         goto cpy_name;
7391                 }
7392                 inode = file_inode(vma->vm_file);
7393                 dev = inode->i_sb->s_dev;
7394                 ino = inode->i_ino;
7395                 gen = inode->i_generation;
7396                 maj = MAJOR(dev);
7397                 min = MINOR(dev);
7398
7399                 goto got_name;
7400         } else {
7401                 if (vma->vm_ops && vma->vm_ops->name) {
7402                         name = (char *) vma->vm_ops->name(vma);
7403                         if (name)
7404                                 goto cpy_name;
7405                 }
7406
7407                 name = (char *)arch_vma_name(vma);
7408                 if (name)
7409                         goto cpy_name;
7410
7411                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7412                                 vma->vm_end >= vma->vm_mm->brk) {
7413                         name = "[heap]";
7414                         goto cpy_name;
7415                 }
7416                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7417                                 vma->vm_end >= vma->vm_mm->start_stack) {
7418                         name = "[stack]";
7419                         goto cpy_name;
7420                 }
7421
7422                 name = "//anon";
7423                 goto cpy_name;
7424         }
7425
7426 cpy_name:
7427         strlcpy(tmp, name, sizeof(tmp));
7428         name = tmp;
7429 got_name:
7430         /*
7431          * Since our buffer works in 8 byte units we need to align our string
7432          * size to a multiple of 8. However, we must guarantee the tail end is
7433          * zero'd out to avoid leaking random bits to userspace.
7434          */
7435         size = strlen(name)+1;
7436         while (!IS_ALIGNED(size, sizeof(u64)))
7437                 name[size++] = '\0';
7438
7439         mmap_event->file_name = name;
7440         mmap_event->file_size = size;
7441         mmap_event->maj = maj;
7442         mmap_event->min = min;
7443         mmap_event->ino = ino;
7444         mmap_event->ino_generation = gen;
7445         mmap_event->prot = prot;
7446         mmap_event->flags = flags;
7447
7448         if (!(vma->vm_flags & VM_EXEC))
7449                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7450
7451         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7452
7453         perf_iterate_sb(perf_event_mmap_output,
7454                        mmap_event,
7455                        NULL);
7456
7457         kfree(buf);
7458 }
7459
7460 /*
7461  * Check whether inode and address range match filter criteria.
7462  */
7463 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7464                                      struct file *file, unsigned long offset,
7465                                      unsigned long size)
7466 {
7467         /* d_inode(NULL) won't be equal to any mapped user-space file */
7468         if (!filter->path.dentry)
7469                 return false;
7470
7471         if (d_inode(filter->path.dentry) != file_inode(file))
7472                 return false;
7473
7474         if (filter->offset > offset + size)
7475                 return false;
7476
7477         if (filter->offset + filter->size < offset)
7478                 return false;
7479
7480         return true;
7481 }
7482
7483 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7484                                         struct vm_area_struct *vma,
7485                                         struct perf_addr_filter_range *fr)
7486 {
7487         unsigned long vma_size = vma->vm_end - vma->vm_start;
7488         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7489         struct file *file = vma->vm_file;
7490
7491         if (!perf_addr_filter_match(filter, file, off, vma_size))
7492                 return false;
7493
7494         if (filter->offset < off) {
7495                 fr->start = vma->vm_start;
7496                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7497         } else {
7498                 fr->start = vma->vm_start + filter->offset - off;
7499                 fr->size = min(vma->vm_end - fr->start, filter->size);
7500         }
7501
7502         return true;
7503 }
7504
7505 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7506 {
7507         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7508         struct vm_area_struct *vma = data;
7509         struct perf_addr_filter *filter;
7510         unsigned int restart = 0, count = 0;
7511         unsigned long flags;
7512
7513         if (!has_addr_filter(event))
7514                 return;
7515
7516         if (!vma->vm_file)
7517                 return;
7518
7519         raw_spin_lock_irqsave(&ifh->lock, flags);
7520         list_for_each_entry(filter, &ifh->list, entry) {
7521                 if (perf_addr_filter_vma_adjust(filter, vma,
7522                                                 &event->addr_filter_ranges[count]))
7523                         restart++;
7524
7525                 count++;
7526         }
7527
7528         if (restart)
7529                 event->addr_filters_gen++;
7530         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7531
7532         if (restart)
7533                 perf_event_stop(event, 1);
7534 }
7535
7536 /*
7537  * Adjust all task's events' filters to the new vma
7538  */
7539 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7540 {
7541         struct perf_event_context *ctx;
7542         int ctxn;
7543
7544         /*
7545          * Data tracing isn't supported yet and as such there is no need
7546          * to keep track of anything that isn't related to executable code:
7547          */
7548         if (!(vma->vm_flags & VM_EXEC))
7549                 return;
7550
7551         rcu_read_lock();
7552         for_each_task_context_nr(ctxn) {
7553                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7554                 if (!ctx)
7555                         continue;
7556
7557                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7558         }
7559         rcu_read_unlock();
7560 }
7561
7562 void perf_event_mmap(struct vm_area_struct *vma)
7563 {
7564         struct perf_mmap_event mmap_event;
7565
7566         if (!atomic_read(&nr_mmap_events))
7567                 return;
7568
7569         mmap_event = (struct perf_mmap_event){
7570                 .vma    = vma,
7571                 /* .file_name */
7572                 /* .file_size */
7573                 .event_id  = {
7574                         .header = {
7575                                 .type = PERF_RECORD_MMAP,
7576                                 .misc = PERF_RECORD_MISC_USER,
7577                                 /* .size */
7578                         },
7579                         /* .pid */
7580                         /* .tid */
7581                         .start  = vma->vm_start,
7582                         .len    = vma->vm_end - vma->vm_start,
7583                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7584                 },
7585                 /* .maj (attr_mmap2 only) */
7586                 /* .min (attr_mmap2 only) */
7587                 /* .ino (attr_mmap2 only) */
7588                 /* .ino_generation (attr_mmap2 only) */
7589                 /* .prot (attr_mmap2 only) */
7590                 /* .flags (attr_mmap2 only) */
7591         };
7592
7593         perf_addr_filters_adjust(vma);
7594         perf_event_mmap_event(&mmap_event);
7595 }
7596
7597 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7598                           unsigned long size, u64 flags)
7599 {
7600         struct perf_output_handle handle;
7601         struct perf_sample_data sample;
7602         struct perf_aux_event {
7603                 struct perf_event_header        header;
7604                 u64                             offset;
7605                 u64                             size;
7606                 u64                             flags;
7607         } rec = {
7608                 .header = {
7609                         .type = PERF_RECORD_AUX,
7610                         .misc = 0,
7611                         .size = sizeof(rec),
7612                 },
7613                 .offset         = head,
7614                 .size           = size,
7615                 .flags          = flags,
7616         };
7617         int ret;
7618
7619         perf_event_header__init_id(&rec.header, &sample, event);
7620         ret = perf_output_begin(&handle, event, rec.header.size);
7621
7622         if (ret)
7623                 return;
7624
7625         perf_output_put(&handle, rec);
7626         perf_event__output_id_sample(event, &handle, &sample);
7627
7628         perf_output_end(&handle);
7629 }
7630
7631 /*
7632  * Lost/dropped samples logging
7633  */
7634 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7635 {
7636         struct perf_output_handle handle;
7637         struct perf_sample_data sample;
7638         int ret;
7639
7640         struct {
7641                 struct perf_event_header        header;
7642                 u64                             lost;
7643         } lost_samples_event = {
7644                 .header = {
7645                         .type = PERF_RECORD_LOST_SAMPLES,
7646                         .misc = 0,
7647                         .size = sizeof(lost_samples_event),
7648                 },
7649                 .lost           = lost,
7650         };
7651
7652         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7653
7654         ret = perf_output_begin(&handle, event,
7655                                 lost_samples_event.header.size);
7656         if (ret)
7657                 return;
7658
7659         perf_output_put(&handle, lost_samples_event);
7660         perf_event__output_id_sample(event, &handle, &sample);
7661         perf_output_end(&handle);
7662 }
7663
7664 /*
7665  * context_switch tracking
7666  */
7667
7668 struct perf_switch_event {
7669         struct task_struct      *task;
7670         struct task_struct      *next_prev;
7671
7672         struct {
7673                 struct perf_event_header        header;
7674                 u32                             next_prev_pid;
7675                 u32                             next_prev_tid;
7676         } event_id;
7677 };
7678
7679 static int perf_event_switch_match(struct perf_event *event)
7680 {
7681         return event->attr.context_switch;
7682 }
7683
7684 static void perf_event_switch_output(struct perf_event *event, void *data)
7685 {
7686         struct perf_switch_event *se = data;
7687         struct perf_output_handle handle;
7688         struct perf_sample_data sample;
7689         int ret;
7690
7691         if (!perf_event_switch_match(event))
7692                 return;
7693
7694         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7695         if (event->ctx->task) {
7696                 se->event_id.header.type = PERF_RECORD_SWITCH;
7697                 se->event_id.header.size = sizeof(se->event_id.header);
7698         } else {
7699                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7700                 se->event_id.header.size = sizeof(se->event_id);
7701                 se->event_id.next_prev_pid =
7702                                         perf_event_pid(event, se->next_prev);
7703                 se->event_id.next_prev_tid =
7704                                         perf_event_tid(event, se->next_prev);
7705         }
7706
7707         perf_event_header__init_id(&se->event_id.header, &sample, event);
7708
7709         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7710         if (ret)
7711                 return;
7712
7713         if (event->ctx->task)
7714                 perf_output_put(&handle, se->event_id.header);
7715         else
7716                 perf_output_put(&handle, se->event_id);
7717
7718         perf_event__output_id_sample(event, &handle, &sample);
7719
7720         perf_output_end(&handle);
7721 }
7722
7723 static void perf_event_switch(struct task_struct *task,
7724                               struct task_struct *next_prev, bool sched_in)
7725 {
7726         struct perf_switch_event switch_event;
7727
7728         /* N.B. caller checks nr_switch_events != 0 */
7729
7730         switch_event = (struct perf_switch_event){
7731                 .task           = task,
7732                 .next_prev      = next_prev,
7733                 .event_id       = {
7734                         .header = {
7735                                 /* .type */
7736                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7737                                 /* .size */
7738                         },
7739                         /* .next_prev_pid */
7740                         /* .next_prev_tid */
7741                 },
7742         };
7743
7744         if (!sched_in && task->state == TASK_RUNNING)
7745                 switch_event.event_id.header.misc |=
7746                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7747
7748         perf_iterate_sb(perf_event_switch_output,
7749                        &switch_event,
7750                        NULL);
7751 }
7752
7753 /*
7754  * IRQ throttle logging
7755  */
7756
7757 static void perf_log_throttle(struct perf_event *event, int enable)
7758 {
7759         struct perf_output_handle handle;
7760         struct perf_sample_data sample;
7761         int ret;
7762
7763         struct {
7764                 struct perf_event_header        header;
7765                 u64                             time;
7766                 u64                             id;
7767                 u64                             stream_id;
7768         } throttle_event = {
7769                 .header = {
7770                         .type = PERF_RECORD_THROTTLE,
7771                         .misc = 0,
7772                         .size = sizeof(throttle_event),
7773                 },
7774                 .time           = perf_event_clock(event),
7775                 .id             = primary_event_id(event),
7776                 .stream_id      = event->id,
7777         };
7778
7779         if (enable)
7780                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7781
7782         perf_event_header__init_id(&throttle_event.header, &sample, event);
7783
7784         ret = perf_output_begin(&handle, event,
7785                                 throttle_event.header.size);
7786         if (ret)
7787                 return;
7788
7789         perf_output_put(&handle, throttle_event);
7790         perf_event__output_id_sample(event, &handle, &sample);
7791         perf_output_end(&handle);
7792 }
7793
7794 void perf_event_itrace_started(struct perf_event *event)
7795 {
7796         event->attach_state |= PERF_ATTACH_ITRACE;
7797 }
7798
7799 static void perf_log_itrace_start(struct perf_event *event)
7800 {
7801         struct perf_output_handle handle;
7802         struct perf_sample_data sample;
7803         struct perf_aux_event {
7804                 struct perf_event_header        header;
7805                 u32                             pid;
7806                 u32                             tid;
7807         } rec;
7808         int ret;
7809
7810         if (event->parent)
7811                 event = event->parent;
7812
7813         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7814             event->attach_state & PERF_ATTACH_ITRACE)
7815                 return;
7816
7817         rec.header.type = PERF_RECORD_ITRACE_START;
7818         rec.header.misc = 0;
7819         rec.header.size = sizeof(rec);
7820         rec.pid = perf_event_pid(event, current);
7821         rec.tid = perf_event_tid(event, current);
7822
7823         perf_event_header__init_id(&rec.header, &sample, event);
7824         ret = perf_output_begin(&handle, event, rec.header.size);
7825
7826         if (ret)
7827                 return;
7828
7829         perf_output_put(&handle, rec);
7830         perf_event__output_id_sample(event, &handle, &sample);
7831
7832         perf_output_end(&handle);
7833 }
7834
7835 static int
7836 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7837 {
7838         struct hw_perf_event *hwc = &event->hw;
7839         int ret = 0;
7840         u64 seq;
7841
7842         seq = __this_cpu_read(perf_throttled_seq);
7843         if (seq != hwc->interrupts_seq) {
7844                 hwc->interrupts_seq = seq;
7845                 hwc->interrupts = 1;
7846         } else {
7847                 hwc->interrupts++;
7848                 if (unlikely(throttle
7849                              && hwc->interrupts >= max_samples_per_tick)) {
7850                         __this_cpu_inc(perf_throttled_count);
7851                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7852                         hwc->interrupts = MAX_INTERRUPTS;
7853                         perf_log_throttle(event, 0);
7854                         ret = 1;
7855                 }
7856         }
7857
7858         if (event->attr.freq) {
7859                 u64 now = perf_clock();
7860                 s64 delta = now - hwc->freq_time_stamp;
7861
7862                 hwc->freq_time_stamp = now;
7863
7864                 if (delta > 0 && delta < 2*TICK_NSEC)
7865                         perf_adjust_period(event, delta, hwc->last_period, true);
7866         }
7867
7868         return ret;
7869 }
7870
7871 int perf_event_account_interrupt(struct perf_event *event)
7872 {
7873         return __perf_event_account_interrupt(event, 1);
7874 }
7875
7876 /*
7877  * Generic event overflow handling, sampling.
7878  */
7879
7880 static int __perf_event_overflow(struct perf_event *event,
7881                                    int throttle, struct perf_sample_data *data,
7882                                    struct pt_regs *regs)
7883 {
7884         int events = atomic_read(&event->event_limit);
7885         int ret = 0;
7886
7887         /*
7888          * Non-sampling counters might still use the PMI to fold short
7889          * hardware counters, ignore those.
7890          */
7891         if (unlikely(!is_sampling_event(event)))
7892                 return 0;
7893
7894         ret = __perf_event_account_interrupt(event, throttle);
7895
7896         /*
7897          * XXX event_limit might not quite work as expected on inherited
7898          * events
7899          */
7900
7901         event->pending_kill = POLL_IN;
7902         if (events && atomic_dec_and_test(&event->event_limit)) {
7903                 ret = 1;
7904                 event->pending_kill = POLL_HUP;
7905
7906                 perf_event_disable_inatomic(event);
7907         }
7908
7909         READ_ONCE(event->overflow_handler)(event, data, regs);
7910
7911         if (*perf_event_fasync(event) && event->pending_kill) {
7912                 event->pending_wakeup = 1;
7913                 irq_work_queue(&event->pending);
7914         }
7915
7916         return ret;
7917 }
7918
7919 int perf_event_overflow(struct perf_event *event,
7920                           struct perf_sample_data *data,
7921                           struct pt_regs *regs)
7922 {
7923         return __perf_event_overflow(event, 1, data, regs);
7924 }
7925
7926 /*
7927  * Generic software event infrastructure
7928  */
7929
7930 struct swevent_htable {
7931         struct swevent_hlist            *swevent_hlist;
7932         struct mutex                    hlist_mutex;
7933         int                             hlist_refcount;
7934
7935         /* Recursion avoidance in each contexts */
7936         int                             recursion[PERF_NR_CONTEXTS];
7937 };
7938
7939 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7940
7941 /*
7942  * We directly increment event->count and keep a second value in
7943  * event->hw.period_left to count intervals. This period event
7944  * is kept in the range [-sample_period, 0] so that we can use the
7945  * sign as trigger.
