OSDN Git Service

perf/core: Fix endless multiplex timer
[android-x86/kernel.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 #include <linux/min_heap.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 static atomic_t nr_ksymbol_events __read_mostly;
389 static atomic_t nr_bpf_events __read_mostly;
390
391 static LIST_HEAD(pmus);
392 static DEFINE_MUTEX(pmus_lock);
393 static struct srcu_struct pmus_srcu;
394 static cpumask_var_t perf_online_mask;
395
396 /*
397  * perf event paranoia level:
398  *  -1 - not paranoid at all
399  *   0 - disallow raw tracepoint access for unpriv
400  *   1 - disallow cpu events for unpriv
401  *   2 - disallow kernel profiling for unpriv
402  */
403 int sysctl_perf_event_paranoid __read_mostly = 2;
404
405 /* Minimum for 512 kiB + 1 user control page */
406 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
407
408 /*
409  * max perf event sample rate
410  */
411 #define DEFAULT_MAX_SAMPLE_RATE         100000
412 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
413 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
414
415 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
416
417 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
418 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
419
420 static int perf_sample_allowed_ns __read_mostly =
421         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
422
423 static void update_perf_cpu_limits(void)
424 {
425         u64 tmp = perf_sample_period_ns;
426
427         tmp *= sysctl_perf_cpu_time_max_percent;
428         tmp = div_u64(tmp, 100);
429         if (!tmp)
430                 tmp = 1;
431
432         WRITE_ONCE(perf_sample_allowed_ns, tmp);
433 }
434
435 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
436
437 int perf_proc_update_handler(struct ctl_table *table, int write,
438                 void __user *buffer, size_t *lenp,
439                 loff_t *ppos)
440 {
441         int ret;
442         int perf_cpu = sysctl_perf_cpu_time_max_percent;
443         /*
444          * If throttling is disabled don't allow the write:
445          */
446         if (write && (perf_cpu == 100 || perf_cpu == 0))
447                 return -EINVAL;
448
449         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
450         if (ret || !write)
451                 return ret;
452
453         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
454         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
455         update_perf_cpu_limits();
456
457         return 0;
458 }
459
460 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
461
462 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
463                                 void __user *buffer, size_t *lenp,
464                                 loff_t *ppos)
465 {
466         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
467
468         if (ret || !write)
469                 return ret;
470
471         if (sysctl_perf_cpu_time_max_percent == 100 ||
472             sysctl_perf_cpu_time_max_percent == 0) {
473                 printk(KERN_WARNING
474                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
475                 WRITE_ONCE(perf_sample_allowed_ns, 0);
476         } else {
477                 update_perf_cpu_limits();
478         }
479
480         return 0;
481 }
482
483 /*
484  * perf samples are done in some very critical code paths (NMIs).
485  * If they take too much CPU time, the system can lock up and not
486  * get any real work done.  This will drop the sample rate when
487  * we detect that events are taking too long.
488  */
489 #define NR_ACCUMULATED_SAMPLES 128
490 static DEFINE_PER_CPU(u64, running_sample_length);
491
492 static u64 __report_avg;
493 static u64 __report_allowed;
494
495 static void perf_duration_warn(struct irq_work *w)
496 {
497         printk_ratelimited(KERN_INFO
498                 "perf: interrupt took too long (%lld > %lld), lowering "
499                 "kernel.perf_event_max_sample_rate to %d\n",
500                 __report_avg, __report_allowed,
501                 sysctl_perf_event_sample_rate);
502 }
503
504 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
505
506 void perf_sample_event_took(u64 sample_len_ns)
507 {
508         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
509         u64 running_len;
510         u64 avg_len;
511         u32 max;
512
513         if (max_len == 0)
514                 return;
515
516         /* Decay the counter by 1 average sample. */
517         running_len = __this_cpu_read(running_sample_length);
518         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
519         running_len += sample_len_ns;
520         __this_cpu_write(running_sample_length, running_len);
521
522         /*
523          * Note: this will be biased artifically low until we have
524          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
525          * from having to maintain a count.
526          */
527         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
528         if (avg_len <= max_len)
529                 return;
530
531         __report_avg = avg_len;
532         __report_allowed = max_len;
533
534         /*
535          * Compute a throttle threshold 25% below the current duration.
536          */
537         avg_len += avg_len / 4;
538         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
539         if (avg_len < max)
540                 max /= (u32)avg_len;
541         else
542                 max = 1;
543
544         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
545         WRITE_ONCE(max_samples_per_tick, max);
546
547         sysctl_perf_event_sample_rate = max * HZ;
548         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
549
550         if (!irq_work_queue(&perf_duration_work)) {
551                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
552                              "kernel.perf_event_max_sample_rate to %d\n",
553                              __report_avg, __report_allowed,
554                              sysctl_perf_event_sample_rate);
555         }
556 }
557
558 static atomic64_t perf_event_id;
559
560 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
561                               enum event_type_t event_type);
562
563 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
564                              enum event_type_t event_type,
565                              struct task_struct *task);
566
567 static void update_context_time(struct perf_event_context *ctx);
568 static u64 perf_event_time(struct perf_event *event);
569
570 void __weak perf_event_print_debug(void)        { }
571
572 extern __weak const char *perf_pmu_name(void)
573 {
574         return "pmu";
575 }
576
577 static inline u64 perf_clock(void)
578 {
579         return local_clock();
580 }
581
582 static inline u64 perf_event_clock(struct perf_event *event)
583 {
584         return event->clock();
585 }
586
587 /*
588  * State based event timekeeping...
589  *
590  * The basic idea is to use event->state to determine which (if any) time
591  * fields to increment with the current delta. This means we only need to
592  * update timestamps when we change state or when they are explicitly requested
593  * (read).
594  *
595  * Event groups make things a little more complicated, but not terribly so. The
596  * rules for a group are that if the group leader is OFF the entire group is
597  * OFF, irrespecive of what the group member states are. This results in
598  * __perf_effective_state().
599  *
600  * A futher ramification is that when a group leader flips between OFF and
601  * !OFF, we need to update all group member times.
602  *
603  *
604  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
605  * need to make sure the relevant context time is updated before we try and
606  * update our timestamps.
607  */
608
609 static __always_inline enum perf_event_state
610 __perf_effective_state(struct perf_event *event)
611 {
612         struct perf_event *leader = event->group_leader;
613
614         if (leader->state <= PERF_EVENT_STATE_OFF)
615                 return leader->state;
616
617         return event->state;
618 }
619
620 static __always_inline void
621 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
622 {
623         enum perf_event_state state = __perf_effective_state(event);
624         u64 delta = now - event->tstamp;
625
626         *enabled = event->total_time_enabled;
627         if (state >= PERF_EVENT_STATE_INACTIVE)
628                 *enabled += delta;
629
630         *running = event->total_time_running;
631         if (state >= PERF_EVENT_STATE_ACTIVE)
632                 *running += delta;
633 }
634
635 static void perf_event_update_time(struct perf_event *event)
636 {
637         u64 now = perf_event_time(event);
638
639         __perf_update_times(event, now, &event->total_time_enabled,
640                                         &event->total_time_running);
641         event->tstamp = now;
642 }
643
644 static void perf_event_update_sibling_time(struct perf_event *leader)
645 {
646         struct perf_event *sibling;
647
648         for_each_sibling_event(sibling, leader)
649                 perf_event_update_time(sibling);
650 }
651
652 static void
653 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
654 {
655         if (event->state == state)
656                 return;
657
658         perf_event_update_time(event);
659         /*
660          * If a group leader gets enabled/disabled all its siblings
661          * are affected too.
662          */
663         if ((event->state < 0) ^ (state < 0))
664                 perf_event_update_sibling_time(event);
665
666         WRITE_ONCE(event->state, state);
667 }
668
669 #ifdef CONFIG_CGROUP_PERF
670
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674         struct perf_event_context *ctx = event->ctx;
675         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
676
677         /* @event doesn't care about cgroup */
678         if (!event->cgrp)
679                 return true;
680
681         /* wants specific cgroup scope but @cpuctx isn't associated with any */
682         if (!cpuctx->cgrp)
683                 return false;
684
685         /*
686          * Cgroup scoping is recursive.  An event enabled for a cgroup is
687          * also enabled for all its descendant cgroups.  If @cpuctx's
688          * cgroup is a descendant of @event's (the test covers identity
689          * case), it's a match.
690          */
691         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
692                                     event->cgrp->css.cgroup);
693 }
694
695 static inline void perf_detach_cgroup(struct perf_event *event)
696 {
697         css_put(&event->cgrp->css);
698         event->cgrp = NULL;
699 }
700
701 static inline int is_cgroup_event(struct perf_event *event)
702 {
703         return event->cgrp != NULL;
704 }
705
706 static inline u64 perf_cgroup_event_time(struct perf_event *event)
707 {
708         struct perf_cgroup_info *t;
709
710         t = per_cpu_ptr(event->cgrp->info, event->cpu);
711         return t->time;
712 }
713
714 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
715 {
716         struct perf_cgroup_info *info;
717         u64 now;
718
719         now = perf_clock();
720
721         info = this_cpu_ptr(cgrp->info);
722
723         info->time += now - info->timestamp;
724         info->timestamp = now;
725 }
726
727 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
728 {
729         struct perf_cgroup *cgrp = cpuctx->cgrp;
730         struct cgroup_subsys_state *css;
731
732         if (cgrp) {
733                 for (css = &cgrp->css; css; css = css->parent) {
734                         cgrp = container_of(css, struct perf_cgroup, css);
735                         __update_cgrp_time(cgrp);
736                 }
737         }
738 }
739
740 static inline void update_cgrp_time_from_event(struct perf_event *event)
741 {
742         struct perf_cgroup *cgrp;
743
744         /*
745          * ensure we access cgroup data only when needed and
746          * when we know the cgroup is pinned (css_get)
747          */
748         if (!is_cgroup_event(event))
749                 return;
750
751         cgrp = perf_cgroup_from_task(current, event->ctx);
752         /*
753          * Do not update time when cgroup is not active
754          */
755         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
756                 __update_cgrp_time(event->cgrp);
757 }
758
759 static inline void
760 perf_cgroup_set_timestamp(struct task_struct *task,
761                           struct perf_event_context *ctx)
762 {
763         struct perf_cgroup *cgrp;
764         struct perf_cgroup_info *info;
765         struct cgroup_subsys_state *css;
766
767         /*
768          * ctx->lock held by caller
769          * ensure we do not access cgroup data
770          * unless we have the cgroup pinned (css_get)
771          */
772         if (!task || !ctx->nr_cgroups)
773                 return;
774
775         cgrp = perf_cgroup_from_task(task, ctx);
776
777         for (css = &cgrp->css; css; css = css->parent) {
778                 cgrp = container_of(css, struct perf_cgroup, css);
779                 info = this_cpu_ptr(cgrp->info);
780                 info->timestamp = ctx->timestamp;
781         }
782 }
783
784 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
785
786 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
787 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
788
789 /*
790  * reschedule events based on the cgroup constraint of task.
791  *
792  * mode SWOUT : schedule out everything
793  * mode SWIN : schedule in based on cgroup for next
794  */
795 static void perf_cgroup_switch(struct task_struct *task, int mode)
796 {
797         struct perf_cpu_context *cpuctx;
798         struct list_head *list;
799         unsigned long flags;
800
801         /*
802          * Disable interrupts and preemption to avoid this CPU's
803          * cgrp_cpuctx_entry to change under us.
804          */
805         local_irq_save(flags);
806
807         list = this_cpu_ptr(&cgrp_cpuctx_list);
808         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
809                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
810
811                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
812                 perf_pmu_disable(cpuctx->ctx.pmu);
813
814                 if (mode & PERF_CGROUP_SWOUT) {
815                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
816                         /*
817                          * must not be done before ctxswout due
818                          * to event_filter_match() in event_sched_out()
819                          */
820                         cpuctx->cgrp = NULL;
821                 }
822
823                 if (mode & PERF_CGROUP_SWIN) {
824                         WARN_ON_ONCE(cpuctx->cgrp);
825                         /*
826                          * set cgrp before ctxsw in to allow
827                          * event_filter_match() to not have to pass
828                          * task around
829                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
830                          * because cgorup events are only per-cpu
831                          */
832                         cpuctx->cgrp = perf_cgroup_from_task(task,
833                                                              &cpuctx->ctx);
834                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
835                 }
836                 perf_pmu_enable(cpuctx->ctx.pmu);
837                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
838         }
839
840         local_irq_restore(flags);
841 }
842
843 static inline void perf_cgroup_sched_out(struct task_struct *task,
844                                          struct task_struct *next)
845 {
846         struct perf_cgroup *cgrp1;
847         struct perf_cgroup *cgrp2 = NULL;
848
849         rcu_read_lock();
850         /*
851          * we come here when we know perf_cgroup_events > 0
852          * we do not need to pass the ctx here because we know
853          * we are holding the rcu lock
854          */
855         cgrp1 = perf_cgroup_from_task(task, NULL);
856         cgrp2 = perf_cgroup_from_task(next, NULL);
857
858         /*
859          * only schedule out current cgroup events if we know
860          * that we are switching to a different cgroup. Otherwise,
861          * do no touch the cgroup events.
862          */
863         if (cgrp1 != cgrp2)
864                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
865
866         rcu_read_unlock();
867 }
868
869 static inline void perf_cgroup_sched_in(struct task_struct *prev,
870                                         struct task_struct *task)
871 {
872         struct perf_cgroup *cgrp1;
873         struct perf_cgroup *cgrp2 = NULL;
874
875         rcu_read_lock();
876         /*
877          * we come here when we know perf_cgroup_events > 0
878          * we do not need to pass the ctx here because we know
879          * we are holding the rcu lock
880          */
881         cgrp1 = perf_cgroup_from_task(task, NULL);
882         cgrp2 = perf_cgroup_from_task(prev, NULL);
883
884         /*
885          * only need to schedule in cgroup events if we are changing
886          * cgroup during ctxsw. Cgroup events were not scheduled
887          * out of ctxsw out if that was not the case.
888          */
889         if (cgrp1 != cgrp2)
890                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
891
892         rcu_read_unlock();
893 }
894
895 static int perf_cgroup_ensure_storage(struct perf_event *event,
896                                 struct cgroup_subsys_state *css)
897 {
898         struct perf_cpu_context *cpuctx;
899         struct perf_event **storage;
900         int cpu, heap_size, ret = 0;
901
902         /*
903          * Allow storage to have sufficent space for an iterator for each
904          * possibly nested cgroup plus an iterator for events with no cgroup.
905          */
906         for (heap_size = 1; css; css = css->parent)
907                 heap_size++;
908
909         for_each_possible_cpu(cpu) {
910                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
911                 if (heap_size <= cpuctx->heap_size)
912                         continue;
913
914                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
915                                        GFP_KERNEL, cpu_to_node(cpu));
916                 if (!storage) {
917                         ret = -ENOMEM;
918                         break;
919                 }
920
921                 raw_spin_lock_irq(&cpuctx->ctx.lock);
922                 if (cpuctx->heap_size < heap_size) {
923                         swap(cpuctx->heap, storage);
924                         if (storage == cpuctx->heap_default)
925                                 storage = NULL;
926                         cpuctx->heap_size = heap_size;
927                 }
928                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
929
930                 kfree(storage);
931         }
932
933         return ret;
934 }
935
936 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
937                                       struct perf_event_attr *attr,
938                                       struct perf_event *group_leader)
939 {
940         struct perf_cgroup *cgrp;
941         struct cgroup_subsys_state *css;
942         struct fd f = fdget(fd);
943         int ret = 0;
944
945         if (!f.file)
946                 return -EBADF;
947
948         css = css_tryget_online_from_dir(f.file->f_path.dentry,
949                                          &perf_event_cgrp_subsys);
950         if (IS_ERR(css)) {
951                 ret = PTR_ERR(css);
952                 goto out;
953         }
954
955         ret = perf_cgroup_ensure_storage(event, css);
956         if (ret)
957                 goto out;
958
959         cgrp = container_of(css, struct perf_cgroup, css);
960         event->cgrp = cgrp;
961
962         /*
963          * all events in a group must monitor
964          * the same cgroup because a task belongs
965          * to only one perf cgroup at a time
966          */
967         if (group_leader && group_leader->cgrp != cgrp) {
968                 perf_detach_cgroup(event);
969                 ret = -EINVAL;
970         }
971 out:
972         fdput(f);
973         return ret;
974 }
975
976 static inline void
977 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
978 {
979         struct perf_cgroup_info *t;
980         t = per_cpu_ptr(event->cgrp->info, event->cpu);
981         event->shadow_ctx_time = now - t->timestamp;
982 }
983
984 /*
985  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
986  * cleared when last cgroup event is removed.
987  */
988 static inline void
989 list_update_cgroup_event(struct perf_event *event,
990                          struct perf_event_context *ctx, bool add)
991 {
992         struct perf_cpu_context *cpuctx;
993         struct list_head *cpuctx_entry;
994
995         if (!is_cgroup_event(event))
996                 return;
997
998         /*
999          * Because cgroup events are always per-cpu events,
1000          * @ctx == &cpuctx->ctx.
1001          */
1002         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1003
1004         /*
1005          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006          * matching the event's cgroup, we must do this for every new event,
1007          * because if the first would mismatch, the second would not try again
1008          * and we would leave cpuctx->cgrp unset.
1009          */
1010         if (add && !cpuctx->cgrp) {
1011                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012
1013                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014                         cpuctx->cgrp = cgrp;
1015         }
1016
1017         if (add && ctx->nr_cgroups++)
1018                 return;
1019         else if (!add && --ctx->nr_cgroups)
1020                 return;
1021
1022         /* no cgroup running */
1023         if (!add)
1024                 cpuctx->cgrp = NULL;
1025
1026         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
1027         if (add)
1028                 list_add(cpuctx_entry,
1029                          per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1030         else
1031                 list_del(cpuctx_entry);
1032 }
1033
1034 #else /* !CONFIG_CGROUP_PERF */
1035
1036 static inline bool
1037 perf_cgroup_match(struct perf_event *event)
1038 {
1039         return true;
1040 }
1041
1042 static inline void perf_detach_cgroup(struct perf_event *event)
1043 {}
1044
1045 static inline int is_cgroup_event(struct perf_event *event)
1046 {
1047         return 0;
1048 }
1049
1050 static inline void update_cgrp_time_from_event(struct perf_event *event)
1051 {
1052 }
1053
1054 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1055 {
1056 }
1057
1058 static inline void perf_cgroup_sched_out(struct task_struct *task,
1059                                          struct task_struct *next)
1060 {
1061 }
1062
1063 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1064                                         struct task_struct *task)
1065 {
1066 }
1067
1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069                                       struct perf_event_attr *attr,
1070                                       struct perf_event *group_leader)
1071 {
1072         return -EINVAL;
1073 }
1074
1075 static inline void
1076 perf_cgroup_set_timestamp(struct task_struct *task,
1077                           struct perf_event_context *ctx)
1078 {
1079 }
1080
1081 static inline void
1082 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1083 {
1084 }
1085
1086 static inline void
1087 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1088 {
1089 }
1090
1091 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1092 {
1093         return 0;
1094 }
1095
1096 static inline void
1097 list_update_cgroup_event(struct perf_event *event,
1098                          struct perf_event_context *ctx, bool add)
1099 {
1100 }
1101
1102 #endif
1103
1104 /*
1105  * set default to be dependent on timer tick just
1106  * like original code
1107  */
1108 #define PERF_CPU_HRTIMER (1000 / HZ)
1109 /*
1110  * function must be called with interrupts disabled
1111  */
1112 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1113 {
1114         struct perf_cpu_context *cpuctx;
1115         bool rotations;
1116
1117         lockdep_assert_irqs_disabled();
1118
1119         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1120         rotations = perf_rotate_context(cpuctx);
1121
1122         raw_spin_lock(&cpuctx->hrtimer_lock);
1123         if (rotations)
1124                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1125         else
1126                 cpuctx->hrtimer_active = 0;
1127         raw_spin_unlock(&cpuctx->hrtimer_lock);
1128
1129         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1130 }
1131
1132 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1133 {
1134         struct hrtimer *timer = &cpuctx->hrtimer;
1135         struct pmu *pmu = cpuctx->ctx.pmu;
1136         u64 interval;
1137
1138         /* no multiplexing needed for SW PMU */
1139         if (pmu->task_ctx_nr == perf_sw_context)
1140                 return;
1141
1142         /*
1143          * check default is sane, if not set then force to
1144          * default interval (1/tick)
1145          */
1146         interval = pmu->hrtimer_interval_ms;
1147         if (interval < 1)
1148                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1149
1150         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1151
1152         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1153         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1154         timer->function = perf_mux_hrtimer_handler;
1155 }
1156
1157 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1158 {
1159         struct hrtimer *timer = &cpuctx->hrtimer;
1160         struct pmu *pmu = cpuctx->ctx.pmu;
1161         unsigned long flags;
1162
1163         /* not for SW PMU */
1164         if (pmu->task_ctx_nr == perf_sw_context)
1165                 return 0;
1166
1167         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1168         if (!cpuctx->hrtimer_active) {
1169                 cpuctx->hrtimer_active = 1;
1170                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1171                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1172         }
1173         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1174
1175         return 0;
1176 }
1177
1178 void perf_pmu_disable(struct pmu *pmu)
1179 {
1180         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1181         if (!(*count)++)
1182                 pmu->pmu_disable(pmu);
1183 }
1184
1185 void perf_pmu_enable(struct pmu *pmu)
1186 {
1187         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1188         if (!--(*count))
1189                 pmu->pmu_enable(pmu);
1190 }
1191
1192 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1193
1194 /*
1195  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1196  * perf_event_task_tick() are fully serialized because they're strictly cpu
1197  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1198  * disabled, while perf_event_task_tick is called from IRQ context.
1199  */
1200 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1201 {
1202         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1203
1204         lockdep_assert_irqs_disabled();
1205
1206         WARN_ON(!list_empty(&ctx->active_ctx_list));
1207
1208         list_add(&ctx->active_ctx_list, head);
1209 }
1210
1211 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1212 {
1213         lockdep_assert_irqs_disabled();
1214
1215         WARN_ON(list_empty(&ctx->active_ctx_list));
1216
1217         list_del_init(&ctx->active_ctx_list);
1218 }
1219
1220 static void get_ctx(struct perf_event_context *ctx)
1221 {
1222         refcount_inc(&ctx->refcount);
1223 }
1224
1225 static void free_ctx(struct rcu_head *head)
1226 {
1227         struct perf_event_context *ctx;
1228
1229         ctx = container_of(head, struct perf_event_context, rcu_head);
1230         kfree(ctx->task_ctx_data);
1231         kfree(ctx);
1232 }
1233
1234 static void put_ctx(struct perf_event_context *ctx)
1235 {
1236         if (refcount_dec_and_test(&ctx->refcount)) {
1237                 if (ctx->parent_ctx)
1238                         put_ctx(ctx->parent_ctx);
1239                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1240                         put_task_struct(ctx->task);
1241                 call_rcu(&ctx->rcu_head, free_ctx);
1242         }
1243 }
1244
1245 /*
1246  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1247  * perf_pmu_migrate_context() we need some magic.
1248  *
1249  * Those places that change perf_event::ctx will hold both
1250  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1251  *
1252  * Lock ordering is by mutex address. There are two other sites where
1253  * perf_event_context::mutex nests and those are:
1254  *
1255  *  - perf_event_exit_task_context()    [ child , 0 ]
1256  *      perf_event_exit_event()
1257  *        put_event()                   [ parent, 1 ]
1258  *
1259  *  - perf_event_init_context()         [ parent, 0 ]
1260  *      inherit_task_group()
1261  *        inherit_group()
1262  *          inherit_event()
1263  *            perf_event_alloc()
1264  *              perf_init_event()
1265  *                perf_try_init_event() [ child , 1 ]
1266  *
1267  * While it appears there is an obvious deadlock here -- the parent and child
1268  * nesting levels are inverted between the two. This is in fact safe because
1269  * life-time rules separate them. That is an exiting task cannot fork, and a
1270  * spawning task cannot (yet) exit.
1271  *
1272  * But remember that that these are parent<->child context relations, and
1273  * migration does not affect children, therefore these two orderings should not
1274  * interact.
1275  *
1276  * The change in perf_event::ctx does not affect children (as claimed above)
1277  * because the sys_perf_event_open() case will install a new event and break
1278  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1279  * concerned with cpuctx and that doesn't have children.
1280  *
1281  * The places that change perf_event::ctx will issue:
1282  *
1283  *   perf_remove_from_context();
1284  *   synchronize_rcu();
1285  *   perf_install_in_context();
1286  *
1287  * to affect the change. The remove_from_context() + synchronize_rcu() should
1288  * quiesce the event, after which we can install it in the new location. This
1289  * means that only external vectors (perf_fops, prctl) can perturb the event
1290  * while in transit. Therefore all such accessors should also acquire
1291  * perf_event_context::mutex to serialize against this.
1292  *
1293  * However; because event->ctx can change while we're waiting to acquire
1294  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1295  * function.
1296  *
1297  * Lock order:
1298  *    cred_guard_mutex
1299  *      task_struct::perf_event_mutex
1300  *        perf_event_context::mutex
1301  *          perf_event::child_mutex;
1302  *            perf_event_context::lock
1303  *          perf_event::mmap_mutex
1304  *          mmap_sem
1305  *            perf_addr_filters_head::lock
1306  *
1307  *    cpu_hotplug_lock
1308  *      pmus_lock
1309  *        cpuctx->mutex / perf_event_context::mutex
1310  */
1311 static struct perf_event_context *
1312 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1313 {
1314         struct perf_event_context *ctx;
1315
1316 again:
1317         rcu_read_lock();
1318         ctx = READ_ONCE(event->ctx);
1319         if (!refcount_inc_not_zero(&ctx->refcount)) {
1320                 rcu_read_unlock();
1321                 goto again;
1322         }
1323         rcu_read_unlock();
1324
1325         mutex_lock_nested(&ctx->mutex, nesting);
1326         if (event->ctx != ctx) {
1327                 mutex_unlock(&ctx->mutex);
1328                 put_ctx(ctx);
1329                 goto again;
1330         }
1331
1332         return ctx;
1333 }
1334
1335 static inline struct perf_event_context *
1336 perf_event_ctx_lock(struct perf_event *event)
1337 {
1338         return perf_event_ctx_lock_nested(event, 0);
1339 }
1340
1341 static void perf_event_ctx_unlock(struct perf_event *event,
1342                                   struct perf_event_context *ctx)
1343 {
1344         mutex_unlock(&ctx->mutex);
1345         put_ctx(ctx);
1346 }
1347
1348 /*
1349  * This must be done under the ctx->lock, such as to serialize against
1350  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1351  * calling scheduler related locks and ctx->lock nests inside those.
1352  */
1353 static __must_check struct perf_event_context *
1354 unclone_ctx(struct perf_event_context *ctx)
1355 {
1356         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1357
1358         lockdep_assert_held(&ctx->lock);
1359
1360         if (parent_ctx)
1361                 ctx->parent_ctx = NULL;
1362         ctx->generation++;
1363
1364         return parent_ctx;
1365 }
1366
1367 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1368                                 enum pid_type type)
1369 {
1370         u32 nr;
1371         /*
1372          * only top level events have the pid namespace they were created in
1373          */
1374         if (event->parent)
1375                 event = event->parent;
1376
1377         nr = __task_pid_nr_ns(p, type, event->ns);
1378         /* avoid -1 if it is idle thread or runs in another ns */
1379         if (!nr && !pid_alive(p))
1380                 nr = -1;
1381         return nr;
1382 }
1383
1384 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1385 {
1386         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1387 }
1388
1389 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1390 {
1391         return perf_event_pid_type(event, p, PIDTYPE_PID);
1392 }
1393
1394 /*
1395  * If we inherit events we want to return the parent event id
1396  * to userspace.
1397  */
1398 static u64 primary_event_id(struct perf_event *event)
1399 {
1400         u64 id = event->id;
1401
1402         if (event->parent)
1403                 id = event->parent->id;
1404
1405         return id;
1406 }
1407
1408 /*
1409  * Get the perf_event_context for a task and lock it.
1410  *
1411  * This has to cope with with the fact that until it is locked,
1412  * the context could get moved to another task.
1413  */
1414 static struct perf_event_context *
1415 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1416 {
1417         struct perf_event_context *ctx;
1418
1419 retry:
1420         /*
1421          * One of the few rules of preemptible RCU is that one cannot do
1422          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1423          * part of the read side critical section was irqs-enabled -- see
1424          * rcu_read_unlock_special().
1425          *
1426          * Since ctx->lock nests under rq->lock we must ensure the entire read
1427          * side critical section has interrupts disabled.
1428          */
1429         local_irq_save(*flags);
1430         rcu_read_lock();
1431         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1432         if (ctx) {
1433                 /*
1434                  * If this context is a clone of another, it might
1435                  * get swapped for another underneath us by
1436                  * perf_event_task_sched_out, though the
1437                  * rcu_read_lock() protects us from any context
1438                  * getting freed.  Lock the context and check if it
1439                  * got swapped before we could get the lock, and retry
1440                  * if so.  If we locked the right context, then it
1441                  * can't get swapped on us any more.
1442                  */
1443                 raw_spin_lock(&ctx->lock);
1444                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1445                         raw_spin_unlock(&ctx->lock);
1446                         rcu_read_unlock();
1447                         local_irq_restore(*flags);
1448                         goto retry;
1449                 }
1450
1451                 if (ctx->task == TASK_TOMBSTONE ||
1452                     !refcount_inc_not_zero(&ctx->refcount)) {
1453                         raw_spin_unlock(&ctx->lock);
1454                         ctx = NULL;
1455                 } else {
1456                         WARN_ON_ONCE(ctx->task != task);
1457                 }
1458         }
1459         rcu_read_unlock();
1460         if (!ctx)
1461                 local_irq_restore(*flags);
1462         return ctx;
1463 }
1464
1465 /*
1466  * Get the context for a task and increment its pin_count so it
1467  * can't get swapped to another task.  This also increments its
1468  * reference count so that the context can't get freed.
1469  */
1470 static struct perf_event_context *
1471 perf_pin_task_context(struct task_struct *task, int ctxn)
1472 {
1473         struct perf_event_context *ctx;
1474         unsigned long flags;
1475
1476         ctx = perf_lock_task_context(task, ctxn, &flags);
1477         if (ctx) {
1478                 ++ctx->pin_count;
1479                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1480         }
1481         return ctx;
1482 }
1483
1484 static void perf_unpin_context(struct perf_event_context *ctx)
1485 {
1486         unsigned long flags;
1487
1488         raw_spin_lock_irqsave(&ctx->lock, flags);
1489         --ctx->pin_count;
1490         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1491 }
1492
1493 /*
1494  * Update the record of the current time in a context.
1495  */
1496 static void update_context_time(struct perf_event_context *ctx)
1497 {
1498         u64 now = perf_clock();
1499
1500         ctx->time += now - ctx->timestamp;
1501         ctx->timestamp = now;
1502 }
1503
1504 static u64 perf_event_time(struct perf_event *event)
1505 {
1506         struct perf_event_context *ctx = event->ctx;
1507
1508         if (is_cgroup_event(event))
1509                 return perf_cgroup_event_time(event);
1510
1511         return ctx ? ctx->time : 0;
1512 }
1513
1514 static enum event_type_t get_event_type(struct perf_event *event)
1515 {
1516         struct perf_event_context *ctx = event->ctx;
1517         enum event_type_t event_type;
1518
1519         lockdep_assert_held(&ctx->lock);
1520
1521         /*
1522          * It's 'group type', really, because if our group leader is
1523          * pinned, so are we.
1524          */
1525         if (event->group_leader != event)
1526                 event = event->group_leader;
1527
1528         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1529         if (!ctx->task)
1530                 event_type |= EVENT_CPU;
1531
1532         return event_type;
1533 }
1534
1535 /*
1536  * Helper function to initialize event group nodes.
1537  */
1538 static void init_event_group(struct perf_event *event)
1539 {
1540         RB_CLEAR_NODE(&event->group_node);
1541         event->group_index = 0;
1542 }
1543
1544 /*
1545  * Extract pinned or flexible groups from the context
1546  * based on event attrs bits.
1547  */
1548 static struct perf_event_groups *
1549 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1550 {
1551         if (event->attr.pinned)
1552                 return &ctx->pinned_groups;
1553         else
1554                 return &ctx->flexible_groups;
1555 }
1556
1557 /*
1558  * Helper function to initializes perf_event_group trees.
1559  */
1560 static void perf_event_groups_init(struct perf_event_groups *groups)
1561 {
1562         groups->tree = RB_ROOT;
1563         groups->index = 0;
1564 }
1565
1566 /*
1567  * Compare function for event groups;
1568  *
1569  * Implements complex key that first sorts by CPU and then by virtual index
1570  * which provides ordering when rotating groups for the same CPU.
1571  */
1572 static bool
1573 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1574 {
1575         if (left->cpu < right->cpu)
1576                 return true;
1577         if (left->cpu > right->cpu)
1578                 return false;
1579
1580 #ifdef CONFIG_CGROUP_PERF
1581         if (left->cgrp != right->cgrp) {
1582                 if (!left->cgrp || !left->cgrp->css.cgroup) {
1583                         /*
1584                          * Left has no cgroup but right does, no cgroups come
1585                          * first.
1586                          */
1587                         return true;
1588                 }
1589                 if (!right->cgrp || right->cgrp->css.cgroup) {
1590                         /*
1591                          * Right has no cgroup but left does, no cgroups come
1592                          * first.
1593                          */
1594                         return false;
1595                 }
1596                 /* Two dissimilar cgroups, order by id. */
1597                 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1598                         return true;
1599
1600                 return false;
1601         }
1602 #endif
1603
1604         if (left->group_index < right->group_index)
1605                 return true;
1606         if (left->group_index > right->group_index)
1607                 return false;
1608
1609         return false;
1610 }
1611
1612 /*
1613  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1614  * key (see perf_event_groups_less). This places it last inside the CPU
1615  * subtree.
1616  */
1617 static void
1618 perf_event_groups_insert(struct perf_event_groups *groups,
1619                          struct perf_event *event)
1620 {
1621         struct perf_event *node_event;
1622         struct rb_node *parent;
1623         struct rb_node **node;
1624
1625         event->group_index = ++groups->index;
1626
1627         node = &groups->tree.rb_node;
1628         parent = *node;
1629
1630         while (*node) {
1631                 parent = *node;
1632                 node_event = container_of(*node, struct perf_event, group_node);
1633
1634                 if (perf_event_groups_less(event, node_event))
1635                         node = &parent->rb_left;
1636                 else
1637                         node = &parent->rb_right;
1638         }
1639
1640         rb_link_node(&event->group_node, parent, node);
1641         rb_insert_color(&event->group_node, &groups->tree);
1642 }
1643
1644 /*
1645  * Helper function to insert event into the pinned or flexible groups.
1646  */
1647 static void
1648 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650         struct perf_event_groups *groups;
1651
1652         groups = get_event_groups(event, ctx);
1653         perf_event_groups_insert(groups, event);
1654 }
1655
1656 /*
1657  * Delete a group from a tree.
1658  */
1659 static void
1660 perf_event_groups_delete(struct perf_event_groups *groups,
1661                          struct perf_event *event)
1662 {
1663         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1664                      RB_EMPTY_ROOT(&groups->tree));
1665
1666         rb_erase(&event->group_node, &groups->tree);
1667         init_event_group(event);
1668 }
1669
1670 /*
1671  * Helper function to delete event from its groups.
1672  */
1673 static void
1674 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1675 {
1676         struct perf_event_groups *groups;
1677
1678         groups = get_event_groups(event, ctx);
1679         perf_event_groups_delete(groups, event);
1680 }
1681
1682 /*
1683  * Get the leftmost event in the cpu/cgroup subtree.
1684  */
1685 static struct perf_event *
1686 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1687                         struct cgroup *cgrp)
1688 {
1689         struct perf_event *node_event = NULL, *match = NULL;
1690         struct rb_node *node = groups->tree.rb_node;
1691 #ifdef CONFIG_CGROUP_PERF
1692         u64 node_cgrp_id, cgrp_id = 0;
1693
1694         if (cgrp)
1695                 cgrp_id = cgrp->kn->id;
1696 #endif
1697
1698         while (node) {
1699                 node_event = container_of(node, struct perf_event, group_node);
1700
1701                 if (cpu < node_event->cpu) {
1702                         node = node->rb_left;
1703                         continue;
1704                 }
1705                 if (cpu > node_event->cpu) {
1706                         node = node->rb_right;
1707                         continue;
1708                 }
1709 #ifdef CONFIG_CGROUP_PERF
1710                 node_cgrp_id = 0;
1711                 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1712                         node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1713
1714                 if (cgrp_id < node_cgrp_id) {
1715                         node = node->rb_left;
1716                         continue;
1717                 }
1718                 if (cgrp_id > node_cgrp_id) {
1719                         node = node->rb_right;
1720                         continue;
1721                 }
1722 #endif
1723                 match = node_event;
1724                 node = node->rb_left;
1725         }
1726
1727         return match;
1728 }
1729
1730 /*
1731  * Like rb_entry_next_safe() for the @cpu subtree.
1732  */
1733 static struct perf_event *
1734 perf_event_groups_next(struct perf_event *event)
1735 {
1736         struct perf_event *next;
1737 #ifdef CONFIG_CGROUP_PERF
1738         u64 curr_cgrp_id = 0;
1739         u64 next_cgrp_id = 0;
1740 #endif
1741
1742         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1743         if (next == NULL || next->cpu != event->cpu)
1744                 return NULL;
1745
1746 #ifdef CONFIG_CGROUP_PERF
1747         if (event->cgrp && event->cgrp->css.cgroup)
1748                 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1749
1750         if (next->cgrp && next->cgrp->css.cgroup)
1751                 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1752
1753         if (curr_cgrp_id != next_cgrp_id)
1754                 return NULL;
1755 #endif
1756         return next;
1757 }
1758
1759 /*
1760  * Iterate through the whole groups tree.
1761  */
1762 #define perf_event_groups_for_each(event, groups)                       \
1763         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1764                                 typeof(*event), group_node); event;     \
1765                 event = rb_entry_safe(rb_next(&event->group_node),      \
1766                                 typeof(*event), group_node))
1767
1768 /*
1769  * Add an event from the lists for its context.
1770  * Must be called with ctx->mutex and ctx->lock held.
1771  */
1772 static void
1773 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1774 {
1775         lockdep_assert_held(&ctx->lock);
1776
1777         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1778         event->attach_state |= PERF_ATTACH_CONTEXT;
1779
1780         event->tstamp = perf_event_time(event);
1781
1782         /*
1783          * If we're a stand alone event or group leader, we go to the context
1784          * list, group events are kept attached to the group so that
1785          * perf_group_detach can, at all times, locate all siblings.