7946  */
7947
7948 u64 perf_swevent_set_period(struct perf_event *event)
7949 {
7950         struct hw_perf_event *hwc = &event->hw;
7951         u64 period = hwc->last_period;
7952         u64 nr, offset;
7953         s64 old, val;
7954
7955         hwc->last_period = hwc->sample_period;
7956
7957 again:
7958         old = val = local64_read(&hwc->period_left);
7959         if (val < 0)
7960                 return 0;
7961
7962         nr = div64_u64(period + val, period);
7963         offset = nr * period;
7964         val -= offset;
7965         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7966                 goto again;
7967
7968         return nr;
7969 }
7970
7971 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7972                                     struct perf_sample_data *data,
7973                                     struct pt_regs *regs)
7974 {
7975         struct hw_perf_event *hwc = &event->hw;
7976         int throttle = 0;
7977
7978         if (!overflow)
7979                 overflow = perf_swevent_set_period(event);
7980
7981         if (hwc->interrupts == MAX_INTERRUPTS)
7982                 return;
7983
7984         for (; overflow; overflow--) {
7985                 if (__perf_event_overflow(event, throttle,
7986                                             data, regs)) {
7987                         /*
7988                          * We inhibit the overflow from happening when
7989                          * hwc->interrupts == MAX_INTERRUPTS.
7990                          */
7991                         break;
7992                 }
7993                 throttle = 1;
7994         }
7995 }
7996
7997 static void perf_swevent_event(struct perf_event *event, u64 nr,
7998                                struct perf_sample_data *data,
7999                                struct pt_regs *regs)
8000 {
8001         struct hw_perf_event *hwc = &event->hw;
8002
8003         local64_add(nr, &event->count);
8004
8005         if (!regs)
8006                 return;
8007
8008         if (!is_sampling_event(event))
8009                 return;
8010
8011         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8012                 data->period = nr;
8013                 return perf_swevent_overflow(event, 1, data, regs);
8014         } else
8015                 data->period = event->hw.last_period;
8016
8017         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8018                 return perf_swevent_overflow(event, 1, data, regs);
8019
8020         if (local64_add_negative(nr, &hwc->period_left))
8021                 return;
8022
8023         perf_swevent_overflow(event, 0, data, regs);
8024 }
8025
8026 static int perf_exclude_event(struct perf_event *event,
8027                               struct pt_regs *regs)
8028 {
8029         if (event->hw.state & PERF_HES_STOPPED)
8030                 return 1;
8031
8032         if (regs) {
8033                 if (event->attr.exclude_user && user_mode(regs))
8034                         return 1;
8035
8036                 if (event->attr.exclude_kernel && !user_mode(regs))
8037                         return 1;
8038         }
8039
8040         return 0;
8041 }
8042
8043 static int perf_swevent_match(struct perf_event *event,
8044                                 enum perf_type_id type,
8045                                 u32 event_id,
8046                                 struct perf_sample_data *data,
8047                                 struct pt_regs *regs)
8048 {
8049         if (event->attr.type != type)
8050                 return 0;
8051
8052         if (event->attr.config != event_id)
8053                 return 0;
8054
8055         if (perf_exclude_event(event, regs))
8056                 return 0;
8057
8058         return 1;
8059 }
8060
8061 static inline u64 swevent_hash(u64 type, u32 event_id)
8062 {
8063         u64 val = event_id | (type << 32);
8064
8065         return hash_64(val, SWEVENT_HLIST_BITS);
8066 }
8067
8068 static inline struct hlist_head *
8069 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8070 {
8071         u64 hash = swevent_hash(type, event_id);
8072
8073         return &hlist->heads[hash];
8074 }
8075
8076 /* For the read side: events when they trigger */
8077 static inline struct hlist_head *
8078 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8079 {
8080         struct swevent_hlist *hlist;
8081
8082         hlist = rcu_dereference(swhash->swevent_hlist);
8083         if (!hlist)
8084                 return NULL;
8085
8086         return __find_swevent_head(hlist, type, event_id);
8087 }
8088
8089 /* For the event head insertion and removal in the hlist */
8090 static inline struct hlist_head *
8091 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8092 {
8093         struct swevent_hlist *hlist;
8094         u32 event_id = event->attr.config;
8095         u64 type = event->attr.type;
8096
8097         /*
8098          * Event scheduling is always serialized against hlist allocation
8099          * and release. Which makes the protected version suitable here.
8100          * The context lock guarantees that.
8101          */
8102         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8103                                           lockdep_is_held(&event->ctx->lock));
8104         if (!hlist)
8105                 return NULL;
8106
8107         return __find_swevent_head(hlist, type, event_id);
8108 }
8109
8110 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8111                                     u64 nr,
8112                                     struct perf_sample_data *data,
8113                                     struct pt_regs *regs)
8114 {
8115         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8116         struct perf_event *event;
8117         struct hlist_head *head;
8118
8119         rcu_read_lock();
8120         head = find_swevent_head_rcu(swhash, type, event_id);
8121         if (!head)
8122                 goto end;
8123
8124         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8125                 if (perf_swevent_match(event, type, event_id, data, regs))
8126                         perf_swevent_event(event, nr, data, regs);
8127         }
8128 end:
8129         rcu_read_unlock();
8130 }
8131
8132 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8133
8134 int perf_swevent_get_recursion_context(void)
8135 {
8136         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8137
8138         return get_recursion_context(swhash->recursion);
8139 }
8140 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8141
8142 void perf_swevent_put_recursion_context(int rctx)
8143 {
8144         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8145
8146         put_recursion_context(swhash->recursion, rctx);
8147 }
8148
8149 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8150 {
8151         struct perf_sample_data data;
8152
8153         if (WARN_ON_ONCE(!regs))
8154                 return;
8155
8156         perf_sample_data_init(&data, addr, 0);
8157         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8158 }
8159
8160 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8161 {
8162         int rctx;
8163
8164         preempt_disable_notrace();
8165         rctx = perf_swevent_get_recursion_context();
8166         if (unlikely(rctx < 0))
8167                 goto fail;
8168
8169         ___perf_sw_event(event_id, nr, regs, addr);
8170
8171         perf_swevent_put_recursion_context(rctx);
8172 fail:
8173         preempt_enable_notrace();
8174 }
8175
8176 static void perf_swevent_read(struct perf_event *event)
8177 {
8178 }
8179
8180 static int perf_swevent_add(struct perf_event *event, int flags)
8181 {
8182         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8183         struct hw_perf_event *hwc = &event->hw;
8184         struct hlist_head *head;
8185
8186         if (is_sampling_event(event)) {
8187                 hwc->last_period = hwc->sample_period;
8188                 perf_swevent_set_period(event);
8189         }
8190
8191         hwc->state = !(flags & PERF_EF_START);
8192
8193         head = find_swevent_head(swhash, event);
8194         if (WARN_ON_ONCE(!head))
8195                 return -EINVAL;
8196
8197         hlist_add_head_rcu(&event->hlist_entry, head);
8198         perf_event_update_userpage(event);
8199
8200         return 0;
8201 }
8202
8203 static void perf_swevent_del(struct perf_event *event, int flags)
8204 {
8205         hlist_del_rcu(&event->hlist_entry);
8206 }
8207
8208 static void perf_swevent_start(struct perf_event *event, int flags)
8209 {
8210         event->hw.state = 0;
8211 }
8212
8213 static void perf_swevent_stop(struct perf_event *event, int flags)
8214 {
8215         event->hw.state = PERF_HES_STOPPED;
8216 }
8217
8218 /* Deref the hlist from the update side */
8219 static inline struct swevent_hlist *
8220 swevent_hlist_deref(struct swevent_htable *swhash)
8221 {
8222         return rcu_dereference_protected(swhash->swevent_hlist,
8223                                          lockdep_is_held(&swhash->hlist_mutex));
8224 }
8225
8226 static void swevent_hlist_release(struct swevent_htable *swhash)
8227 {
8228         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8229
8230         if (!hlist)
8231                 return;
8232
8233         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8234         kfree_rcu(hlist, rcu_head);
8235 }
8236
8237 static void swevent_hlist_put_cpu(int cpu)
8238 {
8239         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8240
8241         mutex_lock(&swhash->hlist_mutex);
8242
8243         if (!--swhash->hlist_refcount)
8244                 swevent_hlist_release(swhash);
8245
8246         mutex_unlock(&swhash->hlist_mutex);
8247 }
8248
8249 static void swevent_hlist_put(void)
8250 {
8251         int cpu;
8252
8253         for_each_possible_cpu(cpu)
8254                 swevent_hlist_put_cpu(cpu);
8255 }
8256
8257 static int swevent_hlist_get_cpu(int cpu)
8258 {
8259         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8260         int err = 0;
8261
8262         mutex_lock(&swhash->hlist_mutex);
8263         if (!swevent_hlist_deref(swhash) &&
8264             cpumask_test_cpu(cpu, perf_online_mask)) {
8265                 struct swevent_hlist *hlist;
8266
8267                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8268                 if (!hlist) {
8269                         err = -ENOMEM;
8270                         goto exit;
8271                 }
8272                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8273         }
8274         swhash->hlist_refcount++;
8275 exit:
8276         mutex_unlock(&swhash->hlist_mutex);
8277
8278         return err;
8279 }
8280
8281 static int swevent_hlist_get(void)
8282 {
8283         int err, cpu, failed_cpu;
8284
8285         mutex_lock(&pmus_lock);
8286         for_each_possible_cpu(cpu) {
8287                 err = swevent_hlist_get_cpu(cpu);
8288                 if (err) {
8289                         failed_cpu = cpu;
8290                         goto fail;
8291                 }
8292         }
8293         mutex_unlock(&pmus_lock);
8294         return 0;
8295 fail:
8296         for_each_possible_cpu(cpu) {
8297                 if (cpu == failed_cpu)
8298                         break;
8299                 swevent_hlist_put_cpu(cpu);
8300         }
8301         mutex_unlock(&pmus_lock);
8302         return err;
8303 }
8304
8305 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8306
8307 static void sw_perf_event_destroy(struct perf_event *event)
8308 {
8309         u64 event_id = event->attr.config;
8310
8311         WARN_ON(event->parent);
8312
8313         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8314         swevent_hlist_put();
8315 }
8316
8317 static int perf_swevent_init(struct perf_event *event)
8318 {
8319         u64 event_id = event->attr.config;
8320
8321         if (event->attr.type != PERF_TYPE_SOFTWARE)
8322                 return -ENOENT;
8323
8324         /*
8325          * no branch sampling for software events
8326          */
8327         if (has_branch_stack(event))
8328                 return -EOPNOTSUPP;
8329
8330         switch (event_id) {
8331         case PERF_COUNT_SW_CPU_CLOCK:
8332         case PERF_COUNT_SW_TASK_CLOCK:
8333                 return -ENOENT;
8334
8335         default:
8336                 break;
8337         }
8338
8339         if (event_id >= PERF_COUNT_SW_MAX)
8340                 return -ENOENT;
8341
8342         if (!event->parent) {
8343                 int err;
8344
8345                 err = swevent_hlist_get();
8346                 if (err)
8347                         return err;
8348
8349                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8350                 event->destroy = sw_perf_event_destroy;
8351         }
8352
8353         return 0;
8354 }
8355
8356 static struct pmu perf_swevent = {
8357         .task_ctx_nr    = perf_sw_context,
8358
8359         .capabilities   = PERF_PMU_CAP_NO_NMI,
8360
8361         .event_init     = perf_swevent_init,
8362         .add            = perf_swevent_add,
8363         .del            = perf_swevent_del,
8364         .start          = perf_swevent_start,
8365         .stop           = perf_swevent_stop,
8366         .read           = perf_swevent_read,
8367 };
8368
8369 #ifdef CONFIG_EVENT_TRACING
8370
8371 static int perf_tp_filter_match(struct perf_event *event,
8372                                 struct perf_sample_data *data)
8373 {
8374         void *record = data->raw->frag.data;
8375
8376         /* only top level events have filters set */
8377         if (event->parent)
8378                 event = event->parent;
8379
8380         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8381                 return 1;
8382         return 0;
8383 }
8384
8385 static int perf_tp_event_match(struct perf_event *event,
8386                                 struct perf_sample_data *data,
8387                                 struct pt_regs *regs)
8388 {
8389         if (event->hw.state & PERF_HES_STOPPED)
8390                 return 0;
8391         /*
8392          * All tracepoints are from kernel-space.
8393          */
8394         if (event->attr.exclude_kernel)
8395                 return 0;
8396
8397         if (!perf_tp_filter_match(event, data))
8398                 return 0;
8399
8400         return 1;
8401 }
8402
8403 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8404                                struct trace_event_call *call, u64 count,
8405                                struct pt_regs *regs, struct hlist_head *head,
8406                                struct task_struct *task)
8407 {
8408         if (bpf_prog_array_valid(call)) {
8409                 *(struct pt_regs **)raw_data = regs;
8410                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8411                         perf_swevent_put_recursion_context(rctx);
8412                         return;
8413                 }
8414         }
8415         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8416                       rctx, task);
8417 }
8418 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8419
8420 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8421                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8422                    struct task_struct *task)
8423 {
8424         struct perf_sample_data data;
8425         struct perf_event *event;
8426
8427         struct perf_raw_record raw = {
8428                 .frag = {
8429                         .size = entry_size,
8430                         .data = record,
8431                 },
8432         };
8433
8434         perf_sample_data_init(&data, 0, 0);
8435         data.raw = &raw;
8436
8437         perf_trace_buf_update(record, event_type);
8438
8439         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8440                 if (perf_tp_event_match(event, &data, regs))
8441                         perf_swevent_event(event, count, &data, regs);
8442         }
8443
8444         /*
8445          * If we got specified a target task, also iterate its context and
8446          * deliver this event there too.
8447          */
8448         if (task && task != current) {
8449                 struct perf_event_context *ctx;
8450                 struct trace_entry *entry = record;
8451
8452                 rcu_read_lock();
8453                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8454                 if (!ctx)
8455                         goto unlock;
8456
8457                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8458                         if (event->cpu != smp_processor_id())
8459                                 continue;
8460                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8461                                 continue;
8462                         if (event->attr.config != entry->type)
8463                                 continue;
8464                         if (perf_tp_event_match(event, &data, regs))
8465                                 perf_swevent_event(event, count, &data, regs);
8466                 }
8467 unlock:
8468                 rcu_read_unlock();
8469         }
8470
8471         perf_swevent_put_recursion_context(rctx);
8472 }
8473 EXPORT_SYMBOL_GPL(perf_tp_event);
8474
8475 static void tp_perf_event_destroy(struct perf_event *event)
8476 {
8477         perf_trace_destroy(event);
8478 }
8479
8480 static int perf_tp_event_init(struct perf_event *event)
8481 {
8482         int err;
8483
8484         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8485                 return -ENOENT;
8486
8487         /*
8488          * no branch sampling for tracepoint events
8489          */
8490         if (has_branch_stack(event))
8491                 return -EOPNOTSUPP;
8492
8493         err = perf_trace_init(event);
8494         if (err)
8495                 return err;
8496
8497         event->destroy = tp_perf_event_destroy;
8498
8499         return 0;
8500 }
8501
8502 static struct pmu perf_tracepoint = {
8503         .task_ctx_nr    = perf_sw_context,
8504
8505         .event_init     = perf_tp_event_init,
8506         .add            = perf_trace_add,
8507         .del            = perf_trace_del,
8508         .start          = perf_swevent_start,
8509         .stop           = perf_swevent_stop,
8510         .read           = perf_swevent_read,
8511 };
8512
8513 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8514 /*
8515  * Flags in config, used by dynamic PMU kprobe and uprobe
8516  * The flags should match following PMU_FORMAT_ATTR().
8517  *
8518  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8519  *                               if not set, create kprobe/uprobe
8520  */
8521 enum perf_probe_config {
8522         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8523 };
8524
8525 PMU_FORMAT_ATTR(retprobe, "config:0");
8526
8527 static struct attribute *probe_attrs[] = {
8528         &format_attr_retprobe.attr,
8529         NULL,
8530 };
8531
8532 static struct attribute_group probe_format_group = {
8533         .name = "format",
8534         .attrs = probe_attrs,
8535 };
8536
8537 static const struct attribute_group *probe_attr_groups[] = {
8538         &probe_format_group,
8539         NULL,
8540 };
8541 #endif
8542
8543 #ifdef CONFIG_KPROBE_EVENTS
8544 static int perf_kprobe_event_init(struct perf_event *event);
8545 static struct pmu perf_kprobe = {
8546         .task_ctx_nr    = perf_sw_context,
8547         .event_init     = perf_kprobe_event_init,
8548         .add            = perf_trace_add,
8549         .del            = perf_trace_del,
8550         .start          = perf_swevent_start,
8551         .stop           = perf_swevent_stop,
8552         .read           = perf_swevent_read,
8553         .attr_groups    = probe_attr_groups,
8554 };
8555
8556 static int perf_kprobe_event_init(struct perf_event *event)
8557 {
8558         int err;
8559         bool is_retprobe;
8560
8561         if (event->attr.type != perf_kprobe.type)
8562                 return -ENOENT;
8563
8564         if (!capable(CAP_SYS_ADMIN))
8565                 return -EACCES;
8566
8567         /*
8568          * no branch sampling for probe events
8569          */
8570         if (has_branch_stack(event))
8571                 return -EOPNOTSUPP;
8572
8573         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8574         err = perf_kprobe_init(event, is_retprobe);
8575         if (err)
8576                 return err;
8577
8578         event->destroy = perf_kprobe_destroy;
8579
8580         return 0;
8581 }
8582 #endif /* CONFIG_KPROBE_EVENTS */
8583
8584 #ifdef CONFIG_UPROBE_EVENTS
8585 static int perf_uprobe_event_init(struct perf_event *event);
8586 static struct pmu perf_uprobe = {
8587         .task_ctx_nr    = perf_sw_context,
8588         .event_init     = perf_uprobe_event_init,
8589         .add            = perf_trace_add,
8590         .del            = perf_trace_del,
8591         .start          = perf_swevent_start,
8592         .stop           = perf_swevent_stop,
8593         .read           = perf_swevent_read,
8594         .attr_groups    = probe_attr_groups,
8595 };
8596
8597 static int perf_uprobe_event_init(struct perf_event *event)
8598 {
8599         int err;
8600         bool is_retprobe;
8601
8602         if (event->attr.type != perf_uprobe.type)
8603                 return -ENOENT;
8604
8605         if (!capable(CAP_SYS_ADMIN))
8606                 return -EACCES;
8607
8608         /*
8609          * no branch sampling for probe events
8610          */
8611         if (has_branch_stack(event))
8612                 return -EOPNOTSUPP;
8613
8614         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8615         err = perf_uprobe_init(event, is_retprobe);
8616         if (err)
8617                 return err;
8618
8619         event->destroy = perf_uprobe_destroy;
8620
8621         return 0;
8622 }
8623 #endif /* CONFIG_UPROBE_EVENTS */
8624
8625 static inline void perf_tp_register(void)
8626 {
8627         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8628 #ifdef CONFIG_KPROBE_EVENTS
8629         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8630 #endif
8631 #ifdef CONFIG_UPROBE_EVENTS
8632         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8633 #endif
8634 }
8635
8636 static void perf_event_free_filter(struct perf_event *event)
8637 {
8638         ftrace_profile_free_filter(event);
8639 }
8640
8641 #ifdef CONFIG_BPF_SYSCALL
8642 static void bpf_overflow_handler(struct perf_event *event,
8643                                  struct perf_sample_data *data,
8644                                  struct pt_regs *regs)
8645 {
8646         struct bpf_perf_event_data_kern ctx = {
8647                 .data = data,
8648                 .event = event,
8649         };
8650         int ret = 0;
8651
8652         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8653         preempt_disable();
8654         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8655                 goto out;
8656         rcu_read_lock();
8657         ret = BPF_PROG_RUN(event->prog, &ctx);
8658         rcu_read_unlock();
8659 out:
8660         __this_cpu_dec(bpf_prog_active);
8661         preempt_enable();
8662         if (!ret)
8663                 return;
8664
8665         event->orig_overflow_handler(event, data, regs);
8666 }
8667
8668 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8669 {
8670         struct bpf_prog *prog;
8671
8672         if (event->overflow_handler_context)
8673                 /* hw breakpoint or kernel counter */
8674                 return -EINVAL;
8675
8676         if (event->prog)
8677                 return -EEXIST;
8678
8679         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8680         if (IS_ERR(prog))
8681                 return PTR_ERR(prog);
8682
8683         event->prog = prog;
8684         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8685         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8686         return 0;
8687 }
8688
8689 static void perf_event_free_bpf_handler(struct perf_event *event)
8690 {
8691         struct bpf_prog *prog = event->prog;
8692
8693         if (!prog)
8694                 return;
8695
8696         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8697         event->prog = NULL;
8698         bpf_prog_put(prog);
8699 }
8700 #else
8701 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8702 {
8703         return -EOPNOTSUPP;
8704 }
8705 static void perf_event_free_bpf_handler(struct perf_event *event)
8706 {
8707 }
8708 #endif
8709
8710 /*
8711  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8712  * with perf_event_open()
8713  */
8714 static inline bool perf_event_is_tracing(struct perf_event *event)
8715 {
8716         if (event->pmu == &perf_tracepoint)
8717                 return true;
8718 #ifdef CONFIG_KPROBE_EVENTS
8719         if (event->pmu == &perf_kprobe)
8720                 return true;
8721 #endif
8722 #ifdef CONFIG_UPROBE_EVENTS
8723         if (event->pmu == &perf_uprobe)
8724                 return true;
8725 #endif
8726         return false;
8727 }
8728
8729 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8730 {
8731         bool is_kprobe, is_tracepoint, is_syscall_tp;
8732         struct bpf_prog *prog;
8733         int ret;
8734
8735         if (!perf_event_is_tracing(event))
8736                 return perf_event_set_bpf_handler(event, prog_fd);
8737
8738         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8739         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8740         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8741         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8742                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8743                 return -EINVAL;
8744
8745         prog = bpf_prog_get(prog_fd);
8746         if (IS_ERR(prog))
8747                 return PTR_ERR(prog);
8748
8749         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8750             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8751             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8752                 /* valid fd, but invalid bpf program type */
8753                 bpf_prog_put(prog);
8754                 return -EINVAL;
8755         }
8756
8757         /* Kprobe override only works for kprobes, not uprobes. */
8758         if (prog->kprobe_override &&
8759             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8760                 bpf_prog_put(prog);
8761                 return -EINVAL;
8762         }
8763
8764         if (is_tracepoint || is_syscall_tp) {
8765                 int off = trace_event_get_offsets(event->tp_event);
8766
8767                 if (prog->aux->max_ctx_offset > off) {
8768                         bpf_prog_put(prog);
8769                         return -EACCES;
8770                 }
8771         }
8772
8773         ret = perf_event_attach_bpf_prog(event, prog);
8774         if (ret)
8775                 bpf_prog_put(prog);
8776         return ret;
8777 }
8778
8779 static void perf_event_free_bpf_prog(struct perf_event *event)
8780 {
8781         if (!perf_event_is_tracing(event)) {
8782                 perf_event_free_bpf_handler(event);
8783                 return;
8784         }
8785         perf_event_detach_bpf_prog(event);
8786 }
8787
8788 #else
8789
8790 static inline void perf_tp_register(void)
8791 {
8792 }
8793
8794 static void perf_event_free_filter(struct perf_event *event)
8795 {
8796 }
8797
8798 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8799 {
8800         return -ENOENT;
8801 }
8802
8803 static void perf_event_free_bpf_prog(struct perf_event *event)
8804 {
8805 }
8806 #endif /* CONFIG_EVENT_TRACING */
8807
8808 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8809 void perf_bp_event(struct perf_event *bp, void *data)
8810 {
8811         struct perf_sample_data sample;
8812         struct pt_regs *regs = data;
8813
8814         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8815
8816         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8817                 perf_swevent_event(bp, 1, &sample, regs);
8818 }
8819 #endif
8820
8821 /*
8822  * Allocate a new address filter
8823  */
8824 static struct perf_addr_filter *
8825 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8826 {
8827         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8828         struct perf_addr_filter *filter;
8829
8830         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8831         if (!filter)
8832                 return NULL;
8833
8834         INIT_LIST_HEAD(&filter->entry);
8835         list_add_tail(&filter->entry, filters);
8836
8837         return filter;
8838 }
8839
8840 static void free_filters_list(struct list_head *filters)
8841 {
8842         struct perf_addr_filter *filter, *iter;
8843
8844         list_for_each_entry_safe(filter, iter, filters, entry) {
8845                 path_put(&filter->path);
8846                 list_del(&filter->entry);
8847                 kfree(filter);
8848         }
8849 }
8850
8851 /*
8852  * Free existing address filters and optionally install new ones
8853  */
8854 static void perf_addr_filters_splice(struct perf_event *event,
8855                                      struct list_head *head)
8856 {
8857         unsigned long flags;
8858         LIST_HEAD(list);
8859
8860         if (!has_addr_filter(event))
8861                 return;
8862
8863         /* don't bother with children, they don't have their own filters */
8864         if (event->parent)
8865                 return;
8866
8867         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8868
8869         list_splice_init(&event->addr_filters.list, &list);
8870         if (head)
8871                 list_splice(head, &event->addr_filters.list);
8872
8873         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8874
8875         free_filters_list(&list);
8876 }
8877
8878 /*
8879  * Scan through mm's vmas and see if one of them matches the
8880  * @filter; if so, adjust filter's address range.
8881  * Called with mm::mmap_sem down for reading.
8882  */
8883 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
8884                                    struct mm_struct *mm,
8885                                    struct perf_addr_filter_range *fr)
8886 {
8887         struct vm_area_struct *vma;
8888
8889         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8890                 if (!vma->vm_file)
8891                         continue;
8892
8893                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
8894                         return;
8895         }
8896 }
8897
8898 /*
8899  * Update event's address range filters based on the
8900  * task's existing mappings, if any.
8901  */
8902 static void perf_event_addr_filters_apply(struct perf_event *event)
8903 {
8904         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8905         struct task_struct *task = READ_ONCE(event->ctx->task);
8906         struct perf_addr_filter *filter;
8907         struct mm_struct *mm = NULL;
8908         unsigned int count = 0;
8909         unsigned long flags;
8910
8911         /*
8912          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8913          * will stop on the parent's child_mutex that our caller is also holding
8914          */
8915         if (task == TASK_TOMBSTONE)
8916                 return;
8917
8918         if (ifh->nr_file_filters) {
8919                 mm = get_task_mm(event->ctx->task);
8920                 if (!mm)
8921                         goto restart;
8922
8923                 down_read(&mm->mmap_sem);
8924         }
8925
8926         raw_spin_lock_irqsave(&ifh->lock, flags);
8927         list_for_each_entry(filter, &ifh->list, entry) {
8928                 if (filter->path.dentry) {
8929                         /*
8930                          * Adjust base offset if the filter is associated to a
8931                          * binary that needs to be mapped:
8932                          */
8933                         event->addr_filter_ranges[count].start = 0;
8934                         event->addr_filter_ranges[count].size = 0;
8935
8936                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
8937                 } else {
8938                         event->addr_filter_ranges[count].start = filter->offset;
8939                         event->addr_filter_ranges[count].size  = filter->size;
8940                 }
8941
8942                 count++;
8943         }
8944
8945         event->addr_filters_gen++;
8946         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8947
8948         if (ifh->nr_file_filters) {
8949                 up_read(&mm->mmap_sem);
8950
8951                 mmput(mm);
8952         }
8953
8954 restart:
8955         perf_event_stop(event, 1);
8956 }
8957
8958 /*
8959  * Address range filtering: limiting the data to certain
8960  * instruction address ranges. Filters are ioctl()ed to us from
8961  * userspace as ascii strings.
8962  *
8963  * Filter string format:
8964  *
8965  * ACTION RANGE_SPEC
8966  * where ACTION is one of the
8967  *  * "filter": limit the trace to this region
8968  *  * "start": start tracing from this address
8969  *  * "stop": stop tracing at this address/region;
8970  * RANGE_SPEC is
8971  *  * for kernel addresses: <start address>[/<size>]
8972  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8973  *
8974  * if <size> is not specified or is zero, the range is treated as a single
8975  * address; not valid for ACTION=="filter".
8976  */
8977 enum {
8978         IF_ACT_NONE = -1,
8979         IF_ACT_FILTER,
8980         IF_ACT_START,
8981         IF_ACT_STOP,
8982         IF_SRC_FILE,
8983         IF_SRC_KERNEL,
8984         IF_SRC_FILEADDR,
8985         IF_SRC_KERNELADDR,
8986 };
8987
8988 enum {
8989         IF_STATE_ACTION = 0,
8990         IF_STATE_SOURCE,
8991         IF_STATE_END,
8992 };
8993
8994 static const match_table_t if_tokens = {
8995         { IF_ACT_FILTER,        "filter" },
8996         { IF_ACT_START,         "start" },
8997         { IF_ACT_STOP,          "stop" },
8998         { IF_SRC_FILE,          "%u/%u@%s" },
8999         { IF_SRC_KERNEL,        "%u/%u" },
9000         { IF_SRC_FILEADDR,      "%u@%s" },
9001         { IF_SRC_KERNELADDR,    "%u" },
9002         { IF_ACT_NONE,          NULL },
9003 };
9004
9005 /*
9006  * Address filter string parser
9007  */
9008 static int
9009 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9010                              struct list_head *filters)
9011 {
9012         struct perf_addr_filter *filter = NULL;
9013         char *start, *orig, *filename = NULL;
9014         substring_t args[MAX_OPT_ARGS];
9015         int state = IF_STATE_ACTION, token;
9016         unsigned int kernel = 0;
9017         int ret = -EINVAL;
9018
9019         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9020         if (!fstr)
9021                 return -ENOMEM;
9022
9023         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9024                 static const enum perf_addr_filter_action_t actions[] = {
9025                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9026                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9027                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9028                 };
9029                 ret = -EINVAL;
9030
9031                 if (!*start)
9032                         continue;
9033
9034                 /* filter definition begins */
9035                 if (state == IF_STATE_ACTION) {
9036                         filter = perf_addr_filter_new(event, filters);
9037                         if (!filter)
9038                                 goto fail;
9039                 }
9040
9041                 token = match_token(start, if_tokens, args);
9042                 switch (token) {
9043                 case IF_ACT_FILTER:
9044                 case IF_ACT_START:
9045                 case IF_ACT_STOP:
9046                         if (state != IF_STATE_ACTION)
9047                                 goto fail;
9048
9049                         filter->action = actions[token];
9050                         state = IF_STATE_SOURCE;
9051                         break;
9052
9053                 case IF_SRC_KERNELADDR:
9054                 case IF_SRC_KERNEL:
9055                         kernel = 1;
9056
9057                 case IF_SRC_FILEADDR:
9058                 case IF_SRC_FILE:
9059                         if (state != IF_STATE_SOURCE)
9060                                 goto fail;
9061
9062                         *args[0].to = 0;
9063                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9064                         if (ret)
9065                                 goto fail;
9066
9067                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9068                                 *args[1].to = 0;
9069                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9070                                 if (ret)
9071                                         goto fail;
9072                         }
9073
9074                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9075                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9076
9077                                 kfree(filename);
9078                                 filename = match_strdup(&args[fpos]);
9079                                 if (!filename) {
9080                                         ret = -ENOMEM;
9081                                         goto fail;
9082                                 }
9083                         }
9084
9085                         state = IF_STATE_END;
9086                         break;
9087
9088                 default:
9089                         goto fail;
9090                 }
9091
9092                 /*
9093                  * Filter definition is fully parsed, validate and install it.
9094                  * Make sure that it doesn't contradict itself or the event's
9095                  * attribute.
9096                  */
9097                 if (state == IF_STATE_END) {
9098                         ret = -EINVAL;
9099                         if (kernel && event->attr.exclude_kernel)
9100                                 goto fail;
9101
9102                         /*
9103                          * ACTION "filter" must have a non-zero length region
9104                          * specified.
9105                          */
9106                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9107                             !filter->size)
9108                                 goto fail;
9109
9110                         if (!kernel) {
9111                                 if (!filename)
9112                                         goto fail;
9113
9114                                 /*
9115                                  * For now, we only support file-based filters
9116                                  * in per-task events; doing so for CPU-wide
9117                                  * events requires additional context switching
9118                                  * trickery, since same object code will be
9119                                  * mapped at different virtual addresses in
9120                                  * different processes.
9121                                  */
9122                                 ret = -EOPNOTSUPP;
9123                                 if (!event->ctx->task)
9124                                         goto fail;
9125
9126                                 /* look up the path and grab its inode */
9127                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9128                                                 &filter->path);
9129                                 if (ret)
9130                                         goto fail;
9131
9132                                 ret = -EINVAL;
9133                                 if (!filter->path.dentry ||
9134                                     !S_ISREG(d_inode(filter->path.dentry)
9135                                              ->i_mode))
9136                                         goto fail;
9137
9138                                 event->addr_filters.nr_file_filters++;
9139                         }
9140
9141                         /* ready to consume more filters */
9142                         state = IF_STATE_ACTION;
9143                         filter = NULL;
9144                 }
9145         }
9146
9147         if (state != IF_STATE_ACTION)
9148                 goto fail;
9149
9150         kfree(filename);
9151         kfree(orig);
9152
9153         return 0;
9154
9155 fail:
9156         kfree(filename);
9157         free_filters_list(filters);
9158         kfree(orig);
9159
9160         return ret;
9161 }
9162
9163 static int
9164 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9165 {
9166         LIST_HEAD(filters);
9167         int ret;
9168
9169         /*
9170          * Since this is called in perf_ioctl() path, we're already holding
9171          * ctx::mutex.