1786          */
1787         if (event->group_leader == event) {
1788                 event->group_caps = event->event_caps;
1789                 add_event_to_groups(event, ctx);
1790         }
1791
1792         list_update_cgroup_event(event, ctx, true);
1793
1794         list_add_rcu(&event->event_entry, &ctx->event_list);
1795         ctx->nr_events++;
1796         if (event->attr.inherit_stat)
1797                 ctx->nr_stat++;
1798
1799         ctx->generation++;
1800 }
1801
1802 /*
1803  * Initialize event state based on the perf_event_attr::disabled.
1804  */
1805 static inline void perf_event__state_init(struct perf_event *event)
1806 {
1807         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1808                                               PERF_EVENT_STATE_INACTIVE;
1809 }
1810
1811 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1812 {
1813         int entry = sizeof(u64); /* value */
1814         int size = 0;
1815         int nr = 1;
1816
1817         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1818                 size += sizeof(u64);
1819
1820         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1821                 size += sizeof(u64);
1822
1823         if (event->attr.read_format & PERF_FORMAT_ID)
1824                 entry += sizeof(u64);
1825
1826         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1827                 nr += nr_siblings;
1828                 size += sizeof(u64);
1829         }
1830
1831         size += entry * nr;
1832         event->read_size = size;
1833 }
1834
1835 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1836 {
1837         struct perf_sample_data *data;
1838         u16 size = 0;
1839
1840         if (sample_type & PERF_SAMPLE_IP)
1841                 size += sizeof(data->ip);
1842
1843         if (sample_type & PERF_SAMPLE_ADDR)
1844                 size += sizeof(data->addr);
1845
1846         if (sample_type & PERF_SAMPLE_PERIOD)
1847                 size += sizeof(data->period);
1848
1849         if (sample_type & PERF_SAMPLE_WEIGHT)
1850                 size += sizeof(data->weight);
1851
1852         if (sample_type & PERF_SAMPLE_READ)
1853                 size += event->read_size;
1854
1855         if (sample_type & PERF_SAMPLE_DATA_SRC)
1856                 size += sizeof(data->data_src.val);
1857
1858         if (sample_type & PERF_SAMPLE_TRANSACTION)
1859                 size += sizeof(data->txn);
1860
1861         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1862                 size += sizeof(data->phys_addr);
1863
1864         event->header_size = size;
1865 }
1866
1867 /*
1868  * Called at perf_event creation and when events are attached/detached from a
1869  * group.
1870  */
1871 static void perf_event__header_size(struct perf_event *event)
1872 {
1873         __perf_event_read_size(event,
1874                                event->group_leader->nr_siblings);
1875         __perf_event_header_size(event, event->attr.sample_type);
1876 }
1877
1878 static void perf_event__id_header_size(struct perf_event *event)
1879 {
1880         struct perf_sample_data *data;
1881         u64 sample_type = event->attr.sample_type;
1882         u16 size = 0;
1883
1884         if (sample_type & PERF_SAMPLE_TID)
1885                 size += sizeof(data->tid_entry);
1886
1887         if (sample_type & PERF_SAMPLE_TIME)
1888                 size += sizeof(data->time);
1889
1890         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1891                 size += sizeof(data->id);
1892
1893         if (sample_type & PERF_SAMPLE_ID)
1894                 size += sizeof(data->id);
1895
1896         if (sample_type & PERF_SAMPLE_STREAM_ID)
1897                 size += sizeof(data->stream_id);
1898
1899         if (sample_type & PERF_SAMPLE_CPU)
1900                 size += sizeof(data->cpu_entry);
1901
1902         event->id_header_size = size;
1903 }
1904
1905 static bool perf_event_validate_size(struct perf_event *event)
1906 {
1907         /*
1908          * The values computed here will be over-written when we actually
1909          * attach the event.
1910          */
1911         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1912         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1913         perf_event__id_header_size(event);
1914
1915         /*
1916          * Sum the lot; should not exceed the 64k limit we have on records.
1917          * Conservative limit to allow for callchains and other variable fields.
1918          */
1919         if (event->read_size + event->header_size +
1920             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1921                 return false;
1922
1923         return true;
1924 }
1925
1926 static void perf_group_attach(struct perf_event *event)
1927 {
1928         struct perf_event *group_leader = event->group_leader, *pos;
1929
1930         lockdep_assert_held(&event->ctx->lock);
1931
1932         /*
1933          * We can have double attach due to group movement in perf_event_open.
1934          */
1935         if (event->attach_state & PERF_ATTACH_GROUP)
1936                 return;
1937
1938         event->attach_state |= PERF_ATTACH_GROUP;
1939
1940         if (group_leader == event)
1941                 return;
1942
1943         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1944
1945         group_leader->group_caps &= event->event_caps;
1946
1947         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1948         group_leader->nr_siblings++;
1949
1950         perf_event__header_size(group_leader);
1951
1952         for_each_sibling_event(pos, group_leader)
1953                 perf_event__header_size(pos);
1954 }
1955
1956 /*
1957  * Remove an event from the lists for its context.
1958  * Must be called with ctx->mutex and ctx->lock held.
1959  */
1960 static void
1961 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1962 {
1963         WARN_ON_ONCE(event->ctx != ctx);
1964         lockdep_assert_held(&ctx->lock);
1965
1966         /*
1967          * We can have double detach due to exit/hot-unplug + close.
1968          */
1969         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1970                 return;
1971
1972         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1973
1974         list_update_cgroup_event(event, ctx, false);
1975
1976         ctx->nr_events--;
1977         if (event->attr.inherit_stat)
1978                 ctx->nr_stat--;
1979
1980         list_del_rcu(&event->event_entry);
1981
1982         if (event->group_leader == event)
1983                 del_event_from_groups(event, ctx);
1984
1985         /*
1986          * If event was in error state, then keep it
1987          * that way, otherwise bogus counts will be
1988          * returned on read(). The only way to get out
1989          * of error state is by explicit re-enabling
1990          * of the event
1991          */
1992         if (event->state > PERF_EVENT_STATE_OFF)
1993                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1994
1995         ctx->generation++;
1996 }
1997
1998 static int
1999 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2000 {
2001         if (!has_aux(aux_event))
2002                 return 0;
2003
2004         if (!event->pmu->aux_output_match)
2005                 return 0;
2006
2007         return event->pmu->aux_output_match(aux_event);
2008 }
2009
2010 static void put_event(struct perf_event *event);
2011 static void event_sched_out(struct perf_event *event,
2012                             struct perf_cpu_context *cpuctx,
2013                             struct perf_event_context *ctx);
2014
2015 static void perf_put_aux_event(struct perf_event *event)
2016 {
2017         struct perf_event_context *ctx = event->ctx;
2018         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2019         struct perf_event *iter;
2020
2021         /*
2022          * If event uses aux_event tear down the link
2023          */
2024         if (event->aux_event) {
2025                 iter = event->aux_event;
2026                 event->aux_event = NULL;
2027                 put_event(iter);
2028                 return;
2029         }
2030
2031         /*
2032          * If the event is an aux_event, tear down all links to
2033          * it from other events.
2034          */
2035         for_each_sibling_event(iter, event->group_leader) {
2036                 if (iter->aux_event != event)
2037                         continue;
2038
2039                 iter->aux_event = NULL;
2040                 put_event(event);
2041
2042                 /*
2043                  * If it's ACTIVE, schedule it out and put it into ERROR
2044                  * state so that we don't try to schedule it again. Note
2045                  * that perf_event_enable() will clear the ERROR status.
2046                  */
2047                 event_sched_out(iter, cpuctx, ctx);
2048                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2049         }
2050 }
2051
2052 static bool perf_need_aux_event(struct perf_event *event)
2053 {
2054         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2055 }
2056
2057 static int perf_get_aux_event(struct perf_event *event,
2058                               struct perf_event *group_leader)
2059 {
2060         /*
2061          * Our group leader must be an aux event if we want to be
2062          * an aux_output. This way, the aux event will precede its
2063          * aux_output events in the group, and therefore will always
2064          * schedule first.
2065          */
2066         if (!group_leader)
2067                 return 0;
2068
2069         /*
2070          * aux_output and aux_sample_size are mutually exclusive.
2071          */
2072         if (event->attr.aux_output && event->attr.aux_sample_size)
2073                 return 0;
2074
2075         if (event->attr.aux_output &&
2076             !perf_aux_output_match(event, group_leader))
2077                 return 0;
2078
2079         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2080                 return 0;
2081
2082         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2083                 return 0;
2084
2085         /*
2086          * Link aux_outputs to their aux event; this is undone in
2087          * perf_group_detach() by perf_put_aux_event(). When the
2088          * group in torn down, the aux_output events loose their
2089          * link to the aux_event and can't schedule any more.
2090          */
2091         event->aux_event = group_leader;
2092
2093         return 1;
2094 }
2095
2096 static inline struct list_head *get_event_list(struct perf_event *event)
2097 {
2098         struct perf_event_context *ctx = event->ctx;
2099         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2100 }
2101
2102 static void perf_group_detach(struct perf_event *event)
2103 {
2104         struct perf_event *sibling, *tmp;
2105         struct perf_event_context *ctx = event->ctx;
2106
2107         lockdep_assert_held(&ctx->lock);
2108
2109         /*
2110          * We can have double detach due to exit/hot-unplug + close.
2111          */
2112         if (!(event->attach_state & PERF_ATTACH_GROUP))
2113                 return;
2114
2115         event->attach_state &= ~PERF_ATTACH_GROUP;
2116
2117         perf_put_aux_event(event);
2118
2119         /*
2120          * If this is a sibling, remove it from its group.
2121          */
2122         if (event->group_leader != event) {
2123                 list_del_init(&event->sibling_list);
2124                 event->group_leader->nr_siblings--;
2125                 goto out;
2126         }
2127
2128         /*
2129          * If this was a group event with sibling events then
2130          * upgrade the siblings to singleton events by adding them
2131          * to whatever list we are on.
2132          */
2133         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2134
2135                 sibling->group_leader = sibling;
2136                 list_del_init(&sibling->sibling_list);
2137
2138                 /* Inherit group flags from the previous leader */
2139                 sibling->group_caps = event->group_caps;
2140
2141                 if (!RB_EMPTY_NODE(&event->group_node)) {
2142                         add_event_to_groups(sibling, event->ctx);
2143
2144                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2145                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2146                 }
2147
2148                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2149         }
2150
2151 out:
2152         perf_event__header_size(event->group_leader);
2153
2154         for_each_sibling_event(tmp, event->group_leader)
2155                 perf_event__header_size(tmp);
2156 }
2157
2158 static bool is_orphaned_event(struct perf_event *event)
2159 {
2160         return event->state == PERF_EVENT_STATE_DEAD;
2161 }
2162
2163 static inline int __pmu_filter_match(struct perf_event *event)
2164 {
2165         struct pmu *pmu = event->pmu;
2166         return pmu->filter_match ? pmu->filter_match(event) : 1;
2167 }
2168
2169 /*
2170  * Check whether we should attempt to schedule an event group based on
2171  * PMU-specific filtering. An event group can consist of HW and SW events,
2172  * potentially with a SW leader, so we must check all the filters, to
2173  * determine whether a group is schedulable:
2174  */
2175 static inline int pmu_filter_match(struct perf_event *event)
2176 {
2177         struct perf_event *sibling;
2178
2179         if (!__pmu_filter_match(event))
2180                 return 0;
2181
2182         for_each_sibling_event(sibling, event) {
2183                 if (!__pmu_filter_match(sibling))
2184                         return 0;
2185         }
2186
2187         return 1;
2188 }
2189
2190 static inline int
2191 event_filter_match(struct perf_event *event)
2192 {
2193         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2194                perf_cgroup_match(event) && pmu_filter_match(event);
2195 }
2196
2197 static void
2198 event_sched_out(struct perf_event *event,
2199                   struct perf_cpu_context *cpuctx,
2200                   struct perf_event_context *ctx)
2201 {
2202         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2203
2204         WARN_ON_ONCE(event->ctx != ctx);
2205         lockdep_assert_held(&ctx->lock);
2206
2207         if (event->state != PERF_EVENT_STATE_ACTIVE)
2208                 return;
2209
2210         /*
2211          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2212          * we can schedule events _OUT_ individually through things like
2213          * __perf_remove_from_context().
2214          */
2215         list_del_init(&event->active_list);
2216
2217         perf_pmu_disable(event->pmu);
2218
2219         event->pmu->del(event, 0);
2220         event->oncpu = -1;
2221
2222         if (READ_ONCE(event->pending_disable) >= 0) {
2223                 WRITE_ONCE(event->pending_disable, -1);
2224                 state = PERF_EVENT_STATE_OFF;
2225         }
2226         perf_event_set_state(event, state);
2227
2228         if (!is_software_event(event))
2229                 cpuctx->active_oncpu--;
2230         if (!--ctx->nr_active)
2231                 perf_event_ctx_deactivate(ctx);
2232         if (event->attr.freq && event->attr.sample_freq)
2233                 ctx->nr_freq--;
2234         if (event->attr.exclusive || !cpuctx->active_oncpu)
2235                 cpuctx->exclusive = 0;
2236
2237         perf_pmu_enable(event->pmu);
2238 }
2239
2240 static void
2241 group_sched_out(struct perf_event *group_event,
2242                 struct perf_cpu_context *cpuctx,
2243                 struct perf_event_context *ctx)
2244 {
2245         struct perf_event *event;
2246
2247         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2248                 return;
2249
2250         perf_pmu_disable(ctx->pmu);
2251
2252         event_sched_out(group_event, cpuctx, ctx);
2253
2254         /*
2255          * Schedule out siblings (if any):
2256          */
2257         for_each_sibling_event(event, group_event)
2258                 event_sched_out(event, cpuctx, ctx);
2259
2260         perf_pmu_enable(ctx->pmu);
2261
2262         if (group_event->attr.exclusive)
2263                 cpuctx->exclusive = 0;
2264 }
2265
2266 #define DETACH_GROUP    0x01UL
2267
2268 /*
2269  * Cross CPU call to remove a performance event
2270  *
2271  * We disable the event on the hardware level first. After that we
2272  * remove it from the context list.
2273  */
2274 static void
2275 __perf_remove_from_context(struct perf_event *event,
2276                            struct perf_cpu_context *cpuctx,
2277                            struct perf_event_context *ctx,
2278                            void *info)
2279 {
2280         unsigned long flags = (unsigned long)info;
2281
2282         if (ctx->is_active & EVENT_TIME) {
2283                 update_context_time(ctx);
2284                 update_cgrp_time_from_cpuctx(cpuctx);
2285         }
2286
2287         event_sched_out(event, cpuctx, ctx);
2288         if (flags & DETACH_GROUP)
2289                 perf_group_detach(event);
2290         list_del_event(event, ctx);
2291
2292         if (!ctx->nr_events && ctx->is_active) {
2293                 ctx->is_active = 0;
2294                 ctx->rotate_necessary = 0;
2295                 if (ctx->task) {
2296                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2297                         cpuctx->task_ctx = NULL;
2298                 }
2299         }
2300 }
2301
2302 /*
2303  * Remove the event from a task's (or a CPU's) list of events.
2304  *
2305  * If event->ctx is a cloned context, callers must make sure that
2306  * every task struct that event->ctx->task could possibly point to
2307  * remains valid.  This is OK when called from perf_release since
2308  * that only calls us on the top-level context, which can't be a clone.
2309  * When called from perf_event_exit_task, it's OK because the
2310  * context has been detached from its task.
2311  */
2312 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2313 {
2314         struct perf_event_context *ctx = event->ctx;
2315
2316         lockdep_assert_held(&ctx->mutex);
2317
2318         event_function_call(event, __perf_remove_from_context, (void *)flags);
2319
2320         /*
2321          * The above event_function_call() can NO-OP when it hits
2322          * TASK_TOMBSTONE. In that case we must already have been detached
2323          * from the context (by perf_event_exit_event()) but the grouping
2324          * might still be in-tact.
2325          */
2326         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2327         if ((flags & DETACH_GROUP) &&
2328             (event->attach_state & PERF_ATTACH_GROUP)) {
2329                 /*
2330                  * Since in that case we cannot possibly be scheduled, simply
2331                  * detach now.
2332                  */
2333                 raw_spin_lock_irq(&ctx->lock);
2334                 perf_group_detach(event);
2335                 raw_spin_unlock_irq(&ctx->lock);
2336         }
2337 }
2338
2339 /*
2340  * Cross CPU call to disable a performance event
2341  */
2342 static void __perf_event_disable(struct perf_event *event,
2343                                  struct perf_cpu_context *cpuctx,
2344                                  struct perf_event_context *ctx,
2345                                  void *info)
2346 {
2347         if (event->state < PERF_EVENT_STATE_INACTIVE)
2348                 return;
2349
2350         if (ctx->is_active & EVENT_TIME) {
2351                 update_context_time(ctx);
2352                 update_cgrp_time_from_event(event);
2353         }
2354
2355         if (event == event->group_leader)
2356                 group_sched_out(event, cpuctx, ctx);
2357         else
2358                 event_sched_out(event, cpuctx, ctx);
2359
2360         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2361 }
2362
2363 /*
2364  * Disable an event.
2365  *
2366  * If event->ctx is a cloned context, callers must make sure that
2367  * every task struct that event->ctx->task could possibly point to
2368  * remains valid.  This condition is satisfied when called through
2369  * perf_event_for_each_child or perf_event_for_each because they
2370  * hold the top-level event's child_mutex, so any descendant that
2371  * goes to exit will block in perf_event_exit_event().
2372  *
2373  * When called from perf_pending_event it's OK because event->ctx
2374  * is the current context on this CPU and preemption is disabled,
2375  * hence we can't get into perf_event_task_sched_out for this context.
2376  */
2377 static void _perf_event_disable(struct perf_event *event)
2378 {
2379         struct perf_event_context *ctx = event->ctx;
2380
2381         raw_spin_lock_irq(&ctx->lock);
2382         if (event->state <= PERF_EVENT_STATE_OFF) {
2383                 raw_spin_unlock_irq(&ctx->lock);
2384                 return;
2385         }
2386         raw_spin_unlock_irq(&ctx->lock);
2387
2388         event_function_call(event, __perf_event_disable, NULL);
2389 }
2390
2391 void perf_event_disable_local(struct perf_event *event)
2392 {
2393         event_function_local(event, __perf_event_disable, NULL);
2394 }
2395
2396 /*
2397  * Strictly speaking kernel users cannot create groups and therefore this
2398  * interface does not need the perf_event_ctx_lock() magic.
2399  */
2400 void perf_event_disable(struct perf_event *event)
2401 {
2402         struct perf_event_context *ctx;
2403
2404         ctx = perf_event_ctx_lock(event);
2405         _perf_event_disable(event);
2406         perf_event_ctx_unlock(event, ctx);
2407 }
2408 EXPORT_SYMBOL_GPL(perf_event_disable);
2409
2410 void perf_event_disable_inatomic(struct perf_event *event)
2411 {
2412         WRITE_ONCE(event->pending_disable, smp_processor_id());
2413         /* can fail, see perf_pending_event_disable() */
2414         irq_work_queue(&event->pending);
2415 }
2416
2417 static void perf_set_shadow_time(struct perf_event *event,
2418                                  struct perf_event_context *ctx)
2419 {
2420         /*
2421          * use the correct time source for the time snapshot
2422          *
2423          * We could get by without this by leveraging the
2424          * fact that to get to this function, the caller
2425          * has most likely already called update_context_time()
2426          * and update_cgrp_time_xx() and thus both timestamp
2427          * are identical (or very close). Given that tstamp is,
2428          * already adjusted for cgroup, we could say that:
2429          *    tstamp - ctx->timestamp
2430          * is equivalent to
2431          *    tstamp - cgrp->timestamp.
2432          *
2433          * Then, in perf_output_read(), the calculation would
2434          * work with no changes because:
2435          * - event is guaranteed scheduled in
2436          * - no scheduled out in between
2437          * - thus the timestamp would be the same
2438          *
2439          * But this is a bit hairy.
2440          *
2441          * So instead, we have an explicit cgroup call to remain
2442          * within the time time source all along. We believe it
2443          * is cleaner and simpler to understand.
2444          */
2445         if (is_cgroup_event(event))
2446                 perf_cgroup_set_shadow_time(event, event->tstamp);
2447         else
2448                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2449 }
2450
2451 #define MAX_INTERRUPTS (~0ULL)
2452
2453 static void perf_log_throttle(struct perf_event *event, int enable);
2454 static void perf_log_itrace_start(struct perf_event *event);
2455
2456 static int
2457 event_sched_in(struct perf_event *event,
2458                  struct perf_cpu_context *cpuctx,
2459                  struct perf_event_context *ctx)
2460 {
2461         int ret = 0;
2462
2463         WARN_ON_ONCE(event->ctx != ctx);
2464
2465         lockdep_assert_held(&ctx->lock);
2466
2467         if (event->state <= PERF_EVENT_STATE_OFF)
2468                 return 0;
2469
2470         WRITE_ONCE(event->oncpu, smp_processor_id());
2471         /*
2472          * Order event::oncpu write to happen before the ACTIVE state is
2473          * visible. This allows perf_event_{stop,read}() to observe the correct
2474          * ->oncpu if it sees ACTIVE.
2475          */
2476         smp_wmb();
2477         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2478
2479         /*
2480          * Unthrottle events, since we scheduled we might have missed several
2481          * ticks already, also for a heavily scheduling task there is little
2482          * guarantee it'll get a tick in a timely manner.
2483          */
2484         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2485                 perf_log_throttle(event, 1);
2486                 event->hw.interrupts = 0;
2487         }
2488
2489         perf_pmu_disable(event->pmu);
2490
2491         perf_set_shadow_time(event, ctx);
2492
2493         perf_log_itrace_start(event);
2494
2495         if (event->pmu->add(event, PERF_EF_START)) {
2496                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2497                 event->oncpu = -1;
2498                 ret = -EAGAIN;
2499                 goto out;
2500         }
2501
2502         if (!is_software_event(event))
2503                 cpuctx->active_oncpu++;
2504         if (!ctx->nr_active++)
2505                 perf_event_ctx_activate(ctx);
2506         if (event->attr.freq && event->attr.sample_freq)
2507                 ctx->nr_freq++;
2508
2509         if (event->attr.exclusive)
2510                 cpuctx->exclusive = 1;
2511
2512 out:
2513         perf_pmu_enable(event->pmu);
2514
2515         return ret;
2516 }
2517
2518 static int
2519 group_sched_in(struct perf_event *group_event,
2520                struct perf_cpu_context *cpuctx,
2521                struct perf_event_context *ctx)
2522 {
2523         struct perf_event *event, *partial_group = NULL;
2524         struct pmu *pmu = ctx->pmu;
2525
2526         if (group_event->state == PERF_EVENT_STATE_OFF)
2527                 return 0;
2528
2529         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2530
2531         if (event_sched_in(group_event, cpuctx, ctx)) {
2532                 pmu->cancel_txn(pmu);
2533                 perf_mux_hrtimer_restart(cpuctx);
2534                 return -EAGAIN;
2535         }
2536
2537         /*
2538          * Schedule in siblings as one group (if any):
2539          */
2540         for_each_sibling_event(event, group_event) {
2541                 if (event_sched_in(event, cpuctx, ctx)) {
2542                         partial_group = event;
2543                         goto group_error;
2544                 }
2545         }
2546
2547         if (!pmu->commit_txn(pmu))
2548                 return 0;
2549
2550 group_error:
2551         /*
2552          * Groups can be scheduled in as one unit only, so undo any
2553          * partial group before returning:
2554          * The events up to the failed event are scheduled out normally.
2555          */
2556         for_each_sibling_event(event, group_event) {
2557                 if (event == partial_group)
2558                         break;
2559
2560                 event_sched_out(event, cpuctx, ctx);
2561         }
2562         event_sched_out(group_event, cpuctx, ctx);
2563
2564         pmu->cancel_txn(pmu);
2565
2566         perf_mux_hrtimer_restart(cpuctx);
2567
2568         return -EAGAIN;
2569 }
2570
2571 /*
2572  * Work out whether we can put this event group on the CPU now.
2573  */
2574 static int group_can_go_on(struct perf_event *event,
2575                            struct perf_cpu_context *cpuctx,
2576                            int can_add_hw)
2577 {
2578         /*
2579          * Groups consisting entirely of software events can always go on.
2580          */
2581         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2582                 return 1;
2583         /*
2584          * If an exclusive group is already on, no other hardware
2585          * events can go on.
2586          */
2587         if (cpuctx->exclusive)
2588                 return 0;
2589         /*
2590          * If this group is exclusive and there are already
2591          * events on the CPU, it can't go on.
2592          */
2593         if (event->attr.exclusive && cpuctx->active_oncpu)
2594                 return 0;
2595         /*
2596          * Otherwise, try to add it if all previous groups were able
2597          * to go on.
2598          */
2599         return can_add_hw;
2600 }
2601
2602 static void add_event_to_ctx(struct perf_event *event,
2603                                struct perf_event_context *ctx)
2604 {
2605         list_add_event(event, ctx);
2606         perf_group_attach(event);
2607 }
2608
2609 static void ctx_sched_out(struct perf_event_context *ctx,
2610                           struct perf_cpu_context *cpuctx,
2611                           enum event_type_t event_type);
2612 static void
2613 ctx_sched_in(struct perf_event_context *ctx,
2614              struct perf_cpu_context *cpuctx,
2615              enum event_type_t event_type,
2616              struct task_struct *task);
2617
2618 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2619                                struct perf_event_context *ctx,
2620                                enum event_type_t event_type)
2621 {
2622         if (!cpuctx->task_ctx)
2623                 return;
2624
2625         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2626                 return;
2627
2628         ctx_sched_out(ctx, cpuctx, event_type);
2629 }
2630
2631 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2632                                 struct perf_event_context *ctx,
2633                                 struct task_struct *task)
2634 {
2635         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2636         if (ctx)
2637                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2638         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2639         if (ctx)
2640                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2641 }
2642
2643 /*
2644  * We want to maintain the following priority of scheduling:
2645  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2646  *  - task pinned (EVENT_PINNED)
2647  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2648  *  - task flexible (EVENT_FLEXIBLE).
2649  *
2650  * In order to avoid unscheduling and scheduling back in everything every
2651  * time an event is added, only do it for the groups of equal priority and
2652  * below.
2653  *
2654  * This can be called after a batch operation on task events, in which case
2655  * event_type is a bit mask of the types of events involved. For CPU events,
2656  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2657  */
2658 static void ctx_resched(struct perf_cpu_context *cpuctx,
2659                         struct perf_event_context *task_ctx,
2660                         enum event_type_t event_type)
2661 {
2662         enum event_type_t ctx_event_type;
2663         bool cpu_event = !!(event_type & EVENT_CPU);
2664
2665         /*
2666          * If pinned groups are involved, flexible groups also need to be
2667          * scheduled out.
2668          */
2669         if (event_type & EVENT_PINNED)
2670                 event_type |= EVENT_FLEXIBLE;
2671
2672         ctx_event_type = event_type & EVENT_ALL;
2673
2674         perf_pmu_disable(cpuctx->ctx.pmu);
2675         if (task_ctx)
2676                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2677
2678         /*
2679          * Decide which cpu ctx groups to schedule out based on the types
2680          * of events that caused rescheduling:
2681          *  - EVENT_CPU: schedule out corresponding groups;
2682          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2683          *  - otherwise, do nothing more.
2684          */
2685         if (cpu_event)
2686                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2687         else if (ctx_event_type & EVENT_PINNED)
2688                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2689
2690         perf_event_sched_in(cpuctx, task_ctx, current);
2691         perf_pmu_enable(cpuctx->ctx.pmu);
2692 }
2693
2694 void perf_pmu_resched(struct pmu *pmu)
2695 {
2696         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2697         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2698
2699         perf_ctx_lock(cpuctx, task_ctx);
2700         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2701         perf_ctx_unlock(cpuctx, task_ctx);
2702 }
2703
2704 /*
2705  * Cross CPU call to install and enable a performance event
2706  *
2707  * Very similar to remote_function() + event_function() but cannot assume that
2708  * things like ctx->is_active and cpuctx->task_ctx are set.
2709  */
2710 static int  __perf_install_in_context(void *info)
2711 {
2712         struct perf_event *event = info;
2713         struct perf_event_context *ctx = event->ctx;
2714         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2715         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2716         bool reprogram = true;
2717         int ret = 0;
2718
2719         raw_spin_lock(&cpuctx->ctx.lock);
2720         if (ctx->task) {
2721                 raw_spin_lock(&ctx->lock);
2722                 task_ctx = ctx;
2723
2724                 reprogram = (ctx->task == current);
2725
2726                 /*
2727                  * If the task is running, it must be running on this CPU,
2728                  * otherwise we cannot reprogram things.
2729                  *
2730                  * If its not running, we don't care, ctx->lock will
2731                  * serialize against it becoming runnable.
2732                  */
2733                 if (task_curr(ctx->task) && !reprogram) {
2734                         ret = -ESRCH;
2735                         goto unlock;
2736                 }
2737
2738                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2739         } else if (task_ctx) {
2740                 raw_spin_lock(&task_ctx->lock);
2741         }
2742
2743 #ifdef CONFIG_CGROUP_PERF
2744         if (is_cgroup_event(event)) {
2745                 /*
2746                  * If the current cgroup doesn't match the event's
2747                  * cgroup, we should not try to schedule it.
2748                  */
2749                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2750                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2751                                         event->cgrp->css.cgroup);
2752         }
2753 #endif
2754
2755         if (reprogram) {
2756                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2757                 add_event_to_ctx(event, ctx);
2758                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2759         } else {
2760                 add_event_to_ctx(event, ctx);
2761         }
2762
2763 unlock:
2764         perf_ctx_unlock(cpuctx, task_ctx);
2765
2766         return ret;
2767 }
2768
2769 static bool exclusive_event_installable(struct perf_event *event,
2770                                         struct perf_event_context *ctx);
2771
2772 /*
2773  * Attach a performance event to a context.
2774  *
2775  * Very similar to event_function_call, see comment there.
2776  */
2777 static void
2778 perf_install_in_context(struct perf_event_context *ctx,
2779                         struct perf_event *event,
2780                         int cpu)
2781 {
2782         struct task_struct *task = READ_ONCE(ctx->task);
2783
2784         lockdep_assert_held(&ctx->mutex);
2785
2786         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2787
2788         if (event->cpu != -1)
2789                 event->cpu = cpu;
2790
2791         /*
2792          * Ensures that if we can observe event->ctx, both the event and ctx
2793          * will be 'complete'. See perf_iterate_sb_cpu().
2794          */
2795         smp_store_release(&event->ctx, ctx);
2796
2797         /*
2798          * perf_event_attr::disabled events will not run and can be initialized
2799          * without IPI. Except when this is the first event for the context, in
2800          * that case we need the magic of the IPI to set ctx->is_active.
2801          *
2802          * The IOC_ENABLE that is sure to follow the creation of a disabled
2803          * event will issue the IPI and reprogram the hardware.
2804          */
2805         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2806                 raw_spin_lock_irq(&ctx->lock);
2807                 if (ctx->task == TASK_TOMBSTONE) {
2808                         raw_spin_unlock_irq(&ctx->lock);
2809                         return;
2810                 }
2811                 add_event_to_ctx(event, ctx);
2812                 raw_spin_unlock_irq(&ctx->lock);
2813                 return;
2814         }
2815
2816         if (!task) {
2817                 cpu_function_call(cpu, __perf_install_in_context, event);
2818                 return;
2819         }
2820
2821         /*
2822          * Should not happen, we validate the ctx is still alive before calling.
2823          */
2824         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2825                 return;
2826
2827         /*
2828          * Installing events is tricky because we cannot rely on ctx->is_active
2829          * to be set in case this is the nr_events 0 -> 1 transition.
2830          *
2831          * Instead we use task_curr(), which tells us if the task is running.
2832          * However, since we use task_curr() outside of rq::lock, we can race
2833          * against the actual state. This means the result can be wrong.
2834          *
2835          * If we get a false positive, we retry, this is harmless.
2836          *
2837          * If we get a false negative, things are complicated. If we are after
2838          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2839          * value must be correct. If we're before, it doesn't matter since
2840          * perf_event_context_sched_in() will program the counter.
2841          *
2842          * However, this hinges on the remote context switch having observed
2843          * our task->perf_event_ctxp[] store, such that it will in fact take
2844          * ctx::lock in perf_event_context_sched_in().
2845          *
2846          * We do this by task_function_call(), if the IPI fails to hit the task
2847          * we know any future context switch of task must see the
2848          * perf_event_ctpx[] store.
2849          */
2850
2851         /*
2852          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2853          * task_cpu() load, such that if the IPI then does not find the task
2854          * running, a future context switch of that task must observe the
2855          * store.
2856          */
2857         smp_mb();
2858 again:
2859         if (!task_function_call(task, __perf_install_in_context, event))
2860                 return;
2861
2862         raw_spin_lock_irq(&ctx->lock);
2863         task = ctx->task;
2864         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2865                 /*
2866                  * Cannot happen because we already checked above (which also
2867                  * cannot happen), and we hold ctx->mutex, which serializes us
2868                  * against perf_event_exit_task_context().
2869                  */
2870                 raw_spin_unlock_irq(&ctx->lock);
2871                 return;
2872         }
2873         /*
2874          * If the task is not running, ctx->lock will avoid it becoming so,
2875          * thus we can safely install the event.
2876          */
2877         if (task_curr(task)) {
2878                 raw_spin_unlock_irq(&ctx->lock);
2879                 goto again;
2880         }
2881         add_event_to_ctx(event, ctx);
2882         raw_spin_unlock_irq(&ctx->lock);
2883 }
2884
2885 /*
2886  * Cross CPU call to enable a performance event
2887  */
2888 static void __perf_event_enable(struct perf_event *event,
2889                                 struct perf_cpu_context *cpuctx,
2890                                 struct perf_event_context *ctx,
2891                                 void *info)
2892 {
2893         struct perf_event *leader = event->group_leader;
2894         struct perf_event_context *task_ctx;
2895
2896         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2897             event->state <= PERF_EVENT_STATE_ERROR)
2898                 return;
2899
2900         if (ctx->is_active)
2901                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2902
2903         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2904
2905         if (!ctx->is_active)
2906                 return;
2907
2908         if (!event_filter_match(event)) {
2909                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2910                 return;
2911         }
2912
2913         /*
2914          * If the event is in a group and isn't the group leader,
2915          * then don't put it on unless the group is on.
2916          */
2917         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2918                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2919                 return;
2920         }
2921
2922         task_ctx = cpuctx->task_ctx;
2923         if (ctx->task)
2924                 WARN_ON_ONCE(task_ctx != ctx);
2925
2926         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2927 }
2928
2929 /*
2930  * Enable an event.
2931  *
2932  * If event->ctx is a cloned context, callers must make sure that
2933  * every task struct that event->ctx->task could possibly point to
2934  * remains valid.  This condition is satisfied when called through
2935  * perf_event_for_each_child or perf_event_for_each as described
2936  * for perf_event_disable.
2937  */
2938 static void _perf_event_enable(struct perf_event *event)
2939 {
2940         struct perf_event_context *ctx = event->ctx;
2941
2942         raw_spin_lock_irq(&ctx->lock);
2943         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944             event->state <  PERF_EVENT_STATE_ERROR) {
2945                 raw_spin_unlock_irq(&ctx->lock);
2946                 return;
2947         }
2948
2949         /*
2950          * If the event is in error state, clear that first.
2951          *
2952          * That way, if we see the event in error state below, we know that it
2953          * has gone back into error state, as distinct from the task having
2954          * been scheduled away before the cross-call arrived.
2955          */
2956         if (event->state == PERF_EVENT_STATE_ERROR)
2957                 event->state = PERF_EVENT_STATE_OFF;
2958         raw_spin_unlock_irq(&ctx->lock);
2959
2960         event_function_call(event, __perf_event_enable, NULL);
2961 }
2962
2963 /*
2964  * See perf_event_disable();
2965  */
2966 void perf_event_enable(struct perf_event *event)
2967 {
2968         struct perf_event_context *ctx;
2969
2970         ctx = perf_event_ctx_lock(event);
2971         _perf_event_enable(event);
2972         perf_event_ctx_unlock(event, ctx);
2973 }
2974 EXPORT_SYMBOL_GPL(perf_event_enable);
2975
2976 struct stop_event_data {
2977         struct perf_event       *event;
2978         unsigned int            restart;
2979 };
2980
2981 static int __perf_event_stop(void *info)
2982 {
2983         struct stop_event_data *sd = info;
2984         struct perf_event *event = sd->event;
2985
2986         /* if it's already INACTIVE, do nothing */
2987         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2988                 return 0;
2989
2990         /* matches smp_wmb() in event_sched_in() */
2991         smp_rmb();
2992
2993         /*
2994          * There is a window with interrupts enabled before we get here,
2995          * so we need to check again lest we try to stop another CPU's event.
2996          */
2997         if (READ_ONCE(event->oncpu) != smp_processor_id())
2998                 return -EAGAIN;
2999
3000         event->pmu->stop(event, PERF_EF_UPDATE);
3001
3002         /*
3003          * May race with the actual stop (through perf_pmu_output_stop()),
3004          * but it is only used for events with AUX ring buffer, and such
3005          * events will refuse to restart because of rb::aux_mmap_count==0,
3006          * see comments in perf_aux_output_begin().
3007          *
3008          * Since this is happening on an event-local CPU, no trace is lost
3009          * while restarting.
3010          */
3011         if (sd->restart)
3012                 event->pmu->start(event, 0);
3013
3014         return 0;
3015 }
3016
3017 static int perf_event_stop(struct perf_event *event, int restart)
3018 {
3019         struct stop_event_data sd = {
3020                 .event          = event,
3021                 .restart        = restart,
3022         };
3023         int ret = 0;
3024
3025         do {
3026                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3027                         return 0;
3028
3029                 /* matches smp_wmb() in event_sched_in() */
3030                 smp_rmb();
3031
3032                 /*
3033                  * We only want to restart ACTIVE events, so if the event goes
3034                  * inactive here (event->oncpu==-1), there's nothing more to do;
3035                  * fall through with ret==-ENXIO.
3036                  */
3037                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3038                                         __perf_event_stop, &sd);
3039         } while (ret == -EAGAIN);
3040
3041         return ret;
3042 }
3043
3044 /*
3045  * In order to contain the amount of racy and tricky in the address filter
3046  * configuration management, it is a two part process:
3047  *
3048  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3049  *      we update the addresses of corresponding vmas in
3050  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3051  * (p2) when an event is scheduled in (pmu::add), it calls
3052  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3053  *      if the generation has changed since the previous call.
3054  *
3055  * If (p1) happens while the event is active, we restart it to force (p2).
3056  *
3057  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3058  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3059  *     ioctl;
3060  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3061  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
3062  *     for reading;
3063  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3064  *     of exec.
3065  */
3066 void perf_event_addr_filters_sync(struct perf_event *event)
3067 {
3068         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3069
3070         if (!has_addr_filter(event))
3071                 return;
3072
3073         raw_spin_lock(&ifh->lock);
3074         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3075                 event->pmu->addr_filters_sync(event);
3076                 event->hw.addr_filters_gen = event->addr_filters_gen;
3077         }
3078         raw_spin_unlock(&ifh->lock);
3079 }
3080 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3081
3082 static int _perf_event_refresh(struct perf_event *event, int refresh)
3083 {
3084         /*
3085          * not supported on inherited events
3086          */
3087         if (event->attr.inherit || !is_sampling_event(event))
3088                 return -EINVAL;
3089
3090         atomic_add(refresh, &event->event_limit);
3091         _perf_event_enable(event);
3092
3093         return 0;
3094 }
3095
3096 /*
3097  * See perf_event_disable()
3098  */
3099 int perf_event_refresh(struct perf_event *event, int refresh)
3100 {
3101         struct perf_event_context *ctx;
3102         int ret;
3103
3104         ctx = perf_event_ctx_lock(event);
3105         ret = _perf_event_refresh(event, refresh);
3106         perf_event_ctx_unlock(event, ctx);
3107
3108         return ret;
3109 }
3110 EXPORT_SYMBOL_GPL(perf_event_refresh);
3111
3112 static int perf_event_modify_breakpoint(struct perf_event *bp,
3113                                          struct perf_event_attr *attr)
3114 {
3115         int err;
3116
3117         _perf_event_disable(bp);
3118
3119         err = modify_user_hw_breakpoint_check(bp, attr, true);
3120
3121         if (!bp->attr.disabled)
3122                 _perf_event_enable(bp);
3123
3124         return err;
3125 }
3126
3127 static int perf_event_modify_attr(struct perf_event *event,
3128                                   struct perf_event_attr *attr)
3129 {
3130         if (event->attr.type != attr->type)
3131                 return -EINVAL;
3132
3133         switch (event->attr.type) {
3134         case PERF_TYPE_BREAKPOINT:
3135                 return perf_event_modify_breakpoint(event, attr);
3136         default:
3137                 /* Place holder for future additions. */
3138                 return -EOPNOTSUPP;
3139         }
3140 }
3141
3142 static void ctx_sched_out(struct perf_event_context *ctx,
3143                           struct perf_cpu_context *cpuctx,
3144                           enum event_type_t event_type)
3145 {
3146         struct perf_event *event, *tmp;
3147         int is_active = ctx->is_active;
3148
3149         lockdep_assert_held(&ctx->lock);
3150
3151         if (likely(!ctx->nr_events)) {
3152                 /*
3153                  * See __perf_remove_from_context().
3154                  */
3155                 WARN_ON_ONCE(ctx->is_active);
3156                 if (ctx->task)
3157                         WARN_ON_ONCE(cpuctx->task_ctx);
3158                 return;
3159         }
3160
3161         ctx->is_active &= ~event_type;
3162         if (!(ctx->is_active & EVENT_ALL))
3163                 ctx->is_active = 0;
3164
3165         if (ctx->task) {
3166                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3167                 if (!ctx->is_active)
3168                         cpuctx->task_ctx = NULL;
3169         }
3170
3171         /*
3172          * Always update time if it was set; not only when it changes.
3173          * Otherwise we can 'forget' to update time for any but the last
3174          * context we sched out. For example:
3175          *
3176          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3177          *   ctx_sched_out(.event_type = EVENT_PINNED)
3178          *
3179          * would only update time for the pinned events.
3180          */
3181         if (is_active & EVENT_TIME) {
3182                 /* update (and stop) ctx time */
3183                 update_context_time(ctx);
3184                 update_cgrp_time_from_cpuctx(cpuctx);
3185         }
3186
3187         is_active ^= ctx->is_active; /* changed bits */
3188
3189         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3190                 return;
3191
3192         perf_pmu_disable(ctx->pmu);
3193         if (is_active & EVENT_PINNED) {
3194                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3195                         group_sched_out(event, cpuctx, ctx);
3196         }
3197
3198         if (is_active & EVENT_FLEXIBLE) {
3199                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3200                         group_sched_out(event, cpuctx, ctx);
3201
3202                 /*
3203                  * Since we cleared EVENT_FLEXIBLE, also clear
3204                  * rotate_necessary, is will be reset by
3205                  * ctx_flexible_sched_in() when needed.
3206                  */
3207                 ctx->rotate_necessary = 0;
3208         }
3209         perf_pmu_enable(ctx->pmu);
3210 }
3211
3212 /*
3213  * Test whether two contexts are equivalent, i.e. whether they have both been
3214  * cloned from the same version of the same context.
3215  *
3216  * Equivalence is measured using a generation number in the context that is
3217  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3218  * and list_del_event().
3219  */
3220 static int context_equiv(struct perf_event_context *ctx1,
3221                          struct perf_event_context *ctx2)
3222 {
3223         lockdep_assert_held(&ctx1->lock);
3224         lockdep_assert_held(&ctx2->lock);
3225
3226         /* Pinning disables the swap optimization */
3227         if (ctx1->pin_count || ctx2->pin_count)
3228                 return 0;
3229
3230         /* If ctx1 is the parent of ctx2 */
3231         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3232                 return 1;
3233
3234         /* If ctx2 is the parent of ctx1 */
3235         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3236                 return 1;
3237
3238         /*
3239          * If ctx1 and ctx2 have the same parent; we flatten the parent
3240          * hierarchy, see perf_event_init_context().
3241          */
3242         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3243                         ctx1->parent_gen == ctx2->parent_gen)
3244                 return 1;
3245
3246         /* Unmatched */
3247         return 0;
3248 }
3249
3250 static void __perf_event_sync_stat(struct perf_event *event,
3251                                      struct perf_event *next_event)
3252 {
3253         u64 value;
3254
3255         if (!event->attr.inherit_stat)
3256                 return;
3257
3258         /*
3259          * Update the event value, we cannot use perf_event_read()
3260          * because we're in the middle of a context switch and have IRQs
3261          * disabled, which upsets smp_call_function_single(), however
3262          * we know the event must be on the current CPU, therefore we
3263          * don't need to use it.
3264          */
3265         if (event->state == PERF_EVENT_STATE_ACTIVE)
3266                 event->pmu->read(event);
3267
3268         perf_event_update_time(event);
3269
3270         /*
3271          * In order to keep per-task stats reliable we need to flip the event
3272          * values when we flip the contexts.
3273          */
3274         value = local64_read(&next_event->count);
3275         value = local64_xchg(&event->count, value);
3276         local64_set(&next_event->count, value);
3277
3278         swap(event->total_time_enabled, next_event->total_time_enabled);
3279         swap(event->total_time_running, next_event->total_time_running);
3280
3281         /*
3282          * Since we swizzled the values, update the user visible data too.
3283          */
3284         perf_event_update_userpage(event);
3285         perf_event_update_userpage(next_event);
3286 }
3287
3288 static void perf_event_sync_stat(struct perf_event_context *ctx,
3289                                    struct perf_event_context *next_ctx)
3290 {
3291         struct perf_event *event, *next_event;
3292
3293         if (!ctx->nr_stat)
3294                 return;
3295
3296         update_context_time(ctx);
3297
3298         event = list_first_entry(&ctx->event_list,
3299                                    struct perf_event, event_entry);
3300
3301         next_event = list_first_entry(&next_ctx->event_list,
3302                                         struct perf_event, event_entry);
3303
3304         while (&event->event_entry != &ctx->event_list &&
3305                &next_event->event_entry != &next_ctx->event_list) {
3306
3307                 __perf_event_sync_stat(event, next_event);
3308
3309                 event = list_next_entry(event, event_entry);
3310                 next_event = list_next_entry(next_event, event_entry);
3311         }
3312 }
3313
3314 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3315                                          struct task_struct *next)
3316 {
3317         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3318         struct perf_event_context *next_ctx;
3319         struct perf_event_context *parent, *next_parent;
3320         struct perf_cpu_context *cpuctx;
3321         int do_switch = 1;
3322
3323         if (likely(!ctx))
3324                 return;
3325
3326         cpuctx = __get_cpu_context(ctx);
3327         if (!cpuctx->task_ctx)
3328                 return;
3329
3330         rcu_read_lock();
3331         next_ctx = next->perf_event_ctxp[ctxn];
3332         if (!next_ctx)
3333                 goto unlock;
3334
3335         parent = rcu_dereference(ctx->parent_ctx);
3336         next_parent = rcu_dereference(next_ctx->parent_ctx);
3337
3338         /* If neither context have a parent context; they cannot be clones. */
3339         if (!parent && !next_parent)
3340                 goto unlock;
3341
3342         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3343                 /*
3344                  * Looks like the two contexts are clones, so we might be
3345                  * able to optimize the context switch.  We lock both
3346                  * contexts and check that they are clones under the
3347                  * lock (including re-checking that neither has been
3348                  * uncloned in the meantime).  It doesn't matter which
3349                  * order we take the locks because no other cpu could
3350                  * be trying to lock both of these tasks.
3351                  */
3352                 raw_spin_lock(&ctx->lock);
3353                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3354                 if (context_equiv(ctx, next_ctx)) {
3355                         struct pmu *pmu = ctx->pmu;
3356
3357                         WRITE_ONCE(ctx->task, next);
3358                         WRITE_ONCE(next_ctx->task, task);
3359
3360                         /*
3361                          * PMU specific parts of task perf context can require
3362                          * additional synchronization. As an example of such
3363                          * synchronization see implementation details of Intel
3364                          * LBR call stack data profiling;
3365                          */
3366                         if (pmu->swap_task_ctx)
3367                                 pmu->swap_task_ctx(ctx, next_ctx);
3368                         else
3369                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3370
3371                         /*
3372                          * RCU_INIT_POINTER here is safe because we've not
3373                          * modified the ctx and the above modification of
3374                          * ctx->task and ctx->task_ctx_data are immaterial
3375                          * since those values are always verified under
3376                          * ctx->lock which we're now holding.
3377                          */
3378                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3379                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3380
3381                         do_switch = 0;
3382
3383                         perf_event_sync_stat(ctx, next_ctx);
3384                 }
3385                 raw_spin_unlock(&next_ctx->lock);
3386                 raw_spin_unlock(&ctx->lock);
3387         }
3388 unlock:
3389         rcu_read_unlock();
3390
3391         if (do_switch) {
3392                 raw_spin_lock(&ctx->lock);
3393                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3394                 raw_spin_unlock(&ctx->lock);
3395         }
3396 }
3397
3398 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3399
3400 void perf_sched_cb_dec(struct pmu *pmu)
3401 {
3402         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3403
3404         this_cpu_dec(perf_sched_cb_usages);
3405
3406         if (!--cpuctx->sched_cb_usage)
3407                 list_del(&cpuctx->sched_cb_entry);
3408 }
3409
3410
3411 void perf_sched_cb_inc(struct pmu *pmu)
3412 {
3413         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3414
3415         if (!cpuctx->sched_cb_usage++)
3416                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3417
3418         this_cpu_inc(perf_sched_cb_usages);
3419 }
3420
3421 /*
3422  * This function provides the context switch callback to the lower code
3423  * layer. It is invoked ONLY when the context switch callback is enabled.
3424  *
3425  * This callback is relevant even to per-cpu events; for example multi event
3426  * PEBS requires this to provide PID/TID information. This requires we flush
3427  * all queued PEBS records before we context switch to a new task.
3428  */
3429 static void perf_pmu_sched_task(struct task_struct *prev,
3430                                 struct task_struct *next,
3431                                 bool sched_in)
3432 {
3433         struct perf_cpu_context *cpuctx;
3434         struct pmu *pmu;
3435
3436         if (prev == next)
3437                 return;
3438
3439         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3440                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3441
3442                 if (WARN_ON_ONCE(!pmu->sched_task))
3443                         continue;
3444
3445                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3446                 perf_pmu_disable(pmu);
3447
3448                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3449
3450                 perf_pmu_enable(pmu);
3451                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3452         }
3453 }
3454
3455 static void perf_event_switch(struct task_struct *task,
3456                               struct task_struct *next_prev, bool sched_in);
3457
3458 #define for_each_task_context_nr(ctxn)                                  \
3459         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3460
3461 /*
3462  * Called from scheduler to remove the events of the current task,
3463  * with interrupts disabled.
3464  *
3465  * We stop each event and update the event value in event->count.
3466  *
3467  * This does not protect us against NMI, but disable()
3468  * sets the disabled bit in the control field of event _before_
3469  * accessing the event control register. If a NMI hits, then it will
3470  * not restart the event.
3471  */
3472 void __perf_event_task_sched_out(struct task_struct *task,
3473                                  struct task_struct *next)
3474 {
3475         int ctxn;
3476
3477         if (__this_cpu_read(perf_sched_cb_usages))
3478                 perf_pmu_sched_task(task, next, false);
3479
3480         if (atomic_read(&nr_switch_events))
3481                 perf_event_switch(task, next, false);
3482
3483         for_each_task_context_nr(ctxn)
3484                 perf_event_context_sched_out(task, ctxn, next);
3485
3486         /*
3487          * if cgroup events exist on this CPU, then we need
3488          * to check if we have to switch out PMU state.
3489          * cgroup event are system-wide mode only
3490          */
3491         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3492                 perf_cgroup_sched_out(task, next);
3493 }
3494
3495 /*
3496  * Called with IRQs disabled
3497  */
3498 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3499                               enum event_type_t event_type)
3500 {
3501         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3502 }
3503
3504 static bool perf_less_group_idx(const void *l, const void *r)
3505 {
3506         const struct perf_event *le = l, *re = r;
3507
3508         return le->group_index < re->group_index;
3509 }
3510
3511 static void swap_ptr(void *l, void *r)
3512 {
3513         void **lp = l, **rp = r;
3514
3515         swap(*lp, *rp);
3516 }
3517
3518 static const struct min_heap_callbacks perf_min_heap = {
3519         .elem_size = sizeof(struct perf_event *),
3520         .less = perf_less_group_idx,
3521         .swp = swap_ptr,
3522 };
3523
3524 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3525 {
3526         struct perf_event **itrs = heap->data;
3527
3528         if (event) {
3529                 itrs[heap->nr] = event;
3530                 heap->nr++;
3531         }
3532 }
3533
3534 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3535                                 struct perf_event_groups *groups, int cpu,
3536                                 int (*func)(struct perf_event *, void *),
3537                                 void *data)
3538 {
3539 #ifdef CONFIG_CGROUP_PERF
3540         struct cgroup_subsys_state *css = NULL;
3541 #endif
3542         /* Space for per CPU and/or any CPU event iterators. */
3543         struct perf_event *itrs[2];
3544         struct min_heap event_heap;
3545         struct perf_event **evt;
3546         int ret;
3547
3548         if (cpuctx) {
3549                 event_heap = (struct min_heap){
3550                         .data = cpuctx->heap,
3551                         .nr = 0,
3552                         .size = cpuctx->heap_size,
3553                 };
3554
3555                 lockdep_assert_held(&cpuctx->ctx.lock);
3556
3557 #ifdef CONFIG_CGROUP_PERF
3558                 if (cpuctx->cgrp)
3559                         css = &cpuctx->cgrp->css;
3560 #endif
3561         } else {
3562                 event_heap = (struct min_heap){
3563                         .data = itrs,
3564                         .nr = 0,
3565                         .size = ARRAY_SIZE(itrs),
3566                 };
3567                 /* Events not within a CPU context may be on any CPU. */
3568                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3569         }
3570         evt = event_heap.data;
3571
3572         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3573
3574 #ifdef CONFIG_CGROUP_PERF
3575         for (; css; css = css->parent)
3576                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3577 #endif
3578
3579         min_heapify_all(&event_heap, &perf_min_heap);
3580
3581         while (event_heap.nr) {
3582                 ret = func(*evt, data);
3583                 if (ret)
3584                         return ret;
3585
3586                 *evt = perf_event_groups_next(*evt);
3587                 if (*evt)
3588                         min_heapify(&event_heap, 0, &perf_min_heap);
3589                 else
3590                         min_heap_pop(&event_heap, &perf_min_heap);
3591         }
3592
3593         return 0;
3594 }
3595
3596 static int merge_sched_in(struct perf_event *event, void *data)
3597 {
3598         struct perf_event_context *ctx = event->ctx;
3599         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3600         int *can_add_hw = data;
3601
3602         if (event->state <= PERF_EVENT_STATE_OFF)
3603                 return 0;
3604
3605         if (!event_filter_match(event))
3606                 return 0;
3607
3608         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3609                 if (!group_sched_in(event, cpuctx, ctx))
3610                         list_add_tail(&event->active_list, get_event_list(event));
3611         }
3612
3613         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3614                 if (event->attr.pinned)
3615                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3616
3617                 *can_add_hw = 0;
3618                 ctx->rotate_necessary = 1;
3619         }
3620
3621         return 0;
3622 }
3623
3624 static void
3625 ctx_pinned_sched_in(struct perf_event_context *ctx,
3626                     struct perf_cpu_context *cpuctx)
3627 {
3628         int can_add_hw = 1;
3629
3630         if (ctx != &cpuctx->ctx)
3631                 cpuctx = NULL;
3632
3633         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3634                            smp_processor_id(),
3635                            merge_sched_in, &can_add_hw);
3636 }
3637
3638 static void
3639 ctx_flexible_sched_in(struct perf_event_context *ctx,
3640                       struct perf_cpu_context *cpuctx)
3641 {
3642         int can_add_hw = 1;
3643
3644         if (ctx != &cpuctx->ctx)
3645                 cpuctx = NULL;
3646
3647         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3648                            smp_processor_id(),
3649                            merge_sched_in, &can_add_hw);
3650 }
3651
3652 static void
3653 ctx_sched_in(struct perf_event_context *ctx,
3654              struct perf_cpu_context *cpuctx,
3655              enum event_type_t event_type,
3656              struct task_struct *task)
3657 {
3658         int is_active = ctx->is_active;
3659         u64 now;
3660
3661         lockdep_assert_held(&ctx->lock);
3662
3663         if (likely(!ctx->nr_events))
3664                 return;
3665
3666         ctx->is_active |= (event_type | EVENT_TIME);
3667         if (ctx->task) {
3668                 if (!is_active)
3669                         cpuctx->task_ctx = ctx;
3670                 else
3671                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3672         }
3673
3674         is_active ^= ctx->is_active; /* changed bits */
3675
3676         if (is_active & EVENT_TIME) {
3677                 /* start ctx time */
3678                 now = perf_clock();
3679                 ctx->timestamp = now;
3680                 perf_cgroup_set_timestamp(task, ctx);
3681         }
3682
3683         /*
3684          * First go through the list and put on any pinned groups
3685          * in order to give them the best chance of going on.
3686          */
3687         if (is_active & EVENT_PINNED)
3688                 ctx_pinned_sched_in(ctx, cpuctx);
3689
3690         /* Then walk through the lower prio flexible groups */
3691         if (is_active & EVENT_FLEXIBLE)
3692                 ctx_flexible_sched_in(ctx, cpuctx);
3693 }
3694
3695 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3696                              enum event_type_t event_type,
3697                              struct task_struct *task)
3698 {
3699         struct perf_event_context *ctx = &cpuctx->ctx;
3700
3701         ctx_sched_in(ctx, cpuctx, event_type, task);
3702 }
3703
3704 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3705                                         struct task_struct *task)
3706 {
3707         struct perf_cpu_context *cpuctx;
3708
3709         cpuctx = __get_cpu_context(ctx);
3710         if (cpuctx->task_ctx == ctx)
3711                 return;
3712
3713         perf_ctx_lock(cpuctx, ctx);
3714         /*
3715          * We must check ctx->nr_events while holding ctx->lock, such
3716          * that we serialize against perf_install_in_context().
3717          */
3718         if (!ctx->nr_events)
3719                 goto unlock;
3720
3721         perf_pmu_disable(ctx->pmu);
3722         /*
3723          * We want to keep the following priority order:
3724          * cpu pinned (that don't need to move), task pinned,
3725          * cpu flexible, task flexible.
3726          *
3727          * However, if task's ctx is not carrying any pinned
3728          * events, no need to flip the cpuctx's events around.
3729          */
3730         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3731                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3732         perf_event_sched_in(cpuctx, ctx, task);
3733         perf_pmu_enable(ctx->pmu);
3734
3735 unlock:
3736         perf_ctx_unlock(cpuctx, ctx);
3737 }
3738
3739 /*
3740  * Called from scheduler to add the events of the current task
3741  * with interrupts disabled.
3742  *
3743  * We restore the event value and then enable it.
3744  *
3745  * This does not protect us against NMI, but enable()
3746  * sets the enabled bit in the control field of event _before_
3747  * accessing the event control register. If a NMI hits, then it will
3748  * keep the event running.
3749  */
3750 void __perf_event_task_sched_in(struct task_struct *prev,
3751                                 struct task_struct *task)
3752 {
3753         struct perf_event_context *ctx;
3754         int ctxn;
3755
3756         /*
3757          * If cgroup events exist on this CPU, then we need to check if we have
3758          * to switch in PMU state; cgroup event are system-wide mode only.
3759          *
3760          * Since cgroup events are CPU events, we must schedule these in before
3761          * we schedule in the task events.
3762          */
3763         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3764                 perf_cgroup_sched_in(prev, task);
3765
3766         for_each_task_context_nr(ctxn) {
3767                 ctx = task->perf_event_ctxp[ctxn];
3768                 if (likely(!ctx))
3769                         continue;
3770
3771                 perf_event_context_sched_in(ctx, task);
3772         }
3773
3774         if (atomic_read(&nr_switch_events))
3775                 perf_event_switch(task, prev, true);
3776
3777         if (__this_cpu_read(perf_sched_cb_usages))
3778                 perf_pmu_sched_task(prev, task, true);
3779 }
3780
3781 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3782 {
3783         u64 frequency = event->attr.sample_freq;
3784         u64 sec = NSEC_PER_SEC;
3785         u64 divisor, dividend;
3786
3787         int count_fls, nsec_fls, frequency_fls, sec_fls;
3788
3789         count_fls = fls64(count);
3790         nsec_fls = fls64(nsec);
3791         frequency_fls = fls64(frequency);
3792         sec_fls = 30;
3793
3794         /*
3795          * We got @count in @nsec, with a target of sample_freq HZ
3796          * the target period becomes:
3797          *
3798          *             @count * 10^9
3799          * period = -------------------
3800          *          @nsec * sample_freq
3801          *
3802          */
3803
3804         /*
3805          * Reduce accuracy by one bit such that @a and @b converge
3806          * to a similar magnitude.
3807          */
3808 #define REDUCE_FLS(a, b)                \
3809 do {                                    \
3810         if (a##_fls > b##_fls) {        \
3811                 a >>= 1;                \
3812                 a##_fls--;              \
3813         } else {                        \
3814                 b >>= 1;                \
3815                 b##_fls--;              \
3816         }                               \
3817 } while (0)
3818
3819         /*
3820          * Reduce accuracy until either term fits in a u64, then proceed with
3821          * the other, so that finally we can do a u64/u64 division.
3822          */
3823         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3824                 REDUCE_FLS(nsec, frequency);
3825                 REDUCE_FLS(sec, count);
3826         }
3827
3828         if (count_fls + sec_fls > 64) {
3829                 divisor = nsec * frequency;
3830
3831                 while (count_fls + sec_fls > 64) {
3832                         REDUCE_FLS(count, sec);
3833                         divisor >>= 1;
3834                 }
3835
3836                 dividend = count * sec;
3837         } else {
3838                 dividend = count * sec;
3839
3840                 while (nsec_fls + frequency_fls > 64) {
3841                         REDUCE_FLS(nsec, frequency);
3842                         dividend >>= 1;
3843                 }
3844
3845                 divisor = nsec * frequency;
3846         }
3847
3848         if (!divisor)
3849                 return dividend;
3850
3851         return div64_u64(dividend, divisor);
3852 }
3853
3854 static DEFINE_PER_CPU(int, perf_throttled_count);
3855 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3856
3857 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3858 {
3859         struct hw_perf_event *hwc = &event->hw;
3860         s64 period, sample_period;
3861         s64 delta;
3862
3863         period = perf_calculate_period(event, nsec, count);
3864
3865         delta = (s64)(period - hwc->sample_period);
3866         delta = (delta + 7) / 8; /* low pass filter */
3867
3868         sample_period = hwc->sample_period + delta;
3869
3870         if (!sample_period)
3871                 sample_period = 1;
3872
3873         hwc->sample_period = sample_period;
3874
3875         if (local64_read(&hwc->period_left) > 8*sample_period) {
3876                 if (disable)
3877                         event->pmu->stop(event, PERF_EF_UPDATE);
3878
3879                 local64_set(&hwc->period_left, 0);
3880
3881                 if (disable)
3882                         event->pmu->start(event, PERF_EF_RELOAD);
3883         }
3884 }
3885
3886 /*
3887  * combine freq adjustment with unthrottling to avoid two passes over the
3888  * events. At the same time, make sure, having freq events does not change
3889  * the rate of unthrottling as that would introduce bias.
3890  */
3891 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3892                                            int needs_unthr)
3893 {
3894         struct perf_event *event;
3895         struct hw_perf_event *hwc;
3896         u64 now, period = TICK_NSEC;
3897         s64 delta;
3898
3899         /*
3900          * only need to iterate over all events iff:
3901          * - context have events in frequency mode (needs freq adjust)
3902          * - there are events to unthrottle on this cpu
3903          */
3904         if (!(ctx->nr_freq || needs_unthr))
3905                 return;
3906
3907         raw_spin_lock(&ctx->lock);
3908         perf_pmu_disable(ctx->pmu);
3909
3910         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3911                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3912                         continue;
3913
3914                 if (!event_filter_match(event))
3915                         continue;
3916
3917                 perf_pmu_disable(event->pmu);
3918
3919                 hwc = &event->hw;
3920
3921                 if (hwc->interrupts == MAX_INTERRUPTS) {
3922                         hwc->interrupts = 0;
3923                         perf_log_throttle(event, 1);
3924                         event->pmu->start(event, 0);
3925                 }
3926
3927                 if (!event->attr.freq || !event->attr.sample_freq)
3928                         goto next;
3929
3930                 /*
3931                  * stop the event and update event->count
3932                  */
3933                 event->pmu->stop(event, PERF_EF_UPDATE);
3934
3935                 now = local64_read(&event->count);
3936                 delta = now - hwc->freq_count_stamp;
3937                 hwc->freq_count_stamp = now;
3938
3939                 /*
3940                  * restart the event
3941                  * reload only if value has changed
3942                  * we have stopped the event so tell that
3943                  * to perf_adjust_period() to avoid stopping it
3944                  * twice.
3945                  */
3946                 if (delta > 0)
3947                         perf_adjust_period(event, period, delta, false);
3948
3949                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3950         next:
3951                 perf_pmu_enable(event->pmu);
3952         }
3953
3954         perf_pmu_enable(ctx->pmu);
3955         raw_spin_unlock(&ctx->lock);
3956 }
3957
3958 /*
3959  * Move @event to the tail of the @ctx's elegible events.
3960  */
3961 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3962 {
3963         /*
3964          * Rotate the first entry last of non-pinned groups. Rotation might be
3965          * disabled by the inheritance code.
3966          */
3967         if (ctx->rotate_disable)
3968                 return;
3969
3970         perf_event_groups_delete(&ctx->flexible_groups, event);
3971         perf_event_groups_insert(&ctx->flexible_groups, event);
3972 }
3973
3974 /* pick an event from the flexible_groups to rotate */
3975 static inline struct perf_event *
3976 ctx_event_to_rotate(struct perf_event_context *ctx)
3977 {
3978         struct perf_event *event;
3979
3980         /* pick the first active flexible event */
3981         event = list_first_entry_or_null(&ctx->flexible_active,
3982                                          struct perf_event, active_list);
3983
3984         /* if no active flexible event, pick the first event */
3985         if (!event) {
3986                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3987                                       typeof(*event), group_node);
3988         }
3989
3990         /*
3991          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3992          * finds there are unschedulable events, it will set it again.
3993          */
3994         ctx->rotate_necessary = 0;
3995
3996         return event;
3997 }
3998
3999 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4000 {
4001         struct perf_event *cpu_event = NULL, *task_event = NULL;
4002         struct perf_event_context *task_ctx = NULL;
4003         int cpu_rotate, task_rotate;
4004
4005         /*
4006          * Since we run this from IRQ context, nobody can install new
4007          * events, thus the event count values are stable.
4008          */
4009
4010         cpu_rotate = cpuctx->ctx.rotate_necessary;
4011         task_ctx = cpuctx->task_ctx;
4012         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4013
4014         if (!(cpu_rotate || task_rotate))
4015                 return false;
4016
4017         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4018         perf_pmu_disable(cpuctx->ctx.pmu);
4019
4020         if (task_rotate)
4021                 task_event = ctx_event_to_rotate(task_ctx);
4022         if (cpu_rotate)
4023                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4024
4025         /*
4026          * As per the order given at ctx_resched() first 'pop' task flexible
4027          * and then, if needed CPU flexible.
4028          */
4029         if (task_event || (task_ctx && cpu_event))
4030                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4031         if (cpu_event)
4032                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4033
4034         if (task_event)
4035                 rotate_ctx(task_ctx, task_event);
4036         if (cpu_event)
4037                 rotate_ctx(&cpuctx->ctx, cpu_event);
4038
4039         perf_event_sched_in(cpuctx, task_ctx, current);
4040
4041         perf_pmu_enable(cpuctx->ctx.pmu);
4042         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4043
4044         return true;
4045 }
4046
4047 void perf_event_task_tick(void)
4048 {
4049         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4050         struct perf_event_context *ctx, *tmp;
4051         int throttled;
4052
4053         lockdep_assert_irqs_disabled();
4054
4055         __this_cpu_inc(perf_throttled_seq);
4056         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4057         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4058
4059         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4060                 perf_adjust_freq_unthr_context(ctx, throttled);
4061 }
4062
4063 static int event_enable_on_exec(struct perf_event *event,
4064                                 struct perf_event_context *ctx)
4065 {
4066         if (!event->attr.enable_on_exec)
4067                 return 0;
4068
4069         event->attr.enable_on_exec = 0;
4070         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4071                 return 0;
4072
4073         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4074
4075         return 1;
4076 }
4077
4078 /*
4079  * Enable all of a task's events that have been marked enable-on-exec.
4080  * This expects task == current.
4081  */
4082 static void perf_event_enable_on_exec(int ctxn)
4083 {
4084         struct perf_event_context *ctx, *clone_ctx = NULL;
4085         enum event_type_t event_type = 0;
4086         struct perf_cpu_context *cpuctx;
4087         struct perf_event *event;
4088         unsigned long flags;
4089         int enabled = 0;
4090
4091         local_irq_save(flags);
4092         ctx = current->perf_event_ctxp[ctxn];
4093         if (!ctx || !ctx->nr_events)
4094                 goto out;
4095
4096         cpuctx = __get_cpu_context(ctx);
4097         perf_ctx_lock(cpuctx, ctx);
4098         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4099         list_for_each_entry(event, &ctx->event_list, event_entry) {
4100                 enabled |= event_enable_on_exec(event, ctx);
4101                 event_type |= get_event_type(event);
4102         }
4103
4104         /*
4105          * Unclone and reschedule this context if we enabled any event.
4106          */
4107         if (enabled) {
4108                 clone_ctx = unclone_ctx(ctx);
4109                 ctx_resched(cpuctx, ctx, event_type);
4110         } else {
4111                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4112         }
4113         perf_ctx_unlock(cpuctx, ctx);
4114
4115 out:
4116         local_irq_restore(flags);
4117
4118         if (clone_ctx)
4119                 put_ctx(clone_ctx);
4120 }
4121
4122 struct perf_read_data {
4123         struct perf_event *event;
4124         bool group;
4125         int ret;
4126 };
4127
4128 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4129 {
4130         u16 local_pkg, event_pkg;
4131
4132         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4133                 int local_cpu = smp_processor_id();
4134
4135                 event_pkg = topology_physical_package_id(event_cpu);
4136                 local_pkg = topology_physical_package_id(local_cpu);
4137
4138                 if (event_pkg == local_pkg)
4139                         return local_cpu;
4140         }
4141
4142         return event_cpu;
4143 }
4144
4145 /*
4146  * Cross CPU call to read the hardware event
4147  */
4148 static void __perf_event_read(void *info)
4149 {
4150         struct perf_read_data *data = info;
4151         struct perf_event *sub, *event = data->event;
4152         struct perf_event_context *ctx = event->ctx;
4153         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4154         struct pmu *pmu = event->pmu;
4155
4156         /*
4157          * If this is a task context, we need to check whether it is
4158          * the current task context of this cpu.  If not it has been
4159          * scheduled out before the smp call arrived.  In that case
4160          * event->count would have been updated to a recent sample
4161          * when the event was scheduled out.
4162          */
4163         if (ctx->task && cpuctx->task_ctx != ctx)
4164                 return;
4165
4166         raw_spin_lock(&ctx->lock);
4167         if (ctx->is_active & EVENT_TIME) {
4168                 update_context_time(ctx);
4169                 update_cgrp_time_from_event(event);
4170         }
4171
4172         perf_event_update_time(event);
4173         if (data->group)
4174                 perf_event_update_sibling_time(event);
4175
4176         if (event->state != PERF_EVENT_STATE_ACTIVE)
4177                 goto unlock;
4178
4179         if (!data->group) {
4180                 pmu->read(event);
4181                 data->ret = 0;
4182                 goto unlock;
4183         }
4184
4185         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4186
4187         pmu->read(event);
4188
4189         for_each_sibling_event(sub, event) {
4190                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4191                         /*
4192                          * Use sibling's PMU rather than @event's since
4193                          * sibling could be on different (eg: software) PMU.
4194                          */
4195                         sub->pmu->read(sub);
4196                 }
4197         }
4198
4199         data->ret = pmu->commit_txn(pmu);
4200
4201 unlock:
4202         raw_spin_unlock(&ctx->lock);
4203 }
4204
4205 static inline u64 perf_event_count(struct perf_event *event)
4206 {
4207         return local64_read(&event->count) + atomic64_read(&event->child_count);
4208 }
4209
4210 /*
4211  * NMI-safe method to read a local event, that is an event that
4212  * is:
4213  *   - either for the current task, or for this CPU
4214  *   - does not have inherit set, for inherited task events
4215  *     will not be local and we cannot read them atomically
4216  *   - must not have a pmu::count method
4217  */
4218 int perf_event_read_local(struct perf_event *event, u64 *value,
4219                           u64 *enabled, u64 *running)
4220 {
4221         unsigned long flags;
4222         int ret = 0;
4223
4224         /*
4225          * Disabling interrupts avoids all counter scheduling (context
4226          * switches, timer based rotation and IPIs).
4227          */
4228         local_irq_save(flags);
4229
4230         /*
4231          * It must not be an event with inherit set, we cannot read
4232          * all child counters from atomic context.
4233          */
4234         if (event->attr.inherit) {
4235                 ret = -EOPNOTSUPP;
4236                 goto out;
4237         }
4238
4239         /* If this is a per-task event, it must be for current */
4240         if ((event->attach_state & PERF_ATTACH_TASK) &&
4241             event->hw.target != current) {
4242                 ret = -EINVAL;
4243                 goto out;
4244         }
4245
4246         /* If this is a per-CPU event, it must be for this CPU */
4247         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4248             event->cpu != smp_processor_id()) {
4249                 ret = -EINVAL;
4250                 goto out;
4251         }
4252
4253         /* If this is a pinned event it must be running on this CPU */
4254         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4255                 ret = -EBUSY;
4256                 goto out;
4257         }
4258
4259         /*
4260          * If the event is currently on this CPU, its either a per-task event,
4261          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4262          * oncpu == -1).
4263          */
4264         if (event->oncpu == smp_processor_id())
4265                 event->pmu->read(event);
4266
4267         *value = local64_read(&event->count);
4268         if (enabled || running) {
4269                 u64 now = event->shadow_ctx_time + perf_clock();
4270                 u64 __enabled, __running;
4271
4272                 __perf_update_times(event, now, &__enabled, &__running);
4273                 if (enabled)
4274                         *enabled = __enabled;
4275                 if (running)
4276                         *running = __running;
4277         }
4278 out:
4279         local_irq_restore(flags);
4280
4281         return ret;
4282 }
4283
4284 static int perf_event_read(struct perf_event *event, bool group)
4285 {
4286         enum perf_event_state state = READ_ONCE(event->state);
4287         int event_cpu, ret = 0;
4288
4289         /*
4290          * If event is enabled and currently active on a CPU, update the
4291          * value in the event structure:
4292          */
4293 again:
4294         if (state == PERF_EVENT_STATE_ACTIVE) {
4295                 struct perf_read_data data;
4296
4297                 /*
4298                  * Orders the ->state and ->oncpu loads such that if we see
4299                  * ACTIVE we must also see the right ->oncpu.
4300                  *
4301                  * Matches the smp_wmb() from event_sched_in().
4302                  */
4303                 smp_rmb();
4304
4305                 event_cpu = READ_ONCE(event->oncpu);
4306                 if ((unsigned)event_cpu >= nr_cpu_ids)
4307                         return 0;
4308
4309                 data = (struct perf_read_data){
4310                         .event = event,
4311                         .group = group,
4312                         .ret = 0,
4313                 };
4314
4315                 preempt_disable();
4316                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4317
4318                 /*
4319                  * Purposely ignore the smp_call_function_single() return
4320                  * value.
4321                  *
4322                  * If event_cpu isn't a valid CPU it means the event got
4323                  * scheduled out and that will have updated the event count.
4324                  *
4325                  * Therefore, either way, we'll have an up-to-date event count
4326                  * after this.