9172          */
9173         lockdep_assert_held(&event->ctx->mutex);
9174
9175         if (WARN_ON_ONCE(event->parent))
9176                 return -EINVAL;
9177
9178         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9179         if (ret)
9180                 goto fail_clear_files;
9181
9182         ret = event->pmu->addr_filters_validate(&filters);
9183         if (ret)
9184                 goto fail_free_filters;
9185
9186         /* remove existing filters, if any */
9187         perf_addr_filters_splice(event, &filters);
9188
9189         /* install new filters */
9190         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9191
9192         return ret;
9193
9194 fail_free_filters:
9195         free_filters_list(&filters);
9196
9197 fail_clear_files:
9198         event->addr_filters.nr_file_filters = 0;
9199
9200         return ret;
9201 }
9202
9203 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9204 {
9205         int ret = -EINVAL;
9206         char *filter_str;
9207
9208         filter_str = strndup_user(arg, PAGE_SIZE);
9209         if (IS_ERR(filter_str))
9210                 return PTR_ERR(filter_str);
9211
9212 #ifdef CONFIG_EVENT_TRACING
9213         if (perf_event_is_tracing(event)) {
9214                 struct perf_event_context *ctx = event->ctx;
9215
9216                 /*
9217                  * Beware, here be dragons!!
9218                  *
9219                  * the tracepoint muck will deadlock against ctx->mutex, but
9220                  * the tracepoint stuff does not actually need it. So
9221                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9222                  * already have a reference on ctx.
9223                  *
9224                  * This can result in event getting moved to a different ctx,
9225                  * but that does not affect the tracepoint state.
9226                  */
9227                 mutex_unlock(&ctx->mutex);
9228                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9229                 mutex_lock(&ctx->mutex);
9230         } else
9231 #endif
9232         if (has_addr_filter(event))
9233                 ret = perf_event_set_addr_filter(event, filter_str);
9234
9235         kfree(filter_str);
9236         return ret;
9237 }
9238
9239 /*
9240  * hrtimer based swevent callback
9241  */
9242
9243 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9244 {
9245         enum hrtimer_restart ret = HRTIMER_RESTART;
9246         struct perf_sample_data data;
9247         struct pt_regs *regs;
9248         struct perf_event *event;
9249         u64 period;
9250
9251         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9252
9253         if (event->state != PERF_EVENT_STATE_ACTIVE)
9254                 return HRTIMER_NORESTART;
9255
9256         event->pmu->read(event);
9257
9258         perf_sample_data_init(&data, 0, event->hw.last_period);
9259         regs = get_irq_regs();
9260
9261         if (regs && !perf_exclude_event(event, regs)) {
9262                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9263                         if (__perf_event_overflow(event, 1, &data, regs))
9264                                 ret = HRTIMER_NORESTART;
9265         }
9266
9267         period = max_t(u64, 10000, event->hw.sample_period);
9268         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9269
9270         return ret;
9271 }
9272
9273 static void perf_swevent_start_hrtimer(struct perf_event *event)
9274 {
9275         struct hw_perf_event *hwc = &event->hw;
9276         s64 period;
9277
9278         if (!is_sampling_event(event))
9279                 return;
9280
9281         period = local64_read(&hwc->period_left);
9282         if (period) {
9283                 if (period < 0)
9284                         period = 10000;
9285
9286                 local64_set(&hwc->period_left, 0);
9287         } else {
9288                 period = max_t(u64, 10000, hwc->sample_period);
9289         }
9290         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9291                       HRTIMER_MODE_REL_PINNED);
9292 }
9293
9294 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9295 {
9296         struct hw_perf_event *hwc = &event->hw;
9297
9298         if (is_sampling_event(event)) {
9299                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9300                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9301
9302                 hrtimer_cancel(&hwc->hrtimer);
9303         }
9304 }
9305
9306 static void perf_swevent_init_hrtimer(struct perf_event *event)
9307 {
9308         struct hw_perf_event *hwc = &event->hw;
9309
9310         if (!is_sampling_event(event))
9311                 return;
9312
9313         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9314         hwc->hrtimer.function = perf_swevent_hrtimer;
9315
9316         /*
9317          * Since hrtimers have a fixed rate, we can do a static freq->period
9318          * mapping and avoid the whole period adjust feedback stuff.
9319          */
9320         if (event->attr.freq) {
9321                 long freq = event->attr.sample_freq;
9322
9323                 event->attr.sample_period = NSEC_PER_SEC / freq;
9324                 hwc->sample_period = event->attr.sample_period;
9325                 local64_set(&hwc->period_left, hwc->sample_period);
9326                 hwc->last_period = hwc->sample_period;
9327                 event->attr.freq = 0;
9328         }
9329 }
9330
9331 /*
9332  * Software event: cpu wall time clock
9333  */
9334
9335 static void cpu_clock_event_update(struct perf_event *event)
9336 {
9337         s64 prev;
9338         u64 now;
9339
9340         now = local_clock();
9341         prev = local64_xchg(&event->hw.prev_count, now);
9342         local64_add(now - prev, &event->count);
9343 }
9344
9345 static void cpu_clock_event_start(struct perf_event *event, int flags)
9346 {
9347         local64_set(&event->hw.prev_count, local_clock());
9348         perf_swevent_start_hrtimer(event);
9349 }
9350
9351 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9352 {
9353         perf_swevent_cancel_hrtimer(event);
9354         cpu_clock_event_update(event);
9355 }
9356
9357 static int cpu_clock_event_add(struct perf_event *event, int flags)
9358 {
9359         if (flags & PERF_EF_START)
9360                 cpu_clock_event_start(event, flags);
9361         perf_event_update_userpage(event);
9362
9363         return 0;
9364 }
9365
9366 static void cpu_clock_event_del(struct perf_event *event, int flags)
9367 {
9368         cpu_clock_event_stop(event, flags);
9369 }
9370
9371 static void cpu_clock_event_read(struct perf_event *event)
9372 {
9373         cpu_clock_event_update(event);
9374 }
9375
9376 static int cpu_clock_event_init(struct perf_event *event)
9377 {
9378         if (event->attr.type != PERF_TYPE_SOFTWARE)
9379                 return -ENOENT;
9380
9381         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9382                 return -ENOENT;
9383
9384         /*
9385          * no branch sampling for software events
9386          */
9387         if (has_branch_stack(event))
9388                 return -EOPNOTSUPP;
9389
9390         perf_swevent_init_hrtimer(event);
9391
9392         return 0;
9393 }
9394
9395 static struct pmu perf_cpu_clock = {
9396         .task_ctx_nr    = perf_sw_context,
9397
9398         .capabilities   = PERF_PMU_CAP_NO_NMI,
9399
9400         .event_init     = cpu_clock_event_init,
9401         .add            = cpu_clock_event_add,
9402         .del            = cpu_clock_event_del,
9403         .start          = cpu_clock_event_start,
9404         .stop           = cpu_clock_event_stop,
9405         .read           = cpu_clock_event_read,
9406 };
9407
9408 /*
9409  * Software event: task time clock
9410  */
9411
9412 static void task_clock_event_update(struct perf_event *event, u64 now)
9413 {
9414         u64 prev;
9415         s64 delta;
9416
9417         prev = local64_xchg(&event->hw.prev_count, now);
9418         delta = now - prev;
9419         local64_add(delta, &event->count);
9420 }
9421
9422 static void task_clock_event_start(struct perf_event *event, int flags)
9423 {
9424         local64_set(&event->hw.prev_count, event->ctx->time);
9425         perf_swevent_start_hrtimer(event);
9426 }
9427
9428 static void task_clock_event_stop(struct perf_event *event, int flags)
9429 {
9430         perf_swevent_cancel_hrtimer(event);
9431         task_clock_event_update(event, event->ctx->time);
9432 }
9433
9434 static int task_clock_event_add(struct perf_event *event, int flags)
9435 {
9436         if (flags & PERF_EF_START)
9437                 task_clock_event_start(event, flags);
9438         perf_event_update_userpage(event);
9439
9440         return 0;
9441 }
9442
9443 static void task_clock_event_del(struct perf_event *event, int flags)
9444 {
9445         task_clock_event_stop(event, PERF_EF_UPDATE);
9446 }
9447
9448 static void task_clock_event_read(struct perf_event *event)
9449 {
9450         u64 now = perf_clock();
9451         u64 delta = now - event->ctx->timestamp;
9452         u64 time = event->ctx->time + delta;
9453
9454         task_clock_event_update(event, time);
9455 }
9456
9457 static int task_clock_event_init(struct perf_event *event)
9458 {
9459         if (event->attr.type != PERF_TYPE_SOFTWARE)
9460                 return -ENOENT;
9461
9462         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9463                 return -ENOENT;
9464
9465         /*
9466          * no branch sampling for software events
9467          */
9468         if (has_branch_stack(event))
9469                 return -EOPNOTSUPP;
9470
9471         perf_swevent_init_hrtimer(event);
9472
9473         return 0;
9474 }
9475
9476 static struct pmu perf_task_clock = {
9477         .task_ctx_nr    = perf_sw_context,
9478
9479         .capabilities   = PERF_PMU_CAP_NO_NMI,
9480
9481         .event_init     = task_clock_event_init,
9482         .add            = task_clock_event_add,
9483         .del            = task_clock_event_del,
9484         .start          = task_clock_event_start,
9485         .stop           = task_clock_event_stop,
9486         .read           = task_clock_event_read,
9487 };
9488
9489 static void perf_pmu_nop_void(struct pmu *pmu)
9490 {
9491 }
9492
9493 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9494 {
9495 }
9496
9497 static int perf_pmu_nop_int(struct pmu *pmu)
9498 {
9499         return 0;
9500 }
9501
9502 static int perf_event_nop_int(struct perf_event *event, u64 value)
9503 {
9504         return 0;
9505 }
9506
9507 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9508
9509 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9510 {
9511         __this_cpu_write(nop_txn_flags, flags);
9512
9513         if (flags & ~PERF_PMU_TXN_ADD)
9514                 return;
9515
9516         perf_pmu_disable(pmu);
9517 }
9518
9519 static int perf_pmu_commit_txn(struct pmu *pmu)
9520 {
9521         unsigned int flags = __this_cpu_read(nop_txn_flags);
9522
9523         __this_cpu_write(nop_txn_flags, 0);
9524
9525         if (flags & ~PERF_PMU_TXN_ADD)
9526                 return 0;
9527
9528         perf_pmu_enable(pmu);
9529         return 0;
9530 }
9531
9532 static void perf_pmu_cancel_txn(struct pmu *pmu)
9533 {
9534         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9535
9536         __this_cpu_write(nop_txn_flags, 0);
9537
9538         if (flags & ~PERF_PMU_TXN_ADD)
9539                 return;
9540
9541         perf_pmu_enable(pmu);
9542 }
9543
9544 static int perf_event_idx_default(struct perf_event *event)
9545 {
9546         return 0;
9547 }
9548
9549 /*
9550  * Ensures all contexts with the same task_ctx_nr have the same
9551  * pmu_cpu_context too.
9552  */
9553 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9554 {
9555         struct pmu *pmu;
9556
9557         if (ctxn < 0)
9558                 return NULL;
9559
9560         list_for_each_entry(pmu, &pmus, entry) {
9561                 if (pmu->task_ctx_nr == ctxn)
9562                         return pmu->pmu_cpu_context;
9563         }
9564
9565         return NULL;
9566 }
9567
9568 static void free_pmu_context(struct pmu *pmu)
9569 {
9570         /*
9571          * Static contexts such as perf_sw_context have a global lifetime
9572          * and may be shared between different PMUs. Avoid freeing them
9573          * when a single PMU is going away.
9574          */
9575         if (pmu->task_ctx_nr > perf_invalid_context)
9576                 return;
9577
9578         free_percpu(pmu->pmu_cpu_context);
9579 }
9580
9581 /*
9582  * Let userspace know that this PMU supports address range filtering:
9583  */
9584 static ssize_t nr_addr_filters_show(struct device *dev,
9585                                     struct device_attribute *attr,
9586                                     char *page)
9587 {
9588         struct pmu *pmu = dev_get_drvdata(dev);
9589
9590         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9591 }
9592 DEVICE_ATTR_RO(nr_addr_filters);
9593
9594 static struct idr pmu_idr;
9595
9596 static ssize_t
9597 type_show(struct device *dev, struct device_attribute *attr, char *page)
9598 {
9599         struct pmu *pmu = dev_get_drvdata(dev);
9600
9601         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9602 }
9603 static DEVICE_ATTR_RO(type);
9604
9605 static ssize_t
9606 perf_event_mux_interval_ms_show(struct device *dev,
9607                                 struct device_attribute *attr,
9608                                 char *page)
9609 {
9610         struct pmu *pmu = dev_get_drvdata(dev);
9611
9612         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9613 }
9614
9615 static DEFINE_MUTEX(mux_interval_mutex);
9616
9617 static ssize_t
9618 perf_event_mux_interval_ms_store(struct device *dev,
9619                                  struct device_attribute *attr,
9620                                  const char *buf, size_t count)
9621 {
9622         struct pmu *pmu = dev_get_drvdata(dev);
9623         int timer, cpu, ret;
9624
9625         ret = kstrtoint(buf, 0, &timer);
9626         if (ret)
9627                 return ret;
9628
9629         if (timer < 1)
9630                 return -EINVAL;
9631
9632         /* same value, noting to do */
9633         if (timer == pmu->hrtimer_interval_ms)
9634                 return count;
9635
9636         mutex_lock(&mux_interval_mutex);
9637         pmu->hrtimer_interval_ms = timer;
9638
9639         /* update all cpuctx for this PMU */
9640         cpus_read_lock();
9641         for_each_online_cpu(cpu) {
9642                 struct perf_cpu_context *cpuctx;
9643                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9644                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9645
9646                 cpu_function_call(cpu,
9647                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9648         }
9649         cpus_read_unlock();
9650         mutex_unlock(&mux_interval_mutex);
9651
9652         return count;
9653 }
9654 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9655
9656 static struct attribute *pmu_dev_attrs[] = {
9657         &dev_attr_type.attr,
9658         &dev_attr_perf_event_mux_interval_ms.attr,
9659         NULL,
9660 };
9661 ATTRIBUTE_GROUPS(pmu_dev);
9662
9663 static int pmu_bus_running;
9664 static struct bus_type pmu_bus = {
9665         .name           = "event_source",
9666         .dev_groups     = pmu_dev_groups,
9667 };
9668
9669 static void pmu_dev_release(struct device *dev)
9670 {
9671         kfree(dev);
9672 }
9673
9674 static int pmu_dev_alloc(struct pmu *pmu)
9675 {
9676         int ret = -ENOMEM;
9677
9678         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9679         if (!pmu->dev)
9680                 goto out;
9681
9682         pmu->dev->groups = pmu->attr_groups;
9683         device_initialize(pmu->dev);
9684         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9685         if (ret)
9686                 goto free_dev;
9687
9688         dev_set_drvdata(pmu->dev, pmu);
9689         pmu->dev->bus = &pmu_bus;
9690         pmu->dev->release = pmu_dev_release;
9691         ret = device_add(pmu->dev);
9692         if (ret)
9693                 goto free_dev;
9694
9695         /* For PMUs with address filters, throw in an extra attribute: */
9696         if (pmu->nr_addr_filters)
9697                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9698
9699         if (ret)
9700                 goto del_dev;
9701
9702 out:
9703         return ret;
9704
9705 del_dev:
9706         device_del(pmu->dev);
9707
9708 free_dev:
9709         put_device(pmu->dev);
9710         goto out;
9711 }
9712
9713 static struct lock_class_key cpuctx_mutex;
9714 static struct lock_class_key cpuctx_lock;
9715
9716 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9717 {
9718         int cpu, ret;
9719
9720         mutex_lock(&pmus_lock);
9721         ret = -ENOMEM;
9722         pmu->pmu_disable_count = alloc_percpu(int);
9723         if (!pmu->pmu_disable_count)
9724                 goto unlock;
9725
9726         pmu->type = -1;
9727         if (!name)
9728                 goto skip_type;
9729         pmu->name = name;
9730
9731         if (type < 0) {
9732                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9733                 if (type < 0) {
9734                         ret = type;
9735                         goto free_pdc;
9736                 }
9737         }
9738         pmu->type = type;
9739
9740         if (pmu_bus_running) {
9741                 ret = pmu_dev_alloc(pmu);
9742                 if (ret)
9743                         goto free_idr;
9744         }
9745
9746 skip_type:
9747         if (pmu->task_ctx_nr == perf_hw_context) {
9748                 static int hw_context_taken = 0;
9749
9750                 /*
9751                  * Other than systems with heterogeneous CPUs, it never makes
9752                  * sense for two PMUs to share perf_hw_context. PMUs which are
9753                  * uncore must use perf_invalid_context.
9754                  */
9755                 if (WARN_ON_ONCE(hw_context_taken &&
9756                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9757                         pmu->task_ctx_nr = perf_invalid_context;
9758
9759                 hw_context_taken = 1;
9760         }
9761
9762         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9763         if (pmu->pmu_cpu_context)
9764                 goto got_cpu_context;
9765
9766         ret = -ENOMEM;
9767         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9768         if (!pmu->pmu_cpu_context)
9769                 goto free_dev;
9770
9771         for_each_possible_cpu(cpu) {
9772                 struct perf_cpu_context *cpuctx;
9773
9774                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9775                 __perf_event_init_context(&cpuctx->ctx);
9776                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9777                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9778                 cpuctx->ctx.pmu = pmu;
9779                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9780
9781                 __perf_mux_hrtimer_init(cpuctx, cpu);
9782         }
9783
9784 got_cpu_context:
9785         if (!pmu->start_txn) {
9786                 if (pmu->pmu_enable) {
9787                         /*
9788                          * If we have pmu_enable/pmu_disable calls, install
9789                          * transaction stubs that use that to try and batch
9790                          * hardware accesses.