4327                  */
4328                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4329                 preempt_enable();
4330                 ret = data.ret;
4331
4332         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4333                 struct perf_event_context *ctx = event->ctx;
4334                 unsigned long flags;
4335
4336                 raw_spin_lock_irqsave(&ctx->lock, flags);
4337                 state = event->state;
4338                 if (state != PERF_EVENT_STATE_INACTIVE) {
4339                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4340                         goto again;
4341                 }
4342
4343                 /*
4344                  * May read while context is not active (e.g., thread is
4345                  * blocked), in that case we cannot update context time
4346                  */
4347                 if (ctx->is_active & EVENT_TIME) {
4348                         update_context_time(ctx);
4349                         update_cgrp_time_from_event(event);
4350                 }
4351
4352                 perf_event_update_time(event);
4353                 if (group)
4354                         perf_event_update_sibling_time(event);
4355                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4356         }
4357
4358         return ret;
4359 }
4360
4361 /*
4362  * Initialize the perf_event context in a task_struct:
4363  */
4364 static void __perf_event_init_context(struct perf_event_context *ctx)
4365 {
4366         raw_spin_lock_init(&ctx->lock);
4367         mutex_init(&ctx->mutex);
4368         INIT_LIST_HEAD(&ctx->active_ctx_list);
4369         perf_event_groups_init(&ctx->pinned_groups);
4370         perf_event_groups_init(&ctx->flexible_groups);
4371         INIT_LIST_HEAD(&ctx->event_list);
4372         INIT_LIST_HEAD(&ctx->pinned_active);
4373         INIT_LIST_HEAD(&ctx->flexible_active);
4374         refcount_set(&ctx->refcount, 1);
4375 }
4376
4377 static struct perf_event_context *
4378 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4379 {
4380         struct perf_event_context *ctx;
4381
4382         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4383         if (!ctx)
4384                 return NULL;
4385
4386         __perf_event_init_context(ctx);
4387         if (task)
4388                 ctx->task = get_task_struct(task);
4389         ctx->pmu = pmu;
4390
4391         return ctx;
4392 }
4393
4394 static struct task_struct *
4395 find_lively_task_by_vpid(pid_t vpid)
4396 {
4397         struct task_struct *task;
4398
4399         rcu_read_lock();
4400         if (!vpid)
4401                 task = current;
4402         else
4403                 task = find_task_by_vpid(vpid);
4404         if (task)
4405                 get_task_struct(task);
4406         rcu_read_unlock();
4407
4408         if (!task)
4409                 return ERR_PTR(-ESRCH);
4410
4411         return task;
4412 }
4413
4414 /*
4415  * Returns a matching context with refcount and pincount.
4416  */
4417 static struct perf_event_context *
4418 find_get_context(struct pmu *pmu, struct task_struct *task,
4419                 struct perf_event *event)
4420 {
4421         struct perf_event_context *ctx, *clone_ctx = NULL;
4422         struct perf_cpu_context *cpuctx;
4423         void *task_ctx_data = NULL;
4424         unsigned long flags;
4425         int ctxn, err;
4426         int cpu = event->cpu;
4427
4428         if (!task) {
4429                 /* Must be root to operate on a CPU event: */
4430                 err = perf_allow_cpu(&event->attr);
4431                 if (err)
4432                         return ERR_PTR(err);
4433
4434                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4435                 ctx = &cpuctx->ctx;
4436                 get_ctx(ctx);
4437                 ++ctx->pin_count;
4438
4439                 return ctx;
4440         }
4441
4442         err = -EINVAL;
4443         ctxn = pmu->task_ctx_nr;
4444         if (ctxn < 0)
4445                 goto errout;
4446
4447         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4448                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4449                 if (!task_ctx_data) {
4450                         err = -ENOMEM;
4451                         goto errout;
4452                 }
4453         }
4454
4455 retry:
4456         ctx = perf_lock_task_context(task, ctxn, &flags);
4457         if (ctx) {
4458                 clone_ctx = unclone_ctx(ctx);
4459                 ++ctx->pin_count;
4460
4461                 if (task_ctx_data && !ctx->task_ctx_data) {
4462                         ctx->task_ctx_data = task_ctx_data;
4463                         task_ctx_data = NULL;
4464                 }
4465                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4466
4467                 if (clone_ctx)
4468                         put_ctx(clone_ctx);
4469         } else {
4470                 ctx = alloc_perf_context(pmu, task);
4471                 err = -ENOMEM;
4472                 if (!ctx)
4473                         goto errout;
4474
4475                 if (task_ctx_data) {
4476                         ctx->task_ctx_data = task_ctx_data;
4477                         task_ctx_data = NULL;
4478                 }
4479
4480                 err = 0;
4481                 mutex_lock(&task->perf_event_mutex);
4482                 /*
4483                  * If it has already passed perf_event_exit_task().
4484                  * we must see PF_EXITING, it takes this mutex too.
4485                  */
4486                 if (task->flags & PF_EXITING)
4487                         err = -ESRCH;
4488                 else if (task->perf_event_ctxp[ctxn])
4489                         err = -EAGAIN;
4490                 else {
4491                         get_ctx(ctx);
4492                         ++ctx->pin_count;
4493                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4494                 }
4495                 mutex_unlock(&task->perf_event_mutex);
4496
4497                 if (unlikely(err)) {
4498                         put_ctx(ctx);
4499
4500                         if (err == -EAGAIN)
4501                                 goto retry;
4502                         goto errout;
4503                 }
4504         }
4505
4506         kfree(task_ctx_data);
4507         return ctx;
4508
4509 errout:
4510         kfree(task_ctx_data);
4511         return ERR_PTR(err);
4512 }
4513
4514 static void perf_event_free_filter(struct perf_event *event);
4515 static void perf_event_free_bpf_prog(struct perf_event *event);
4516
4517 static void free_event_rcu(struct rcu_head *head)
4518 {
4519         struct perf_event *event;
4520
4521         event = container_of(head, struct perf_event, rcu_head);
4522         if (event->ns)
4523                 put_pid_ns(event->ns);
4524         perf_event_free_filter(event);
4525         kfree(event);
4526 }
4527
4528 static void ring_buffer_attach(struct perf_event *event,
4529                                struct perf_buffer *rb);
4530
4531 static void detach_sb_event(struct perf_event *event)
4532 {
4533         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4534
4535         raw_spin_lock(&pel->lock);
4536         list_del_rcu(&event->sb_list);
4537         raw_spin_unlock(&pel->lock);
4538 }
4539
4540 static bool is_sb_event(struct perf_event *event)
4541 {
4542         struct perf_event_attr *attr = &event->attr;
4543
4544         if (event->parent)
4545                 return false;
4546
4547         if (event->attach_state & PERF_ATTACH_TASK)
4548                 return false;
4549
4550         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4551             attr->comm || attr->comm_exec ||
4552             attr->task || attr->ksymbol ||
4553             attr->context_switch ||
4554             attr->bpf_event)
4555                 return true;
4556         return false;
4557 }
4558
4559 static void unaccount_pmu_sb_event(struct perf_event *event)
4560 {
4561         if (is_sb_event(event))
4562                 detach_sb_event(event);
4563 }
4564
4565 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4566 {
4567         if (event->parent)
4568                 return;
4569
4570         if (is_cgroup_event(event))
4571                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4572 }
4573
4574 #ifdef CONFIG_NO_HZ_FULL
4575 static DEFINE_SPINLOCK(nr_freq_lock);
4576 #endif
4577
4578 static void unaccount_freq_event_nohz(void)
4579 {
4580 #ifdef CONFIG_NO_HZ_FULL
4581         spin_lock(&nr_freq_lock);
4582         if (atomic_dec_and_test(&nr_freq_events))
4583                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4584         spin_unlock(&nr_freq_lock);
4585 #endif
4586 }
4587
4588 static void unaccount_freq_event(void)
4589 {
4590         if (tick_nohz_full_enabled())
4591                 unaccount_freq_event_nohz();
4592         else
4593                 atomic_dec(&nr_freq_events);
4594 }
4595
4596 static void unaccount_event(struct perf_event *event)
4597 {
4598         bool dec = false;
4599
4600         if (event->parent)
4601                 return;
4602
4603         if (event->attach_state & PERF_ATTACH_TASK)
4604                 dec = true;
4605         if (event->attr.mmap || event->attr.mmap_data)
4606                 atomic_dec(&nr_mmap_events);
4607         if (event->attr.comm)
4608                 atomic_dec(&nr_comm_events);
4609         if (event->attr.namespaces)
4610                 atomic_dec(&nr_namespaces_events);
4611         if (event->attr.task)
4612                 atomic_dec(&nr_task_events);
4613         if (event->attr.freq)
4614                 unaccount_freq_event();
4615         if (event->attr.context_switch) {
4616                 dec = true;
4617                 atomic_dec(&nr_switch_events);
4618         }
4619         if (is_cgroup_event(event))
4620                 dec = true;
4621         if (has_branch_stack(event))
4622                 dec = true;
4623         if (event->attr.ksymbol)
4624                 atomic_dec(&nr_ksymbol_events);
4625         if (event->attr.bpf_event)
4626                 atomic_dec(&nr_bpf_events);
4627
4628         if (dec) {
4629                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4630                         schedule_delayed_work(&perf_sched_work, HZ);
4631         }
4632
4633         unaccount_event_cpu(event, event->cpu);
4634
4635         unaccount_pmu_sb_event(event);
4636 }
4637
4638 static void perf_sched_delayed(struct work_struct *work)
4639 {
4640         mutex_lock(&perf_sched_mutex);
4641         if (atomic_dec_and_test(&perf_sched_count))
4642                 static_branch_disable(&perf_sched_events);
4643         mutex_unlock(&perf_sched_mutex);
4644 }
4645
4646 /*
4647  * The following implement mutual exclusion of events on "exclusive" pmus
4648  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4649  * at a time, so we disallow creating events that might conflict, namely:
4650  *
4651  *  1) cpu-wide events in the presence of per-task events,
4652  *  2) per-task events in the presence of cpu-wide events,
4653  *  3) two matching events on the same context.
4654  *
4655  * The former two cases are handled in the allocation path (perf_event_alloc(),
4656  * _free_event()), the latter -- before the first perf_install_in_context().
4657  */
4658 static int exclusive_event_init(struct perf_event *event)
4659 {
4660         struct pmu *pmu = event->pmu;
4661
4662         if (!is_exclusive_pmu(pmu))
4663                 return 0;
4664
4665         /*
4666          * Prevent co-existence of per-task and cpu-wide events on the
4667          * same exclusive pmu.
4668          *
4669          * Negative pmu::exclusive_cnt means there are cpu-wide
4670          * events on this "exclusive" pmu, positive means there are
4671          * per-task events.
4672          *
4673          * Since this is called in perf_event_alloc() path, event::ctx
4674          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4675          * to mean "per-task event", because unlike other attach states it
4676          * never gets cleared.
4677          */
4678         if (event->attach_state & PERF_ATTACH_TASK) {
4679                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4680                         return -EBUSY;
4681         } else {
4682                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4683                         return -EBUSY;
4684         }
4685
4686         return 0;
4687 }
4688
4689 static void exclusive_event_destroy(struct perf_event *event)
4690 {
4691         struct pmu *pmu = event->pmu;
4692
4693         if (!is_exclusive_pmu(pmu))
4694                 return;
4695
4696         /* see comment in exclusive_event_init() */
4697         if (event->attach_state & PERF_ATTACH_TASK)
4698                 atomic_dec(&pmu->exclusive_cnt);
4699         else
4700                 atomic_inc(&pmu->exclusive_cnt);
4701 }
4702
4703 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4704 {
4705         if ((e1->pmu == e2->pmu) &&
4706             (e1->cpu == e2->cpu ||
4707              e1->cpu == -1 ||
4708              e2->cpu == -1))
4709                 return true;
4710         return false;
4711 }
4712
4713 static bool exclusive_event_installable(struct perf_event *event,
4714                                         struct perf_event_context *ctx)
4715 {
4716         struct perf_event *iter_event;
4717         struct pmu *pmu = event->pmu;
4718
4719         lockdep_assert_held(&ctx->mutex);
4720
4721         if (!is_exclusive_pmu(pmu))
4722                 return true;
4723
4724         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4725                 if (exclusive_event_match(iter_event, event))
4726                         return false;
4727         }
4728
4729         return true;
4730 }
4731
4732 static void perf_addr_filters_splice(struct perf_event *event,
4733                                        struct list_head *head);
4734
4735 static void _free_event(struct perf_event *event)
4736 {
4737         irq_work_sync(&event->pending);
4738
4739         unaccount_event(event);
4740
4741         security_perf_event_free(event);
4742
4743         if (event->rb) {
4744                 /*
4745                  * Can happen when we close an event with re-directed output.
4746                  *
4747                  * Since we have a 0 refcount, perf_mmap_close() will skip
4748                  * over us; possibly making our ring_buffer_put() the last.
4749                  */
4750                 mutex_lock(&event->mmap_mutex);
4751                 ring_buffer_attach(event, NULL);
4752                 mutex_unlock(&event->mmap_mutex);
4753         }
4754
4755         if (is_cgroup_event(event))
4756                 perf_detach_cgroup(event);
4757
4758         if (!event->parent) {
4759                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4760                         put_callchain_buffers();
4761         }
4762
4763         perf_event_free_bpf_prog(event);
4764         perf_addr_filters_splice(event, NULL);
4765         kfree(event->addr_filter_ranges);
4766
4767         if (event->destroy)
4768                 event->destroy(event);
4769
4770         /*
4771          * Must be after ->destroy(), due to uprobe_perf_close() using
4772          * hw.target.
4773          */
4774         if (event->hw.target)
4775                 put_task_struct(event->hw.target);
4776
4777         /*
4778          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4779          * all task references must be cleaned up.
4780          */
4781         if (event->ctx)
4782                 put_ctx(event->ctx);
4783
4784         exclusive_event_destroy(event);
4785         module_put(event->pmu->module);
4786
4787         call_rcu(&event->rcu_head, free_event_rcu);
4788 }
4789
4790 /*
4791  * Used to free events which have a known refcount of 1, such as in error paths
4792  * where the event isn't exposed yet and inherited events.
4793  */
4794 static void free_event(struct perf_event *event)
4795 {
4796         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4797                                 "unexpected event refcount: %ld; ptr=%p\n",
4798                                 atomic_long_read(&event->refcount), event)) {
4799                 /* leak to avoid use-after-free */
4800                 return;
4801         }
4802
4803         _free_event(event);
4804 }
4805
4806 /*
4807  * Remove user event from the owner task.
4808  */
4809 static void perf_remove_from_owner(struct perf_event *event)
4810 {
4811         struct task_struct *owner;
4812
4813         rcu_read_lock();
4814         /*
4815          * Matches the smp_store_release() in perf_event_exit_task(). If we
4816          * observe !owner it means the list deletion is complete and we can
4817          * indeed free this event, otherwise we need to serialize on
4818          * owner->perf_event_mutex.
4819          */
4820         owner = READ_ONCE(event->owner);
4821         if (owner) {
4822                 /*
4823                  * Since delayed_put_task_struct() also drops the last
4824                  * task reference we can safely take a new reference
4825                  * while holding the rcu_read_lock().
4826                  */
4827                 get_task_struct(owner);
4828         }
4829         rcu_read_unlock();
4830
4831         if (owner) {
4832                 /*
4833                  * If we're here through perf_event_exit_task() we're already
4834                  * holding ctx->mutex which would be an inversion wrt. the
4835                  * normal lock order.
4836                  *
4837                  * However we can safely take this lock because its the child
4838                  * ctx->mutex.
4839                  */
4840                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4841
4842                 /*
4843                  * We have to re-check the event->owner field, if it is cleared
4844                  * we raced with perf_event_exit_task(), acquiring the mutex
4845                  * ensured they're done, and we can proceed with freeing the
4846                  * event.
4847                  */
4848                 if (event->owner) {
4849                         list_del_init(&event->owner_entry);
4850                         smp_store_release(&event->owner, NULL);
4851                 }
4852                 mutex_unlock(&owner->perf_event_mutex);
4853                 put_task_struct(owner);
4854         }
4855 }
4856
4857 static void put_event(struct perf_event *event)
4858 {
4859         if (!atomic_long_dec_and_test(&event->refcount))
4860                 return;
4861
4862         _free_event(event);
4863 }
4864
4865 /*
4866  * Kill an event dead; while event:refcount will preserve the event
4867  * object, it will not preserve its functionality. Once the last 'user'
4868  * gives up the object, we'll destroy the thing.
4869  */
4870 int perf_event_release_kernel(struct perf_event *event)
4871 {
4872         struct perf_event_context *ctx = event->ctx;
4873         struct perf_event *child, *tmp;
4874         LIST_HEAD(free_list);
4875
4876         /*
4877          * If we got here through err_file: fput(event_file); we will not have
4878          * attached to a context yet.
4879          */
4880         if (!ctx) {
4881                 WARN_ON_ONCE(event->attach_state &
4882                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4883                 goto no_ctx;
4884         }
4885
4886         if (!is_kernel_event(event))
4887                 perf_remove_from_owner(event);
4888
4889         ctx = perf_event_ctx_lock(event);
4890         WARN_ON_ONCE(ctx->parent_ctx);
4891         perf_remove_from_context(event, DETACH_GROUP);
4892
4893         raw_spin_lock_irq(&ctx->lock);
4894         /*
4895          * Mark this event as STATE_DEAD, there is no external reference to it
4896          * anymore.
4897          *
4898          * Anybody acquiring event->child_mutex after the below loop _must_
4899          * also see this, most importantly inherit_event() which will avoid
4900          * placing more children on the list.
4901          *
4902          * Thus this guarantees that we will in fact observe and kill _ALL_
4903          * child events.
4904          */
4905         event->state = PERF_EVENT_STATE_DEAD;
4906         raw_spin_unlock_irq(&ctx->lock);
4907
4908         perf_event_ctx_unlock(event, ctx);
4909
4910 again:
4911         mutex_lock(&event->child_mutex);
4912         list_for_each_entry(child, &event->child_list, child_list) {
4913
4914                 /*
4915                  * Cannot change, child events are not migrated, see the
4916                  * comment with perf_event_ctx_lock_nested().
4917                  */
4918                 ctx = READ_ONCE(child->ctx);
4919                 /*
4920                  * Since child_mutex nests inside ctx::mutex, we must jump
4921                  * through hoops. We start by grabbing a reference on the ctx.
4922                  *
4923                  * Since the event cannot get freed while we hold the
4924                  * child_mutex, the context must also exist and have a !0
4925                  * reference count.
4926                  */
4927                 get_ctx(ctx);
4928
4929                 /*
4930                  * Now that we have a ctx ref, we can drop child_mutex, and
4931                  * acquire ctx::mutex without fear of it going away. Then we
4932                  * can re-acquire child_mutex.
4933                  */
4934                 mutex_unlock(&event->child_mutex);
4935                 mutex_lock(&ctx->mutex);
4936                 mutex_lock(&event->child_mutex);
4937
4938                 /*
4939                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4940                  * state, if child is still the first entry, it didn't get freed
4941                  * and we can continue doing so.
4942                  */
4943                 tmp = list_first_entry_or_null(&event->child_list,
4944                                                struct perf_event, child_list);
4945                 if (tmp == child) {
4946                         perf_remove_from_context(child, DETACH_GROUP);
4947                         list_move(&child->child_list, &free_list);
4948                         /*
4949                          * This matches the refcount bump in inherit_event();
4950                          * this can't be the last reference.
4951                          */
4952                         put_event(event);
4953                 }
4954
4955                 mutex_unlock(&event->child_mutex);
4956                 mutex_unlock(&ctx->mutex);
4957                 put_ctx(ctx);
4958                 goto again;
4959         }
4960         mutex_unlock(&event->child_mutex);
4961
4962         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4963                 void *var = &child->ctx->refcount;
4964
4965                 list_del(&child->child_list);
4966                 free_event(child);
4967
4968                 /*
4969                  * Wake any perf_event_free_task() waiting for this event to be
4970                  * freed.
4971                  */
4972                 smp_mb(); /* pairs with wait_var_event() */
4973                 wake_up_var(var);
4974         }
4975
4976 no_ctx:
4977         put_event(event); /* Must be the 'last' reference */
4978         return 0;
4979 }
4980 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4981
4982 /*
4983  * Called when the last reference to the file is gone.
4984  */
4985 static int perf_release(struct inode *inode, struct file *file)
4986 {
4987         perf_event_release_kernel(file->private_data);
4988         return 0;
4989 }
4990
4991 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4992 {
4993         struct perf_event *child;
4994         u64 total = 0;
4995
4996         *enabled = 0;
4997         *running = 0;
4998
4999         mutex_lock(&event->child_mutex);
5000
5001         (void)perf_event_read(event, false);
5002         total += perf_event_count(event);
5003
5004         *enabled += event->total_time_enabled +
5005                         atomic64_read(&event->child_total_time_enabled);
5006         *running += event->total_time_running +
5007                         atomic64_read(&event->child_total_time_running);
5008
5009         list_for_each_entry(child, &event->child_list, child_list) {
5010                 (void)perf_event_read(child, false);
5011                 total += perf_event_count(child);
5012                 *enabled += child->total_time_enabled;
5013                 *running += child->total_time_running;
5014         }
5015         mutex_unlock(&event->child_mutex);
5016
5017         return total;
5018 }
5019
5020 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5021 {
5022         struct perf_event_context *ctx;
5023         u64 count;
5024
5025         ctx = perf_event_ctx_lock(event);
5026         count = __perf_event_read_value(event, enabled, running);
5027         perf_event_ctx_unlock(event, ctx);
5028
5029         return count;
5030 }
5031 EXPORT_SYMBOL_GPL(perf_event_read_value);
5032
5033 static int __perf_read_group_add(struct perf_event *leader,
5034                                         u64 read_format, u64 *values)
5035 {
5036         struct perf_event_context *ctx = leader->ctx;
5037         struct perf_event *sub;
5038         unsigned long flags;
5039         int n = 1; /* skip @nr */
5040         int ret;
5041
5042         ret = perf_event_read(leader, true);
5043         if (ret)
5044                 return ret;
5045
5046         raw_spin_lock_irqsave(&ctx->lock, flags);
5047
5048         /*
5049          * Since we co-schedule groups, {enabled,running} times of siblings
5050          * will be identical to those of the leader, so we only publish one
5051          * set.
5052          */
5053         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5054                 values[n++] += leader->total_time_enabled +
5055                         atomic64_read(&leader->child_total_time_enabled);
5056         }
5057
5058         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5059                 values[n++] += leader->total_time_running +
5060                         atomic64_read(&leader->child_total_time_running);
5061         }
5062
5063         /*
5064          * Write {count,id} tuples for every sibling.
5065          */
5066         values[n++] += perf_event_count(leader);
5067         if (read_format & PERF_FORMAT_ID)
5068                 values[n++] = primary_event_id(leader);
5069
5070         for_each_sibling_event(sub, leader) {
5071                 values[n++] += perf_event_count(sub);
5072                 if (read_format & PERF_FORMAT_ID)
5073                         values[n++] = primary_event_id(sub);
5074         }
5075
5076         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5077         return 0;
5078 }
5079
5080 static int perf_read_group(struct perf_event *event,
5081                                    u64 read_format, char __user *buf)
5082 {
5083         struct perf_event *leader = event->group_leader, *child;
5084         struct perf_event_context *ctx = leader->ctx;
5085         int ret;
5086         u64 *values;
5087
5088         lockdep_assert_held(&ctx->mutex);
5089
5090         values = kzalloc(event->read_size, GFP_KERNEL);
5091         if (!values)
5092                 return -ENOMEM;
5093
5094         values[0] = 1 + leader->nr_siblings;
5095
5096         /*
5097          * By locking the child_mutex of the leader we effectively
5098          * lock the child list of all siblings.. XXX explain how.
5099          */
5100         mutex_lock(&leader->child_mutex);
5101
5102         ret = __perf_read_group_add(leader, read_format, values);
5103         if (ret)
5104                 goto unlock;
5105
5106         list_for_each_entry(child, &leader->child_list, child_list) {
5107                 ret = __perf_read_group_add(child, read_format, values);
5108                 if (ret)
5109                         goto unlock;
5110         }
5111
5112         mutex_unlock(&leader->child_mutex);
5113
5114         ret = event->read_size;
5115         if (copy_to_user(buf, values, event->read_size))
5116                 ret = -EFAULT;
5117         goto out;
5118
5119 unlock:
5120         mutex_unlock(&leader->child_mutex);
5121 out:
5122         kfree(values);
5123         return ret;
5124 }
5125
5126 static int perf_read_one(struct perf_event *event,
5127                                  u64 read_format, char __user *buf)
5128 {
5129         u64 enabled, running;
5130         u64 values[4];
5131         int n = 0;
5132
5133         values[n++] = __perf_event_read_value(event, &enabled, &running);
5134         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5135                 values[n++] = enabled;
5136         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5137                 values[n++] = running;
5138         if (read_format & PERF_FORMAT_ID)
5139                 values[n++] = primary_event_id(event);
5140
5141         if (copy_to_user(buf, values, n * sizeof(u64)))
5142                 return -EFAULT;
5143
5144         return n * sizeof(u64);
5145 }
5146
5147 static bool is_event_hup(struct perf_event *event)
5148 {
5149         bool no_children;
5150
5151         if (event->state > PERF_EVENT_STATE_EXIT)
5152                 return false;
5153
5154         mutex_lock(&event->child_mutex);
5155         no_children = list_empty(&event->child_list);
5156         mutex_unlock(&event->child_mutex);
5157         return no_children;
5158 }
5159
5160 /*
5161  * Read the performance event - simple non blocking version for now
5162  */
5163 static ssize_t
5164 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5165 {
5166         u64 read_format = event->attr.read_format;
5167         int ret;
5168
5169         /*
5170          * Return end-of-file for a read on an event that is in
5171          * error state (i.e. because it was pinned but it couldn't be
5172          * scheduled on to the CPU at some point).
5173          */
5174         if (event->state == PERF_EVENT_STATE_ERROR)
5175                 return 0;
5176
5177         if (count < event->read_size)
5178                 return -ENOSPC;
5179
5180         WARN_ON_ONCE(event->ctx->parent_ctx);
5181         if (read_format & PERF_FORMAT_GROUP)
5182                 ret = perf_read_group(event, read_format, buf);
5183         else
5184                 ret = perf_read_one(event, read_format, buf);
5185
5186         return ret;
5187 }
5188
5189 static ssize_t
5190 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5191 {
5192         struct perf_event *event = file->private_data;
5193         struct perf_event_context *ctx;
5194         int ret;
5195
5196         ret = security_perf_event_read(event);
5197         if (ret)
5198                 return ret;
5199
5200         ctx = perf_event_ctx_lock(event);
5201         ret = __perf_read(event, buf, count);
5202         perf_event_ctx_unlock(event, ctx);
5203
5204         return ret;
5205 }
5206
5207 static __poll_t perf_poll(struct file *file, poll_table *wait)
5208 {
5209         struct perf_event *event = file->private_data;
5210         struct perf_buffer *rb;
5211         __poll_t events = EPOLLHUP;
5212
5213         poll_wait(file, &event->waitq, wait);
5214
5215         if (is_event_hup(event))
5216                 return events;
5217
5218         /*
5219          * Pin the event->rb by taking event->mmap_mutex; otherwise
5220          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5221          */
5222         mutex_lock(&event->mmap_mutex);
5223         rb = event->rb;
5224         if (rb)
5225                 events = atomic_xchg(&rb->poll, 0);
5226         mutex_unlock(&event->mmap_mutex);
5227         return events;
5228 }
5229
5230 static void _perf_event_reset(struct perf_event *event)
5231 {
5232         (void)perf_event_read(event, false);
5233         local64_set(&event->count, 0);
5234         perf_event_update_userpage(event);
5235 }
5236
5237 /* Assume it's not an event with inherit set. */
5238 u64 perf_event_pause(struct perf_event *event, bool reset)
5239 {
5240         struct perf_event_context *ctx;
5241         u64 count;
5242
5243         ctx = perf_event_ctx_lock(event);
5244         WARN_ON_ONCE(event->attr.inherit);
5245         _perf_event_disable(event);
5246         count = local64_read(&event->count);
5247         if (reset)
5248                 local64_set(&event->count, 0);
5249         perf_event_ctx_unlock(event, ctx);
5250
5251         return count;
5252 }
5253 EXPORT_SYMBOL_GPL(perf_event_pause);
5254
5255 /*
5256  * Holding the top-level event's child_mutex means that any
5257  * descendant process that has inherited this event will block
5258  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5259  * task existence requirements of perf_event_enable/disable.
5260  */
5261 static void perf_event_for_each_child(struct perf_event *event,
5262                                         void (*func)(struct perf_event *))
5263 {
5264         struct perf_event *child;
5265
5266         WARN_ON_ONCE(event->ctx->parent_ctx);
5267
5268         mutex_lock(&event->child_mutex);
5269         func(event);
5270         list_for_each_entry(child, &event->child_list, child_list)
5271                 func(child);
5272         mutex_unlock(&event->child_mutex);
5273 }
5274
5275 static void perf_event_for_each(struct perf_event *event,
5276                                   void (*func)(struct perf_event *))
5277 {
5278         struct perf_event_context *ctx = event->ctx;
5279         struct perf_event *sibling;
5280
5281         lockdep_assert_held(&ctx->mutex);
5282
5283         event = event->group_leader;
5284
5285         perf_event_for_each_child(event, func);
5286         for_each_sibling_event(sibling, event)
5287                 perf_event_for_each_child(sibling, func);
5288 }
5289
5290 static void __perf_event_period(struct perf_event *event,
5291                                 struct perf_cpu_context *cpuctx,
5292                                 struct perf_event_context *ctx,
5293                                 void *info)
5294 {
5295         u64 value = *((u64 *)info);
5296         bool active;
5297
5298         if (event->attr.freq) {
5299                 event->attr.sample_freq = value;
5300         } else {
5301                 event->attr.sample_period = value;
5302                 event->hw.sample_period = value;
5303         }
5304
5305         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5306         if (active) {
5307                 perf_pmu_disable(ctx->pmu);
5308                 /*
5309                  * We could be throttled; unthrottle now to avoid the tick
5310                  * trying to unthrottle while we already re-started the event.
5311                  */
5312                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5313                         event->hw.interrupts = 0;
5314                         perf_log_throttle(event, 1);
5315                 }
5316                 event->pmu->stop(event, PERF_EF_UPDATE);
5317         }
5318
5319         local64_set(&event->hw.period_left, 0);
5320
5321         if (active) {
5322                 event->pmu->start(event, PERF_EF_RELOAD);
5323                 perf_pmu_enable(ctx->pmu);
5324         }
5325 }
5326
5327 static int perf_event_check_period(struct perf_event *event, u64 value)
5328 {
5329         return event->pmu->check_period(event, value);
5330 }
5331
5332 static int _perf_event_period(struct perf_event *event, u64 value)
5333 {
5334         if (!is_sampling_event(event))
5335                 return -EINVAL;
5336
5337         if (!value)
5338                 return -EINVAL;
5339
5340         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5341                 return -EINVAL;
5342
5343         if (perf_event_check_period(event, value))
5344                 return -EINVAL;
5345
5346         if (!event->attr.freq && (value & (1ULL << 63)))
5347                 return -EINVAL;
5348
5349         event_function_call(event, __perf_event_period, &value);
5350
5351         return 0;
5352 }
5353
5354 int perf_event_period(struct perf_event *event, u64 value)
5355 {
5356         struct perf_event_context *ctx;
5357         int ret;
5358
5359         ctx = perf_event_ctx_lock(event);
5360         ret = _perf_event_period(event, value);
5361         perf_event_ctx_unlock(event, ctx);
5362
5363         return ret;
5364 }
5365 EXPORT_SYMBOL_GPL(perf_event_period);
5366
5367 static const struct file_operations perf_fops;
5368
5369 static inline int perf_fget_light(int fd, struct fd *p)
5370 {
5371         struct fd f = fdget(fd);
5372         if (!f.file)
5373                 return -EBADF;
5374
5375         if (f.file->f_op != &perf_fops) {
5376                 fdput(f);
5377                 return -EBADF;
5378         }
5379         *p = f;
5380         return 0;
5381 }
5382
5383 static int perf_event_set_output(struct perf_event *event,
5384                                  struct perf_event *output_event);
5385 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5386 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5387 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5388                           struct perf_event_attr *attr);
5389
5390 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5391 {
5392         void (*func)(struct perf_event *);
5393         u32 flags = arg;
5394
5395         switch (cmd) {
5396         case PERF_EVENT_IOC_ENABLE:
5397                 func = _perf_event_enable;
5398                 break;
5399         case PERF_EVENT_IOC_DISABLE:
5400                 func = _perf_event_disable;
5401                 break;
5402         case PERF_EVENT_IOC_RESET:
5403                 func = _perf_event_reset;
5404                 break;
5405
5406         case PERF_EVENT_IOC_REFRESH:
5407                 return _perf_event_refresh(event, arg);
5408
5409         case PERF_EVENT_IOC_PERIOD:
5410         {
5411                 u64 value;
5412
5413                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5414                         return -EFAULT;
5415
5416                 return _perf_event_period(event, value);
5417         }
5418         case PERF_EVENT_IOC_ID:
5419         {
5420                 u64 id = primary_event_id(event);
5421
5422                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5423                         return -EFAULT;
5424                 return 0;
5425         }
5426
5427         case PERF_EVENT_IOC_SET_OUTPUT:
5428         {
5429                 int ret;
5430                 if (arg != -1) {
5431                         struct perf_event *output_event;
5432                         struct fd output;
5433                         ret = perf_fget_light(arg, &output);
5434                         if (ret)
5435                                 return ret;
5436                         output_event = output.file->private_data;
5437                         ret = perf_event_set_output(event, output_event);
5438                         fdput(output);
5439                 } else {
5440                         ret = perf_event_set_output(event, NULL);
5441                 }
5442                 return ret;
5443         }
5444
5445         case PERF_EVENT_IOC_SET_FILTER:
5446                 return perf_event_set_filter(event, (void __user *)arg);
5447
5448         case PERF_EVENT_IOC_SET_BPF:
5449                 return perf_event_set_bpf_prog(event, arg);
5450
5451         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5452                 struct perf_buffer *rb;
5453
5454                 rcu_read_lock();
5455                 rb = rcu_dereference(event->rb);
5456                 if (!rb || !rb->nr_pages) {
5457                         rcu_read_unlock();
5458                         return -EINVAL;
5459                 }
5460                 rb_toggle_paused(rb, !!arg);
5461                 rcu_read_unlock();
5462                 return 0;
5463         }
5464
5465         case PERF_EVENT_IOC_QUERY_BPF:
5466                 return perf_event_query_prog_array(event, (void __user *)arg);
5467
5468         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5469                 struct perf_event_attr new_attr;
5470                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5471                                          &new_attr);
5472
5473                 if (err)
5474                         return err;
5475
5476                 return perf_event_modify_attr(event,  &new_attr);
5477         }
5478         default:
5479                 return -ENOTTY;
5480         }
5481
5482         if (flags & PERF_IOC_FLAG_GROUP)
5483                 perf_event_for_each(event, func);
5484         else
5485                 perf_event_for_each_child(event, func);
5486
5487         return 0;
5488 }
5489
5490 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5491 {
5492         struct perf_event *event = file->private_data;
5493         struct perf_event_context *ctx;
5494         long ret;
5495
5496         /* Treat ioctl like writes as it is likely a mutating operation. */
5497         ret = security_perf_event_write(event);
5498         if (ret)
5499                 return ret;
5500
5501         ctx = perf_event_ctx_lock(event);
5502         ret = _perf_ioctl(event, cmd, arg);
5503         perf_event_ctx_unlock(event, ctx);
5504
5505         return ret;
5506 }
5507
5508 #ifdef CONFIG_COMPAT
5509 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5510                                 unsigned long arg)
5511 {
5512         switch (_IOC_NR(cmd)) {
5513         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5514         case _IOC_NR(PERF_EVENT_IOC_ID):
5515         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5516         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5517                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5518                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5519                         cmd &= ~IOCSIZE_MASK;
5520                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5521                 }
5522                 break;
5523         }
5524         return perf_ioctl(file, cmd, arg);
5525 }
5526 #else
5527 # define perf_compat_ioctl NULL
5528 #endif
5529
5530 int perf_event_task_enable(void)
5531 {
5532         struct perf_event_context *ctx;
5533         struct perf_event *event;
5534
5535         mutex_lock(&current->perf_event_mutex);
5536         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5537                 ctx = perf_event_ctx_lock(event);
5538                 perf_event_for_each_child(event, _perf_event_enable);
5539                 perf_event_ctx_unlock(event, ctx);
5540         }
5541         mutex_unlock(&current->perf_event_mutex);
5542
5543         return 0;
5544 }
5545
5546 int perf_event_task_disable(void)
5547 {
5548         struct perf_event_context *ctx;
5549         struct perf_event *event;
5550
5551         mutex_lock(&current->perf_event_mutex);
5552         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5553                 ctx = perf_event_ctx_lock(event);
5554                 perf_event_for_each_child(event, _perf_event_disable);
5555                 perf_event_ctx_unlock(event, ctx);
5556         }
5557         mutex_unlock(&current->perf_event_mutex);
5558
5559         return 0;
5560 }
5561
5562 static int perf_event_index(struct perf_event *event)
5563 {
5564         if (event->hw.state & PERF_HES_STOPPED)
5565                 return 0;
5566
5567         if (event->state != PERF_EVENT_STATE_ACTIVE)
5568                 return 0;
5569
5570         return event->pmu->event_idx(event);
5571 }
5572
5573 static void calc_timer_values(struct perf_event *event,
5574                                 u64 *now,
5575                                 u64 *enabled,
5576                                 u64 *running)
5577 {
5578         u64 ctx_time;
5579
5580         *now = perf_clock();
5581         ctx_time = event->shadow_ctx_time + *now;
5582         __perf_update_times(event, ctx_time, enabled, running);
5583 }
5584
5585 static void perf_event_init_userpage(struct perf_event *event)
5586 {
5587         struct perf_event_mmap_page *userpg;
5588         struct perf_buffer *rb;
5589
5590         rcu_read_lock();
5591         rb = rcu_dereference(event->rb);
5592         if (!rb)
5593                 goto unlock;
5594
5595         userpg = rb->user_page;
5596
5597         /* Allow new userspace to detect that bit 0 is deprecated */
5598         userpg->cap_bit0_is_deprecated = 1;
5599         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5600         userpg->data_offset = PAGE_SIZE;
5601         userpg->data_size = perf_data_size(rb);
5602
5603 unlock:
5604         rcu_read_unlock();
5605 }
5606
5607 void __weak arch_perf_update_userpage(
5608         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5609 {
5610 }
5611
5612 /*
5613  * Callers need to ensure there can be no nesting of this function, otherwise
5614  * the seqlock logic goes bad. We can not serialize this because the arch
5615  * code calls this from NMI context.
5616  */
5617 void perf_event_update_userpage(struct perf_event *event)
5618 {
5619         struct perf_event_mmap_page *userpg;
5620         struct perf_buffer *rb;
5621         u64 enabled, running, now;
5622
5623         rcu_read_lock();
5624         rb = rcu_dereference(event->rb);
5625         if (!rb)
5626                 goto unlock;
5627
5628         /*
5629          * compute total_time_enabled, total_time_running
5630          * based on snapshot values taken when the event
5631          * was last scheduled in.
5632          *
5633          * we cannot simply called update_context_time()
5634          * because of locking issue as we can be called in
5635          * NMI context
5636          */
5637         calc_timer_values(event, &now, &enabled, &running);
5638
5639         userpg = rb->user_page;
5640         /*
5641          * Disable preemption to guarantee consistent time stamps are stored to
5642          * the user page.
5643          */
5644         preempt_disable();
5645         ++userpg->lock;
5646         barrier();
5647         userpg->index = perf_event_index(event);
5648         userpg->offset = perf_event_count(event);
5649         if (userpg->index)
5650                 userpg->offset -= local64_read(&event->hw.prev_count);
5651
5652         userpg->time_enabled = enabled +
5653                         atomic64_read(&event->child_total_time_enabled);
5654
5655         userpg->time_running = running +
5656                         atomic64_read(&event->child_total_time_running);
5657
5658         arch_perf_update_userpage(event, userpg, now);
5659
5660         barrier();
5661         ++userpg->lock;
5662         preempt_enable();
5663 unlock:
5664         rcu_read_unlock();
5665 }
5666 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5667
5668 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5669 {
5670         struct perf_event *event = vmf->vma->vm_file->private_data;
5671         struct perf_buffer *rb;
5672         vm_fault_t ret = VM_FAULT_SIGBUS;
5673
5674         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5675                 if (vmf->pgoff == 0)
5676                         ret = 0;
5677                 return ret;
5678         }
5679
5680         rcu_read_lock();
5681         rb = rcu_dereference(event->rb);
5682         if (!rb)
5683                 goto unlock;
5684
5685         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5686                 goto unlock;
5687
5688         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5689         if (!vmf->page)
5690                 goto unlock;
5691
5692         get_page(vmf->page);
5693         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5694         vmf->page->index   = vmf->pgoff;
5695
5696         ret = 0;
5697 unlock:
5698         rcu_read_unlock();
5699
5700         return ret;
5701 }
5702
5703 static void ring_buffer_attach(struct perf_event *event,
5704                                struct perf_buffer *rb)
5705 {
5706         struct perf_buffer *old_rb = NULL;
5707         unsigned long flags;
5708
5709         if (event->rb) {
5710                 /*
5711                  * Should be impossible, we set this when removing
5712                  * event->rb_entry and wait/clear when adding event->rb_entry.
5713                  */
5714                 WARN_ON_ONCE(event->rcu_pending);
5715
5716                 old_rb = event->rb;
5717                 spin_lock_irqsave(&old_rb->event_lock, flags);
5718                 list_del_rcu(&event->rb_entry);
5719                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5720
5721                 event->rcu_batches = get_state_synchronize_rcu();
5722                 event->rcu_pending = 1;
5723         }
5724
5725         if (rb) {
5726                 if (event->rcu_pending) {
5727                         cond_synchronize_rcu(event->rcu_batches);
5728                         event->rcu_pending = 0;
5729                 }
5730
5731                 spin_lock_irqsave(&rb->event_lock, flags);
5732                 list_add_rcu(&event->rb_entry, &rb->event_list);
5733                 spin_unlock_irqrestore(&rb->event_lock, flags);
5734         }
5735
5736         /*
5737          * Avoid racing with perf_mmap_close(AUX): stop the event
5738          * before swizzling the event::rb pointer; if it's getting
5739          * unmapped, its aux_mmap_count will be 0 and it won't
5740          * restart. See the comment in __perf_pmu_output_stop().
5741          *
5742          * Data will inevitably be lost when set_output is done in
5743          * mid-air, but then again, whoever does it like this is
5744          * not in for the data anyway.
5745          */
5746         if (has_aux(event))
5747                 perf_event_stop(event, 0);
5748
5749         rcu_assign_pointer(event->rb, rb);
5750
5751         if (old_rb) {
5752                 ring_buffer_put(old_rb);
5753                 /*
5754                  * Since we detached before setting the new rb, so that we
5755                  * could attach the new rb, we could have missed a wakeup.
5756                  * Provide it now.
5757                  */
5758                 wake_up_all(&event->waitq);
5759         }
5760 }
5761
5762 static void ring_buffer_wakeup(struct perf_event *event)
5763 {
5764         struct perf_buffer *rb;
5765
5766         rcu_read_lock();
5767         rb = rcu_dereference(event->rb);
5768         if (rb) {
5769                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5770                         wake_up_all(&event->waitq);
5771         }
5772         rcu_read_unlock();
5773 }
5774
5775 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5776 {
5777         struct perf_buffer *rb;
5778
5779         rcu_read_lock();
5780         rb = rcu_dereference(event->rb);
5781         if (rb) {
5782                 if (!refcount_inc_not_zero(&rb->refcount))
5783                         rb = NULL;
5784         }
5785         rcu_read_unlock();
5786
5787         return rb;
5788 }
5789
5790 void ring_buffer_put(struct perf_buffer *rb)
5791 {
5792         if (!refcount_dec_and_test(&rb->refcount))
5793                 return;
5794
5795         WARN_ON_ONCE(!list_empty(&rb->event_list));
5796
5797         call_rcu(&rb->rcu_head, rb_free_rcu);
5798 }
5799
5800 static void perf_mmap_open(struct vm_area_struct *vma)
5801 {
5802         struct perf_event *event = vma->vm_file->private_data;
5803
5804         atomic_inc(&event->mmap_count);
5805         atomic_inc(&event->rb->mmap_count);
5806
5807         if (vma->vm_pgoff)
5808                 atomic_inc(&event->rb->aux_mmap_count);
5809
5810         if (event->pmu->event_mapped)
5811                 event->pmu->event_mapped(event, vma->vm_mm);
5812 }
5813
5814 static void perf_pmu_output_stop(struct perf_event *event);
5815
5816 /*
5817  * A buffer can be mmap()ed multiple times; either directly through the same
5818  * event, or through other events by use of perf_event_set_output().
5819  *
5820  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5821  * the buffer here, where we still have a VM context. This means we need
5822  * to detach all events redirecting to us.
5823  */
5824 static void perf_mmap_close(struct vm_area_struct *vma)
5825 {
5826         struct perf_event *event = vma->vm_file->private_data;
5827
5828         struct perf_buffer *rb = ring_buffer_get(event);
5829         struct user_struct *mmap_user = rb->mmap_user;
5830         int mmap_locked = rb->mmap_locked;
5831         unsigned long size = perf_data_size(rb);
5832
5833         if (event->pmu->event_unmapped)
5834                 event->pmu->event_unmapped(event, vma->vm_mm);
5835
5836         /*
5837          * rb->aux_mmap_count will always drop before rb->mmap_count and
5838          * event->mmap_count, so it is ok to use event->mmap_mutex to
5839          * serialize with perf_mmap here.
5840          */
5841         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5842             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5843                 /*
5844                  * Stop all AUX events that are writing to this buffer,
5845                  * so that we can free its AUX pages and corresponding PMU
5846                  * data. Note that after rb::aux_mmap_count dropped to zero,
5847                  * they won't start any more (see perf_aux_output_begin()).
5848                  */
5849                 perf_pmu_output_stop(event);
5850
5851                 /* now it's safe to free the pages */
5852                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5853                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5854
5855                 /* this has to be the last one */
5856                 rb_free_aux(rb);
5857                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5858
5859                 mutex_unlock(&event->mmap_mutex);
5860         }
5861
5862         atomic_dec(&rb->mmap_count);
5863
5864         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5865                 goto out_put;
5866
5867         ring_buffer_attach(event, NULL);
5868         mutex_unlock(&event->mmap_mutex);
5869
5870         /* If there's still other mmap()s of this buffer, we're done. */
5871         if (atomic_read(&rb->mmap_count))
5872                 goto out_put;
5873
5874         /*
5875          * No other mmap()s, detach from all other events that might redirect
5876          * into the now unreachable buffer. Somewhat complicated by the
5877          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5878          */
5879 again:
5880         rcu_read_lock();
5881         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5882                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5883                         /*
5884                          * This event is en-route to free_event() which will
5885                          * detach it and remove it from the list.
5886                          */
5887                         continue;
5888                 }
5889                 rcu_read_unlock();
5890
5891                 mutex_lock(&event->mmap_mutex);
5892                 /*
5893                  * Check we didn't race with perf_event_set_output() which can
5894                  * swizzle the rb from under us while we were waiting to
5895                  * acquire mmap_mutex.
5896                  *
5897                  * If we find a different rb; ignore this event, a next
5898                  * iteration will no longer find it on the list. We have to
5899                  * still restart the iteration to make sure we're not now
5900                  * iterating the wrong list.
5901                  */
5902                 if (event->rb == rb)
5903                         ring_buffer_attach(event, NULL);
5904
5905                 mutex_unlock(&event->mmap_mutex);
5906                 put_event(event);
5907
5908                 /*
5909                  * Restart the iteration; either we're on the wrong list or
5910                  * destroyed its integrity by doing a deletion.
5911                  */
5912                 goto again;
5913         }
5914         rcu_read_unlock();
5915
5916         /*
5917          * It could be there's still a few 0-ref events on the list; they'll
5918          * get cleaned up by free_event() -- they'll also still have their
5919          * ref on the rb and will free it whenever they are done with it.
5920          *
5921          * Aside from that, this buffer is 'fully' detached and unmapped,
5922          * undo the VM accounting.
5923          */
5924
5925         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5926                         &mmap_user->locked_vm);
5927         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5928         free_uid(mmap_user);
5929
5930 out_put:
5931         ring_buffer_put(rb); /* could be last */
5932 }
5933
5934 static const struct vm_operations_struct perf_mmap_vmops = {
5935         .open           = perf_mmap_open,
5936         .close          = perf_mmap_close, /* non mergeable */
5937         .fault          = perf_mmap_fault,
5938         .page_mkwrite   = perf_mmap_fault,
5939 };
5940
5941 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5942 {
5943         struct perf_event *event = file->private_data;
5944         unsigned long user_locked, user_lock_limit;
5945         struct user_struct *user = current_user();
5946         struct perf_buffer *rb = NULL;
5947         unsigned long locked, lock_limit;
5948         unsigned long vma_size;
5949         unsigned long nr_pages;
5950         long user_extra = 0, extra = 0;
5951         int ret = 0, flags = 0;
5952
5953         /*
5954          * Don't allow mmap() of inherited per-task counters. This would
5955          * create a performance issue due to all children writing to the
5956          * same rb.
5957          */
5958         if (event->cpu == -1 && event->attr.inherit)
5959                 return -EINVAL;
5960
5961         if (!(vma->vm_flags & VM_SHARED))
5962                 return -EINVAL;
5963
5964         ret = security_perf_event_read(event);
5965         if (ret)
5966                 return ret;
5967
5968         vma_size = vma->vm_end - vma->vm_start;
5969
5970         if (vma->vm_pgoff == 0) {
5971                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5972         } else {
5973                 /*
5974                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5975                  * mapped, all subsequent mappings should have the same size
5976                  * and offset. Must be above the normal perf buffer.
5977                  */
5978                 u64 aux_offset, aux_size;
5979
5980                 if (!event->rb)
5981                         return -EINVAL;
5982
5983                 nr_pages = vma_size / PAGE_SIZE;
5984
5985                 mutex_lock(&event->mmap_mutex);
5986                 ret = -EINVAL;
5987
5988                 rb = event->rb;
5989                 if (!rb)
5990                         goto aux_unlock;
5991
5992                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5993                 aux_size = READ_ONCE(rb->user_page->aux_size);
5994
5995                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5996                         goto aux_unlock;
5997
5998                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5999                         goto aux_unlock;
6000
6001                 /* already mapped with a different offset */
6002                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6003                         goto aux_unlock;
6004
6005                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6006                         goto aux_unlock;
6007
6008                 /* already mapped with a different size */
6009                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6010                         goto aux_unlock;
6011
6012                 if (!is_power_of_2(nr_pages))
6013                         goto aux_unlock;
6014
6015                 if (!atomic_inc_not_zero(&rb->mmap_count))
6016                         goto aux_unlock;
6017
6018                 if (rb_has_aux(rb)) {
6019                         atomic_inc(&rb->aux_mmap_count);
6020                         ret = 0;
6021                         goto unlock;
6022                 }
6023
6024                 atomic_set(&rb->aux_mmap_count, 1);
6025                 user_extra = nr_pages;
6026
6027                 goto accounting;
6028         }
6029
6030         /*
6031          * If we have rb pages ensure they're a power-of-two number, so we
6032          * can do bitmasks instead of modulo.
6033          */
6034         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6035                 return -EINVAL;
6036
6037         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6038                 return -EINVAL;
6039
6040         WARN_ON_ONCE(event->ctx->parent_ctx);
6041 again:
6042         mutex_lock(&event->mmap_mutex);
6043         if (event->rb) {
6044                 if (event->rb->nr_pages != nr_pages) {
6045                         ret = -EINVAL;
6046                         goto unlock;
6047                 }
6048
6049                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6050                         /*
6051                          * Raced against perf_mmap_close() through
6052                          * perf_event_set_output(). Try again, hope for better
6053                          * luck.
6054                          */
6055                         mutex_unlock(&event->mmap_mutex);
6056                         goto again;
6057                 }
6058
6059                 goto unlock;
6060         }
6061
6062         user_extra = nr_pages + 1;
6063
6064 accounting:
6065         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6066
6067         /*
6068          * Increase the limit linearly with more CPUs:
6069          */
6070         user_lock_limit *= num_online_cpus();
6071
6072         user_locked = atomic_long_read(&user->locked_vm);
6073
6074         /*
6075          * sysctl_perf_event_mlock may have changed, so that
6076          *     user->locked_vm > user_lock_limit
6077          */
6078         if (user_locked > user_lock_limit)
6079                 user_locked = user_lock_limit;
6080         user_locked += user_extra;
6081
6082         if (user_locked > user_lock_limit) {
6083                 /*
6084                  * charge locked_vm until it hits user_lock_limit;
6085                  * charge the rest from pinned_vm
6086                  */
6087                 extra = user_locked - user_lock_limit;
6088                 user_extra -= extra;
6089         }
6090
6091         lock_limit = rlimit(RLIMIT_MEMLOCK);
6092         lock_limit >>= PAGE_SHIFT;
6093         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6094
6095         if ((locked > lock_limit) && perf_is_paranoid() &&
6096                 !capable(CAP_IPC_LOCK)) {
6097                 ret = -EPERM;
6098                 goto unlock;
6099         }
6100
6101         WARN_ON(!rb && event->rb);
6102
6103         if (vma->vm_flags & VM_WRITE)
6104                 flags |= RING_BUFFER_WRITABLE;
6105
6106         if (!rb) {
6107                 rb = rb_alloc(nr_pages,
6108                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6109                               event->cpu, flags);
6110
6111                 if (!rb) {
6112                         ret = -ENOMEM;
6113                         goto unlock;
6114                 }
6115
6116                 atomic_set(&rb->mmap_count, 1);
6117                 rb->mmap_user = get_current_user();
6118                 rb->mmap_locked = extra;
6119
6120                 ring_buffer_attach(event, rb);
6121
6122                 perf_event_init_userpage(event);
6123                 perf_event_update_userpage(event);
6124         } else {
6125                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6126                                    event->attr.aux_watermark, flags);
6127                 if (!ret)
6128                         rb->aux_mmap_locked = extra;
6129         }
6130
6131 unlock:
6132         if (!ret) {
6133                 atomic_long_add(user_extra, &user->locked_vm);
6134                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6135
6136                 atomic_inc(&event->mmap_count);
6137         } else if (rb) {
6138                 atomic_dec(&rb->mmap_count);
6139         }
6140 aux_unlock:
6141         mutex_unlock(&event->mmap_mutex);
6142
6143         /*
6144          * Since pinned accounting is per vm we cannot allow fork() to copy our
6145          * vma.
6146          */
6147         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6148         vma->vm_ops = &perf_mmap_vmops;
6149
6150         if (event->pmu->event_mapped)
6151                 event->pmu->event_mapped(event, vma->vm_mm);
6152
6153         return ret;
6154 }
6155
6156 static int perf_fasync(int fd, struct file *filp, int on)
6157 {
6158         struct inode *inode = file_inode(filp);
6159         struct perf_event *event = filp->private_data;
6160         int retval;
6161
6162         inode_lock(inode);
6163         retval = fasync_helper(fd, filp, on, &event->fasync);
6164         inode_unlock(inode);
6165
6166         if (retval < 0)
6167                 return retval;
6168
6169         return 0;
6170 }
6171
6172 static const struct file_operations perf_fops = {
6173         .llseek                 = no_llseek,
6174         .release                = perf_release,
6175         .read                   = perf_read,
6176         .poll                   = perf_poll,
6177         .unlocked_ioctl         = perf_ioctl,
6178         .compat_ioctl           = perf_compat_ioctl,
6179         .mmap                   = perf_mmap,
6180         .fasync                 = perf_fasync,
6181 };
6182
6183 /*
6184  * Perf event wakeup
6185  *
6186  * If there's data, ensure we set the poll() state and publish everything
6187  * to user-space before waking everybody up.
6188  */
6189
6190 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6191 {
6192         /* only the parent has fasync state */
6193         if (event->parent)
6194                 event = event->parent;
6195         return &event->fasync;
6196 }
6197
6198 void perf_event_wakeup(struct perf_event *event)
6199 {
6200         ring_buffer_wakeup(event);
6201
6202         if (event->pending_kill) {
6203                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6204                 event->pending_kill = 0;
6205         }
6206 }
6207
6208 static void perf_pending_event_disable(struct perf_event *event)
6209 {
6210         int cpu = READ_ONCE(event->pending_disable);
6211
6212         if (cpu < 0)
6213                 return;
6214
6215         if (cpu == smp_processor_id()) {
6216                 WRITE_ONCE(event->pending_disable, -1);
6217                 perf_event_disable_local(event);
6218                 return;
6219         }
6220
6221         /*
6222          *  CPU-A                       CPU-B
6223          *
6224          *  perf_event_disable_inatomic()
6225          *    @pending_disable = CPU-A;
6226          *    irq_work_queue();
6227          *
6228          *  sched-out
6229          *    @pending_disable = -1;
6230          *
6231          *                              sched-in
6232          *                              perf_event_disable_inatomic()
6233          *                                @pending_disable = CPU-B;
6234          *                                irq_work_queue(); // FAILS
6235          *
6236          *  irq_work_run()
6237          *    perf_pending_event()
6238          *
6239          * But the event runs on CPU-B and wants disabling there.
6240          */
6241         irq_work_queue_on(&event->pending, cpu);
6242 }
6243
6244 static void perf_pending_event(struct irq_work *entry)
6245 {
6246         struct perf_event *event = container_of(entry, struct perf_event, pending);
6247         int rctx;
6248
6249         rctx = perf_swevent_get_recursion_context();
6250         /*
6251          * If we 'fail' here, that's OK, it means recursion is already disabled
6252          * and we won't recurse 'further'.
6253          */
6254
6255         perf_pending_event_disable(event);
6256
6257         if (event->pending_wakeup) {
6258                 event->pending_wakeup = 0;
6259                 perf_event_wakeup(event);
6260         }
6261
6262         if (rctx >= 0)
6263                 perf_swevent_put_recursion_context(rctx);
6264 }
6265
6266 /*
6267  * We assume there is only KVM supporting the callbacks.
6268  * Later on, we might change it to a list if there is
6269  * another virtualization implementation supporting the callbacks.
6270  */
6271 struct perf_guest_info_callbacks *perf_guest_cbs;
6272
6273 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6274 {
6275         perf_guest_cbs = cbs;
6276         return 0;
6277 }
6278 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6279
6280 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6281 {
6282         perf_guest_cbs = NULL;
6283         return 0;
6284 }
6285 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6286
6287 static void
6288 perf_output_sample_regs(struct perf_output_handle *handle,
6289                         struct pt_regs *regs, u64 mask)
6290 {
6291         int bit;
6292         DECLARE_BITMAP(_mask, 64);
6293
6294         bitmap_from_u64(_mask, mask);
6295         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6296                 u64 val;
6297
6298                 val = perf_reg_value(regs, bit);
6299                 perf_output_put(handle, val);
6300         }
6301 }
6302
6303 static void perf_sample_regs_user(struct perf_regs *regs_user,
6304                                   struct pt_regs *regs,
6305                                   struct pt_regs *regs_user_copy)
6306 {
6307         if (user_mode(regs)) {
6308                 regs_user->abi = perf_reg_abi(current);
6309                 regs_user->regs = regs;
6310         } else if (!(current->flags & PF_KTHREAD)) {
6311                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6312         } else {
6313                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6314                 regs_user->regs = NULL;
6315         }
6316 }
6317
6318 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6319                                   struct pt_regs *regs)
6320 {
6321         regs_intr->regs = regs;
6322         regs_intr->abi  = perf_reg_abi(current);
6323 }
6324
6325
6326 /*
6327  * Get remaining task size from user stack pointer.
6328  *
6329  * It'd be better to take stack vma map and limit this more
6330  * precisely, but there's no way to get it safely under interrupt,
6331  * so using TASK_SIZE as limit.
6332  */
6333 static u64 perf_ustack_task_size(struct pt_regs *regs)
6334 {
6335         unsigned long addr = perf_user_stack_pointer(regs);
6336
6337         if (!addr || addr >= TASK_SIZE)
6338                 return 0;
6339
6340         return TASK_SIZE - addr;
6341 }
6342
6343 static u16
6344 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6345                         struct pt_regs *regs)
6346 {
6347         u64 task_size;
6348
6349         /* No regs, no stack pointer, no dump. */
6350         if (!regs)
6351                 return 0;
6352
6353         /*
6354          * Check if we fit in with the requested stack size into the:
6355          * - TASK_SIZE
6356          *   If we don't, we limit the size to the TASK_SIZE.
6357          *
6358          * - remaining sample size
6359          *   If we don't, we customize the stack size to
6360          *   fit in to the remaining sample size.
6361          */
6362
6363         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6364         stack_size = min(stack_size, (u16) task_size);
6365
6366         /* Current header size plus static size and dynamic size. */
6367         header_size += 2 * sizeof(u64);
6368
6369         /* Do we fit in with the current stack dump size? */
6370         if ((u16) (header_size + stack_size) < header_size) {
6371                 /*
6372                  * If we overflow the maximum size for the sample,
6373                  * we customize the stack dump size to fit in.
6374                  */
6375                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6376                 stack_size = round_up(stack_size, sizeof(u64));
6377         }
6378
6379         return stack_size;
6380 }
6381
6382 static void
6383 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6384                           struct pt_regs *regs)
6385 {
6386         /* Case of a kernel thread, nothing to dump */
6387         if (!regs) {
6388                 u64 size = 0;
6389                 perf_output_put(handle, size);
6390         } else {
6391                 unsigned long sp;
6392                 unsigned int rem;
6393                 u64 dyn_size;
6394                 mm_segment_t fs;
6395
6396                 /*
6397                  * We dump:
6398                  * static size
6399                  *   - the size requested by user or the best one we can fit
6400                  *     in to the sample max size
6401                  * data
6402                  *   - user stack dump data
6403                  * dynamic size
6404                  *   - the actual dumped size
6405                  */
6406
6407                 /* Static size. */
6408                 perf_output_put(handle, dump_size);
6409
6410                 /* Data. */
6411                 sp = perf_user_stack_pointer(regs);
6412                 fs = get_fs();
6413                 set_fs(USER_DS);
6414                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6415                 set_fs(fs);
6416                 dyn_size = dump_size - rem;
6417
6418                 perf_output_skip(handle, rem);
6419
6420                 /* Dynamic size. */
6421                 perf_output_put(handle, dyn_size);
6422         }
6423 }
6424
6425 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6426                                           struct perf_sample_data *data,
6427                                           size_t size)
6428 {
6429         struct perf_event *sampler = event->aux_event;
6430         struct perf_buffer *rb;
6431
6432         data->aux_size = 0;
6433
6434         if (!sampler)
6435                 goto out;
6436
6437         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6438                 goto out;
6439
6440         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6441                 goto out;
6442
6443         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6444         if (!rb)
6445                 goto out;
6446
6447         /*
6448          * If this is an NMI hit inside sampling code, don't take
6449          * the sample. See also perf_aux_sample_output().
6450          */
6451         if (READ_ONCE(rb->aux_in_sampling)) {
6452                 data->aux_size = 0;
6453         } else {
6454                 size = min_t(size_t, size, perf_aux_size(rb));
6455                 data->aux_size = ALIGN(size, sizeof(u64));
6456         }
6457         ring_buffer_put(rb);
6458
6459 out:
6460         return data->aux_size;
6461 }
6462
6463 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6464                            struct perf_event *event,
6465                            struct perf_output_handle *handle,
6466                            unsigned long size)
6467 {
6468         unsigned long flags;
6469         long ret;
6470
6471         /*
6472          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6473          * paths. If we start calling them in NMI context, they may race with
6474          * the IRQ ones, that is, for example, re-starting an event that's just
6475          * been stopped, which is why we're using a separate callback that
6476          * doesn't change the event state.
6477          *
6478          * IRQs need to be disabled to prevent IPIs from racing with us.
6479          */
6480         local_irq_save(flags);
6481         /*
6482          * Guard against NMI hits inside the critical section;
6483          * see also perf_prepare_sample_aux().
6484          */
6485         WRITE_ONCE(rb->aux_in_sampling, 1);
6486         barrier();
6487
6488         ret = event->pmu->snapshot_aux(event, handle, size);
6489
6490         barrier();
6491         WRITE_ONCE(rb->aux_in_sampling, 0);
6492         local_irq_restore(flags);
6493
6494         return ret;
6495 }
6496
6497 static void perf_aux_sample_output(struct perf_event *event,
6498                                    struct perf_output_handle *handle,
6499                                    struct perf_sample_data *data)
6500 {
6501         struct perf_event *sampler = event->aux_event;
6502         struct perf_buffer *rb;
6503         unsigned long pad;
6504         long size;
6505
6506         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6507                 return;
6508
6509         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6510         if (!rb)
6511                 return;
6512
6513         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6514
6515         /*
6516          * An error here means that perf_output_copy() failed (returned a
6517          * non-zero surplus that it didn't copy), which in its current
6518          * enlightened implementation is not possible. If that changes, we'd
6519          * like to know.
6520          */
6521         if (WARN_ON_ONCE(size < 0))
6522                 goto out_put;
6523
6524         /*
6525          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6526          * perf_prepare_sample_aux(), so should not be more than that.
6527          */
6528         pad = data->aux_size - size;
6529         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6530                 pad = 8;
6531
6532         if (pad) {
6533                 u64 zero = 0;
6534                 perf_output_copy(handle, &zero, pad);
6535         }
6536
6537 out_put:
6538         ring_buffer_put(rb);
6539 }
6540
6541 static void __perf_event_header__init_id(struct perf_event_header *header,
6542                                          struct perf_sample_data *data,
6543                                          struct perf_event *event)
6544 {
6545         u64 sample_type = event->attr.sample_type;
6546
6547         data->type = sample_type;
6548         header->size += event->id_header_size;
6549
6550         if (sample_type & PERF_SAMPLE_TID) {
6551                 /* namespace issues */
6552                 data->tid_entry.pid = perf_event_pid(event, current);
6553                 data->tid_entry.tid = perf_event_tid(event, current);
6554         }
6555
6556         if (sample_type & PERF_SAMPLE_TIME)
6557                 data->time = perf_event_clock(event);
6558
6559         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6560                 data->id = primary_event_id(event);
6561
6562         if (sample_type & PERF_SAMPLE_STREAM_ID)
6563                 data->stream_id = event->id;
6564
6565         if (sample_type & PERF_SAMPLE_CPU) {
6566                 data->cpu_entry.cpu      = raw_smp_processor_id();
6567                 data->cpu_entry.reserved = 0;
6568         }
6569 }
6570
6571 void perf_event_header__init_id(struct perf_event_header *header,
6572                                 struct perf_sample_data *data,
6573                                 struct perf_event *event)
6574 {
6575         if (event->attr.sample_id_all)
6576                 __perf_event_header__init_id(header, data, event);
6577 }
6578
6579 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6580                                            struct perf_sample_data *data)
6581 {
6582         u64 sample_type = data->type;
6583
6584         if (sample_type & PERF_SAMPLE_TID)
6585                 perf_output_put(handle, data->tid_entry);
6586
6587         if (sample_type & PERF_SAMPLE_TIME)
6588                 perf_output_put(handle, data->time);
6589
6590         if (sample_type & PERF_SAMPLE_ID)
6591                 perf_output_put(handle, data->id);
6592
6593         if (sample_type & PERF_SAMPLE_STREAM_ID)
6594                 perf_output_put(handle, data->stream_id);
6595
6596         if (sample_type & PERF_SAMPLE_CPU)
6597                 perf_output_put(handle, data->cpu_entry);
6598
6599         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6600                 perf_output_put(handle, data->id);
6601 }
6602
6603 void perf_event__output_id_sample(struct perf_event *event,
6604                                   struct perf_output_handle *handle,
6605                                   struct perf_sample_data *sample)
6606 {
6607         if (event->attr.sample_id_all)
6608                 __perf_event__output_id_sample(handle, sample);
6609 }
6610
6611 static void perf_output_read_one(struct perf_output_handle *handle,
6612                                  struct perf_event *event,
6613                                  u64 enabled, u64 running)
6614 {
6615         u64 read_format = event->attr.read_format;
6616         u64 values[4];
6617         int n = 0;
6618
6619         values[n++] = perf_event_count(event);
6620         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6621                 values[n++] = enabled +
6622                         atomic64_read(&event->child_total_time_enabled);
6623         }
6624         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6625                 values[n++] = running +
6626                         atomic64_read(&event->child_total_time_running);
6627         }
6628         if (read_format & PERF_FORMAT_ID)
6629                 values[n++] = primary_event_id(event);
6630
6631         __output_copy(handle, values, n * sizeof(u64));
6632 }
6633
6634 static void perf_output_read_group(struct perf_output_handle *handle,
6635                             struct perf_event *event,
6636                             u64 enabled, u64 running)
6637 {
6638         struct perf_event *leader = event->group_leader, *sub;
6639         u64 read_format = event->attr.read_format;
6640         u64 values[5];
6641         int n = 0;
6642
6643         values[n++] = 1 + leader->nr_siblings;
6644
6645         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6646                 values[n++] = enabled;
6647
6648         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6649                 values[n++] = running;
6650
6651         if ((leader != event) &&
6652             (leader->state == PERF_EVENT_STATE_ACTIVE))
6653                 leader->pmu->read(leader);
6654
6655         values[n++] = perf_event_count(leader);
6656         if (read_format & PERF_FORMAT_ID)
6657                 values[n++] = primary_event_id(leader);
6658
6659         __output_copy(handle, values, n * sizeof(u64));
6660
6661         for_each_sibling_event(sub, leader) {
6662                 n = 0;
6663
6664                 if ((sub != event) &&
6665                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6666                         sub->pmu->read(sub);
6667
6668                 values[n++] = perf_event_count(sub);
6669                 if (read_format & PERF_FORMAT_ID)
6670                         values[n++] = primary_event_id(sub);
6671
6672                 __output_copy(handle, values, n * sizeof(u64));
6673         }
6674 }
6675
6676 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6677                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6678
6679 /*
6680  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6681  *
6682  * The problem is that its both hard and excessively expensive to iterate the
6683  * child list, not to mention that its impossible to IPI the children running
6684  * on another CPU, from interrupt/NMI context.
6685  */
6686 static void perf_output_read(struct perf_output_handle *handle,
6687                              struct perf_event *event)
6688 {
6689         u64 enabled = 0, running = 0, now;
6690         u64 read_format = event->attr.read_format;
6691
6692         /*
6693          * compute total_time_enabled, total_time_running
6694          * based on snapshot values taken when the event
6695          * was last scheduled in.
6696          *
6697          * we cannot simply called update_context_time()
6698          * because of locking issue as we are called in
6699          * NMI context
6700          */
6701         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6702                 calc_timer_values(event, &now, &enabled, &running);
6703
6704         if (event->attr.read_format & PERF_FORMAT_GROUP)
6705                 perf_output_read_group(handle, event, enabled, running);
6706         else
6707                 perf_output_read_one(handle, event, enabled, running);
6708 }
6709
6710 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6711 {
6712         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6713 }
6714
6715 void perf_output_sample(struct perf_output_handle *handle,
6716                         struct perf_event_header *header,
6717                         struct perf_sample_data *data,
6718                         struct perf_event *event)
6719 {
6720         u64 sample_type = data->type;
6721
6722         perf_output_put(handle, *header);
6723
6724         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6725                 perf_output_put(handle, data->id);
6726
6727         if (sample_type & PERF_SAMPLE_IP)
6728                 perf_output_put(handle, data->ip);
6729
6730         if (sample_type & PERF_SAMPLE_TID)
6731                 perf_output_put(handle, data->tid_entry);
6732
6733         if (sample_type & PERF_SAMPLE_TIME)
6734                 perf_output_put(handle, data->time);
6735
6736         if (sample_type & PERF_SAMPLE_ADDR)
6737                 perf_output_put(handle, data->addr);
6738
6739         if (sample_type & PERF_SAMPLE_ID)
6740                 perf_output_put(handle, data->id);
6741
6742         if (sample_type & PERF_SAMPLE_STREAM_ID)
6743                 perf_output_put(handle, data->stream_id);
6744
6745         if (sample_type & PERF_SAMPLE_CPU)
6746                 perf_output_put(handle, data->cpu_entry);
6747
6748         if (sample_type & PERF_SAMPLE_PERIOD)
6749                 perf_output_put(handle, data->period);
6750
6751         if (sample_type & PERF_SAMPLE_READ)
6752                 perf_output_read(handle, event);
6753
6754         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6755                 int size = 1;
6756
6757                 size += data->callchain->nr;
6758                 size *= sizeof(u64);
6759                 __output_copy(handle, data->callchain, size);
6760         }
6761
6762         if (sample_type & PERF_SAMPLE_RAW) {
6763                 struct perf_raw_record *raw = data->raw;
6764
6765                 if (raw) {
6766                         struct perf_raw_frag *frag = &raw->frag;
6767
6768                         perf_output_put(handle, raw->size);
6769                         do {
6770                                 if (frag->copy) {
6771                                         __output_custom(handle, frag->copy,
6772                                                         frag->data, frag->size);
6773                                 } else {
6774                                         __output_copy(handle, frag->data,
6775                                                       frag->size);
6776                                 }
6777                                 if (perf_raw_frag_last(frag))
6778                                         break;
6779                                 frag = frag->next;
6780                         } while (1);
6781                         if (frag->pad)
6782                                 __output_skip(handle, NULL, frag->pad);
6783                 } else {
6784                         struct {
6785                                 u32     size;
6786                                 u32     data;
6787                         } raw = {
6788                                 .size = sizeof(u32),
6789                                 .data = 0,
6790                         };
6791                         perf_output_put(handle, raw);
6792                 }
6793         }
6794
6795         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6796                 if (data->br_stack) {
6797                         size_t size;
6798
6799                         size = data->br_stack->nr
6800                              * sizeof(struct perf_branch_entry);
6801
6802                         perf_output_put(handle, data->br_stack->nr);
6803                         if (perf_sample_save_hw_index(event))
6804                                 perf_output_put(handle, data->br_stack->hw_idx);
6805                         perf_output_copy(handle, data->br_stack->entries, size);
6806                 } else {
6807                         /*
6808                          * we always store at least the value of nr
6809                          */
6810                         u64 nr = 0;
6811                         perf_output_put(handle, nr);
6812                 }
6813         }
6814
6815         if (sample_type & PERF_SAMPLE_REGS_USER) {
6816                 u64 abi = data->regs_user.abi;
6817
6818                 /*
6819                  * If there are no regs to dump, notice it through
6820                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6821                  */
6822                 perf_output_put(handle, abi);
6823
6824                 if (abi) {
6825                         u64 mask = event->attr.sample_regs_user;
6826                         perf_output_sample_regs(handle,
6827                                                 data->regs_user.regs,
6828                                                 mask);
6829                 }
6830         }
6831
6832         if (sample_type & PERF_SAMPLE_STACK_USER) {
6833                 perf_output_sample_ustack(handle,
6834                                           data->stack_user_size,
6835                                           data->regs_user.regs);
6836         }
6837
6838         if (sample_type & PERF_SAMPLE_WEIGHT)
6839                 perf_output_put(handle, data->weight);
6840
6841         if (sample_type & PERF_SAMPLE_DATA_SRC)
6842                 perf_output_put(handle, data->data_src.val);
6843
6844         if (sample_type & PERF_SAMPLE_TRANSACTION)
6845                 perf_output_put(handle, data->txn);
6846
6847         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6848                 u64 abi = data->regs_intr.abi;
6849                 /*
6850                  * If there are no regs to dump, notice it through
6851                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6852                  */
6853                 perf_output_put(handle, abi);
6854
6855                 if (abi) {
6856                         u64 mask = event->attr.sample_regs_intr;
6857
6858                         perf_output_sample_regs(handle,
6859                                                 data->regs_intr.regs,
6860                                                 mask);
6861                 }
6862         }
6863
6864         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6865                 perf_output_put(handle, data->phys_addr);
6866
6867         if (sample_type & PERF_SAMPLE_AUX) {
6868                 perf_output_put(handle, data->aux_size);
6869
6870                 if (data->aux_size)
6871                         perf_aux_sample_output(event, handle, data);
6872         }
6873
6874         if (!event->attr.watermark) {
6875                 int wakeup_events = event->attr.wakeup_events;
6876
6877                 if (wakeup_events) {
6878                         struct perf_buffer *rb = handle->rb;
6879                         int events = local_inc_return(&rb->events);
6880
6881                         if (events >= wakeup_events) {
6882                                 local_sub(wakeup_events, &rb->events);
6883                                 local_inc(&rb->wakeup);
6884                         }
6885                 }
6886         }
6887 }
6888
6889 static u64 perf_virt_to_phys(u64 virt)
6890 {
6891         u64 phys_addr = 0;
6892         struct page *p = NULL;
6893
6894         if (!virt)
6895                 return 0;
6896
6897         if (virt >= TASK_SIZE) {
6898                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6899                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6900                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6901                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6902         } else {
6903                 /*
6904                  * Walking the pages tables for user address.