9791                          */
9792                         pmu->start_txn  = perf_pmu_start_txn;
9793                         pmu->commit_txn = perf_pmu_commit_txn;
9794                         pmu->cancel_txn = perf_pmu_cancel_txn;
9795                 } else {
9796                         pmu->start_txn  = perf_pmu_nop_txn;
9797                         pmu->commit_txn = perf_pmu_nop_int;
9798                         pmu->cancel_txn = perf_pmu_nop_void;
9799                 }
9800         }
9801
9802         if (!pmu->pmu_enable) {
9803                 pmu->pmu_enable  = perf_pmu_nop_void;
9804                 pmu->pmu_disable = perf_pmu_nop_void;
9805         }
9806
9807         if (!pmu->check_period)
9808                 pmu->check_period = perf_event_nop_int;
9809
9810         if (!pmu->event_idx)
9811                 pmu->event_idx = perf_event_idx_default;
9812
9813         list_add_rcu(&pmu->entry, &pmus);
9814         atomic_set(&pmu->exclusive_cnt, 0);
9815         ret = 0;
9816 unlock:
9817         mutex_unlock(&pmus_lock);
9818
9819         return ret;
9820
9821 free_dev:
9822         device_del(pmu->dev);
9823         put_device(pmu->dev);
9824
9825 free_idr:
9826         if (pmu->type >= PERF_TYPE_MAX)
9827                 idr_remove(&pmu_idr, pmu->type);
9828
9829 free_pdc:
9830         free_percpu(pmu->pmu_disable_count);
9831         goto unlock;
9832 }
9833 EXPORT_SYMBOL_GPL(perf_pmu_register);
9834
9835 void perf_pmu_unregister(struct pmu *pmu)
9836 {
9837         mutex_lock(&pmus_lock);
9838         list_del_rcu(&pmu->entry);
9839
9840         /*
9841          * We dereference the pmu list under both SRCU and regular RCU, so
9842          * synchronize against both of those.
9843          */
9844         synchronize_srcu(&pmus_srcu);
9845         synchronize_rcu();
9846
9847         free_percpu(pmu->pmu_disable_count);
9848         if (pmu->type >= PERF_TYPE_MAX)
9849                 idr_remove(&pmu_idr, pmu->type);
9850         if (pmu_bus_running) {
9851                 if (pmu->nr_addr_filters)
9852                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9853                 device_del(pmu->dev);
9854                 put_device(pmu->dev);
9855         }
9856         free_pmu_context(pmu);
9857         mutex_unlock(&pmus_lock);
9858 }
9859 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9860
9861 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9862 {
9863         struct perf_event_context *ctx = NULL;
9864         int ret;
9865
9866         if (!try_module_get(pmu->module))
9867                 return -ENODEV;
9868
9869         /*
9870          * A number of pmu->event_init() methods iterate the sibling_list to,
9871          * for example, validate if the group fits on the PMU. Therefore,
9872          * if this is a sibling event, acquire the ctx->mutex to protect
9873          * the sibling_list.
9874          */
9875         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9876                 /*
9877                  * This ctx->mutex can nest when we're called through
9878                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9879                  */
9880                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9881                                                  SINGLE_DEPTH_NESTING);
9882                 BUG_ON(!ctx);
9883         }
9884
9885         event->pmu = pmu;
9886         ret = pmu->event_init(event);
9887
9888         if (ctx)
9889                 perf_event_ctx_unlock(event->group_leader, ctx);
9890
9891         if (ret)
9892                 module_put(pmu->module);
9893
9894         return ret;
9895 }
9896
9897 static struct pmu *perf_init_event(struct perf_event *event)
9898 {
9899         struct pmu *pmu;
9900         int idx;
9901         int ret;
9902
9903         idx = srcu_read_lock(&pmus_srcu);
9904
9905         /* Try parent's PMU first: */
9906         if (event->parent && event->parent->pmu) {
9907                 pmu = event->parent->pmu;
9908                 ret = perf_try_init_event(pmu, event);
9909                 if (!ret)
9910                         goto unlock;
9911         }
9912
9913         rcu_read_lock();
9914         pmu = idr_find(&pmu_idr, event->attr.type);
9915         rcu_read_unlock();
9916         if (pmu) {
9917                 ret = perf_try_init_event(pmu, event);
9918                 if (ret)
9919                         pmu = ERR_PTR(ret);
9920                 goto unlock;
9921         }
9922
9923         list_for_each_entry_rcu(pmu, &pmus, entry) {
9924                 ret = perf_try_init_event(pmu, event);
9925                 if (!ret)
9926                         goto unlock;
9927
9928                 if (ret != -ENOENT) {
9929                         pmu = ERR_PTR(ret);
9930                         goto unlock;
9931                 }
9932         }
9933         pmu = ERR_PTR(-ENOENT);
9934 unlock:
9935         srcu_read_unlock(&pmus_srcu, idx);
9936
9937         return pmu;
9938 }
9939
9940 static void attach_sb_event(struct perf_event *event)
9941 {
9942         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9943
9944         raw_spin_lock(&pel->lock);
9945         list_add_rcu(&event->sb_list, &pel->list);
9946         raw_spin_unlock(&pel->lock);
9947 }
9948
9949 /*
9950  * We keep a list of all !task (and therefore per-cpu) events
9951  * that need to receive side-band records.
9952  *
9953  * This avoids having to scan all the various PMU per-cpu contexts
9954  * looking for them.
9955  */
9956 static void account_pmu_sb_event(struct perf_event *event)
9957 {
9958         if (is_sb_event(event))
9959                 attach_sb_event(event);
9960 }
9961
9962 static void account_event_cpu(struct perf_event *event, int cpu)
9963 {
9964         if (event->parent)
9965                 return;
9966
9967         if (is_cgroup_event(event))
9968                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9969 }
9970
9971 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9972 static void account_freq_event_nohz(void)
9973 {
9974 #ifdef CONFIG_NO_HZ_FULL
9975         /* Lock so we don't race with concurrent unaccount */
9976         spin_lock(&nr_freq_lock);
9977         if (atomic_inc_return(&nr_freq_events) == 1)
9978                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9979         spin_unlock(&nr_freq_lock);
9980 #endif
9981 }
9982
9983 static void account_freq_event(void)
9984 {
9985         if (tick_nohz_full_enabled())
9986                 account_freq_event_nohz();
9987         else
9988                 atomic_inc(&nr_freq_events);
9989 }
9990
9991
9992 static void account_event(struct perf_event *event)
9993 {
9994         bool inc = false;
9995
9996         if (event->parent)
9997                 return;
9998
9999         if (event->attach_state & PERF_ATTACH_TASK)
10000                 inc = true;
10001         if (event->attr.mmap || event->attr.mmap_data)
10002                 atomic_inc(&nr_mmap_events);
10003         if (event->attr.comm)
10004                 atomic_inc(&nr_comm_events);
10005         if (event->attr.namespaces)
10006                 atomic_inc(&nr_namespaces_events);
10007         if (event->attr.task)
10008                 atomic_inc(&nr_task_events);
10009         if (event->attr.freq)
10010                 account_freq_event();
10011         if (event->attr.context_switch) {
10012                 atomic_inc(&nr_switch_events);
10013                 inc = true;
10014         }
10015         if (has_branch_stack(event))
10016                 inc = true;
10017         if (is_cgroup_event(event))
10018                 inc = true;
10019
10020         if (inc) {
10021                 /*
10022                  * We need the mutex here because static_branch_enable()
10023                  * must complete *before* the perf_sched_count increment
10024                  * becomes visible.
10025                  */
10026                 if (atomic_inc_not_zero(&perf_sched_count))
10027                         goto enabled;
10028
10029                 mutex_lock(&perf_sched_mutex);
10030                 if (!atomic_read(&perf_sched_count)) {
10031                         static_branch_enable(&perf_sched_events);
10032                         /*
10033                          * Guarantee that all CPUs observe they key change and
10034                          * call the perf scheduling hooks before proceeding to
10035                          * install events that need them.
10036                          */
10037                         synchronize_sched();
10038                 }
10039                 /*
10040                  * Now that we have waited for the sync_sched(), allow further
10041                  * increments to by-pass the mutex.
10042                  */
10043                 atomic_inc(&perf_sched_count);
10044                 mutex_unlock(&perf_sched_mutex);
10045         }
10046 enabled:
10047
10048         account_event_cpu(event, event->cpu);
10049
10050         account_pmu_sb_event(event);
10051 }
10052
10053 /*
10054  * Allocate and initialize an event structure
10055  */
10056 static struct perf_event *
10057 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10058                  struct task_struct *task,
10059                  struct perf_event *group_leader,
10060                  struct perf_event *parent_event,
10061                  perf_overflow_handler_t overflow_handler,
10062                  void *context, int cgroup_fd)
10063 {
10064         struct pmu *pmu;
10065         struct perf_event *event;
10066         struct hw_perf_event *hwc;
10067         long err = -EINVAL;
10068
10069         if ((unsigned)cpu >= nr_cpu_ids) {
10070                 if (!task || cpu != -1)
10071                         return ERR_PTR(-EINVAL);
10072         }
10073
10074         event = kzalloc(sizeof(*event), GFP_KERNEL);
10075         if (!event)
10076                 return ERR_PTR(-ENOMEM);
10077
10078         /*
10079          * Single events are their own group leaders, with an
10080          * empty sibling list:
10081          */
10082         if (!group_leader)
10083                 group_leader = event;
10084
10085         mutex_init(&event->child_mutex);
10086         INIT_LIST_HEAD(&event->child_list);
10087
10088         INIT_LIST_HEAD(&event->event_entry);
10089         INIT_LIST_HEAD(&event->sibling_list);
10090         INIT_LIST_HEAD(&event->active_list);
10091         init_event_group(event);
10092         INIT_LIST_HEAD(&event->rb_entry);
10093         INIT_LIST_HEAD(&event->active_entry);
10094         INIT_LIST_HEAD(&event->addr_filters.list);
10095         INIT_HLIST_NODE(&event->hlist_entry);
10096
10097
10098         init_waitqueue_head(&event->waitq);
10099         event->pending_disable = -1;
10100         init_irq_work(&event->pending, perf_pending_event);
10101
10102         mutex_init(&event->mmap_mutex);
10103         raw_spin_lock_init(&event->addr_filters.lock);
10104
10105         atomic_long_set(&event->refcount, 1);
10106         event->cpu              = cpu;
10107         event->attr             = *attr;
10108         event->group_leader     = group_leader;
10109         event->pmu              = NULL;
10110         event->oncpu            = -1;
10111
10112         event->parent           = parent_event;
10113
10114         event->ns               = get_pid_ns(task_active_pid_ns(current));
10115         event->id               = atomic64_inc_return(&perf_event_id);
10116
10117         event->state            = PERF_EVENT_STATE_INACTIVE;
10118
10119         if (task) {
10120                 event->attach_state = PERF_ATTACH_TASK;
10121                 /*
10122                  * XXX pmu::event_init needs to know what task to account to
10123                  * and we cannot use the ctx information because we need the
10124                  * pmu before we get a ctx.
10125                  */
10126                 get_task_struct(task);
10127                 event->hw.target = task;
10128         }
10129
10130         event->clock = &local_clock;
10131         if (parent_event)
10132                 event->clock = parent_event->clock;
10133
10134         if (!overflow_handler && parent_event) {
10135                 overflow_handler = parent_event->overflow_handler;
10136                 context = parent_event->overflow_handler_context;
10137 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10138                 if (overflow_handler == bpf_overflow_handler) {
10139                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10140
10141                         if (IS_ERR(prog)) {
10142                                 err = PTR_ERR(prog);
10143                                 goto err_ns;
10144                         }
10145                         event->prog = prog;
10146                         event->orig_overflow_handler =
10147                                 parent_event->orig_overflow_handler;
10148                 }
10149 #endif
10150         }
10151
10152         if (overflow_handler) {
10153                 event->overflow_handler = overflow_handler;
10154                 event->overflow_handler_context = context;
10155         } else if (is_write_backward(event)){
10156                 event->overflow_handler = perf_event_output_backward;
10157                 event->overflow_handler_context = NULL;
10158         } else {
10159                 event->overflow_handler = perf_event_output_forward;
10160                 event->overflow_handler_context = NULL;
10161         }
10162
10163         perf_event__state_init(event);
10164
10165         pmu = NULL;
10166
10167         hwc = &event->hw;
10168         hwc->sample_period = attr->sample_period;
10169         if (attr->freq && attr->sample_freq)
10170                 hwc->sample_period = 1;
10171         hwc->last_period = hwc->sample_period;
10172
10173         local64_set(&hwc->period_left, hwc->sample_period);
10174
10175         /*
10176          * We currently do not support PERF_SAMPLE_READ on inherited events.
10177          * See perf_output_read().
10178          */
10179         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10180                 goto err_ns;
10181
10182         if (!has_branch_stack(event))
10183                 event->attr.branch_sample_type = 0;
10184
10185         if (cgroup_fd != -1) {
10186                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10187                 if (err)
10188                         goto err_ns;
10189         }
10190
10191         pmu = perf_init_event(event);
10192         if (IS_ERR(pmu)) {
10193                 err = PTR_ERR(pmu);
10194                 goto err_ns;
10195         }
10196
10197         err = exclusive_event_init(event);
10198         if (err)
10199                 goto err_pmu;
10200
10201         if (has_addr_filter(event)) {
10202                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10203                                                     sizeof(struct perf_addr_filter_range),
10204                                                     GFP_KERNEL);
10205                 if (!event->addr_filter_ranges) {
10206                         err = -ENOMEM;
10207                         goto err_per_task;
10208                 }
10209
10210                 /*
10211                  * Clone the parent's vma offsets: they are valid until exec()
10212                  * even if the mm is not shared with the parent.
10213                  */
10214                 if (event->parent) {
10215                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10216
10217                         raw_spin_lock_irq(&ifh->lock);
10218                         memcpy(event->addr_filter_ranges,
10219                                event->parent->addr_filter_ranges,
10220                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10221                         raw_spin_unlock_irq(&ifh->lock);
10222                 }
10223
10224                 /* force hw sync on the address filters */
10225                 event->addr_filters_gen = 1;
10226         }
10227
10228         if (!event->parent) {
10229                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10230                         err = get_callchain_buffers(attr->sample_max_stack);
10231                         if (err)
10232                                 goto err_addr_filters;
10233                 }
10234         }
10235
10236         err = security_perf_event_alloc(event);
10237         if (err)
10238                 goto err_callchain_buffer;
10239
10240         /* symmetric to unaccount_event() in _free_event() */
10241         account_event(event);
10242
10243         return event;
10244
10245 err_callchain_buffer:
10246         if (!event->parent) {
10247                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10248                         put_callchain_buffers();
10249         }
10250 err_addr_filters:
10251         kfree(event->addr_filter_ranges);
10252
10253 err_per_task:
10254         exclusive_event_destroy(event);
10255
10256 err_pmu:
10257         if (event->destroy)
10258                 event->destroy(event);
10259         module_put(pmu->module);
10260 err_ns:
10261         if (is_cgroup_event(event))
10262                 perf_detach_cgroup(event);
10263         if (event->ns)
10264                 put_pid_ns(event->ns);
10265         if (event->hw.target)
10266                 put_task_struct(event->hw.target);
10267         kfree(event);
10268
10269         return ERR_PTR(err);
10270 }
10271
10272 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10273                           struct perf_event_attr *attr)
10274 {
10275         u32 size;
10276         int ret;
10277
10278         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10279                 return -EFAULT;
10280
10281         /*
10282          * zero the full structure, so that a short copy will be nice.
10283          */
10284         memset(attr, 0, sizeof(*attr));
10285
10286         ret = get_user(size, &uattr->size);
10287         if (ret)
10288                 return ret;
10289
10290         if (size > PAGE_SIZE)   /* silly large */
10291                 goto err_size;
10292
10293         if (!size)              /* abi compat */
10294                 size = PERF_ATTR_SIZE_VER0;
10295
10296         if (size < PERF_ATTR_SIZE_VER0)
10297                 goto err_size;
10298
10299         /*
10300          * If we're handed a bigger struct than we know of,
10301          * ensure all the unknown bits are 0 - i.e. new
10302          * user-space does not rely on any kernel feature
10303          * extensions we dont know about yet.
10304          */
10305         if (size > sizeof(*attr)) {
10306                 unsigned char __user *addr;
10307                 unsigned char __user *end;
10308                 unsigned char val;
10309
10310                 addr = (void __user *)uattr + sizeof(*attr);
10311                 end  = (void __user *)uattr + size;
10312
10313                 for (; addr < end; addr++) {
10314                         ret = get_user(val, addr);
10315                         if (ret)
10316                                 return ret;
10317                         if (val)
10318                                 goto err_size;
10319                 }
10320                 size = sizeof(*attr);
10321         }
10322
10323         ret = copy_from_user(attr, uattr, size);
10324         if (ret)
10325                 return -EFAULT;
10326
10327         attr->size = size;
10328
10329         if (attr->__reserved_1)
10330                 return -EINVAL;
10331
10332         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10333                 return -EINVAL;
10334
10335         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10336                 return -EINVAL;
10337
10338         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10339                 u64 mask = attr->branch_sample_type;
10340
10341                 /* only using defined bits */
10342                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10343                         return -EINVAL;
10344
10345                 /* at least one branch bit must be set */
10346                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10347                         return -EINVAL;
10348
10349                 /* propagate priv level, when not set for branch */
10350                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10351
10352                         /* exclude_kernel checked on syscall entry */
10353                         if (!attr->exclude_kernel)
10354                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10355
10356                         if (!attr->exclude_user)
10357                                 mask |= PERF_SAMPLE_BRANCH_USER;
10358
10359                         if (!attr->exclude_hv)
10360                                 mask |= PERF_SAMPLE_BRANCH_HV;
10361                         /*
10362                          * adjust user setting (for HW filter setup)
10363                          */
10364                         attr->branch_sample_type = mask;
10365                 }
10366                 /* privileged levels capture (kernel, hv): check permissions */
10367                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10368                         ret = perf_allow_kernel(attr);
10369                         if (ret)
10370                                 return ret;
10371                 }
10372         }
10373
10374         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10375                 ret = perf_reg_validate(attr->sample_regs_user);
10376                 if (ret)
10377                         return ret;
10378         }
10379
10380         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10381                 if (!arch_perf_have_user_stack_dump())
10382                         return -ENOSYS;
10383
10384                 /*
10385                  * We have __u32 type for the size, but so far
10386                  * we can only use __u16 as maximum due to the
10387                  * __u16 sample size limit.
10388                  */
10389                 if (attr->sample_stack_user >= USHRT_MAX)
10390                         return -EINVAL;
10391                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10392                         return -EINVAL;
10393         }
10394
10395         if (!attr->sample_max_stack)
10396                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10397
10398         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10399                 ret = perf_reg_validate(attr->sample_regs_intr);
10400 out:
10401         return ret;
10402
10403 err_size:
10404         put_user(sizeof(*attr), &uattr->size);
10405         ret = -E2BIG;
10406         goto out;
10407 }
10408
10409 static int
10410 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10411 {
10412         struct ring_buffer *rb = NULL;
10413         int ret = -EINVAL;
10414
10415         if (!output_event)
10416                 goto set;
10417
10418         /* don't allow circular references */
10419         if (event == output_event)
10420                 goto out;
10421
10422         /*
10423          * Don't allow cross-cpu buffers
10424          */
10425         if (output_event->cpu != event->cpu)
10426                 goto out;
10427
10428         /*
10429          * If its not a per-cpu rb, it must be the same task.
10430          */
10431         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10432                 goto out;
10433
10434         /*
10435          * Mixing clocks in the same buffer is trouble you don't need.
10436          */
10437         if (output_event->clock != event->clock)
10438                 goto out;
10439
10440         /*
10441          * Either writing ring buffer from beginning or from end.
10442          * Mixing is not allowed.
10443          */
10444         if (is_write_backward(output_event) != is_write_backward(event))
10445                 goto out;
10446
10447         /*
10448          * If both events generate aux data, they must be on the same PMU
10449          */
10450         if (has_aux(event) && has_aux(output_event) &&
10451             event->pmu != output_event->pmu)
10452                 goto out;
10453
10454 set:
10455         mutex_lock(&event->mmap_mutex);
10456         /* Can't redirect output if we've got an active mmap() */
10457         if (atomic_read(&event->mmap_count))
10458                 goto unlock;
10459
10460         if (output_event) {
10461                 /* get the rb we want to redirect to */
10462                 rb = ring_buffer_get(output_event);
10463                 if (!rb)
10464                         goto unlock;
10465         }
10466
10467         ring_buffer_attach(event, rb);
10468
10469         ret = 0;
10470 unlock:
10471         mutex_unlock(&event->mmap_mutex);
10472
10473 out:
10474         return ret;
10475 }
10476
10477 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10478 {
10479         if (b < a)
10480                 swap(a, b);
10481
10482         mutex_lock(a);
10483         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10484 }
10485
10486 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10487 {
10488         bool nmi_safe = false;
10489
10490         switch (clk_id) {
10491         case CLOCK_MONOTONIC:
10492                 event->clock = &ktime_get_mono_fast_ns;
10493                 nmi_safe = true;
10494                 break;
10495
10496         case CLOCK_MONOTONIC_RAW:
10497                 event->clock = &ktime_get_raw_fast_ns;
10498                 nmi_safe = true;
10499                 break;
10500
10501         case CLOCK_REALTIME:
10502                 event->clock = &ktime_get_real_ns;
10503                 break;
10504
10505         case CLOCK_BOOTTIME:
10506                 event->clock = &ktime_get_boot_ns;
10507                 break;
10508
10509         case CLOCK_TAI:
10510                 event->clock = &ktime_get_tai_ns;
10511                 break;
10512
10513         default:
10514                 return -EINVAL;
10515         }
10516
10517         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10518                 return -EINVAL;
10519
10520         return 0;
10521 }
10522
10523 /*
10524  * Variation on perf_event_ctx_lock_nested(), except we take two context
10525  * mutexes.
10526  */
10527 static struct perf_event_context *
10528 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10529                              struct perf_event_context *ctx)
10530 {
10531         struct perf_event_context *gctx;
10532
10533 again:
10534         rcu_read_lock();
10535         gctx = READ_ONCE(group_leader->ctx);
10536         if (!atomic_inc_not_zero(&gctx->refcount)) {
10537                 rcu_read_unlock();
10538                 goto again;
10539         }
10540         rcu_read_unlock();
10541
10542         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10543
10544         if (group_leader->ctx != gctx) {
10545                 mutex_unlock(&ctx->mutex);
10546                 mutex_unlock(&gctx->mutex);
10547                 put_ctx(gctx);
10548                 goto again;
10549         }
10550
10551         return gctx;
10552 }
10553
10554 /**
10555  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10556  *
10557  * @attr_uptr:  event_id type attributes for monitoring/sampling
10558  * @pid:                target pid
10559  * @cpu:                target cpu
10560  * @group_fd:           group leader event fd
10561  */
10562 SYSCALL_DEFINE5(perf_event_open,
10563                 struct perf_event_attr __user *, attr_uptr,
10564                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10565 {
10566         struct perf_event *group_leader = NULL, *output_event = NULL;
10567         struct perf_event *event, *sibling;
10568         struct perf_event_attr attr;
10569         struct perf_event_context *ctx, *uninitialized_var(gctx);
10570         struct file *event_file = NULL;
10571         struct fd group = {NULL, 0};
10572         struct task_struct *task = NULL;
10573         struct pmu *pmu;
10574         int event_fd;
10575         int move_group = 0;
10576         int err;
10577         int f_flags = O_RDWR;
10578         int cgroup_fd = -1;
10579
10580         /* for future expandability... */
10581         if (flags & ~PERF_FLAG_ALL)
10582                 return -EINVAL;
10583
10584         /* Do we allow access to perf_event_open(2) ? */
10585         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
10586         if (err)
10587                 return err;
10588
10589         err = perf_copy_attr(attr_uptr, &attr);
10590         if (err)
10591                 return err;
10592
10593         if (!attr.exclude_kernel) {
10594                 err = perf_allow_kernel(&attr);
10595                 if (err)
10596                         return err;
10597         }
10598
10599         if (attr.namespaces) {
10600                 if (!capable(CAP_SYS_ADMIN))
10601                         return -EACCES;
10602         }
10603
10604         if (attr.freq) {
10605                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10606                         return -EINVAL;
10607         } else {
10608                 if (attr.sample_period & (1ULL << 63))
10609                         return -EINVAL;
10610         }
10611
10612         /* Only privileged users can get physical addresses */
10613         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
10614                 err = perf_allow_kernel(&attr);
10615                 if (err)
10616                         return err;
10617         }
10618
10619         /*
10620          * In cgroup mode, the pid argument is used to pass the fd
10621          * opened to the cgroup directory in cgroupfs. The cpu argument
10622          * designates the cpu on which to monitor threads from that
10623          * cgroup.
10624          */
10625         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10626                 return -EINVAL;
10627
10628         if (flags & PERF_FLAG_FD_CLOEXEC)
10629                 f_flags |= O_CLOEXEC;
10630
10631         event_fd = get_unused_fd_flags(f_flags);
10632         if (event_fd < 0)
10633                 return event_fd;
10634
10635         if (group_fd != -1) {
10636                 err = perf_fget_light(group_fd, &group);
10637                 if (err)
10638                         goto err_fd;
10639                 group_leader = group.file->private_data;
10640                 if (flags & PERF_FLAG_FD_OUTPUT)
10641                         output_event = group_leader;
10642                 if (flags & PERF_FLAG_FD_NO_GROUP)
10643                         group_leader = NULL;
10644         }
10645
10646         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10647                 task = find_lively_task_by_vpid(pid);
10648                 if (IS_ERR(task)) {
10649                         err = PTR_ERR(task);
10650                         goto err_group_fd;
10651                 }
10652         }
10653
10654         if (task && group_leader &&
10655             group_leader->attr.inherit != attr.inherit) {
10656                 err = -EINVAL;
10657                 goto err_task;
10658         }
10659
10660         if (task) {
10661                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10662                 if (err)
10663                         goto err_task;
10664
10665                 /*
10666                  * Reuse ptrace permission checks for now.
10667                  *
10668                  * We must hold cred_guard_mutex across this and any potential
10669                  * perf_install_in_context() call for this new event to
10670                  * serialize against exec() altering our credentials (and the
10671                  * perf_event_exit_task() that could imply).
10672                  */
10673                 err = -EACCES;
10674                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10675                         goto err_cred;
10676         }
10677
10678         if (flags & PERF_FLAG_PID_CGROUP)
10679                 cgroup_fd = pid;
10680
10681         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10682                                  NULL, NULL, cgroup_fd);
10683         if (IS_ERR(event)) {
10684                 err = PTR_ERR(event);
10685                 goto err_cred;
10686         }
10687
10688         if (is_sampling_event(event)) {
10689                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10690                         err = -EOPNOTSUPP;
10691                         goto err_alloc;
10692                 }
10693         }
10694
10695         /*
10696          * Special case software events and allow them to be part of
10697          * any hardware group.
10698          */
10699         pmu = event->pmu;
10700
10701         if (attr.use_clockid) {
10702                 err = perf_event_set_clock(event, attr.clockid);
10703                 if (err)
10704                         goto err_alloc;
10705         }
10706
10707         if (pmu->task_ctx_nr == perf_sw_context)
10708                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10709
10710         if (group_leader) {
10711                 if (is_software_event(event) &&
10712                     !in_software_context(group_leader)) {
10713                         /*
10714                          * If the event is a sw event, but the group_leader
10715                          * is on hw context.
10716                          *
10717                          * Allow the addition of software events to hw
10718                          * groups, this is safe because software events
10719                          * never fail to schedule.
10720                          */
10721                         pmu = group_leader->ctx->pmu;
10722                 } else if (!is_software_event(event) &&
10723                            is_software_event(group_leader) &&
10724                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10725                         /*
10726                          * In case the group is a pure software group, and we
10727                          * try to add a hardware event, move the whole group to
10728                          * the hardware context.
10729                          */
10730                         move_group = 1;
10731                 }
10732         }
10733
10734         /*
10735          * Get the target context (task or percpu):
10736          */
10737         ctx = find_get_context(pmu, task, event);
10738         if (IS_ERR(ctx)) {
10739                 err = PTR_ERR(ctx);
10740                 goto err_alloc;
10741         }
10742
10743         /*
10744          * Look up the group leader (we will attach this event to it):
10745          */
10746         if (group_leader) {
10747                 err = -EINVAL;
10748
10749                 /*
10750                  * Do not allow a recursive hierarchy (this new sibling
10751                  * becoming part of another group-sibling):
10752                  */
10753                 if (group_leader->group_leader != group_leader)
10754                         goto err_context;
10755
10756                 /* All events in a group should have the same clock */
10757                 if (group_leader->clock != event->clock)
10758                         goto err_context;
10759
10760                 /*
10761                  * Make sure we're both events for the same CPU;
10762                  * grouping events for different CPUs is broken; since
10763                  * you can never concurrently schedule them anyhow.
10764                  */
10765                 if (group_leader->cpu != event->cpu)
10766                         goto err_context;
10767
10768                 /*
10769                  * Make sure we're both on the same task, or both
10770                  * per-CPU events.
10771                  */
10772                 if (group_leader->ctx->task != ctx->task)
10773                         goto err_context;
10774
10775                 /*
10776                  * Do not allow to attach to a group in a different task
10777                  * or CPU context. If we're moving SW events, we'll fix
10778                  * this up later, so allow that.
10779                  */
10780                 if (!move_group && group_leader->ctx != ctx)
10781                         goto err_context;
10782
10783                 /*
10784                  * Only a group leader can be exclusive or pinned
10785                  */
10786                 if (attr.exclusive || attr.pinned)
10787                         goto err_context;
10788         }
10789
10790         if (output_event) {
10791                 err = perf_event_set_output(event, output_event);
10792                 if (err)
10793                         goto err_context;
10794         }
10795
10796         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10797                                         f_flags);
10798         if (IS_ERR(event_file)) {
10799                 err = PTR_ERR(event_file);
10800                 event_file = NULL;
10801                 goto err_context;
10802         }
10803
10804         if (move_group) {
10805                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10806
10807                 if (gctx->task == TASK_TOMBSTONE) {
10808                         err = -ESRCH;
10809                         goto err_locked;
10810                 }
10811
10812                 /*
10813                  * Check if we raced against another sys_perf_event_open() call
10814                  * moving the software group underneath us.
10815                  */
10816                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10817                         /*
10818                          * If someone moved the group out from under us, check
10819                          * if this new event wound up on the same ctx, if so
10820                          * its the regular !move_group case, otherwise fail.
10821                          */
10822                         if (gctx != ctx) {
10823                                 err = -EINVAL;
10824                                 goto err_locked;
10825                         } else {
10826                                 perf_event_ctx_unlock(group_leader, gctx);
10827                                 move_group = 0;
10828                         }
10829                 }
10830
10831                 /*
10832                  * Failure to create exclusive events returns -EBUSY.
10833                  */
10834                 err = -EBUSY;
10835                 if (!exclusive_event_installable(group_leader, ctx))
10836                         goto err_locked;
10837
10838                 for_each_sibling_event(sibling, group_leader) {
10839                         if (!exclusive_event_installable(sibling, ctx))
10840                                 goto err_locked;
10841                 }
10842         } else {
10843                 mutex_lock(&ctx->mutex);
10844         }
10845
10846         if (ctx->task == TASK_TOMBSTONE) {
10847                 err = -ESRCH;
10848                 goto err_locked;
10849         }
10850
10851         if (!perf_event_validate_size(event)) {
10852                 err = -E2BIG;
10853                 goto err_locked;
10854         }
10855
10856         if (!task) {
10857                 /*
10858                  * Check if the @cpu we're creating an event for is online.
10859                  *
10860                  * We use the perf_cpu_context::ctx::mutex to serialize against
10861                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10862                  */
10863                 struct perf_cpu_context *cpuctx =
10864                         container_of(ctx, struct perf_cpu_context, ctx);
10865
10866                 if (!cpuctx->online) {
10867                         err = -ENODEV;
10868                         goto err_locked;
10869                 }
10870         }
10871
10872
10873         /*
10874          * Must be under the same ctx::mutex as perf_install_in_context(),
10875          * because we need to serialize with concurrent event creation.
10876          */
10877         if (!exclusive_event_installable(event, ctx)) {
10878                 err = -EBUSY;
10879                 goto err_locked;
10880         }
10881
10882         WARN_ON_ONCE(ctx->parent_ctx);
10883
10884         /*
10885          * This is the point on no return; we cannot fail hereafter. This is
10886          * where we start modifying current state.
10887          */
10888
10889         if (move_group) {
10890                 /*
10891                  * See perf_event_ctx_lock() for comments on the details
10892                  * of swizzling perf_event::ctx.
10893                  */
10894                 perf_remove_from_context(group_leader, 0);
10895                 put_ctx(gctx);
10896
10897                 for_each_sibling_event(sibling, group_leader) {
10898                         perf_remove_from_context(sibling, 0);
10899                         put_ctx(gctx);
10900                 }
10901
10902                 /*
10903                  * Wait for everybody to stop referencing the events through
10904                  * the old lists, before installing it on new lists.