6905                  * Interrupts are disabled, so it prevents any tear down
6906                  * of the page tables.
6907                  * Try IRQ-safe __get_user_pages_fast first.
6908                  * If failed, leave phys_addr as 0.
6909                  */
6910                 if ((current->mm != NULL) &&
6911                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6912                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6913
6914                 if (p)
6915                         put_page(p);
6916         }
6917
6918         return phys_addr;
6919 }
6920
6921 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6922
6923 struct perf_callchain_entry *
6924 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6925 {
6926         bool kernel = !event->attr.exclude_callchain_kernel;
6927         bool user   = !event->attr.exclude_callchain_user;
6928         /* Disallow cross-task user callchains. */
6929         bool crosstask = event->ctx->task && event->ctx->task != current;
6930         const u32 max_stack = event->attr.sample_max_stack;
6931         struct perf_callchain_entry *callchain;
6932
6933         if (!kernel && !user)
6934                 return &__empty_callchain;
6935
6936         callchain = get_perf_callchain(regs, 0, kernel, user,
6937                                        max_stack, crosstask, true);
6938         return callchain ?: &__empty_callchain;
6939 }
6940
6941 void perf_prepare_sample(struct perf_event_header *header,
6942                          struct perf_sample_data *data,
6943                          struct perf_event *event,
6944                          struct pt_regs *regs)
6945 {
6946         u64 sample_type = event->attr.sample_type;
6947
6948         header->type = PERF_RECORD_SAMPLE;
6949         header->size = sizeof(*header) + event->header_size;
6950
6951         header->misc = 0;
6952         header->misc |= perf_misc_flags(regs);
6953
6954         __perf_event_header__init_id(header, data, event);
6955
6956         if (sample_type & PERF_SAMPLE_IP)
6957                 data->ip = perf_instruction_pointer(regs);
6958
6959         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6960                 int size = 1;
6961
6962                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6963                         data->callchain = perf_callchain(event, regs);
6964
6965                 size += data->callchain->nr;
6966
6967                 header->size += size * sizeof(u64);
6968         }
6969
6970         if (sample_type & PERF_SAMPLE_RAW) {
6971                 struct perf_raw_record *raw = data->raw;
6972                 int size;
6973
6974                 if (raw) {
6975                         struct perf_raw_frag *frag = &raw->frag;
6976                         u32 sum = 0;
6977
6978                         do {
6979                                 sum += frag->size;
6980                                 if (perf_raw_frag_last(frag))
6981                                         break;
6982                                 frag = frag->next;
6983                         } while (1);
6984
6985                         size = round_up(sum + sizeof(u32), sizeof(u64));
6986                         raw->size = size - sizeof(u32);
6987                         frag->pad = raw->size - sum;
6988                 } else {
6989                         size = sizeof(u64);
6990                 }
6991
6992                 header->size += size;
6993         }
6994
6995         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6996                 int size = sizeof(u64); /* nr */
6997                 if (data->br_stack) {
6998                         if (perf_sample_save_hw_index(event))
6999                                 size += sizeof(u64);
7000
7001                         size += data->br_stack->nr
7002                               * sizeof(struct perf_branch_entry);
7003                 }
7004                 header->size += size;
7005         }
7006
7007         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7008                 perf_sample_regs_user(&data->regs_user, regs,
7009                                       &data->regs_user_copy);
7010
7011         if (sample_type & PERF_SAMPLE_REGS_USER) {
7012                 /* regs dump ABI info */
7013                 int size = sizeof(u64);
7014
7015                 if (data->regs_user.regs) {
7016                         u64 mask = event->attr.sample_regs_user;
7017                         size += hweight64(mask) * sizeof(u64);
7018                 }
7019
7020                 header->size += size;
7021         }
7022
7023         if (sample_type & PERF_SAMPLE_STACK_USER) {
7024                 /*
7025                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7026                  * processed as the last one or have additional check added
7027                  * in case new sample type is added, because we could eat
7028                  * up the rest of the sample size.
7029                  */
7030                 u16 stack_size = event->attr.sample_stack_user;
7031                 u16 size = sizeof(u64);
7032
7033                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7034                                                      data->regs_user.regs);
7035
7036                 /*
7037                  * If there is something to dump, add space for the dump
7038                  * itself and for the field that tells the dynamic size,
7039                  * which is how many have been actually dumped.
7040                  */
7041                 if (stack_size)
7042                         size += sizeof(u64) + stack_size;
7043
7044                 data->stack_user_size = stack_size;
7045                 header->size += size;
7046         }
7047
7048         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7049                 /* regs dump ABI info */
7050                 int size = sizeof(u64);
7051
7052                 perf_sample_regs_intr(&data->regs_intr, regs);
7053
7054                 if (data->regs_intr.regs) {
7055                         u64 mask = event->attr.sample_regs_intr;
7056
7057                         size += hweight64(mask) * sizeof(u64);
7058                 }
7059
7060                 header->size += size;
7061         }
7062
7063         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7064                 data->phys_addr = perf_virt_to_phys(data->addr);
7065
7066         if (sample_type & PERF_SAMPLE_AUX) {
7067                 u64 size;
7068
7069                 header->size += sizeof(u64); /* size */
7070
7071                 /*
7072                  * Given the 16bit nature of header::size, an AUX sample can
7073                  * easily overflow it, what with all the preceding sample bits.
7074                  * Make sure this doesn't happen by using up to U16_MAX bytes
7075                  * per sample in total (rounded down to 8 byte boundary).
7076                  */
7077                 size = min_t(size_t, U16_MAX - header->size,
7078                              event->attr.aux_sample_size);
7079                 size = rounddown(size, 8);
7080                 size = perf_prepare_sample_aux(event, data, size);
7081
7082                 WARN_ON_ONCE(size + header->size > U16_MAX);
7083                 header->size += size;
7084         }
7085         /*
7086          * If you're adding more sample types here, you likely need to do
7087          * something about the overflowing header::size, like repurpose the
7088          * lowest 3 bits of size, which should be always zero at the moment.
7089          * This raises a more important question, do we really need 512k sized
7090          * samples and why, so good argumentation is in order for whatever you
7091          * do here next.
7092          */
7093         WARN_ON_ONCE(header->size & 7);
7094 }
7095
7096 static __always_inline int
7097 __perf_event_output(struct perf_event *event,
7098                     struct perf_sample_data *data,
7099                     struct pt_regs *regs,
7100                     int (*output_begin)(struct perf_output_handle *,
7101                                         struct perf_event *,
7102                                         unsigned int))
7103 {
7104         struct perf_output_handle handle;
7105         struct perf_event_header header;
7106         int err;
7107
7108         /* protect the callchain buffers */
7109         rcu_read_lock();
7110
7111         perf_prepare_sample(&header, data, event, regs);
7112
7113         err = output_begin(&handle, event, header.size);
7114         if (err)
7115                 goto exit;
7116
7117         perf_output_sample(&handle, &header, data, event);
7118
7119         perf_output_end(&handle);
7120
7121 exit:
7122         rcu_read_unlock();
7123         return err;
7124 }
7125
7126 void
7127 perf_event_output_forward(struct perf_event *event,
7128                          struct perf_sample_data *data,
7129                          struct pt_regs *regs)
7130 {
7131         __perf_event_output(event, data, regs, perf_output_begin_forward);
7132 }
7133
7134 void
7135 perf_event_output_backward(struct perf_event *event,
7136                            struct perf_sample_data *data,
7137                            struct pt_regs *regs)
7138 {
7139         __perf_event_output(event, data, regs, perf_output_begin_backward);
7140 }
7141
7142 int
7143 perf_event_output(struct perf_event *event,
7144                   struct perf_sample_data *data,
7145                   struct pt_regs *regs)
7146 {
7147         return __perf_event_output(event, data, regs, perf_output_begin);
7148 }
7149
7150 /*
7151  * read event_id
7152  */
7153
7154 struct perf_read_event {
7155         struct perf_event_header        header;
7156
7157         u32                             pid;
7158         u32                             tid;
7159 };
7160
7161 static void
7162 perf_event_read_event(struct perf_event *event,
7163                         struct task_struct *task)
7164 {
7165         struct perf_output_handle handle;
7166         struct perf_sample_data sample;
7167         struct perf_read_event read_event = {
7168                 .header = {
7169                         .type = PERF_RECORD_READ,
7170                         .misc = 0,
7171                         .size = sizeof(read_event) + event->read_size,
7172                 },
7173                 .pid = perf_event_pid(event, task),
7174                 .tid = perf_event_tid(event, task),
7175         };
7176         int ret;
7177
7178         perf_event_header__init_id(&read_event.header, &sample, event);
7179         ret = perf_output_begin(&handle, event, read_event.header.size);
7180         if (ret)
7181                 return;
7182
7183         perf_output_put(&handle, read_event);
7184         perf_output_read(&handle, event);
7185         perf_event__output_id_sample(event, &handle, &sample);
7186
7187         perf_output_end(&handle);
7188 }
7189
7190 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7191
7192 static void
7193 perf_iterate_ctx(struct perf_event_context *ctx,
7194                    perf_iterate_f output,
7195                    void *data, bool all)
7196 {
7197         struct perf_event *event;
7198
7199         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7200                 if (!all) {
7201                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7202                                 continue;
7203                         if (!event_filter_match(event))
7204                                 continue;
7205                 }
7206
7207                 output(event, data);
7208         }
7209 }
7210
7211 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7212 {
7213         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7214         struct perf_event *event;
7215
7216         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7217                 /*
7218                  * Skip events that are not fully formed yet; ensure that
7219                  * if we observe event->ctx, both event and ctx will be
7220                  * complete enough. See perf_install_in_context().
7221                  */
7222                 if (!smp_load_acquire(&event->ctx))
7223                         continue;
7224
7225                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7226                         continue;
7227                 if (!event_filter_match(event))
7228                         continue;
7229                 output(event, data);
7230         }
7231 }
7232
7233 /*
7234  * Iterate all events that need to receive side-band events.
7235  *
7236  * For new callers; ensure that account_pmu_sb_event() includes
7237  * your event, otherwise it might not get delivered.
7238  */
7239 static void
7240 perf_iterate_sb(perf_iterate_f output, void *data,
7241                struct perf_event_context *task_ctx)
7242 {
7243         struct perf_event_context *ctx;
7244         int ctxn;
7245
7246         rcu_read_lock();
7247         preempt_disable();
7248
7249         /*
7250          * If we have task_ctx != NULL we only notify the task context itself.
7251          * The task_ctx is set only for EXIT events before releasing task
7252          * context.
7253          */
7254         if (task_ctx) {
7255                 perf_iterate_ctx(task_ctx, output, data, false);
7256                 goto done;
7257         }
7258
7259         perf_iterate_sb_cpu(output, data);
7260
7261         for_each_task_context_nr(ctxn) {
7262                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7263                 if (ctx)
7264                         perf_iterate_ctx(ctx, output, data, false);
7265         }
7266 done:
7267         preempt_enable();
7268         rcu_read_unlock();
7269 }
7270
7271 /*
7272  * Clear all file-based filters at exec, they'll have to be
7273  * re-instated when/if these objects are mmapped again.
7274  */
7275 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7276 {
7277         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7278         struct perf_addr_filter *filter;
7279         unsigned int restart = 0, count = 0;
7280         unsigned long flags;
7281
7282         if (!has_addr_filter(event))
7283                 return;
7284
7285         raw_spin_lock_irqsave(&ifh->lock, flags);
7286         list_for_each_entry(filter, &ifh->list, entry) {
7287                 if (filter->path.dentry) {
7288                         event->addr_filter_ranges[count].start = 0;
7289                         event->addr_filter_ranges[count].size = 0;
7290                         restart++;
7291                 }
7292
7293                 count++;
7294         }
7295
7296         if (restart)
7297                 event->addr_filters_gen++;
7298         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7299
7300         if (restart)
7301                 perf_event_stop(event, 1);
7302 }
7303
7304 void perf_event_exec(void)
7305 {
7306         struct perf_event_context *ctx;
7307         int ctxn;
7308
7309         rcu_read_lock();
7310         for_each_task_context_nr(ctxn) {
7311                 ctx = current->perf_event_ctxp[ctxn];
7312                 if (!ctx)
7313                         continue;
7314
7315                 perf_event_enable_on_exec(ctxn);
7316
7317                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7318                                    true);
7319         }
7320         rcu_read_unlock();
7321 }
7322
7323 struct remote_output {
7324         struct perf_buffer      *rb;
7325         int                     err;
7326 };
7327
7328 static void __perf_event_output_stop(struct perf_event *event, void *data)
7329 {
7330         struct perf_event *parent = event->parent;
7331         struct remote_output *ro = data;
7332         struct perf_buffer *rb = ro->rb;
7333         struct stop_event_data sd = {
7334                 .event  = event,
7335         };
7336
7337         if (!has_aux(event))
7338                 return;
7339
7340         if (!parent)
7341                 parent = event;
7342
7343         /*
7344          * In case of inheritance, it will be the parent that links to the
7345          * ring-buffer, but it will be the child that's actually using it.
7346          *
7347          * We are using event::rb to determine if the event should be stopped,
7348          * however this may race with ring_buffer_attach() (through set_output),
7349          * which will make us skip the event that actually needs to be stopped.
7350          * So ring_buffer_attach() has to stop an aux event before re-assigning
7351          * its rb pointer.
7352          */
7353         if (rcu_dereference(parent->rb) == rb)
7354                 ro->err = __perf_event_stop(&sd);
7355 }
7356
7357 static int __perf_pmu_output_stop(void *info)
7358 {
7359         struct perf_event *event = info;
7360         struct pmu *pmu = event->ctx->pmu;
7361         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7362         struct remote_output ro = {
7363                 .rb     = event->rb,
7364         };
7365
7366         rcu_read_lock();
7367         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7368         if (cpuctx->task_ctx)
7369                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7370                                    &ro, false);
7371         rcu_read_unlock();
7372
7373         return ro.err;
7374 }
7375
7376 static void perf_pmu_output_stop(struct perf_event *event)
7377 {
7378         struct perf_event *iter;
7379         int err, cpu;
7380
7381 restart:
7382         rcu_read_lock();
7383         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7384                 /*
7385                  * For per-CPU events, we need to make sure that neither they
7386                  * nor their children are running; for cpu==-1 events it's
7387                  * sufficient to stop the event itself if it's active, since
7388                  * it can't have children.
7389                  */
7390                 cpu = iter->cpu;
7391                 if (cpu == -1)
7392                         cpu = READ_ONCE(iter->oncpu);
7393
7394                 if (cpu == -1)
7395                         continue;
7396
7397                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7398                 if (err == -EAGAIN) {
7399                         rcu_read_unlock();
7400                         goto restart;
7401                 }
7402         }
7403         rcu_read_unlock();
7404 }
7405
7406 /*
7407  * task tracking -- fork/exit
7408  *
7409  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7410  */
7411
7412 struct perf_task_event {
7413         struct task_struct              *task;
7414         struct perf_event_context       *task_ctx;
7415
7416         struct {
7417                 struct perf_event_header        header;
7418
7419                 u32                             pid;
7420                 u32                             ppid;
7421                 u32                             tid;
7422                 u32                             ptid;
7423                 u64                             time;
7424         } event_id;
7425 };
7426
7427 static int perf_event_task_match(struct perf_event *event)
7428 {
7429         return event->attr.comm  || event->attr.mmap ||
7430                event->attr.mmap2 || event->attr.mmap_data ||
7431                event->attr.task;
7432 }
7433
7434 static void perf_event_task_output(struct perf_event *event,
7435                                    void *data)
7436 {
7437         struct perf_task_event *task_event = data;
7438         struct perf_output_handle handle;
7439         struct perf_sample_data sample;
7440         struct task_struct *task = task_event->task;
7441         int ret, size = task_event->event_id.header.size;
7442
7443         if (!perf_event_task_match(event))
7444                 return;
7445
7446         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7447
7448         ret = perf_output_begin(&handle, event,
7449                                 task_event->event_id.header.size);
7450         if (ret)
7451                 goto out;
7452
7453         task_event->event_id.pid = perf_event_pid(event, task);
7454         task_event->event_id.ppid = perf_event_pid(event, current);
7455
7456         task_event->event_id.tid = perf_event_tid(event, task);
7457         task_event->event_id.ptid = perf_event_tid(event, current);
7458
7459         task_event->event_id.time = perf_event_clock(event);
7460
7461         perf_output_put(&handle, task_event->event_id);
7462
7463         perf_event__output_id_sample(event, &handle, &sample);
7464
7465         perf_output_end(&handle);
7466 out:
7467         task_event->event_id.header.size = size;
7468 }
7469
7470 static void perf_event_task(struct task_struct *task,
7471                               struct perf_event_context *task_ctx,
7472                               int new)
7473 {
7474         struct perf_task_event task_event;
7475
7476         if (!atomic_read(&nr_comm_events) &&
7477             !atomic_read(&nr_mmap_events) &&
7478             !atomic_read(&nr_task_events))
7479                 return;
7480
7481         task_event = (struct perf_task_event){
7482                 .task     = task,
7483                 .task_ctx = task_ctx,
7484                 .event_id    = {
7485                         .header = {
7486                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7487                                 .misc = 0,
7488                                 .size = sizeof(task_event.event_id),
7489                         },
7490                         /* .pid  */
7491                         /* .ppid */
7492                         /* .tid  */
7493                         /* .ptid */
7494                         /* .time */
7495                 },
7496         };
7497
7498         perf_iterate_sb(perf_event_task_output,
7499                        &task_event,
7500                        task_ctx);
7501 }
7502
7503 void perf_event_fork(struct task_struct *task)
7504 {
7505         perf_event_task(task, NULL, 1);
7506         perf_event_namespaces(task);
7507 }
7508
7509 /*
7510  * comm tracking
7511  */
7512
7513 struct perf_comm_event {
7514         struct task_struct      *task;
7515         char                    *comm;
7516         int                     comm_size;
7517
7518         struct {
7519                 struct perf_event_header        header;
7520
7521                 u32                             pid;
7522                 u32                             tid;
7523         } event_id;
7524 };
7525
7526 static int perf_event_comm_match(struct perf_event *event)
7527 {
7528         return event->attr.comm;
7529 }
7530
7531 static void perf_event_comm_output(struct perf_event *event,
7532                                    void *data)
7533 {
7534         struct perf_comm_event *comm_event = data;
7535         struct perf_output_handle handle;
7536         struct perf_sample_data sample;
7537         int size = comm_event->event_id.header.size;
7538         int ret;
7539
7540         if (!perf_event_comm_match(event))
7541                 return;
7542
7543         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7544         ret = perf_output_begin(&handle, event,
7545                                 comm_event->event_id.header.size);
7546
7547         if (ret)
7548                 goto out;
7549
7550         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7551         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7552
7553         perf_output_put(&handle, comm_event->event_id);
7554         __output_copy(&handle, comm_event->comm,
7555                                    comm_event->comm_size);
7556
7557         perf_event__output_id_sample(event, &handle, &sample);
7558
7559         perf_output_end(&handle);
7560 out:
7561         comm_event->event_id.header.size = size;
7562 }
7563
7564 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7565 {
7566         char comm[TASK_COMM_LEN];
7567         unsigned int size;
7568
7569         memset(comm, 0, sizeof(comm));
7570         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7571         size = ALIGN(strlen(comm)+1, sizeof(u64));
7572
7573         comm_event->comm = comm;
7574         comm_event->comm_size = size;
7575
7576         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7577
7578         perf_iterate_sb(perf_event_comm_output,
7579                        comm_event,
7580                        NULL);
7581 }
7582
7583 void perf_event_comm(struct task_struct *task, bool exec)
7584 {
7585         struct perf_comm_event comm_event;
7586
7587         if (!atomic_read(&nr_comm_events))
7588                 return;
7589
7590         comm_event = (struct perf_comm_event){
7591                 .task   = task,
7592                 /* .comm      */
7593                 /* .comm_size */
7594                 .event_id  = {
7595                         .header = {
7596                                 .type = PERF_RECORD_COMM,
7597                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7598                                 /* .size */
7599                         },
7600                         /* .pid */
7601                         /* .tid */
7602                 },
7603         };
7604
7605         perf_event_comm_event(&comm_event);
7606 }
7607
7608 /*
7609  * namespaces tracking
7610  */
7611
7612 struct perf_namespaces_event {
7613         struct task_struct              *task;
7614
7615         struct {
7616                 struct perf_event_header        header;
7617
7618                 u32                             pid;
7619                 u32                             tid;
7620                 u64                             nr_namespaces;
7621                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7622         } event_id;
7623 };
7624
7625 static int perf_event_namespaces_match(struct perf_event *event)
7626 {
7627         return event->attr.namespaces;
7628 }
7629
7630 static void perf_event_namespaces_output(struct perf_event *event,
7631                                          void *data)
7632 {
7633         struct perf_namespaces_event *namespaces_event = data;
7634         struct perf_output_handle handle;
7635         struct perf_sample_data sample;
7636         u16 header_size = namespaces_event->event_id.header.size;
7637         int ret;
7638
7639         if (!perf_event_namespaces_match(event))
7640                 return;
7641
7642         perf_event_header__init_id(&namespaces_event->event_id.header,
7643                                    &sample, event);
7644         ret = perf_output_begin(&handle, event,
7645                                 namespaces_event->event_id.header.size);
7646         if (ret)
7647                 goto out;
7648
7649         namespaces_event->event_id.pid = perf_event_pid(event,
7650                                                         namespaces_event->task);
7651         namespaces_event->event_id.tid = perf_event_tid(event,
7652                                                         namespaces_event->task);
7653
7654         perf_output_put(&handle, namespaces_event->event_id);
7655
7656         perf_event__output_id_sample(event, &handle, &sample);
7657
7658         perf_output_end(&handle);
7659 out:
7660         namespaces_event->event_id.header.size = header_size;
7661 }
7662
7663 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7664                                    struct task_struct *task,
7665                                    const struct proc_ns_operations *ns_ops)
7666 {
7667         struct path ns_path;
7668         struct inode *ns_inode;
7669         int error;
7670
7671         error = ns_get_path(&ns_path, task, ns_ops);
7672         if (!error) {
7673                 ns_inode = ns_path.dentry->d_inode;
7674                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7675                 ns_link_info->ino = ns_inode->i_ino;
7676                 path_put(&ns_path);
7677         }
7678 }
7679
7680 void perf_event_namespaces(struct task_struct *task)
7681 {
7682         struct perf_namespaces_event namespaces_event;
7683         struct perf_ns_link_info *ns_link_info;
7684
7685         if (!atomic_read(&nr_namespaces_events))
7686                 return;
7687
7688         namespaces_event = (struct perf_namespaces_event){
7689                 .task   = task,
7690                 .event_id  = {
7691                         .header = {
7692                                 .type = PERF_RECORD_NAMESPACES,
7693                                 .misc = 0,
7694                                 .size = sizeof(namespaces_event.event_id),
7695                         },
7696                         /* .pid */
7697                         /* .tid */
7698                         .nr_namespaces = NR_NAMESPACES,
7699                         /* .link_info[NR_NAMESPACES] */
7700                 },
7701         };
7702
7703         ns_link_info = namespaces_event.event_id.link_info;
7704
7705         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7706                                task, &mntns_operations);
7707
7708 #ifdef CONFIG_USER_NS
7709         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7710                                task, &userns_operations);
7711 #endif
7712 #ifdef CONFIG_NET_NS
7713         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7714                                task, &netns_operations);
7715 #endif
7716 #ifdef CONFIG_UTS_NS
7717         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7718                                task, &utsns_operations);
7719 #endif
7720 #ifdef CONFIG_IPC_NS
7721         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7722                                task, &ipcns_operations);
7723 #endif
7724 #ifdef CONFIG_PID_NS
7725         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7726                                task, &pidns_operations);
7727 #endif
7728 #ifdef CONFIG_CGROUPS
7729         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7730                                task, &cgroupns_operations);
7731 #endif
7732
7733         perf_iterate_sb(perf_event_namespaces_output,
7734                         &namespaces_event,
7735                         NULL);
7736 }
7737
7738 /*
7739  * mmap tracking
7740  */
7741
7742 struct perf_mmap_event {
7743         struct vm_area_struct   *vma;
7744
7745         const char              *file_name;
7746         int                     file_size;
7747         int                     maj, min;
7748         u64                     ino;
7749         u64                     ino_generation;
7750         u32                     prot, flags;
7751
7752         struct {
7753                 struct perf_event_header        header;
7754
7755                 u32                             pid;
7756                 u32                             tid;
7757                 u64                             start;
7758                 u64                             len;
7759                 u64                             pgoff;
7760         } event_id;
7761 };
7762
7763 static int perf_event_mmap_match(struct perf_event *event,
7764                                  void *data)
7765 {
7766         struct perf_mmap_event *mmap_event = data;
7767         struct vm_area_struct *vma = mmap_event->vma;
7768         int executable = vma->vm_flags & VM_EXEC;
7769
7770         return (!executable && event->attr.mmap_data) ||
7771                (executable && (event->attr.mmap || event->attr.mmap2));
7772 }
7773
7774 static void perf_event_mmap_output(struct perf_event *event,
7775                                    void *data)
7776 {
7777         struct perf_mmap_event *mmap_event = data;
7778         struct perf_output_handle handle;
7779         struct perf_sample_data sample;
7780         int size = mmap_event->event_id.header.size;
7781         u32 type = mmap_event->event_id.header.type;
7782         int ret;
7783
7784         if (!perf_event_mmap_match(event, data))
7785                 return;
7786
7787         if (event->attr.mmap2) {
7788                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7789                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7790                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7791                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7792                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7793                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7794                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7795         }
7796
7797         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7798         ret = perf_output_begin(&handle, event,
7799                                 mmap_event->event_id.header.size);
7800         if (ret)
7801                 goto out;
7802
7803         mmap_event->event_id.pid = perf_event_pid(event, current);
7804         mmap_event->event_id.tid = perf_event_tid(event, current);
7805
7806         perf_output_put(&handle, mmap_event->event_id);
7807
7808         if (event->attr.mmap2) {
7809                 perf_output_put(&handle, mmap_event->maj);
7810                 perf_output_put(&handle, mmap_event->min);
7811                 perf_output_put(&handle, mmap_event->ino);
7812                 perf_output_put(&handle, mmap_event->ino_generation);
7813                 perf_output_put(&handle, mmap_event->prot);
7814                 perf_output_put(&handle, mmap_event->flags);
7815         }
7816
7817         __output_copy(&handle, mmap_event->file_name,
7818                                    mmap_event->file_size);
7819
7820         perf_event__output_id_sample(event, &handle, &sample);
7821
7822         perf_output_end(&handle);
7823 out:
7824         mmap_event->event_id.header.size = size;
7825         mmap_event->event_id.header.type = type;
7826 }
7827
7828 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7829 {
7830         struct vm_area_struct *vma = mmap_event->vma;
7831         struct file *file = vma->vm_file;
7832         int maj = 0, min = 0;
7833         u64 ino = 0, gen = 0;
7834         u32 prot = 0, flags = 0;
7835         unsigned int size;
7836         char tmp[16];
7837         char *buf = NULL;
7838         char *name;
7839
7840         if (vma->vm_flags & VM_READ)
7841                 prot |= PROT_READ;
7842         if (vma->vm_flags & VM_WRITE)
7843                 prot |= PROT_WRITE;
7844         if (vma->vm_flags & VM_EXEC)
7845                 prot |= PROT_EXEC;
7846
7847         if (vma->vm_flags & VM_MAYSHARE)
7848                 flags = MAP_SHARED;
7849         else
7850                 flags = MAP_PRIVATE;
7851
7852         if (vma->vm_flags & VM_DENYWRITE)
7853                 flags |= MAP_DENYWRITE;
7854         if (vma->vm_flags & VM_MAYEXEC)
7855                 flags |= MAP_EXECUTABLE;
7856         if (vma->vm_flags & VM_LOCKED)
7857                 flags |= MAP_LOCKED;
7858         if (vma->vm_flags & VM_HUGETLB)
7859                 flags |= MAP_HUGETLB;
7860
7861         if (file) {
7862                 struct inode *inode;
7863                 dev_t dev;
7864
7865                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7866                 if (!buf) {
7867                         name = "//enomem";
7868                         goto cpy_name;
7869                 }
7870                 /*
7871                  * d_path() works from the end of the rb backwards, so we
7872                  * need to add enough zero bytes after the string to handle
7873                  * the 64bit alignment we do later.
7874                  */
7875                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7876                 if (IS_ERR(name)) {
7877                         name = "//toolong";
7878                         goto cpy_name;
7879                 }
7880                 inode = file_inode(vma->vm_file);
7881                 dev = inode->i_sb->s_dev;
7882                 ino = inode->i_ino;
7883                 gen = inode->i_generation;
7884                 maj = MAJOR(dev);
7885                 min = MINOR(dev);
7886
7887                 goto got_name;
7888         } else {
7889                 if (vma->vm_ops && vma->vm_ops->name) {
7890                         name = (char *) vma->vm_ops->name(vma);
7891                         if (name)
7892                                 goto cpy_name;
7893                 }
7894
7895                 name = (char *)arch_vma_name(vma);
7896                 if (name)
7897                         goto cpy_name;
7898
7899                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7900                                 vma->vm_end >= vma->vm_mm->brk) {
7901                         name = "[heap]";
7902                         goto cpy_name;
7903                 }
7904                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7905                                 vma->vm_end >= vma->vm_mm->start_stack) {
7906                         name = "[stack]";
7907                         goto cpy_name;
7908                 }
7909
7910                 name = "//anon";
7911                 goto cpy_name;
7912         }
7913
7914 cpy_name:
7915         strlcpy(tmp, name, sizeof(tmp));
7916         name = tmp;
7917 got_name:
7918         /*
7919          * Since our buffer works in 8 byte units we need to align our string
7920          * size to a multiple of 8. However, we must guarantee the tail end is
7921          * zero'd out to avoid leaking random bits to userspace.
7922          */
7923         size = strlen(name)+1;
7924         while (!IS_ALIGNED(size, sizeof(u64)))
7925                 name[size++] = '\0';
7926
7927         mmap_event->file_name = name;
7928         mmap_event->file_size = size;
7929         mmap_event->maj = maj;
7930         mmap_event->min = min;
7931         mmap_event->ino = ino;
7932         mmap_event->ino_generation = gen;
7933         mmap_event->prot = prot;
7934         mmap_event->flags = flags;
7935
7936         if (!(vma->vm_flags & VM_EXEC))
7937                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7938
7939         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7940
7941         perf_iterate_sb(perf_event_mmap_output,
7942                        mmap_event,
7943                        NULL);
7944
7945         kfree(buf);
7946 }
7947
7948 /*
7949  * Check whether inode and address range match filter criteria.