10905                  */
10906                 synchronize_rcu();
10907
10908                 /*
10909                  * Install the group siblings before the group leader.
10910                  *
10911                  * Because a group leader will try and install the entire group
10912                  * (through the sibling list, which is still in-tact), we can
10913                  * end up with siblings installed in the wrong context.
10914                  *
10915                  * By installing siblings first we NO-OP because they're not
10916                  * reachable through the group lists.
10917                  */
10918                 for_each_sibling_event(sibling, group_leader) {
10919                         perf_event__state_init(sibling);
10920                         perf_install_in_context(ctx, sibling, sibling->cpu);
10921                         get_ctx(ctx);
10922                 }
10923
10924                 /*
10925                  * Removing from the context ends up with disabled
10926                  * event. What we want here is event in the initial
10927                  * startup state, ready to be add into new context.
10928                  */
10929                 perf_event__state_init(group_leader);
10930                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10931                 get_ctx(ctx);
10932         }
10933
10934         /*
10935          * Precalculate sample_data sizes; do while holding ctx::mutex such
10936          * that we're serialized against further additions and before
10937          * perf_install_in_context() which is the point the event is active and
10938          * can use these values.
10939          */
10940         perf_event__header_size(event);
10941         perf_event__id_header_size(event);
10942
10943         event->owner = current;
10944
10945         perf_install_in_context(ctx, event, event->cpu);
10946         perf_unpin_context(ctx);
10947
10948         if (move_group)
10949                 perf_event_ctx_unlock(group_leader, gctx);
10950         mutex_unlock(&ctx->mutex);
10951
10952         if (task) {
10953                 mutex_unlock(&task->signal->cred_guard_mutex);
10954                 put_task_struct(task);
10955         }
10956
10957         mutex_lock(&current->perf_event_mutex);
10958         list_add_tail(&event->owner_entry, &current->perf_event_list);
10959         mutex_unlock(&current->perf_event_mutex);
10960
10961         /*
10962          * Drop the reference on the group_event after placing the
10963          * new event on the sibling_list. This ensures destruction
10964          * of the group leader will find the pointer to itself in
10965          * perf_group_detach().
10966          */
10967         fdput(group);
10968         fd_install(event_fd, event_file);
10969         return event_fd;
10970
10971 err_locked:
10972         if (move_group)
10973                 perf_event_ctx_unlock(group_leader, gctx);
10974         mutex_unlock(&ctx->mutex);
10975 /* err_file: */
10976         fput(event_file);
10977 err_context:
10978         perf_unpin_context(ctx);
10979         put_ctx(ctx);
10980 err_alloc:
10981         /*
10982          * If event_file is set, the fput() above will have called ->release()
10983          * and that will take care of freeing the event.
10984          */
10985         if (!event_file)
10986                 free_event(event);
10987 err_cred:
10988         if (task)
10989                 mutex_unlock(&task->signal->cred_guard_mutex);
10990 err_task:
10991         if (task)
10992                 put_task_struct(task);
10993 err_group_fd:
10994         fdput(group);
10995 err_fd:
10996         put_unused_fd(event_fd);
10997         return err;
10998 }
10999
11000 /**
11001  * perf_event_create_kernel_counter
11002  *
11003  * @attr: attributes of the counter to create
11004  * @cpu: cpu in which the counter is bound
11005  * @task: task to profile (NULL for percpu)
11006  */
11007 struct perf_event *
11008 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11009                                  struct task_struct *task,
11010                                  perf_overflow_handler_t overflow_handler,
11011                                  void *context)
11012 {
11013         struct perf_event_context *ctx;
11014         struct perf_event *event;
11015         int err;
11016
11017         /*
11018          * Get the target context (task or percpu):
11019          */
11020
11021         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11022                                  overflow_handler, context, -1);
11023         if (IS_ERR(event)) {
11024                 err = PTR_ERR(event);
11025                 goto err;
11026         }
11027
11028         /* Mark owner so we could distinguish it from user events. */
11029         event->owner = TASK_TOMBSTONE;
11030
11031         ctx = find_get_context(event->pmu, task, event);
11032         if (IS_ERR(ctx)) {
11033                 err = PTR_ERR(ctx);
11034                 goto err_free;
11035         }
11036
11037         WARN_ON_ONCE(ctx->parent_ctx);
11038         mutex_lock(&ctx->mutex);
11039         if (ctx->task == TASK_TOMBSTONE) {
11040                 err = -ESRCH;
11041                 goto err_unlock;
11042         }
11043
11044         if (!task) {
11045                 /*
11046                  * Check if the @cpu we're creating an event for is online.
11047                  *
11048                  * We use the perf_cpu_context::ctx::mutex to serialize against
11049                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11050                  */
11051                 struct perf_cpu_context *cpuctx =
11052                         container_of(ctx, struct perf_cpu_context, ctx);
11053                 if (!cpuctx->online) {
11054                         err = -ENODEV;
11055                         goto err_unlock;
11056                 }
11057         }
11058
11059         if (!exclusive_event_installable(event, ctx)) {
11060                 err = -EBUSY;
11061                 goto err_unlock;
11062         }
11063
11064         perf_install_in_context(ctx, event, event->cpu);
11065         perf_unpin_context(ctx);
11066         mutex_unlock(&ctx->mutex);
11067
11068         return event;
11069
11070 err_unlock:
11071         mutex_unlock(&ctx->mutex);
11072         perf_unpin_context(ctx);
11073         put_ctx(ctx);
11074 err_free:
11075         free_event(event);
11076 err:
11077         return ERR_PTR(err);
11078 }
11079 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11080
11081 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11082 {
11083         struct perf_event_context *src_ctx;
11084         struct perf_event_context *dst_ctx;
11085         struct perf_event *event, *tmp;
11086         LIST_HEAD(events);
11087
11088         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11089         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11090
11091         /*
11092          * See perf_event_ctx_lock() for comments on the details
11093          * of swizzling perf_event::ctx.
11094          */
11095         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11096         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11097                                  event_entry) {
11098                 perf_remove_from_context(event, 0);
11099                 unaccount_event_cpu(event, src_cpu);
11100                 put_ctx(src_ctx);
11101                 list_add(&event->migrate_entry, &events);
11102         }
11103
11104         /*
11105          * Wait for the events to quiesce before re-instating them.
11106          */
11107         synchronize_rcu();
11108
11109         /*
11110          * Re-instate events in 2 passes.
11111          *
11112          * Skip over group leaders and only install siblings on this first
11113          * pass, siblings will not get enabled without a leader, however a
11114          * leader will enable its siblings, even if those are still on the old
11115          * context.
11116          */
11117         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11118                 if (event->group_leader == event)
11119                         continue;
11120
11121                 list_del(&event->migrate_entry);
11122                 if (event->state >= PERF_EVENT_STATE_OFF)
11123                         event->state = PERF_EVENT_STATE_INACTIVE;
11124                 account_event_cpu(event, dst_cpu);
11125                 perf_install_in_context(dst_ctx, event, dst_cpu);
11126                 get_ctx(dst_ctx);
11127         }
11128
11129         /*
11130          * Once all the siblings are setup properly, install the group leaders
11131          * to make it go.
11132          */
11133         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11134                 list_del(&event->migrate_entry);
11135                 if (event->state >= PERF_EVENT_STATE_OFF)
11136                         event->state = PERF_EVENT_STATE_INACTIVE;
11137                 account_event_cpu(event, dst_cpu);
11138                 perf_install_in_context(dst_ctx, event, dst_cpu);
11139                 get_ctx(dst_ctx);
11140         }
11141         mutex_unlock(&dst_ctx->mutex);
11142         mutex_unlock(&src_ctx->mutex);
11143 }
11144 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11145
11146 static void sync_child_event(struct perf_event *child_event,
11147                                struct task_struct *child)
11148 {
11149         struct perf_event *parent_event = child_event->parent;
11150         u64 child_val;
11151
11152         if (child_event->attr.inherit_stat)
11153                 perf_event_read_event(child_event, child);
11154
11155         child_val = perf_event_count(child_event);
11156
11157         /*
11158          * Add back the child's count to the parent's count:
11159          */
11160         atomic64_add(child_val, &parent_event->child_count);
11161         atomic64_add(child_event->total_time_enabled,
11162                      &parent_event->child_total_time_enabled);
11163         atomic64_add(child_event->total_time_running,
11164                      &parent_event->child_total_time_running);
11165 }
11166
11167 static void
11168 perf_event_exit_event(struct perf_event *child_event,
11169                       struct perf_event_context *child_ctx,
11170                       struct task_struct *child)
11171 {
11172         struct perf_event *parent_event = child_event->parent;
11173
11174         /*
11175          * Do not destroy the 'original' grouping; because of the context
11176          * switch optimization the original events could've ended up in a
11177          * random child task.
11178          *
11179          * If we were to destroy the original group, all group related
11180          * operations would cease to function properly after this random
11181          * child dies.
11182          *
11183          * Do destroy all inherited groups, we don't care about those
11184          * and being thorough is better.
11185          */
11186         raw_spin_lock_irq(&child_ctx->lock);
11187         WARN_ON_ONCE(child_ctx->is_active);
11188
11189         if (parent_event)
11190                 perf_group_detach(child_event);
11191         list_del_event(child_event, child_ctx);
11192         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11193         raw_spin_unlock_irq(&child_ctx->lock);
11194
11195         /*
11196          * Parent events are governed by their filedesc, retain them.
11197          */
11198         if (!parent_event) {
11199                 perf_event_wakeup(child_event);
11200                 return;
11201         }
11202         /*
11203          * Child events can be cleaned up.
11204          */
11205
11206         sync_child_event(child_event, child);
11207
11208         /*
11209          * Remove this event from the parent's list
11210          */
11211         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11212         mutex_lock(&parent_event->child_mutex);
11213         list_del_init(&child_event->child_list);
11214         mutex_unlock(&parent_event->child_mutex);
11215
11216         /*
11217          * Kick perf_poll() for is_event_hup().
11218          */
11219         perf_event_wakeup(parent_event);
11220         free_event(child_event);
11221         put_event(parent_event);
11222 }
11223
11224 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11225 {
11226         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11227         struct perf_event *child_event, *next;
11228
11229         WARN_ON_ONCE(child != current);
11230
11231         child_ctx = perf_pin_task_context(child, ctxn);
11232         if (!child_ctx)
11233                 return;
11234
11235         /*
11236          * In order to reduce the amount of tricky in ctx tear-down, we hold
11237          * ctx::mutex over the entire thing. This serializes against almost
11238          * everything that wants to access the ctx.
11239          *
11240          * The exception is sys_perf_event_open() /
11241          * perf_event_create_kernel_count() which does find_get_context()
11242          * without ctx::mutex (it cannot because of the move_group double mutex
11243          * lock thing). See the comments in perf_install_in_context().
11244          */
11245         mutex_lock(&child_ctx->mutex);
11246
11247         /*
11248          * In a single ctx::lock section, de-schedule the events and detach the
11249          * context from the task such that we cannot ever get it scheduled back
11250          * in.
11251          */
11252         raw_spin_lock_irq(&child_ctx->lock);
11253         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11254
11255         /*
11256          * Now that the context is inactive, destroy the task <-> ctx relation
11257          * and mark the context dead.
11258          */
11259         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11260         put_ctx(child_ctx); /* cannot be last */
11261         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11262         put_task_struct(current); /* cannot be last */
11263
11264         clone_ctx = unclone_ctx(child_ctx);
11265         raw_spin_unlock_irq(&child_ctx->lock);
11266
11267         if (clone_ctx)
11268                 put_ctx(clone_ctx);
11269
11270         /*
11271          * Report the task dead after unscheduling the events so that we
11272          * won't get any samples after PERF_RECORD_EXIT. We can however still
11273          * get a few PERF_RECORD_READ events.
11274          */
11275         perf_event_task(child, child_ctx, 0);
11276
11277         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11278                 perf_event_exit_event(child_event, child_ctx, child);
11279
11280         mutex_unlock(&child_ctx->mutex);
11281
11282         put_ctx(child_ctx);
11283 }
11284
11285 /*
11286  * When a child task exits, feed back event values to parent events.
11287  *
11288  * Can be called with cred_guard_mutex held when called from
11289  * install_exec_creds().
11290  */
11291 void perf_event_exit_task(struct task_struct *child)
11292 {
11293         struct perf_event *event, *tmp;
11294         int ctxn;
11295
11296         mutex_lock(&child->perf_event_mutex);
11297         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11298                                  owner_entry) {
11299                 list_del_init(&event->owner_entry);
11300
11301                 /*
11302                  * Ensure the list deletion is visible before we clear
11303                  * the owner, closes a race against perf_release() where
11304                  * we need to serialize on the owner->perf_event_mutex.
11305                  */
11306                 smp_store_release(&event->owner, NULL);
11307         }
11308         mutex_unlock(&child->perf_event_mutex);
11309
11310         for_each_task_context_nr(ctxn)
11311                 perf_event_exit_task_context(child, ctxn);
11312
11313         /*
11314          * The perf_event_exit_task_context calls perf_event_task
11315          * with child's task_ctx, which generates EXIT events for
11316          * child contexts and sets child->perf_event_ctxp[] to NULL.
11317          * At this point we need to send EXIT events to cpu contexts.
11318          */
11319         perf_event_task(child, NULL, 0);
11320 }
11321
11322 static void perf_free_event(struct perf_event *event,
11323                             struct perf_event_context *ctx)
11324 {
11325         struct perf_event *parent = event->parent;
11326
11327         if (WARN_ON_ONCE(!parent))
11328                 return;
11329
11330         mutex_lock(&parent->child_mutex);
11331         list_del_init(&event->child_list);
11332         mutex_unlock(&parent->child_mutex);
11333
11334         put_event(parent);
11335
11336         raw_spin_lock_irq(&ctx->lock);
11337         perf_group_detach(event);
11338         list_del_event(event, ctx);
11339         raw_spin_unlock_irq(&ctx->lock);
11340         free_event(event);
11341 }
11342
11343 /*
11344  * Free a context as created by inheritance by perf_event_init_task() below,
11345  * used by fork() in case of fail.
11346  *
11347  * Even though the task has never lived, the context and events have been
11348  * exposed through the child_list, so we must take care tearing it all down.
11349  */
11350 void perf_event_free_task(struct task_struct *task)
11351 {
11352         struct perf_event_context *ctx;
11353         struct perf_event *event, *tmp;
11354         int ctxn;
11355
11356         for_each_task_context_nr(ctxn) {
11357                 ctx = task->perf_event_ctxp[ctxn];
11358                 if (!ctx)
11359                         continue;
11360
11361                 mutex_lock(&ctx->mutex);
11362                 raw_spin_lock_irq(&ctx->lock);
11363                 /*
11364                  * Destroy the task <-> ctx relation and mark the context dead.
11365                  *
11366                  * This is important because even though the task hasn't been
11367                  * exposed yet the context has been (through child_list).
11368                  */
11369                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11370                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11371                 put_task_struct(task); /* cannot be last */
11372                 raw_spin_unlock_irq(&ctx->lock);
11373
11374                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11375                         perf_free_event(event, ctx);
11376
11377                 mutex_unlock(&ctx->mutex);
11378
11379                 /*
11380                  * perf_event_release_kernel() could've stolen some of our
11381                  * child events and still have them on its free_list. In that
11382                  * case we must wait for these events to have been freed (in
11383                  * particular all their references to this task must've been
11384                  * dropped).
11385                  *
11386                  * Without this copy_process() will unconditionally free this
11387                  * task (irrespective of its reference count) and
11388                  * _free_event()'s put_task_struct(event->hw.target) will be a
11389                  * use-after-free.
11390                  *
11391                  * Wait for all events to drop their context reference.
11392                  */
11393                 wait_var_event(&ctx->refcount, atomic_read(&ctx->refcount) == 1);
11394                 put_ctx(ctx); /* must be last */
11395         }
11396 }
11397
11398 void perf_event_delayed_put(struct task_struct *task)
11399 {
11400         int ctxn;
11401
11402         for_each_task_context_nr(ctxn)
11403                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11404 }
11405
11406 struct file *perf_event_get(unsigned int fd)
11407 {
11408         struct file *file;
11409
11410         file = fget_raw(fd);
11411         if (!file)
11412                 return ERR_PTR(-EBADF);
11413
11414         if (file->f_op != &perf_fops) {
11415                 fput(file);
11416                 return ERR_PTR(-EBADF);
11417         }
11418
11419         return file;
11420 }
11421
11422 const struct perf_event *perf_get_event(struct file *file)
11423 {
11424         if (file->f_op != &perf_fops)
11425                 return ERR_PTR(-EINVAL);
11426
11427         return file->private_data;
11428 }
11429
11430 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11431 {
11432         if (!event)
11433                 return ERR_PTR(-EINVAL);
11434
11435         return &event->attr;
11436 }
11437
11438 /*
11439  * Inherit an event from parent task to child task.
11440  *
11441  * Returns:
11442  *  - valid pointer on success
11443  *  - NULL for orphaned events
11444  *  - IS_ERR() on error
11445  */
11446 static struct perf_event *
11447 inherit_event(struct perf_event *parent_event,
11448               struct task_struct *parent,
11449               struct perf_event_context *parent_ctx,
11450               struct task_struct *child,
11451               struct perf_event *group_leader,
11452               struct perf_event_context *child_ctx)
11453 {
11454         enum perf_event_state parent_state = parent_event->state;
11455         struct perf_event *child_event;
11456         unsigned long flags;
11457
11458         /*
11459          * Instead of creating recursive hierarchies of events,
11460          * we link inherited events back to the original parent,
11461          * which has a filp for sure, which we use as the reference
11462          * count:
11463          */
11464         if (parent_event->parent)
11465                 parent_event = parent_event->parent;
11466
11467         child_event = perf_event_alloc(&parent_event->attr,
11468                                            parent_event->cpu,
11469                                            child,
11470                                            group_leader, parent_event,
11471                                            NULL, NULL, -1);
11472         if (IS_ERR(child_event))
11473                 return child_event;
11474
11475
11476         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11477             !child_ctx->task_ctx_data) {
11478                 struct pmu *pmu = child_event->pmu;
11479
11480                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11481                                                    GFP_KERNEL);
11482                 if (!child_ctx->task_ctx_data) {
11483                         free_event(child_event);
11484                         return ERR_PTR(-ENOMEM);
11485                 }
11486         }
11487
11488         /*
11489          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11490          * must be under the same lock in order to serialize against
11491          * perf_event_release_kernel(), such that either we must observe
11492          * is_orphaned_event() or they will observe us on the child_list.
11493          */
11494         mutex_lock(&parent_event->child_mutex);
11495         if (is_orphaned_event(parent_event) ||
11496             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11497                 mutex_unlock(&parent_event->child_mutex);
11498                 /* task_ctx_data is freed with child_ctx */
11499                 free_event(child_event);
11500                 return NULL;
11501         }
11502
11503         get_ctx(child_ctx);
11504
11505         /*
11506          * Make the child state follow the state of the parent event,
11507          * not its attr.disabled bit.  We hold the parent's mutex,
11508          * so we won't race with perf_event_{en, dis}able_family.
11509          */
11510         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11511                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11512         else
11513                 child_event->state = PERF_EVENT_STATE_OFF;
11514
11515         if (parent_event->attr.freq) {
11516                 u64 sample_period = parent_event->hw.sample_period;
11517                 struct hw_perf_event *hwc = &child_event->hw;
11518
11519                 hwc->sample_period = sample_period;
11520                 hwc->last_period   = sample_period;
11521
11522                 local64_set(&hwc->period_left, sample_period);
11523         }
11524
11525         child_event->ctx = child_ctx;
11526         child_event->overflow_handler = parent_event->overflow_handler;
11527         child_event->overflow_handler_context
11528                 = parent_event->overflow_handler_context;
11529
11530         /*
11531          * Precalculate sample_data sizes
11532          */
11533         perf_event__header_size(child_event);
11534         perf_event__id_header_size(child_event);
11535
11536         /*
11537          * Link it up in the child's context:
11538          */
11539         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11540         add_event_to_ctx(child_event, child_ctx);
11541         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11542
11543         /*
11544          * Link this into the parent event's child list
11545          */
11546         list_add_tail(&child_event->child_list, &parent_event->child_list);
11547         mutex_unlock(&parent_event->child_mutex);
11548
11549         return child_event;
11550 }
11551
11552 /*
11553  * Inherits an event group.
11554  *
11555  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11556  * This matches with perf_event_release_kernel() removing all child events.
11557  *
11558  * Returns:
11559  *  - 0 on success
11560  *  - <0 on error
11561  */
11562 static int inherit_group(struct perf_event *parent_event,
11563               struct task_struct *parent,
11564               struct perf_event_context *parent_ctx,
11565               struct task_struct *child,
11566               struct perf_event_context *child_ctx)
11567 {
11568         struct perf_event *leader;
11569         struct perf_event *sub;
11570         struct perf_event *child_ctr;
11571
11572         leader = inherit_event(parent_event, parent, parent_ctx,
11573                                  child, NULL, child_ctx);
11574         if (IS_ERR(leader))
11575                 return PTR_ERR(leader);
11576         /*
11577          * @leader can be NULL here because of is_orphaned_event(). In this
11578          * case inherit_event() will create individual events, similar to what
11579          * perf_group_detach() would do anyway.
11580          */
11581         for_each_sibling_event(sub, parent_event) {
11582                 child_ctr = inherit_event(sub, parent, parent_ctx,
11583                                             child, leader, child_ctx);
11584                 if (IS_ERR(child_ctr))
11585                         return PTR_ERR(child_ctr);
11586         }
11587         return 0;
11588 }
11589
11590 /*
11591  * Creates the child task context and tries to inherit the event-group.
11592  *
11593  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11594  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11595  * consistent with perf_event_release_kernel() removing all child events.
11596  *
11597  * Returns:
11598  *  - 0 on success
11599  *  - <0 on error
11600  */
11601 static int
11602 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11603                    struct perf_event_context *parent_ctx,
11604                    struct task_struct *child, int ctxn,
11605                    int *inherited_all)
11606 {
11607         int ret;
11608         struct perf_event_context *child_ctx;
11609
11610         if (!event->attr.inherit) {
11611                 *inherited_all = 0;
11612                 return 0;
11613         }
11614
11615         child_ctx = child->perf_event_ctxp[ctxn];
11616         if (!child_ctx) {
11617                 /*
11618                  * This is executed from the parent task context, so
11619                  * inherit events that have been marked for cloning.
11620                  * First allocate and initialize a context for the
11621                  * child.
11622                  */
11623                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11624                 if (!child_ctx)
11625                         return -ENOMEM;
11626
11627                 child->perf_event_ctxp[ctxn] = child_ctx;
11628         }
11629
11630         ret = inherit_group(event, parent, parent_ctx,
11631                             child, child_ctx);
11632
11633         if (ret)
11634                 *inherited_all = 0;
11635
11636         return ret;
11637 }
11638
11639 /*
11640  * Initialize the perf_event context in task_struct
11641  */
11642 static int perf_event_init_context(struct task_struct *child, int ctxn)
11643 {
11644         struct perf_event_context *child_ctx, *parent_ctx;
11645         struct perf_event_context *cloned_ctx;
11646         struct perf_event *event;
11647         struct task_struct *parent = current;
11648         int inherited_all = 1;
11649         unsigned long flags;
11650         int ret = 0;
11651
11652         if (likely(!parent->perf_event_ctxp[ctxn]))
11653                 return 0;
11654
11655         /*
11656          * If the parent's context is a clone, pin it so it won't get
11657          * swapped under us.
11658          */
11659         parent_ctx = perf_pin_task_context(parent, ctxn);
11660         if (!parent_ctx)
11661                 return 0;
11662
11663         /*
11664          * No need to check if parent_ctx != NULL here; since we saw
11665          * it non-NULL earlier, the only reason for it to become NULL
11666          * is if we exit, and since we're currently in the middle of
11667          * a fork we can't be exiting at the same time.
11668          */
11669
11670         /*
11671          * Lock the parent list. No need to lock the child - not PID
11672          * hashed yet and not running, so nobody can access it.
11673          */
11674         mutex_lock(&parent_ctx->mutex);
11675
11676         /*
11677          * We dont have to disable NMIs - we are only looking at
11678          * the list, not manipulating it:
11679          */
11680         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11681                 ret = inherit_task_group(event, parent, parent_ctx,
11682                                          child, ctxn, &inherited_all);
11683                 if (ret)
11684                         goto out_unlock;
11685         }
11686
11687         /*
11688          * We can't hold ctx->lock when iterating the ->flexible_group list due
11689          * to allocations, but we need to prevent rotation because
11690          * rotate_ctx() will change the list from interrupt context.
11691          */
11692         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11693         parent_ctx->rotate_disable = 1;
11694         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11695
11696         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11697                 ret = inherit_task_group(event, parent, parent_ctx,
11698                                          child, ctxn, &inherited_all);
11699                 if (ret)
11700                         goto out_unlock;
11701         }
11702
11703         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11704         parent_ctx->rotate_disable = 0;
11705
11706         child_ctx = child->perf_event_ctxp[ctxn];
11707
11708         if (child_ctx && inherited_all) {
11709                 /*
11710                  * Mark the child context as a clone of the parent
11711                  * context, or of whatever the parent is a clone of.
11712                  *
11713                  * Note that if the parent is a clone, the holding of
11714                  * parent_ctx->lock avoids it from being uncloned.
11715                  */
11716                 cloned_ctx = parent_ctx->parent_ctx;
11717                 if (cloned_ctx) {
11718                         child_ctx->parent_ctx = cloned_ctx;
11719                         child_ctx->parent_gen = parent_ctx->parent_gen;
11720                 } else {
11721                         child_ctx->parent_ctx = parent_ctx;
11722                         child_ctx->parent_gen = parent_ctx->generation;
11723                 }
11724                 get_ctx(child_ctx->parent_ctx);
11725         }
11726
11727         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11728 out_unlock:
11729         mutex_unlock(&parent_ctx->mutex);
11730
11731         perf_unpin_context(parent_ctx);
11732         put_ctx(parent_ctx);
11733
11734         return ret;
11735 }
11736
11737 /*
11738  * Initialize the perf_event context in task_struct
11739  */
11740 int perf_event_init_task(struct task_struct *child)
11741 {
11742         int ctxn, ret;
11743
11744         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11745         mutex_init(&child->perf_event_mutex);
11746         INIT_LIST_HEAD(&child->perf_event_list);
11747
11748         for_each_task_context_nr(ctxn) {
11749                 ret = perf_event_init_context(child, ctxn);
11750                 if (ret) {
11751                         perf_event_free_task(child);
11752                         return ret;
11753                 }
11754         }
11755
11756         return 0;
11757 }
11758
11759 static void __init perf_event_init_all_cpus(void)
11760 {
11761         struct swevent_htable *swhash;
11762         int cpu;
11763
11764         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11765
11766         for_each_possible_cpu(cpu) {
11767                 swhash = &per_cpu(swevent_htable, cpu);
11768                 mutex_init(&swhash->hlist_mutex);
11769                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11770
11771                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11772                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11773
11774 #ifdef CONFIG_CGROUP_PERF
11775                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11776 #endif
11777                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11778         }
11779 }
11780
11781 void perf_swevent_init_cpu(unsigned int cpu)
11782 {
11783         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11784
11785         mutex_lock(&swhash->hlist_mutex);
11786         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11787                 struct swevent_hlist *hlist;
11788
11789                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11790                 WARN_ON(!hlist);
11791                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11792         }
11793         mutex_unlock(&swhash->hlist_mutex);
11794 }
11795
11796 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11797 static void __perf_event_exit_context(void *__info)
11798 {
11799         struct perf_event_context *ctx = __info;
11800         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11801         struct perf_event *event;
11802
11803         raw_spin_lock(&ctx->lock);
11804         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11805         list_for_each_entry(event, &ctx->event_list, event_entry)
11806                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11807         raw_spin_unlock(&ctx->lock);
11808 }
11809
11810 static void perf_event_exit_cpu_context(int cpu)
11811 {
11812         struct perf_cpu_context *cpuctx;
11813         struct perf_event_context *ctx;
11814         struct pmu *pmu;
11815
11816         mutex_lock(&pmus_lock);
11817         list_for_each_entry(pmu, &pmus, entry) {
11818                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11819                 ctx = &cpuctx->ctx;
11820
11821                 mutex_lock(&ctx->mutex);
11822                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11823                 cpuctx->online = 0;
11824                 mutex_unlock(&ctx->mutex);
11825         }
11826         cpumask_clear_cpu(cpu, perf_online_mask);
11827         mutex_unlock(&pmus_lock);
11828 }
11829 #else
11830
11831 static void perf_event_exit_cpu_context(int cpu) { }
11832
11833 #endif
11834
11835 int perf_event_init_cpu(unsigned int cpu)
11836 {
11837         struct perf_cpu_context *cpuctx;
11838         struct perf_event_context *ctx;
11839         struct pmu *pmu;
11840
11841         perf_swevent_init_cpu(cpu);
11842
11843         mutex_lock(&pmus_lock);
11844         cpumask_set_cpu(cpu, perf_online_mask);
11845         list_for_each_entry(pmu, &pmus, entry) {
11846                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11847                 ctx = &cpuctx->ctx;
11848
11849                 mutex_lock(&ctx->mutex);
11850                 cpuctx->online = 1;
11851                 mutex_unlock(&ctx->mutex);
11852         }
11853         mutex_unlock(&pmus_lock);
11854
11855         return 0;
11856 }
11857
11858 int perf_event_exit_cpu(unsigned int cpu)
11859 {
11860         perf_event_exit_cpu_context(cpu);
11861         return 0;
11862 }
11863
11864 static int
11865 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11866 {
11867         int cpu;
11868
11869         for_each_online_cpu(cpu)
11870                 perf_event_exit_cpu(cpu);
11871
11872         return NOTIFY_OK;
11873 }
11874
11875 /*
11876  * Run the perf reboot notifier at the very last possible moment so that
11877  * the generic watchdog code runs as long as possible.
11878  */
11879 static struct notifier_block perf_reboot_notifier = {
11880         .notifier_call = perf_reboot,
11881         .priority = INT_MIN,
11882 };
11883
11884 void __init perf_event_init(void)
11885 {
11886         int ret;
11887
11888         idr_init(&pmu_idr);
11889
11890         perf_event_init_all_cpus();
11891         init_srcu_struct(&pmus_srcu);
11892         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11893         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11894         perf_pmu_register(&perf_task_clock, NULL, -1);
11895         perf_tp_register();
11896         perf_event_init_cpu(smp_processor_id());
11897         register_reboot_notifier(&perf_reboot_notifier);
11898
11899         ret = init_hw_breakpoint();
11900         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11901
11902         /*
11903          * Build time assertion that we keep the data_head at the intended
11904          * location.  IOW, validation we got the __reserved[] size right.
11905          */
11906         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11907                      != 1024);
11908 }
11909
11910 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11911                               char *page)
11912 {
11913         struct perf_pmu_events_attr *pmu_attr =
11914                 container_of(attr, struct perf_pmu_events_attr, attr);
11915
11916         if (pmu_attr->event_str)
11917                 return sprintf(page, "%s\n", pmu_attr->event_str);
11918
11919         return 0;
11920 }
11921 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11922
11923 static int __init perf_event_sysfs_init(void)
11924 {
11925         struct pmu *pmu;
11926         int ret;
11927
11928         mutex_lock(&pmus_lock);
11929
11930         ret = bus_register(&pmu_bus);
11931         if (ret)
11932                 goto unlock;
11933
11934         list_for_each_entry(pmu, &pmus, entry) {
11935                 if (!pmu->name || pmu->type < 0)
11936                         continue;
11937
11938                 ret = pmu_dev_alloc(pmu);
11939                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11940         }
11941         pmu_bus_running = 1;
11942         ret = 0;
11943
11944 unlock:
11945         mutex_unlock(&pmus_lock);
11946
11947         return ret;
11948 }
11949 device_initcall(perf_event_sysfs_init);
11950
11951 #ifdef CONFIG_CGROUP_PERF
11952 static struct cgroup_subsys_state *
11953 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11954 {
11955         struct perf_cgroup *jc;
11956
11957         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11958         if (!jc)
11959                 return ERR_PTR(-ENOMEM);
11960
11961         jc->info = alloc_percpu(struct perf_cgroup_info);
11962         if (!jc->info) {
11963                 kfree(jc);
11964                 return ERR_PTR(-ENOMEM);
11965         }
11966
11967         return &jc->css;
11968 }
11969
11970 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11971 {
11972         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11973
11974         free_percpu(jc->info);
11975         kfree(jc);
11976 }
11977
11978 static int __perf_cgroup_move(void *info)
11979 {
11980         struct task_struct *task = info;
11981         rcu_read_lock();
11982         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11983         rcu_read_unlock();
11984         return 0;
11985 }
11986
11987 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11988 {
11989         struct task_struct *task;
11990         struct cgroup_subsys_state *css;
11991
11992         cgroup_taskset_for_each(task, css, tset)
11993                 task_function_call(task, __perf_cgroup_move, task);
11994 }
11995
11996 struct cgroup_subsys perf_event_cgrp_subsys = {
11997         .css_alloc      = perf_cgroup_css_alloc,
11998         .css_free       = perf_cgroup_css_free,
11999         .attach         = perf_cgroup_attach,
12000         /*
12001          * Implicitly enable on dfl hierarchy so that perf events can
12002          * always be filtered by cgroup2 path as long as perf_event
12003          * controller is not mounted on a legacy hierarchy.
12004          */
12005         .implicit_on_dfl = true,
12006         .threaded       = true,
12007 };
12008 #endif /* CONFIG_CGROUP_PERF */