7950  */
7951 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7952                                      struct file *file, unsigned long offset,
7953                                      unsigned long size)
7954 {
7955         /* d_inode(NULL) won't be equal to any mapped user-space file */
7956         if (!filter->path.dentry)
7957                 return false;
7958
7959         if (d_inode(filter->path.dentry) != file_inode(file))
7960                 return false;
7961
7962         if (filter->offset > offset + size)
7963                 return false;
7964
7965         if (filter->offset + filter->size < offset)
7966                 return false;
7967
7968         return true;
7969 }
7970
7971 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7972                                         struct vm_area_struct *vma,
7973                                         struct perf_addr_filter_range *fr)
7974 {
7975         unsigned long vma_size = vma->vm_end - vma->vm_start;
7976         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7977         struct file *file = vma->vm_file;
7978
7979         if (!perf_addr_filter_match(filter, file, off, vma_size))
7980                 return false;
7981
7982         if (filter->offset < off) {
7983                 fr->start = vma->vm_start;
7984                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7985         } else {
7986                 fr->start = vma->vm_start + filter->offset - off;
7987                 fr->size = min(vma->vm_end - fr->start, filter->size);
7988         }
7989
7990         return true;
7991 }
7992
7993 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7994 {
7995         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7996         struct vm_area_struct *vma = data;
7997         struct perf_addr_filter *filter;
7998         unsigned int restart = 0, count = 0;
7999         unsigned long flags;
8000
8001         if (!has_addr_filter(event))
8002                 return;
8003
8004         if (!vma->vm_file)
8005                 return;
8006
8007         raw_spin_lock_irqsave(&ifh->lock, flags);
8008         list_for_each_entry(filter, &ifh->list, entry) {
8009                 if (perf_addr_filter_vma_adjust(filter, vma,
8010                                                 &event->addr_filter_ranges[count]))
8011                         restart++;
8012
8013                 count++;
8014         }
8015
8016         if (restart)
8017                 event->addr_filters_gen++;
8018         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8019
8020         if (restart)
8021                 perf_event_stop(event, 1);
8022 }
8023
8024 /*
8025  * Adjust all task's events' filters to the new vma
8026  */
8027 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8028 {
8029         struct perf_event_context *ctx;
8030         int ctxn;
8031
8032         /*
8033          * Data tracing isn't supported yet and as such there is no need
8034          * to keep track of anything that isn't related to executable code:
8035          */
8036         if (!(vma->vm_flags & VM_EXEC))
8037                 return;
8038
8039         rcu_read_lock();
8040         for_each_task_context_nr(ctxn) {
8041                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8042                 if (!ctx)
8043                         continue;
8044
8045                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8046         }
8047         rcu_read_unlock();
8048 }
8049
8050 void perf_event_mmap(struct vm_area_struct *vma)
8051 {
8052         struct perf_mmap_event mmap_event;
8053
8054         if (!atomic_read(&nr_mmap_events))
8055                 return;
8056
8057         mmap_event = (struct perf_mmap_event){
8058                 .vma    = vma,
8059                 /* .file_name */
8060                 /* .file_size */
8061                 .event_id  = {
8062                         .header = {
8063                                 .type = PERF_RECORD_MMAP,
8064                                 .misc = PERF_RECORD_MISC_USER,
8065                                 /* .size */
8066                         },
8067                         /* .pid */
8068                         /* .tid */
8069                         .start  = vma->vm_start,
8070                         .len    = vma->vm_end - vma->vm_start,
8071                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8072                 },
8073                 /* .maj (attr_mmap2 only) */
8074                 /* .min (attr_mmap2 only) */
8075                 /* .ino (attr_mmap2 only) */
8076                 /* .ino_generation (attr_mmap2 only) */
8077                 /* .prot (attr_mmap2 only) */
8078                 /* .flags (attr_mmap2 only) */
8079         };
8080
8081         perf_addr_filters_adjust(vma);
8082         perf_event_mmap_event(&mmap_event);
8083 }
8084
8085 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8086                           unsigned long size, u64 flags)
8087 {
8088         struct perf_output_handle handle;
8089         struct perf_sample_data sample;
8090         struct perf_aux_event {
8091                 struct perf_event_header        header;
8092                 u64                             offset;
8093                 u64                             size;
8094                 u64                             flags;
8095         } rec = {
8096                 .header = {
8097                         .type = PERF_RECORD_AUX,
8098                         .misc = 0,
8099                         .size = sizeof(rec),
8100                 },
8101                 .offset         = head,
8102                 .size           = size,
8103                 .flags          = flags,
8104         };
8105         int ret;
8106
8107         perf_event_header__init_id(&rec.header, &sample, event);
8108         ret = perf_output_begin(&handle, event, rec.header.size);
8109
8110         if (ret)
8111                 return;
8112
8113         perf_output_put(&handle, rec);
8114         perf_event__output_id_sample(event, &handle, &sample);
8115
8116         perf_output_end(&handle);
8117 }
8118
8119 /*
8120  * Lost/dropped samples logging
8121  */
8122 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8123 {
8124         struct perf_output_handle handle;
8125         struct perf_sample_data sample;
8126         int ret;
8127
8128         struct {
8129                 struct perf_event_header        header;
8130                 u64                             lost;
8131         } lost_samples_event = {
8132                 .header = {
8133                         .type = PERF_RECORD_LOST_SAMPLES,
8134                         .misc = 0,
8135                         .size = sizeof(lost_samples_event),
8136                 },
8137                 .lost           = lost,
8138         };
8139
8140         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8141
8142         ret = perf_output_begin(&handle, event,
8143                                 lost_samples_event.header.size);
8144         if (ret)
8145                 return;
8146
8147         perf_output_put(&handle, lost_samples_event);
8148         perf_event__output_id_sample(event, &handle, &sample);
8149         perf_output_end(&handle);
8150 }
8151
8152 /*
8153  * context_switch tracking
8154  */
8155
8156 struct perf_switch_event {
8157         struct task_struct      *task;
8158         struct task_struct      *next_prev;
8159
8160         struct {
8161                 struct perf_event_header        header;
8162                 u32                             next_prev_pid;
8163                 u32                             next_prev_tid;
8164         } event_id;
8165 };
8166
8167 static int perf_event_switch_match(struct perf_event *event)
8168 {
8169         return event->attr.context_switch;
8170 }
8171
8172 static void perf_event_switch_output(struct perf_event *event, void *data)
8173 {
8174         struct perf_switch_event *se = data;
8175         struct perf_output_handle handle;
8176         struct perf_sample_data sample;
8177         int ret;
8178
8179         if (!perf_event_switch_match(event))
8180                 return;
8181
8182         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8183         if (event->ctx->task) {
8184                 se->event_id.header.type = PERF_RECORD_SWITCH;
8185                 se->event_id.header.size = sizeof(se->event_id.header);
8186         } else {
8187                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8188                 se->event_id.header.size = sizeof(se->event_id);
8189                 se->event_id.next_prev_pid =
8190                                         perf_event_pid(event, se->next_prev);
8191                 se->event_id.next_prev_tid =
8192                                         perf_event_tid(event, se->next_prev);
8193         }
8194
8195         perf_event_header__init_id(&se->event_id.header, &sample, event);
8196
8197         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8198         if (ret)
8199                 return;
8200
8201         if (event->ctx->task)
8202                 perf_output_put(&handle, se->event_id.header);
8203         else
8204                 perf_output_put(&handle, se->event_id);
8205
8206         perf_event__output_id_sample(event, &handle, &sample);
8207
8208         perf_output_end(&handle);
8209 }
8210
8211 static void perf_event_switch(struct task_struct *task,
8212                               struct task_struct *next_prev, bool sched_in)
8213 {
8214         struct perf_switch_event switch_event;
8215
8216         /* N.B. caller checks nr_switch_events != 0 */
8217
8218         switch_event = (struct perf_switch_event){
8219                 .task           = task,
8220                 .next_prev      = next_prev,
8221                 .event_id       = {
8222                         .header = {
8223                                 /* .type */
8224                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8225                                 /* .size */
8226                         },
8227                         /* .next_prev_pid */
8228                         /* .next_prev_tid */
8229                 },
8230         };
8231
8232         if (!sched_in && task->state == TASK_RUNNING)
8233                 switch_event.event_id.header.misc |=
8234                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8235
8236         perf_iterate_sb(perf_event_switch_output,
8237                        &switch_event,
8238                        NULL);
8239 }
8240
8241 /*
8242  * IRQ throttle logging
8243  */
8244
8245 static void perf_log_throttle(struct perf_event *event, int enable)
8246 {
8247         struct perf_output_handle handle;
8248         struct perf_sample_data sample;
8249         int ret;
8250
8251         struct {
8252                 struct perf_event_header        header;
8253                 u64                             time;
8254                 u64                             id;
8255                 u64                             stream_id;
8256         } throttle_event = {
8257                 .header = {
8258                         .type = PERF_RECORD_THROTTLE,
8259                         .misc = 0,
8260                         .size = sizeof(throttle_event),
8261                 },
8262                 .time           = perf_event_clock(event),
8263                 .id             = primary_event_id(event),
8264                 .stream_id      = event->id,
8265         };
8266
8267         if (enable)
8268                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8269
8270         perf_event_header__init_id(&throttle_event.header, &sample, event);
8271
8272         ret = perf_output_begin(&handle, event,
8273                                 throttle_event.header.size);
8274         if (ret)
8275                 return;
8276
8277         perf_output_put(&handle, throttle_event);
8278         perf_event__output_id_sample(event, &handle, &sample);
8279         perf_output_end(&handle);
8280 }
8281
8282 /*
8283  * ksymbol register/unregister tracking
8284  */
8285
8286 struct perf_ksymbol_event {
8287         const char      *name;
8288         int             name_len;
8289         struct {
8290                 struct perf_event_header        header;
8291                 u64                             addr;
8292                 u32                             len;
8293                 u16                             ksym_type;
8294                 u16                             flags;
8295         } event_id;
8296 };
8297
8298 static int perf_event_ksymbol_match(struct perf_event *event)
8299 {
8300         return event->attr.ksymbol;
8301 }
8302
8303 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8304 {
8305         struct perf_ksymbol_event *ksymbol_event = data;
8306         struct perf_output_handle handle;
8307         struct perf_sample_data sample;
8308         int ret;
8309
8310         if (!perf_event_ksymbol_match(event))
8311                 return;
8312
8313         perf_event_header__init_id(&ksymbol_event->event_id.header,
8314                                    &sample, event);
8315         ret = perf_output_begin(&handle, event,
8316                                 ksymbol_event->event_id.header.size);
8317         if (ret)
8318                 return;
8319
8320         perf_output_put(&handle, ksymbol_event->event_id);
8321         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8322         perf_event__output_id_sample(event, &handle, &sample);
8323
8324         perf_output_end(&handle);
8325 }
8326
8327 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8328                         const char *sym)
8329 {
8330         struct perf_ksymbol_event ksymbol_event;
8331         char name[KSYM_NAME_LEN];
8332         u16 flags = 0;
8333         int name_len;
8334
8335         if (!atomic_read(&nr_ksymbol_events))
8336                 return;
8337
8338         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8339             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8340                 goto err;
8341
8342         strlcpy(name, sym, KSYM_NAME_LEN);
8343         name_len = strlen(name) + 1;
8344         while (!IS_ALIGNED(name_len, sizeof(u64)))
8345                 name[name_len++] = '\0';
8346         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8347
8348         if (unregister)
8349                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8350
8351         ksymbol_event = (struct perf_ksymbol_event){
8352                 .name = name,
8353                 .name_len = name_len,
8354                 .event_id = {
8355                         .header = {
8356                                 .type = PERF_RECORD_KSYMBOL,
8357                                 .size = sizeof(ksymbol_event.event_id) +
8358                                         name_len,
8359                         },
8360                         .addr = addr,
8361                         .len = len,
8362                         .ksym_type = ksym_type,
8363                         .flags = flags,
8364                 },
8365         };
8366
8367         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8368         return;
8369 err:
8370         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8371 }
8372
8373 /*
8374  * bpf program load/unload tracking
8375  */
8376
8377 struct perf_bpf_event {
8378         struct bpf_prog *prog;
8379         struct {
8380                 struct perf_event_header        header;
8381                 u16                             type;
8382                 u16                             flags;
8383                 u32                             id;
8384                 u8                              tag[BPF_TAG_SIZE];
8385         } event_id;
8386 };
8387
8388 static int perf_event_bpf_match(struct perf_event *event)
8389 {
8390         return event->attr.bpf_event;
8391 }
8392
8393 static void perf_event_bpf_output(struct perf_event *event, void *data)
8394 {
8395         struct perf_bpf_event *bpf_event = data;
8396         struct perf_output_handle handle;
8397         struct perf_sample_data sample;
8398         int ret;
8399
8400         if (!perf_event_bpf_match(event))
8401                 return;
8402
8403         perf_event_header__init_id(&bpf_event->event_id.header,
8404                                    &sample, event);
8405         ret = perf_output_begin(&handle, event,
8406                                 bpf_event->event_id.header.size);
8407         if (ret)
8408                 return;
8409
8410         perf_output_put(&handle, bpf_event->event_id);
8411         perf_event__output_id_sample(event, &handle, &sample);
8412
8413         perf_output_end(&handle);
8414 }
8415
8416 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8417                                          enum perf_bpf_event_type type)
8418 {
8419         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8420         char sym[KSYM_NAME_LEN];
8421         int i;
8422
8423         if (prog->aux->func_cnt == 0) {
8424                 bpf_get_prog_name(prog, sym);
8425                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8426                                    (u64)(unsigned long)prog->bpf_func,
8427                                    prog->jited_len, unregister, sym);
8428         } else {
8429                 for (i = 0; i < prog->aux->func_cnt; i++) {
8430                         struct bpf_prog *subprog = prog->aux->func[i];
8431
8432                         bpf_get_prog_name(subprog, sym);
8433                         perf_event_ksymbol(
8434                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8435                                 (u64)(unsigned long)subprog->bpf_func,
8436                                 subprog->jited_len, unregister, sym);
8437                 }
8438         }
8439 }
8440
8441 void perf_event_bpf_event(struct bpf_prog *prog,
8442                           enum perf_bpf_event_type type,
8443                           u16 flags)
8444 {
8445         struct perf_bpf_event bpf_event;
8446
8447         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8448             type >= PERF_BPF_EVENT_MAX)
8449                 return;
8450
8451         switch (type) {
8452         case PERF_BPF_EVENT_PROG_LOAD:
8453         case PERF_BPF_EVENT_PROG_UNLOAD:
8454                 if (atomic_read(&nr_ksymbol_events))
8455                         perf_event_bpf_emit_ksymbols(prog, type);
8456                 break;
8457         default:
8458                 break;
8459         }
8460
8461         if (!atomic_read(&nr_bpf_events))
8462                 return;
8463
8464         bpf_event = (struct perf_bpf_event){
8465                 .prog = prog,
8466                 .event_id = {
8467                         .header = {
8468                                 .type = PERF_RECORD_BPF_EVENT,
8469                                 .size = sizeof(bpf_event.event_id),
8470                         },
8471                         .type = type,
8472                         .flags = flags,
8473                         .id = prog->aux->id,
8474                 },
8475         };
8476
8477         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8478
8479         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8480         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8481 }
8482
8483 void perf_event_itrace_started(struct perf_event *event)
8484 {
8485         event->attach_state |= PERF_ATTACH_ITRACE;
8486 }
8487
8488 static void perf_log_itrace_start(struct perf_event *event)
8489 {
8490         struct perf_output_handle handle;
8491         struct perf_sample_data sample;
8492         struct perf_aux_event {
8493                 struct perf_event_header        header;
8494                 u32                             pid;
8495                 u32                             tid;
8496         } rec;
8497         int ret;
8498
8499         if (event->parent)
8500                 event = event->parent;
8501
8502         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8503             event->attach_state & PERF_ATTACH_ITRACE)
8504                 return;
8505
8506         rec.header.type = PERF_RECORD_ITRACE_START;
8507         rec.header.misc = 0;
8508         rec.header.size = sizeof(rec);
8509         rec.pid = perf_event_pid(event, current);
8510         rec.tid = perf_event_tid(event, current);
8511
8512         perf_event_header__init_id(&rec.header, &sample, event);
8513         ret = perf_output_begin(&handle, event, rec.header.size);
8514
8515         if (ret)
8516                 return;
8517
8518         perf_output_put(&handle, rec);
8519         perf_event__output_id_sample(event, &handle, &sample);
8520
8521         perf_output_end(&handle);
8522 }
8523
8524 static int
8525 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8526 {
8527         struct hw_perf_event *hwc = &event->hw;
8528         int ret = 0;
8529         u64 seq;
8530
8531         seq = __this_cpu_read(perf_throttled_seq);
8532         if (seq != hwc->interrupts_seq) {
8533                 hwc->interrupts_seq = seq;
8534                 hwc->interrupts = 1;
8535         } else {
8536                 hwc->interrupts++;
8537                 if (unlikely(throttle
8538                              && hwc->interrupts >= max_samples_per_tick)) {
8539                         __this_cpu_inc(perf_throttled_count);
8540                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8541                         hwc->interrupts = MAX_INTERRUPTS;
8542                         perf_log_throttle(event, 0);
8543                         ret = 1;
8544                 }
8545         }
8546
8547         if (event->attr.freq) {
8548                 u64 now = perf_clock();
8549                 s64 delta = now - hwc->freq_time_stamp;
8550
8551                 hwc->freq_time_stamp = now;
8552
8553                 if (delta > 0 && delta < 2*TICK_NSEC)
8554                         perf_adjust_period(event, delta, hwc->last_period, true);
8555         }
8556
8557         return ret;
8558 }
8559
8560 int perf_event_account_interrupt(struct perf_event *event)
8561 {
8562         return __perf_event_account_interrupt(event, 1);
8563 }
8564
8565 /*
8566  * Generic event overflow handling, sampling.
8567  */
8568
8569 static int __perf_event_overflow(struct perf_event *event,
8570                                    int throttle, struct perf_sample_data *data,
8571                                    struct pt_regs *regs)
8572 {
8573         int events = atomic_read(&event->event_limit);
8574         int ret = 0;
8575
8576         /*
8577          * Non-sampling counters might still use the PMI to fold short
8578          * hardware counters, ignore those.
8579          */
8580         if (unlikely(!is_sampling_event(event)))
8581                 return 0;
8582
8583         ret = __perf_event_account_interrupt(event, throttle);
8584
8585         /*
8586          * XXX event_limit might not quite work as expected on inherited
8587          * events
8588          */
8589
8590         event->pending_kill = POLL_IN;
8591         if (events && atomic_dec_and_test(&event->event_limit)) {
8592                 ret = 1;
8593                 event->pending_kill = POLL_HUP;
8594
8595                 perf_event_disable_inatomic(event);
8596         }
8597
8598         READ_ONCE(event->overflow_handler)(event, data, regs);
8599
8600         if (*perf_event_fasync(event) && event->pending_kill) {
8601                 event->pending_wakeup = 1;
8602                 irq_work_queue(&event->pending);
8603         }
8604
8605         return ret;
8606 }
8607
8608 int perf_event_overflow(struct perf_event *event,
8609                           struct perf_sample_data *data,
8610                           struct pt_regs *regs)
8611 {
8612         return __perf_event_overflow(event, 1, data, regs);
8613 }
8614
8615 /*
8616  * Generic software event infrastructure
8617  */
8618
8619 struct swevent_htable {
8620         struct swevent_hlist            *swevent_hlist;
8621         struct mutex                    hlist_mutex;
8622         int                             hlist_refcount;
8623
8624         /* Recursion avoidance in each contexts */
8625         int                             recursion[PERF_NR_CONTEXTS];
8626 };
8627
8628 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8629
8630 /*
8631  * We directly increment event->count and keep a second value in
8632  * event->hw.period_left to count intervals. This period event
8633  * is kept in the range [-sample_period, 0] so that we can use the
8634  * sign as trigger.
8635  */
8636
8637 u64 perf_swevent_set_period(struct perf_event *event)
8638 {
8639         struct hw_perf_event *hwc = &event->hw;
8640         u64 period = hwc->last_period;
8641         u64 nr, offset;
8642         s64 old, val;
8643
8644         hwc->last_period = hwc->sample_period;
8645
8646 again:
8647         old = val = local64_read(&hwc->period_left);
8648         if (val < 0)
8649                 return 0;
8650
8651         nr = div64_u64(period + val, period);
8652         offset = nr * period;
8653         val -= offset;
8654         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8655                 goto again;
8656
8657         return nr;
8658 }
8659
8660 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8661                                     struct perf_sample_data *data,
8662                                     struct pt_regs *regs)
8663 {
8664         struct hw_perf_event *hwc = &event->hw;
8665         int throttle = 0;
8666
8667         if (!overflow)
8668                 overflow = perf_swevent_set_period(event);
8669
8670         if (hwc->interrupts == MAX_INTERRUPTS)
8671                 return;
8672
8673         for (; overflow; overflow--) {
8674                 if (__perf_event_overflow(event, throttle,
8675                                             data, regs)) {
8676                         /*
8677                          * We inhibit the overflow from happening when
8678                          * hwc->interrupts == MAX_INTERRUPTS.
8679                          */
8680                         break;
8681                 }
8682                 throttle = 1;
8683         }
8684 }
8685
8686 static void perf_swevent_event(struct perf_event *event, u64 nr,
8687                                struct perf_sample_data *data,
8688                                struct pt_regs *regs)
8689 {
8690         struct hw_perf_event *hwc = &event->hw;
8691
8692         local64_add(nr, &event->count);
8693
8694         if (!regs)
8695                 return;
8696
8697         if (!is_sampling_event(event))
8698                 return;
8699
8700         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8701                 data->period = nr;
8702                 return perf_swevent_overflow(event, 1, data, regs);
8703         } else
8704                 data->period = event->hw.last_period;
8705
8706         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8707                 return perf_swevent_overflow(event, 1, data, regs);
8708
8709         if (local64_add_negative(nr, &hwc->period_left))
8710                 return;
8711
8712         perf_swevent_overflow(event, 0, data, regs);
8713 }
8714
8715 static int perf_exclude_event(struct perf_event *event,
8716                               struct pt_regs *regs)
8717 {
8718         if (event->hw.state & PERF_HES_STOPPED)
8719                 return 1;
8720
8721         if (regs) {
8722                 if (event->attr.exclude_user && user_mode(regs))
8723                         return 1;
8724
8725                 if (event->attr.exclude_kernel && !user_mode(regs))
8726                         return 1;
8727         }
8728
8729         return 0;
8730 }
8731
8732 static int perf_swevent_match(struct perf_event *event,
8733                                 enum perf_type_id type,
8734                                 u32 event_id,
8735                                 struct perf_sample_data *data,
8736                                 struct pt_regs *regs)
8737 {
8738         if (event->attr.type != type)
8739                 return 0;
8740
8741         if (event->attr.config != event_id)
8742                 return 0;
8743
8744         if (perf_exclude_event(event, regs))
8745                 return 0;
8746
8747         return 1;
8748 }
8749
8750 static inline u64 swevent_hash(u64 type, u32 event_id)
8751 {
8752         u64 val = event_id | (type << 32);
8753
8754         return hash_64(val, SWEVENT_HLIST_BITS);
8755 }
8756
8757 static inline struct hlist_head *
8758 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8759 {
8760         u64 hash = swevent_hash(type, event_id);
8761
8762         return &hlist->heads[hash];
8763 }
8764
8765 /* For the read side: events when they trigger */
8766 static inline struct hlist_head *
8767 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8768 {
8769         struct swevent_hlist *hlist;
8770
8771         hlist = rcu_dereference(swhash->swevent_hlist);
8772         if (!hlist)
8773                 return NULL;
8774
8775         return __find_swevent_head(hlist, type, event_id);
8776 }
8777
8778 /* For the event head insertion and removal in the hlist */
8779 static inline struct hlist_head *
8780 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8781 {
8782         struct swevent_hlist *hlist;
8783         u32 event_id = event->attr.config;
8784         u64 type = event->attr.type;
8785
8786         /*
8787          * Event scheduling is always serialized against hlist allocation
8788          * and release. Which makes the protected version suitable here.
8789          * The context lock guarantees that.
8790          */
8791         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8792                                           lockdep_is_held(&event->ctx->lock));
8793         if (!hlist)
8794                 return NULL;
8795
8796         return __find_swevent_head(hlist, type, event_id);
8797 }
8798
8799 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8800                                     u64 nr,
8801                                     struct perf_sample_data *data,
8802                                     struct pt_regs *regs)
8803 {
8804         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8805         struct perf_event *event;
8806         struct hlist_head *head;
8807
8808         rcu_read_lock();
8809         head = find_swevent_head_rcu(swhash, type, event_id);
8810         if (!head)
8811                 goto end;
8812
8813         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8814                 if (perf_swevent_match(event, type, event_id, data, regs))
8815                         perf_swevent_event(event, nr, data, regs);
8816         }
8817 end:
8818         rcu_read_unlock();
8819 }
8820
8821 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8822
8823 int perf_swevent_get_recursion_context(void)
8824 {
8825         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8826
8827         return get_recursion_context(swhash->recursion);
8828 }
8829 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8830
8831 void perf_swevent_put_recursion_context(int rctx)
8832 {
8833         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8834
8835         put_recursion_context(swhash->recursion, rctx);
8836 }
8837
8838 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8839 {
8840         struct perf_sample_data data;
8841
8842         if (WARN_ON_ONCE(!regs))
8843                 return;
8844
8845         perf_sample_data_init(&data, addr, 0);
8846         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8847 }
8848
8849 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8850 {
8851         int rctx;
8852
8853         preempt_disable_notrace();
8854         rctx = perf_swevent_get_recursion_context();
8855         if (unlikely(rctx < 0))
8856                 goto fail;
8857
8858         ___perf_sw_event(event_id, nr, regs, addr);
8859
8860         perf_swevent_put_recursion_context(rctx);
8861 fail:
8862         preempt_enable_notrace();
8863 }
8864
8865 static void perf_swevent_read(struct perf_event *event)
8866 {
8867 }
8868
8869 static int perf_swevent_add(struct perf_event *event, int flags)
8870 {
8871         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8872         struct hw_perf_event *hwc = &event->hw;
8873         struct hlist_head *head;
8874
8875         if (is_sampling_event(event)) {
8876                 hwc->last_period = hwc->sample_period;
8877                 perf_swevent_set_period(event);
8878         }
8879
8880         hwc->state = !(flags & PERF_EF_START);
8881
8882         head = find_swevent_head(swhash, event);
8883         if (WARN_ON_ONCE(!head))
8884                 return -EINVAL;
8885
8886         hlist_add_head_rcu(&event->hlist_entry, head);
8887         perf_event_update_userpage(event);
8888
8889         return 0;
8890 }
8891
8892 static void perf_swevent_del(struct perf_event *event, int flags)
8893 {
8894         hlist_del_rcu(&event->hlist_entry);
8895 }
8896
8897 static void perf_swevent_start(struct perf_event *event, int flags)
8898 {
8899         event->hw.state = 0;
8900 }
8901
8902 static void perf_swevent_stop(struct perf_event *event, int flags)
8903 {
8904         event->hw.state = PERF_HES_STOPPED;
8905 }
8906
8907 /* Deref the hlist from the update side */
8908 static inline struct swevent_hlist *
8909 swevent_hlist_deref(struct swevent_htable *swhash)
8910 {
8911         return rcu_dereference_protected(swhash->swevent_hlist,
8912                                          lockdep_is_held(&swhash->hlist_mutex));
8913 }
8914
8915 static void swevent_hlist_release(struct swevent_htable *swhash)
8916 {
8917         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8918
8919         if (!hlist)
8920                 return;
8921
8922         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8923         kfree_rcu(hlist, rcu_head);
8924 }
8925
8926 static void swevent_hlist_put_cpu(int cpu)
8927 {
8928         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8929
8930         mutex_lock(&swhash->hlist_mutex);
8931
8932         if (!--swhash->hlist_refcount)
8933                 swevent_hlist_release(swhash);
8934
8935         mutex_unlock(&swhash->hlist_mutex);
8936 }
8937
8938 static void swevent_hlist_put(void)
8939 {
8940         int cpu;
8941
8942         for_each_possible_cpu(cpu)
8943                 swevent_hlist_put_cpu(cpu);
8944 }
8945
8946 static int swevent_hlist_get_cpu(int cpu)
8947 {
8948         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8949         int err = 0;
8950
8951         mutex_lock(&swhash->hlist_mutex);
8952         if (!swevent_hlist_deref(swhash) &&
8953             cpumask_test_cpu(cpu, perf_online_mask)) {
8954                 struct swevent_hlist *hlist;
8955
8956                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8957                 if (!hlist) {
8958                         err = -ENOMEM;
8959                         goto exit;
8960                 }
8961                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8962         }
8963         swhash->hlist_refcount++;
8964 exit:
8965         mutex_unlock(&swhash->hlist_mutex);
8966
8967         return err;
8968 }
8969
8970 static int swevent_hlist_get(void)
8971 {
8972         int err, cpu, failed_cpu;
8973
8974         mutex_lock(&pmus_lock);
8975         for_each_possible_cpu(cpu) {
8976                 err = swevent_hlist_get_cpu(cpu);
8977                 if (err) {
8978                         failed_cpu = cpu;
8979                         goto fail;
8980                 }
8981         }
8982         mutex_unlock(&pmus_lock);
8983         return 0;
8984 fail:
8985         for_each_possible_cpu(cpu) {
8986                 if (cpu == failed_cpu)
8987                         break;
8988                 swevent_hlist_put_cpu(cpu);
8989         }
8990         mutex_unlock(&pmus_lock);
8991         return err;
8992 }
8993
8994 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8995
8996 static void sw_perf_event_destroy(struct perf_event *event)
8997 {
8998         u64 event_id = event->attr.config;
8999
9000         WARN_ON(event->parent);
9001
9002         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9003         swevent_hlist_put();
9004 }
9005
9006 static int perf_swevent_init(struct perf_event *event)
9007 {
9008         u64 event_id = event->attr.config;
9009
9010         if (event->attr.type != PERF_TYPE_SOFTWARE)
9011                 return -ENOENT;
9012
9013         /*
9014          * no branch sampling for software events
9015          */
9016         if (has_branch_stack(event))
9017                 return -EOPNOTSUPP;
9018
9019         switch (event_id) {
9020         case PERF_COUNT_SW_CPU_CLOCK:
9021         case PERF_COUNT_SW_TASK_CLOCK:
9022                 return -ENOENT;
9023
9024         default:
9025                 break;
9026         }
9027
9028         if (event_id >= PERF_COUNT_SW_MAX)
9029                 return -ENOENT;
9030
9031         if (!event->parent) {
9032                 int err;
9033
9034                 err = swevent_hlist_get();
9035                 if (err)
9036                         return err;
9037
9038                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9039                 event->destroy = sw_perf_event_destroy;
9040         }
9041
9042         return 0;
9043 }
9044
9045 static struct pmu perf_swevent = {
9046         .task_ctx_nr    = perf_sw_context,
9047
9048         .capabilities   = PERF_PMU_CAP_NO_NMI,
9049
9050         .event_init     = perf_swevent_init,
9051         .add            = perf_swevent_add,
9052         .del            = perf_swevent_del,
9053         .start          = perf_swevent_start,
9054         .stop           = perf_swevent_stop,
9055         .read           = perf_swevent_read,
9056 };
9057
9058 #ifdef CONFIG_EVENT_TRACING
9059
9060 static int perf_tp_filter_match(struct perf_event *event,
9061                                 struct perf_sample_data *data)
9062 {
9063         void *record = data->raw->frag.data;
9064
9065         /* only top level events have filters set */
9066         if (event->parent)
9067                 event = event->parent;
9068
9069         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9070                 return 1;
9071         return 0;
9072 }
9073
9074 static int perf_tp_event_match(struct perf_event *event,
9075                                 struct perf_sample_data *data,
9076                                 struct pt_regs *regs)
9077 {
9078         if (event->hw.state & PERF_HES_STOPPED)
9079                 return 0;
9080         /*
9081          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9082          */
9083         if (event->attr.exclude_kernel && !user_mode(regs))
9084                 return 0;
9085
9086         if (!perf_tp_filter_match(event, data))
9087                 return 0;
9088
9089         return 1;
9090 }
9091
9092 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9093                                struct trace_event_call *call, u64 count,
9094                                struct pt_regs *regs, struct hlist_head *head,
9095                                struct task_struct *task)
9096 {
9097         if (bpf_prog_array_valid(call)) {
9098                 *(struct pt_regs **)raw_data = regs;
9099                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9100                         perf_swevent_put_recursion_context(rctx);
9101                         return;
9102                 }
9103         }
9104         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9105                       rctx, task);
9106 }
9107 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9108
9109 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9110                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9111                    struct task_struct *task)
9112 {
9113         struct perf_sample_data data;
9114         struct perf_event *event;
9115
9116         struct perf_raw_record raw = {
9117                 .frag = {
9118                         .size = entry_size,
9119                         .data = record,
9120                 },
9121         };
9122
9123         perf_sample_data_init(&data, 0, 0);
9124         data.raw = &raw;
9125
9126         perf_trace_buf_update(record, event_type);
9127
9128         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9129                 if (perf_tp_event_match(event, &data, regs))
9130                         perf_swevent_event(event, count, &data, regs);
9131         }
9132
9133         /*
9134          * If we got specified a target task, also iterate its context and
9135          * deliver this event there too.
9136          */
9137         if (task && task != current) {
9138                 struct perf_event_context *ctx;
9139                 struct trace_entry *entry = record;
9140
9141                 rcu_read_lock();
9142                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9143                 if (!ctx)
9144                         goto unlock;
9145
9146                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9147                         if (event->cpu != smp_processor_id())
9148                                 continue;
9149                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9150                                 continue;
9151                         if (event->attr.config != entry->type)
9152                                 continue;
9153                         if (perf_tp_event_match(event, &data, regs))
9154                                 perf_swevent_event(event, count, &data, regs);
9155                 }
9156 unlock:
9157                 rcu_read_unlock();
9158         }
9159
9160         perf_swevent_put_recursion_context(rctx);
9161 }
9162 EXPORT_SYMBOL_GPL(perf_tp_event);
9163
9164 static void tp_perf_event_destroy(struct perf_event *event)
9165 {
9166         perf_trace_destroy(event);
9167 }
9168
9169 static int perf_tp_event_init(struct perf_event *event)
9170 {
9171         int err;
9172
9173         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9174                 return -ENOENT;
9175
9176         /*
9177          * no branch sampling for tracepoint events
9178          */
9179         if (has_branch_stack(event))
9180                 return -EOPNOTSUPP;
9181
9182         err = perf_trace_init(event);
9183         if (err)
9184                 return err;
9185
9186         event->destroy = tp_perf_event_destroy;
9187
9188         return 0;
9189 }
9190
9191 static struct pmu perf_tracepoint = {
9192         .task_ctx_nr    = perf_sw_context,
9193
9194         .event_init     = perf_tp_event_init,
9195         .add            = perf_trace_add,
9196         .del            = perf_trace_del,
9197         .start          = perf_swevent_start,
9198         .stop           = perf_swevent_stop,
9199         .read           = perf_swevent_read,
9200 };
9201
9202 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9203 /*
9204  * Flags in config, used by dynamic PMU kprobe and uprobe
9205  * The flags should match following PMU_FORMAT_ATTR().
9206  *
9207  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9208  *                               if not set, create kprobe/uprobe
9209  *
9210  * The following values specify a reference counter (or semaphore in the
9211  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9212  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9213  *
9214  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9215  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9216  */
9217 enum perf_probe_config {
9218         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9219         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9220         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9221 };
9222
9223 PMU_FORMAT_ATTR(retprobe, "config:0");
9224 #endif
9225
9226 #ifdef CONFIG_KPROBE_EVENTS
9227 static struct attribute *kprobe_attrs[] = {
9228         &format_attr_retprobe.attr,
9229         NULL,
9230 };
9231
9232 static struct attribute_group kprobe_format_group = {
9233         .name = "format",
9234         .attrs = kprobe_attrs,
9235 };
9236
9237 static const struct attribute_group *kprobe_attr_groups[] = {
9238         &kprobe_format_group,
9239         NULL,
9240 };
9241
9242 static int perf_kprobe_event_init(struct perf_event *event);
9243 static struct pmu perf_kprobe = {
9244         .task_ctx_nr    = perf_sw_context,
9245         .event_init     = perf_kprobe_event_init,
9246         .add            = perf_trace_add,
9247         .del            = perf_trace_del,
9248         .start          = perf_swevent_start,
9249         .stop           = perf_swevent_stop,
9250         .read           = perf_swevent_read,
9251         .attr_groups    = kprobe_attr_groups,
9252 };
9253
9254 static int perf_kprobe_event_init(struct perf_event *event)
9255 {
9256         int err;
9257         bool is_retprobe;
9258
9259         if (event->attr.type != perf_kprobe.type)
9260                 return -ENOENT;
9261
9262         if (!capable(CAP_SYS_ADMIN))
9263                 return -EACCES;
9264
9265         /*
9266          * no branch sampling for probe events
9267          */
9268         if (has_branch_stack(event))
9269                 return -EOPNOTSUPP;
9270
9271         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9272         err = perf_kprobe_init(event, is_retprobe);
9273         if (err)
9274                 return err;
9275
9276         event->destroy = perf_kprobe_destroy;
9277
9278         return 0;
9279 }
9280 #endif /* CONFIG_KPROBE_EVENTS */
9281
9282 #ifdef CONFIG_UPROBE_EVENTS
9283 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9284
9285 static struct attribute *uprobe_attrs[] = {
9286         &format_attr_retprobe.attr,
9287         &format_attr_ref_ctr_offset.attr,
9288         NULL,
9289 };
9290
9291 static struct attribute_group uprobe_format_group = {
9292         .name = "format",
9293         .attrs = uprobe_attrs,
9294 };
9295
9296 static const struct attribute_group *uprobe_attr_groups[] = {
9297         &uprobe_format_group,
9298         NULL,
9299 };
9300
9301 static int perf_uprobe_event_init(struct perf_event *event);
9302 static struct pmu perf_uprobe = {
9303         .task_ctx_nr    = perf_sw_context,
9304         .event_init     = perf_uprobe_event_init,
9305         .add            = perf_trace_add,
9306         .del            = perf_trace_del,
9307         .start          = perf_swevent_start,
9308         .stop           = perf_swevent_stop,
9309         .read           = perf_swevent_read,
9310         .attr_groups    = uprobe_attr_groups,
9311 };
9312
9313 static int perf_uprobe_event_init(struct perf_event *event)
9314 {
9315         int err;
9316         unsigned long ref_ctr_offset;
9317         bool is_retprobe;
9318
9319         if (event->attr.type != perf_uprobe.type)
9320                 return -ENOENT;
9321
9322         if (!capable(CAP_SYS_ADMIN))
9323                 return -EACCES;
9324
9325         /*
9326          * no branch sampling for probe events
9327          */
9328         if (has_branch_stack(event))
9329                 return -EOPNOTSUPP;
9330
9331         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9332         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9333         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9334         if (err)
9335                 return err;
9336
9337         event->destroy = perf_uprobe_destroy;
9338
9339         return 0;
9340 }
9341 #endif /* CONFIG_UPROBE_EVENTS */
9342
9343 static inline void perf_tp_register(void)
9344 {
9345         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9346 #ifdef CONFIG_KPROBE_EVENTS
9347         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9348 #endif
9349 #ifdef CONFIG_UPROBE_EVENTS
9350         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9351 #endif
9352 }
9353
9354 static void perf_event_free_filter(struct perf_event *event)
9355 {
9356         ftrace_profile_free_filter(event);
9357 }
9358
9359 #ifdef CONFIG_BPF_SYSCALL
9360 static void bpf_overflow_handler(struct perf_event *event,
9361                                  struct perf_sample_data *data,
9362                                  struct pt_regs *regs)
9363 {
9364         struct bpf_perf_event_data_kern ctx = {
9365                 .data = data,
9366                 .event = event,
9367         };
9368         int ret = 0;
9369
9370         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9371         preempt_disable();
9372         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9373                 goto out;
9374         rcu_read_lock();
9375         ret = BPF_PROG_RUN(event->prog, &ctx);
9376         rcu_read_unlock();
9377 out:
9378         __this_cpu_dec(bpf_prog_active);
9379         preempt_enable();
9380         if (!ret)
9381                 return;
9382
9383         event->orig_overflow_handler(event, data, regs);
9384 }
9385
9386 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9387 {
9388         struct bpf_prog *prog;
9389
9390         if (event->overflow_handler_context)
9391                 /* hw breakpoint or kernel counter */
9392                 return -EINVAL;
9393
9394         if (event->prog)
9395                 return -EEXIST;
9396
9397         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9398         if (IS_ERR(prog))
9399                 return PTR_ERR(prog);
9400
9401         event->prog = prog;
9402         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9403         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9404         return 0;
9405 }
9406
9407 static void perf_event_free_bpf_handler(struct perf_event *event)
9408 {
9409         struct bpf_prog *prog = event->prog;
9410
9411         if (!prog)
9412                 return;
9413
9414         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9415         event->prog = NULL;
9416         bpf_prog_put(prog);
9417 }
9418 #else
9419 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9420 {
9421         return -EOPNOTSUPP;
9422 }
9423 static void perf_event_free_bpf_handler(struct perf_event *event)
9424 {
9425 }
9426 #endif
9427
9428 /*
9429  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9430  * with perf_event_open()
9431  */
9432 static inline bool perf_event_is_tracing(struct perf_event *event)
9433 {
9434         if (event->pmu == &perf_tracepoint)
9435                 return true;
9436 #ifdef CONFIG_KPROBE_EVENTS
9437         if (event->pmu == &perf_kprobe)
9438                 return true;
9439 #endif
9440 #ifdef CONFIG_UPROBE_EVENTS
9441         if (event->pmu == &perf_uprobe)
9442                 return true;
9443 #endif
9444         return false;
9445 }
9446
9447 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9448 {
9449         bool is_kprobe, is_tracepoint, is_syscall_tp;
9450         struct bpf_prog *prog;
9451         int ret;
9452
9453         if (!perf_event_is_tracing(event))
9454                 return perf_event_set_bpf_handler(event, prog_fd);
9455
9456         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9457         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9458         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9459         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9460                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9461                 return -EINVAL;
9462
9463         prog = bpf_prog_get(prog_fd);
9464         if (IS_ERR(prog))
9465                 return PTR_ERR(prog);
9466
9467         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9468             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9469             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9470                 /* valid fd, but invalid bpf program type */
9471                 bpf_prog_put(prog);
9472                 return -EINVAL;
9473         }
9474
9475         /* Kprobe override only works for kprobes, not uprobes. */
9476         if (prog->kprobe_override &&
9477             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9478                 bpf_prog_put(prog);
9479                 return -EINVAL;
9480         }
9481
9482         if (is_tracepoint || is_syscall_tp) {
9483                 int off = trace_event_get_offsets(event->tp_event);
9484
9485                 if (prog->aux->max_ctx_offset > off) {
9486                         bpf_prog_put(prog);
9487                         return -EACCES;
9488                 }
9489         }
9490
9491         ret = perf_event_attach_bpf_prog(event, prog);
9492         if (ret)
9493                 bpf_prog_put(prog);
9494         return ret;
9495 }
9496
9497 static void perf_event_free_bpf_prog(struct perf_event *event)
9498 {
9499         if (!perf_event_is_tracing(event)) {
9500                 perf_event_free_bpf_handler(event);
9501                 return;
9502         }
9503         perf_event_detach_bpf_prog(event);
9504 }
9505
9506 #else
9507
9508 static inline void perf_tp_register(void)
9509 {
9510 }
9511
9512 static void perf_event_free_filter(struct perf_event *event)
9513 {
9514 }
9515
9516 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9517 {
9518         return -ENOENT;
9519 }
9520
9521 static void perf_event_free_bpf_prog(struct perf_event *event)
9522 {
9523 }
9524 #endif /* CONFIG_EVENT_TRACING */
9525
9526 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9527 void perf_bp_event(struct perf_event *bp, void *data)
9528 {
9529         struct perf_sample_data sample;
9530         struct pt_regs *regs = data;
9531
9532         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9533
9534         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9535                 perf_swevent_event(bp, 1, &sample, regs);
9536 }
9537 #endif
9538
9539 /*
9540  * Allocate a new address filter
9541  */
9542 static struct perf_addr_filter *
9543 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9544 {
9545         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9546         struct perf_addr_filter *filter;
9547
9548         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9549         if (!filter)
9550                 return NULL;
9551
9552         INIT_LIST_HEAD(&filter->entry);
9553         list_add_tail(&filter->entry, filters);
9554
9555         return filter;
9556 }
9557
9558 static void free_filters_list(struct list_head *filters)
9559 {
9560         struct perf_addr_filter *filter, *iter;
9561
9562         list_for_each_entry_safe(filter, iter, filters, entry) {
9563                 path_put(&filter->path);
9564                 list_del(&filter->entry);
9565                 kfree(filter);
9566         }
9567 }
9568
9569 /*
9570  * Free existing address filters and optionally install new ones
9571  */
9572 static void perf_addr_filters_splice(struct perf_event *event,
9573                                      struct list_head *head)
9574 {
9575         unsigned long flags;
9576         LIST_HEAD(list);
9577
9578         if (!has_addr_filter(event))
9579                 return;
9580
9581         /* don't bother with children, they don't have their own filters */
9582         if (event->parent)
9583                 return;
9584
9585         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9586
9587         list_splice_init(&event->addr_filters.list, &list);
9588         if (head)
9589                 list_splice(head, &event->addr_filters.list);
9590
9591         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9592
9593         free_filters_list(&list);
9594 }
9595
9596 /*
9597  * Scan through mm's vmas and see if one of them matches the
9598  * @filter; if so, adjust filter's address range.
9599  * Called with mm::mmap_sem down for reading.
9600  */
9601 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9602                                    struct mm_struct *mm,
9603                                    struct perf_addr_filter_range *fr)
9604 {
9605         struct vm_area_struct *vma;
9606
9607         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9608                 if (!vma->vm_file)
9609                         continue;
9610
9611                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9612                         return;
9613         }
9614 }
9615
9616 /*
9617  * Update event's address range filters based on the
9618  * task's existing mappings, if any.
9619  */
9620 static void perf_event_addr_filters_apply(struct perf_event *event)
9621 {
9622         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9623         struct task_struct *task = READ_ONCE(event->ctx->task);
9624         struct perf_addr_filter *filter;
9625         struct mm_struct *mm = NULL;
9626         unsigned int count = 0;
9627         unsigned long flags;
9628
9629         /*
9630          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9631          * will stop on the parent's child_mutex that our caller is also holding
9632          */
9633         if (task == TASK_TOMBSTONE)
9634                 return;
9635
9636         if (ifh->nr_file_filters) {
9637                 mm = get_task_mm(event->ctx->task);
9638                 if (!mm)
9639                         goto restart;
9640
9641                 down_read(&mm->mmap_sem);
9642         }
9643
9644         raw_spin_lock_irqsave(&ifh->lock, flags);
9645         list_for_each_entry(filter, &ifh->list, entry) {
9646                 if (filter->path.dentry) {
9647                         /*
9648                          * Adjust base offset if the filter is associated to a
9649                          * binary that needs to be mapped:
9650                          */
9651                         event->addr_filter_ranges[count].start = 0;
9652                         event->addr_filter_ranges[count].size = 0;
9653
9654                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9655                 } else {
9656                         event->addr_filter_ranges[count].start = filter->offset;
9657                         event->addr_filter_ranges[count].size  = filter->size;
9658                 }
9659
9660                 count++;
9661         }
9662
9663         event->addr_filters_gen++;
9664         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9665
9666         if (ifh->nr_file_filters) {
9667                 up_read(&mm->mmap_sem);
9668
9669                 mmput(mm);
9670         }
9671
9672 restart:
9673         perf_event_stop(event, 1);
9674 }
9675
9676 /*
9677  * Address range filtering: limiting the data to certain
9678  * instruction address ranges. Filters are ioctl()ed to us from
9679  * userspace as ascii strings.
9680  *
9681  * Filter string format:
9682  *
9683  * ACTION RANGE_SPEC
9684  * where ACTION is one of the
9685  *  * "filter": limit the trace to this region
9686  *  * "start": start tracing from this address
9687  *  * "stop": stop tracing at this address/region;
9688  * RANGE_SPEC is
9689  *  * for kernel addresses: <start address>[/<size>]
9690  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9691  *
9692  * if <size> is not specified or is zero, the range is treated as a single
9693  * address; not valid for ACTION=="filter".
9694  */
9695 enum {
9696         IF_ACT_NONE = -1,
9697         IF_ACT_FILTER,
9698         IF_ACT_START,
9699         IF_ACT_STOP,
9700         IF_SRC_FILE,
9701         IF_SRC_KERNEL,
9702         IF_SRC_FILEADDR,
9703         IF_SRC_KERNELADDR,
9704 };
9705
9706 enum {
9707         IF_STATE_ACTION = 0,
9708         IF_STATE_SOURCE,
9709         IF_STATE_END,
9710 };
9711
9712 static const match_table_t if_tokens = {
9713         { IF_ACT_FILTER,        "filter" },
9714         { IF_ACT_START,         "start" },
9715         { IF_ACT_STOP,          "stop" },
9716         { IF_SRC_FILE,          "%u/%u@%s" },
9717         { IF_SRC_KERNEL,        "%u/%u" },
9718         { IF_SRC_FILEADDR,      "%u@%s" },
9719         { IF_SRC_KERNELADDR,    "%u" },
9720         { IF_ACT_NONE,          NULL },
9721 };
9722
9723 /*
9724  * Address filter string parser
9725  */
9726 static int
9727 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9728                              struct list_head *filters)
9729 {
9730         struct perf_addr_filter *filter = NULL;
9731         char *start, *orig, *filename = NULL;
9732         substring_t args[MAX_OPT_ARGS];
9733         int state = IF_STATE_ACTION, token;
9734         unsigned int kernel = 0;
9735         int ret = -EINVAL;
9736
9737         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9738         if (!fstr)
9739                 return -ENOMEM;
9740
9741         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9742                 static const enum perf_addr_filter_action_t actions[] = {
9743                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9744                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9745                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9746                 };
9747                 ret = -EINVAL;
9748
9749                 if (!*start)
9750                         continue;
9751
9752                 /* filter definition begins */
9753                 if (state == IF_STATE_ACTION) {
9754                         filter = perf_addr_filter_new(event, filters);
9755                         if (!filter)
9756                                 goto fail;
9757                 }
9758
9759                 token = match_token(start, if_tokens, args);
9760                 switch (token) {
9761                 case IF_ACT_FILTER:
9762                 case IF_ACT_START:
9763                 case IF_ACT_STOP:
9764                         if (state != IF_STATE_ACTION)
9765                                 goto fail;
9766
9767                         filter->action = actions[token];
9768                         state = IF_STATE_SOURCE;
9769                         break;
9770
9771                 case IF_SRC_KERNELADDR:
9772                 case IF_SRC_KERNEL:
9773                         kernel = 1;
9774                         /* fall through */
9775
9776                 case IF_SRC_FILEADDR:
9777                 case IF_SRC_FILE:
9778                         if (state != IF_STATE_SOURCE)
9779                                 goto fail;
9780
9781                         *args[0].to = 0;
9782                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9783                         if (ret)
9784                                 goto fail;
9785
9786                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9787                                 *args[1].to = 0;
9788                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9789                                 if (ret)
9790                                         goto fail;
9791                         }
9792
9793                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9794                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9795
9796                                 filename = match_strdup(&args[fpos]);
9797                                 if (!filename) {
9798                                         ret = -ENOMEM;
9799                                         goto fail;
9800                                 }
9801                         }
9802
9803                         state = IF_STATE_END;
9804                         break;
9805
9806                 default:
9807                         goto fail;
9808                 }
9809
9810                 /*
9811                  * Filter definition is fully parsed, validate and install it.
9812                  * Make sure that it doesn't contradict itself or the event's
9813                  * attribute.
9814                  */
9815                 if (state == IF_STATE_END) {
9816                         ret = -EINVAL;
9817                         if (kernel && event->attr.exclude_kernel)
9818                                 goto fail;
9819
9820                         /*
9821                          * ACTION "filter" must have a non-zero length region
9822                          * specified.
9823                          */
9824                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9825                             !filter->size)
9826                                 goto fail;
9827
9828                         if (!kernel) {
9829                                 if (!filename)
9830                                         goto fail;
9831
9832                                 /*
9833                                  * For now, we only support file-based filters
9834                                  * in per-task events; doing so for CPU-wide
9835                                  * events requires additional context switching
9836                                  * trickery, since same object code will be
9837                                  * mapped at different virtual addresses in
9838                                  * different processes.
9839                                  */
9840                                 ret = -EOPNOTSUPP;
9841                                 if (!event->ctx->task)
9842                                         goto fail_free_name;
9843
9844                                 /* look up the path and grab its inode */
9845                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9846                                                 &filter->path);
9847                                 if (ret)
9848                                         goto fail_free_name;
9849
9850                                 kfree(filename);
9851                                 filename = NULL;
9852
9853                                 ret = -EINVAL;
9854                                 if (!filter->path.dentry ||
9855                                     !S_ISREG(d_inode(filter->path.dentry)
9856                                              ->i_mode))
9857                                         goto fail;
9858
9859                                 event->addr_filters.nr_file_filters++;
9860                         }
9861
9862                         /* ready to consume more filters */
9863                         state = IF_STATE_ACTION;
9864                         filter = NULL;
9865                 }
9866         }
9867
9868         if (state != IF_STATE_ACTION)
9869                 goto fail;
9870
9871         kfree(orig);
9872
9873         return 0;
9874
9875 fail_free_name:
9876         kfree(filename);
9877 fail:
9878         free_filters_list(filters);
9879         kfree(orig);
9880
9881         return ret;
9882 }
9883
9884 static int
9885 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9886 {
9887         LIST_HEAD(filters);
9888         int ret;
9889
9890         /*
9891          * Since this is called in perf_ioctl() path, we're already holding
9892          * ctx::mutex.
9893          */
9894         lockdep_assert_held(&event->ctx->mutex);
9895
9896         if (WARN_ON_ONCE(event->parent))
9897                 return -EINVAL;
9898
9899         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9900         if (ret)
9901                 goto fail_clear_files;
9902
9903         ret = event->pmu->addr_filters_validate(&filters);
9904         if (ret)
9905                 goto fail_free_filters;
9906
9907         /* remove existing filters, if any */
9908         perf_addr_filters_splice(event, &filters);
9909
9910         /* install new filters */
9911         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9912
9913         return ret;
9914
9915 fail_free_filters:
9916         free_filters_list(&filters);
9917
9918 fail_clear_files:
9919         event->addr_filters.nr_file_filters = 0;
9920
9921         return ret;
9922 }
9923
9924 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9925 {
9926         int ret = -EINVAL;
9927         char *filter_str;
9928
9929         filter_str = strndup_user(arg, PAGE_SIZE);
9930         if (IS_ERR(filter_str))
9931                 return PTR_ERR(filter_str);
9932
9933 #ifdef CONFIG_EVENT_TRACING
9934         if (perf_event_is_tracing(event)) {
9935                 struct perf_event_context *ctx = event->ctx;
9936
9937                 /*
9938                  * Beware, here be dragons!!
9939                  *
9940                  * the tracepoint muck will deadlock against ctx->mutex, but
9941                  * the tracepoint stuff does not actually need it. So
9942                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9943                  * already have a reference on ctx.
9944                  *
9945                  * This can result in event getting moved to a different ctx,
9946                  * but that does not affect the tracepoint state.
9947                  */
9948                 mutex_unlock(&ctx->mutex);
9949                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9950                 mutex_lock(&ctx->mutex);
9951         } else
9952 #endif
9953         if (has_addr_filter(event))
9954                 ret = perf_event_set_addr_filter(event, filter_str);
9955
9956         kfree(filter_str);
9957         return ret;
9958 }
9959
9960 /*
9961  * hrtimer based swevent callback
9962  */
9963
9964 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9965 {
9966         enum hrtimer_restart ret = HRTIMER_RESTART;
9967         struct perf_sample_data data;
9968         struct pt_regs *regs;
9969         struct perf_event *event;
9970         u64 period;
9971
9972         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9973
9974         if (event->state != PERF_EVENT_STATE_ACTIVE)
9975                 return HRTIMER_NORESTART;
9976
9977         event->pmu->read(event);
9978
9979         perf_sample_data_init(&data, 0, event->hw.last_period);
9980         regs = get_irq_regs();
9981
9982         if (regs && !perf_exclude_event(event, regs)) {
9983                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9984                         if (__perf_event_overflow(event, 1, &data, regs))
9985                                 ret = HRTIMER_NORESTART;
9986         }
9987
9988         period = max_t(u64, 10000, event->hw.sample_period);
9989         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9990
9991         return ret;
9992 }
9993
9994 static void perf_swevent_start_hrtimer(struct perf_event *event)
9995 {
9996         struct hw_perf_event *hwc = &event->hw;
9997         s64 period;
9998
9999         if (!is_sampling_event(event))
10000                 return;
10001
10002         period = local64_read(&hwc->period_left);
10003         if (period) {
10004                 if (period < 0)
10005                         period = 10000;
10006
10007                 local64_set(&hwc->period_left, 0);
10008         } else {
10009                 period = max_t(u64, 10000, hwc->sample_period);
10010         }
10011         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10012                       HRTIMER_MODE_REL_PINNED_HARD);
10013 }
10014
10015 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10016 {
10017         struct hw_perf_event *hwc = &event->hw;
10018
10019         if (is_sampling_event(event)) {
10020                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10021                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10022
10023                 hrtimer_cancel(&hwc->hrtimer);
10024         }
10025 }
10026
10027 static void perf_swevent_init_hrtimer(struct perf_event *event)
10028 {
10029         struct hw_perf_event *hwc = &event->hw;
10030
10031         if (!is_sampling_event(event))
10032                 return;
10033
10034         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10035         hwc->hrtimer.function = perf_swevent_hrtimer;
10036
10037         /*
10038          * Since hrtimers have a fixed rate, we can do a static freq->period
10039          * mapping and avoid the whole period adjust feedback stuff.
10040          */
10041         if (event->attr.freq) {
10042                 long freq = event->attr.sample_freq;
10043
10044                 event->attr.sample_period = NSEC_PER_SEC / freq;
10045                 hwc->sample_period = event->attr.sample_period;
10046                 local64_set(&hwc->period_left, hwc->sample_period);
10047                 hwc->last_period = hwc->sample_period;
10048                 event->attr.freq = 0;
10049         }
10050 }
10051
10052 /*
10053  * Software event: cpu wall time clock
10054  */
10055
10056 static void cpu_clock_event_update(struct perf_event *event)
10057 {
10058         s64 prev;
10059         u64 now;
10060
10061         now = local_clock();
10062         prev = local64_xchg(&event->hw.prev_count, now);
10063         local64_add(now - prev, &event->count);
10064 }
10065
10066 static void cpu_clock_event_start(struct perf_event *event, int flags)
10067 {
10068         local64_set(&event->hw.prev_count, local_clock());
10069         perf_swevent_start_hrtimer(event);
10070 }
10071
10072 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10073 {
10074         perf_swevent_cancel_hrtimer(event);
10075         cpu_clock_event_update(event);
10076 }
10077
10078 static int cpu_clock_event_add(struct perf_event *event, int flags)
10079 {
10080         if (flags & PERF_EF_START)
10081                 cpu_clock_event_start(event, flags);
10082         perf_event_update_userpage(event);
10083
10084         return 0;
10085 }
10086
10087 static void cpu_clock_event_del(struct perf_event *event, int flags)
10088 {
10089         cpu_clock_event_stop(event, flags);
10090 }
10091
10092 static void cpu_clock_event_read(struct perf_event *event)
10093 {
10094         cpu_clock_event_update(event);
10095 }
10096
10097 static int cpu_clock_event_init(struct perf_event *event)
10098 {
10099         if (event->attr.type != PERF_TYPE_SOFTWARE)
10100                 return -ENOENT;
10101
10102         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10103                 return -ENOENT;
10104
10105         /*
10106          * no branch sampling for software events
10107          */
10108         if (has_branch_stack(event))
10109                 return -EOPNOTSUPP;
10110
10111         perf_swevent_init_hrtimer(event);
10112
10113         return 0;
10114 }
10115
10116 static struct pmu perf_cpu_clock = {
10117         .task_ctx_nr    = perf_sw_context,
10118
10119         .capabilities   = PERF_PMU_CAP_NO_NMI,
10120
10121         .event_init     = cpu_clock_event_init,
10122         .add            = cpu_clock_event_add,
10123         .del            = cpu_clock_event_del,
10124         .start          = cpu_clock_event_start,
10125         .stop           = cpu_clock_event_stop,
10126         .read           = cpu_clock_event_read,
10127 };
10128
10129 /*
10130  * Software event: task time clock
10131  */
10132
10133 static void task_clock_event_update(struct perf_event *event, u64 now)
10134 {
10135         u64 prev;
10136         s64 delta;
10137
10138         prev = local64_xchg(&event->hw.prev_count, now);
10139         delta = now - prev;
10140         local64_add(delta, &event->count);
10141 }
10142
10143 static void task_clock_event_start(struct perf_event *event, int flags)
10144 {
10145         local64_set(&event->hw.prev_count, event->ctx->time);
10146         perf_swevent_start_hrtimer(event);
10147 }
10148
10149 static void task_clock_event_stop(struct perf_event *event, int flags)
10150 {
10151         perf_swevent_cancel_hrtimer(event);
10152         task_clock_event_update(event, event->ctx->time);
10153 }
10154
10155 static int task_clock_event_add(struct perf_event *event, int flags)
10156 {
10157         if (flags & PERF_EF_START)
10158                 task_clock_event_start(event, flags);
10159         perf_event_update_userpage(event);
10160
10161         return 0;
10162 }
10163
10164 static void task_clock_event_del(struct perf_event *event, int flags)
10165 {
10166         task_clock_event_stop(event, PERF_EF_UPDATE);
10167 }
10168
10169 static void task_clock_event_read(struct perf_event *event)
10170 {
10171         u64 now = perf_clock();
10172         u64 delta = now - event->ctx->timestamp;
10173         u64 time = event->ctx->time + delta;
10174
10175         task_clock_event_update(event, time);
10176 }
10177
10178 static int task_clock_event_init(struct perf_event *event)
10179 {
10180         if (event->attr.type != PERF_TYPE_SOFTWARE)
10181                 return -ENOENT;
10182
10183         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10184                 return -ENOENT;
10185
10186         /*
10187          * no branch sampling for software events
10188          */
10189         if (has_branch_stack(event))
10190                 return -EOPNOTSUPP;
10191
10192         perf_swevent_init_hrtimer(event);
10193
10194         return 0;
10195 }
10196
10197 static struct pmu perf_task_clock = {
10198         .task_ctx_nr    = perf_sw_context,
10199
10200         .capabilities   = PERF_PMU_CAP_NO_NMI,
10201
10202         .event_init     = task_clock_event_init,
10203         .add            = task_clock_event_add,
10204         .del            = task_clock_event_del,
10205         .start          = task_clock_event_start,
10206         .stop           = task_clock_event_stop,
10207         .read           = task_clock_event_read,
10208 };
10209
10210 static void perf_pmu_nop_void(struct pmu *pmu)
10211 {
10212 }
10213
10214 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10215 {
10216 }
10217
10218 static int perf_pmu_nop_int(struct pmu *pmu)
10219 {
10220         return 0;
10221 }
10222
10223 static int perf_event_nop_int(struct perf_event *event, u64 value)
10224 {
10225         return 0;
10226 }
10227
10228 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10229
10230 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10231 {
10232         __this_cpu_write(nop_txn_flags, flags);
10233
10234         if (flags & ~PERF_PMU_TXN_ADD)
10235                 return;
10236
10237         perf_pmu_disable(pmu);
10238 }
10239
10240 static int perf_pmu_commit_txn(struct pmu *pmu)
10241 {
10242         unsigned int flags = __this_cpu_read(nop_txn_flags);
10243
10244         __this_cpu_write(nop_txn_flags, 0);
10245
10246         if (flags & ~PERF_PMU_TXN_ADD)
10247                 return 0;
10248
10249         perf_pmu_enable(pmu);
10250         return 0;
10251 }
10252
10253 static void perf_pmu_cancel_txn(struct pmu *pmu)
10254 {
10255         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10256
10257         __this_cpu_write(nop_txn_flags, 0);
10258
10259         if (flags & ~PERF_PMU_TXN_ADD)
10260                 return;
10261
10262         perf_pmu_enable(pmu);
10263 }
10264
10265 static int perf_event_idx_default(struct perf_event *event)
10266 {
10267         return 0;
10268 }
10269
10270 /*
10271  * Ensures all contexts with the same task_ctx_nr have the same
10272  * pmu_cpu_context too.
10273  */
10274 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10275 {
10276         struct pmu *pmu;
10277
10278         if (ctxn < 0)
10279                 return NULL;
10280
10281         list_for_each_entry(pmu, &pmus, entry) {
10282                 if (pmu->task_ctx_nr == ctxn)
10283                         return pmu->pmu_cpu_context;
10284         }
10285
10286         return NULL;
10287 }
10288
10289 static void free_pmu_context(struct pmu *pmu)
10290 {
10291         /*
10292          * Static contexts such as perf_sw_context have a global lifetime
10293          * and may be shared between different PMUs. Avoid freeing them
10294          * when a single PMU is going away.
10295          */
10296         if (pmu->task_ctx_nr > perf_invalid_context)
10297                 return;
10298
10299         free_percpu(pmu->pmu_cpu_context);
10300 }
10301
10302 /*
10303  * Let userspace know that this PMU supports address range filtering:
10304  */
10305 static ssize_t nr_addr_filters_show(struct device *dev,
10306                                     struct device_attribute *attr,
10307                                     char *page)
10308 {
10309         struct pmu *pmu = dev_get_drvdata(dev);
10310
10311         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10312 }
10313 DEVICE_ATTR_RO(nr_addr_filters);
10314
10315 static struct idr pmu_idr;
10316
10317 static ssize_t
10318 type_show(struct device *dev, struct device_attribute *attr, char *page)
10319 {
10320         struct pmu *pmu = dev_get_drvdata(dev);
10321
10322         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10323 }
10324 static DEVICE_ATTR_RO(type);
10325
10326 static ssize_t
10327 perf_event_mux_interval_ms_show(struct device *dev,
10328                                 struct device_attribute *attr,
10329                                 char *page)
10330 {
10331         struct pmu *pmu = dev_get_drvdata(dev);
10332
10333         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10334 }
10335
10336 static DEFINE_MUTEX(mux_interval_mutex);
10337
10338 static ssize_t
10339 perf_event_mux_interval_ms_store(struct device *dev,
10340                                  struct device_attribute *attr,
10341                                  const char *buf, size_t count)
10342 {
10343         struct pmu *pmu = dev_get_drvdata(dev);
10344         int timer, cpu, ret;
10345
10346         ret = kstrtoint(buf, 0, &timer);
10347         if (ret)
10348                 return ret;
10349
10350         if (timer < 1)
10351                 return -EINVAL;
10352
10353         /* same value, noting to do */
10354         if (timer == pmu->hrtimer_interval_ms)
10355                 return count;
10356
10357         mutex_lock(&mux_interval_mutex);
10358         pmu->hrtimer_interval_ms = timer;
10359
10360         /* update all cpuctx for this PMU */
10361         cpus_read_lock();
10362         for_each_online_cpu(cpu) {
10363                 struct perf_cpu_context *cpuctx;
10364                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10365                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10366
10367                 cpu_function_call(cpu,
10368                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10369         }
10370         cpus_read_unlock();
10371         mutex_unlock(&mux_interval_mutex);
10372
10373         return count;
10374 }
10375 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10376
10377 static struct attribute *pmu_dev_attrs[] = {
10378         &dev_attr_type.attr,
10379         &dev_attr_perf_event_mux_interval_ms.attr,
10380         NULL,
10381 };
10382 ATTRIBUTE_GROUPS(pmu_dev);
10383
10384 static int pmu_bus_running;
10385 static struct bus_type pmu_bus = {
10386         .name           = "event_source",
10387         .dev_groups     = pmu_dev_groups,
10388 };
10389
10390 static void pmu_dev_release(struct device *dev)
10391 {
10392         kfree(dev);
10393 }
10394
10395 static int pmu_dev_alloc(struct pmu *pmu)
10396 {
10397         int ret = -ENOMEM;
10398
10399         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10400         if (!pmu->dev)
10401                 goto out;
10402
10403         pmu->dev->groups = pmu->attr_groups;
10404         device_initialize(pmu->dev);
10405         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10406         if (ret)
10407                 goto free_dev;
10408
10409         dev_set_drvdata(pmu->dev, pmu);
10410         pmu->dev->bus = &pmu_bus;
10411         pmu->dev->release = pmu_dev_release;
10412         ret = device_add(pmu->dev);
10413         if (ret)
10414                 goto free_dev;
10415
10416         /* For PMUs with address filters, throw in an extra attribute: */
10417         if (pmu->nr_addr_filters)
10418                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10419
10420         if (ret)
10421                 goto del_dev;
10422
10423         if (pmu->attr_update)
10424                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10425
10426         if (ret)
10427                 goto del_dev;
10428
10429 out:
10430         return ret;
10431
10432 del_dev:
10433         device_del(pmu->dev);
10434
10435 free_dev:
10436         put_device(pmu->dev);
10437         goto out;
10438 }
10439
10440 static struct lock_class_key cpuctx_mutex;
10441 static struct lock_class_key cpuctx_lock;
10442
10443 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10444 {
10445         int cpu, ret, max = PERF_TYPE_MAX;
10446
10447         mutex_lock(&pmus_lock);
10448         ret = -ENOMEM;
10449         pmu->pmu_disable_count = alloc_percpu(int);
10450         if (!pmu->pmu_disable_count)
10451                 goto unlock;
10452
10453         pmu->type = -1;
10454         if (!name)
10455                 goto skip_type;
10456         pmu->name = name;
10457
10458         if (type != PERF_TYPE_SOFTWARE) {
10459                 if (type >= 0)
10460                         max = type;
10461
10462                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10463                 if (ret < 0)
10464                         goto free_pdc;
10465
10466                 WARN_ON(type >= 0 && ret != type);
10467
10468                 type = ret;
10469         }
10470         pmu->type = type;
10471
10472         if (pmu_bus_running) {
10473                 ret = pmu_dev_alloc(pmu);
10474                 if (ret)
10475                         goto free_idr;
10476         }
10477
10478 skip_type:
10479         if (pmu->task_ctx_nr == perf_hw_context) {
10480                 static int hw_context_taken = 0;
10481
10482                 /*
10483                  * Other than systems with heterogeneous CPUs, it never makes
10484                  * sense for two PMUs to share perf_hw_context. PMUs which are
10485                  * uncore must use perf_invalid_context.
10486                  */
10487                 if (WARN_ON_ONCE(hw_context_taken &&
10488                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10489                         pmu->task_ctx_nr = perf_invalid_context;
10490
10491                 hw_context_taken = 1;
10492         }
10493
10494         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10495         if (pmu->pmu_cpu_context)
10496                 goto got_cpu_context;
10497
10498         ret = -ENOMEM;
10499         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10500         if (!pmu->pmu_cpu_context)
10501                 goto free_dev;
10502
10503         for_each_possible_cpu(cpu) {
10504                 struct perf_cpu_context *cpuctx;
10505
10506                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10507                 __perf_event_init_context(&cpuctx->ctx);
10508                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10509                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10510                 cpuctx->ctx.pmu = pmu;
10511                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10512
10513                 __perf_mux_hrtimer_init(cpuctx, cpu);
10514
10515                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10516                 cpuctx->heap = cpuctx->heap_default;
10517         }
10518
10519 got_cpu_context:
10520         if (!pmu->start_txn) {
10521                 if (pmu->pmu_enable) {
10522                         /*
10523                          * If we have pmu_enable/pmu_disable calls, install
10524                          * transaction stubs that use that to try and batch
10525                          * hardware accesses.
10526                          */
10527                         pmu->start_txn  = perf_pmu_start_txn;
10528                         pmu->commit_txn = perf_pmu_commit_txn;
10529                         pmu->cancel_txn = perf_pmu_cancel_txn;
10530                 } else {
10531                         pmu->start_txn  = perf_pmu_nop_txn;
10532                         pmu->commit_txn = perf_pmu_nop_int;
10533                         pmu->cancel_txn = perf_pmu_nop_void;
10534                 }
10535         }
10536
10537         if (!pmu->pmu_enable) {
10538                 pmu->pmu_enable  = perf_pmu_nop_void;
10539                 pmu->pmu_disable = perf_pmu_nop_void;
10540         }
10541
10542         if (!pmu->check_period)
10543                 pmu->check_period = perf_event_nop_int;
10544
10545         if (!pmu->event_idx)
10546                 pmu->event_idx = perf_event_idx_default;
10547
10548         /*
10549          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10550          * since these cannot be in the IDR. This way the linear search
10551          * is fast, provided a valid software event is provided.
10552          */
10553         if (type == PERF_TYPE_SOFTWARE || !name)
10554                 list_add_rcu(&pmu->entry, &pmus);
10555         else
10556                 list_add_tail_rcu(&pmu->entry, &pmus);
10557
10558         atomic_set(&pmu->exclusive_cnt, 0);
10559         ret = 0;
10560 unlock:
10561         mutex_unlock(&pmus_lock);
10562
10563         return ret;
10564
10565 free_dev:
10566         device_del(pmu->dev);
10567         put_device(pmu->dev);
10568
10569 free_idr:
10570         if (pmu->type != PERF_TYPE_SOFTWARE)
10571                 idr_remove(&pmu_idr, pmu->type);
10572
10573 free_pdc:
10574         free_percpu(pmu->pmu_disable_count);
10575         goto unlock;
10576 }
10577 EXPORT_SYMBOL_GPL(perf_pmu_register);
10578
10579 void perf_pmu_unregister(struct pmu *pmu)
10580 {
10581         mutex_lock(&pmus_lock);
10582         list_del_rcu(&pmu->entry);
10583
10584         /*
10585          * We dereference the pmu list under both SRCU and regular RCU, so
10586          * synchronize against both of those.
10587          */
10588         synchronize_srcu(&pmus_srcu);
10589         synchronize_rcu();
10590
10591         free_percpu(pmu->pmu_disable_count);
10592         if (pmu->type != PERF_TYPE_SOFTWARE)
10593                 idr_remove(&pmu_idr, pmu->type);
10594         if (pmu_bus_running) {
10595                 if (pmu->nr_addr_filters)
10596                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10597                 device_del(pmu->dev);
10598                 put_device(pmu->dev);
10599         }
10600         free_pmu_context(pmu);
10601         mutex_unlock(&pmus_lock);
10602 }
10603 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10604
10605 static inline bool has_extended_regs(struct perf_event *event)
10606 {
10607         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10608                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10609 }
10610
10611 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10612 {
10613         struct perf_event_context *ctx = NULL;
10614         int ret;
10615
10616         if (!try_module_get(pmu->module))
10617                 return -ENODEV;
10618
10619         /*
10620          * A number of pmu->event_init() methods iterate the sibling_list to,
10621          * for example, validate if the group fits on the PMU. Therefore,
10622          * if this is a sibling event, acquire the ctx->mutex to protect
10623          * the sibling_list.
10624          */
10625         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10626                 /*
10627                  * This ctx->mutex can nest when we're called through
10628                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10629                  */
10630                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10631                                                  SINGLE_DEPTH_NESTING);
10632                 BUG_ON(!ctx);
10633         }
10634
10635         event->pmu = pmu;
10636         ret = pmu->event_init(event);
10637
10638         if (ctx)
10639                 perf_event_ctx_unlock(event->group_leader, ctx);
10640
10641         if (!ret) {
10642                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10643                     has_extended_regs(event))
10644                         ret = -EOPNOTSUPP;
10645
10646                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10647                     event_has_any_exclude_flag(event))
10648                         ret = -EINVAL;
10649
10650                 if (ret && event->destroy)
10651                         event->destroy(event);
10652         }
10653
10654         if (ret)
10655                 module_put(pmu->module);
10656
10657         return ret;
10658 }
10659
10660 static struct pmu *perf_init_event(struct perf_event *event)
10661 {
10662         int idx, type, ret;
10663         struct pmu *pmu;
10664
10665         idx = srcu_read_lock(&pmus_srcu);
10666
10667         /* Try parent's PMU first: */
10668         if (event->parent && event->parent->pmu) {
10669                 pmu = event->parent->pmu;
10670                 ret = perf_try_init_event(pmu, event);
10671                 if (!ret)
10672                         goto unlock;
10673         }
10674
10675         /*
10676          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10677          * are often aliases for PERF_TYPE_RAW.
10678          */
10679         type = event->attr.type;
10680         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10681                 type = PERF_TYPE_RAW;
10682
10683 again:
10684         rcu_read_lock();
10685         pmu = idr_find(&pmu_idr, type);
10686         rcu_read_unlock();
10687         if (pmu) {
10688                 ret = perf_try_init_event(pmu, event);
10689                 if (ret == -ENOENT && event->attr.type != type) {
10690                         type = event->attr.type;
10691                         goto again;
10692                 }
10693
10694                 if (ret)
10695                         pmu = ERR_PTR(ret);
10696
10697                 goto unlock;
10698         }
10699
10700         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10701                 ret = perf_try_init_event(pmu, event);
10702                 if (!ret)
10703                         goto unlock;
10704
10705                 if (ret != -ENOENT) {
10706                         pmu = ERR_PTR(ret);
10707                         goto unlock;
10708                 }
10709         }
10710         pmu = ERR_PTR(-ENOENT);
10711 unlock:
10712         srcu_read_unlock(&pmus_srcu, idx);
10713
10714         return pmu;
10715 }
10716
10717 static void attach_sb_event(struct perf_event *event)
10718 {
10719         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10720
10721         raw_spin_lock(&pel->lock);
10722         list_add_rcu(&event->sb_list, &pel->list);
10723         raw_spin_unlock(&pel->lock);
10724 }
10725
10726 /*
10727  * We keep a list of all !task (and therefore per-cpu) events
10728  * that need to receive side-band records.
10729  *
10730  * This avoids having to scan all the various PMU per-cpu contexts
10731  * looking for them.
10732  */
10733 static void account_pmu_sb_event(struct perf_event *event)
10734 {
10735         if (is_sb_event(event))
10736                 attach_sb_event(event);
10737 }
10738
10739 static void account_event_cpu(struct perf_event *event, int cpu)
10740 {
10741         if (event->parent)
10742                 return;
10743
10744         if (is_cgroup_event(event))
10745                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10746 }
10747
10748 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10749 static void account_freq_event_nohz(void)
10750 {
10751 #ifdef CONFIG_NO_HZ_FULL
10752         /* Lock so we don't race with concurrent unaccount */
10753         spin_lock(&nr_freq_lock);
10754         if (atomic_inc_return(&nr_freq_events) == 1)
10755                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10756         spin_unlock(&nr_freq_lock);
10757 #endif
10758 }
10759
10760 static void account_freq_event(void)
10761 {
10762         if (tick_nohz_full_enabled())
10763                 account_freq_event_nohz();
10764         else
10765                 atomic_inc(&nr_freq_events);
10766 }
10767
10768
10769 static void account_event(struct perf_event *event)
10770 {
10771         bool inc = false;
10772
10773         if (event->parent)
10774                 return;
10775
10776         if (event->attach_state & PERF_ATTACH_TASK)
10777                 inc = true;
10778         if (event->attr.mmap || event->attr.mmap_data)
10779                 atomic_inc(&nr_mmap_events);
10780         if (event->attr.comm)
10781                 atomic_inc(&nr_comm_events);
10782         if (event->attr.namespaces)
10783                 atomic_inc(&nr_namespaces_events);
10784         if (event->attr.task)
10785                 atomic_inc(&nr_task_events);
10786         if (event->attr.freq)
10787                 account_freq_event();
10788         if (event->attr.context_switch) {
10789                 atomic_inc(&nr_switch_events);
10790                 inc = true;
10791         }
10792         if (has_branch_stack(event))
10793                 inc = true;
10794         if (is_cgroup_event(event))
10795                 inc = true;
10796         if (event->attr.ksymbol)
10797                 atomic_inc(&nr_ksymbol_events);
10798         if (event->attr.bpf_event)
10799                 atomic_inc(&nr_bpf_events);
10800
10801         if (inc) {
10802                 /*
10803                  * We need the mutex here because static_branch_enable()
10804                  * must complete *before* the perf_sched_count increment
10805                  * becomes visible.
10806                  */
10807                 if (atomic_inc_not_zero(&perf_sched_count))
10808                         goto enabled;
10809
10810                 mutex_lock(&perf_sched_mutex);
10811                 if (!atomic_read(&perf_sched_count)) {
10812                         static_branch_enable(&perf_sched_events);
10813                         /*
10814                          * Guarantee that all CPUs observe they key change and
10815                          * call the perf scheduling hooks before proceeding to
10816                          * install events that need them.
10817                          */
10818                         synchronize_rcu();
10819                 }
10820                 /*
10821                  * Now that we have waited for the sync_sched(), allow further
10822                  * increments to by-pass the mutex.
10823                  */
10824                 atomic_inc(&perf_sched_count);
10825                 mutex_unlock(&perf_sched_mutex);
10826         }
10827 enabled:
10828
10829         account_event_cpu(event, event->cpu);
10830
10831         account_pmu_sb_event(event);
10832 }
10833
10834 /*
10835  * Allocate and initialize an event structure
10836  */
10837 static struct perf_event *
10838 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10839                  struct task_struct *task,
10840                  struct perf_event *group_leader,
10841                  struct perf_event *parent_event,
10842                  perf_overflow_handler_t overflow_handler,
10843                  void *context, int cgroup_fd)
10844 {
10845         struct pmu *pmu;
10846         struct perf_event *event;
10847         struct hw_perf_event *hwc;
10848         long err = -EINVAL;
10849
10850         if ((unsigned)cpu >= nr_cpu_ids) {
10851                 if (!task || cpu != -1)
10852                         return ERR_PTR(-EINVAL);
10853         }
10854
10855         event = kzalloc(sizeof(*event), GFP_KERNEL);
10856         if (!event)
10857                 return ERR_PTR(-ENOMEM);
10858
10859         /*
10860          * Single events are their own group leaders, with an
10861          * empty sibling list:
10862          */
10863         if (!group_leader)
10864                 group_leader = event;
10865
10866         mutex_init(&event->child_mutex);
10867         INIT_LIST_HEAD(&event->child_list);
10868
10869         INIT_LIST_HEAD(&event->event_entry);
10870         INIT_LIST_HEAD(&event->sibling_list);
10871         INIT_LIST_HEAD(&event->active_list);
10872         init_event_group(event);
10873         INIT_LIST_HEAD(&event->rb_entry);
10874         INIT_LIST_HEAD(&event->active_entry);
10875         INIT_LIST_HEAD(&event->addr_filters.list);
10876         INIT_HLIST_NODE(&event->hlist_entry);
10877
10878
10879         init_waitqueue_head(&event->waitq);
10880         event->pending_disable = -1;
10881         init_irq_work(&event->pending, perf_pending_event);
10882
10883         mutex_init(&event->mmap_mutex);
10884         raw_spin_lock_init(&event->addr_filters.lock);
10885
10886         atomic_long_set(&event->refcount, 1);
10887         event->cpu              = cpu;
10888         event->attr             = *attr;
10889         event->group_leader     = group_leader;
10890         event->pmu              = NULL;
10891         event->oncpu            = -1;
10892
10893         event->parent           = parent_event;
10894
10895         event->ns               = get_pid_ns(task_active_pid_ns(current));
10896         event->id               = atomic64_inc_return(&perf_event_id);
10897
10898         event->state            = PERF_EVENT_STATE_INACTIVE;
10899
10900         if (task) {
10901                 event->attach_state = PERF_ATTACH_TASK;
10902                 /*
10903                  * XXX pmu::event_init needs to know what task to account to
10904                  * and we cannot use the ctx information because we need the
10905                  * pmu before we get a ctx.
10906                  */
10907                 event->hw.target = get_task_struct(task);
10908         }
10909
10910         event->clock = &local_clock;
10911         if (parent_event)
10912                 event->clock = parent_event->clock;
10913
10914         if (!overflow_handler && parent_event) {
10915                 overflow_handler = parent_event->overflow_handler;
10916                 context = parent_event->overflow_handler_context;
10917 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10918                 if (overflow_handler == bpf_overflow_handler) {
10919                         struct bpf_prog *prog = parent_event->prog;
10920
10921                         bpf_prog_inc(prog);
10922                         event->prog = prog;
10923                         event->orig_overflow_handler =
10924                                 parent_event->orig_overflow_handler;
10925                 }
10926 #endif
10927         }
10928
10929         if (overflow_handler) {
10930                 event->overflow_handler = overflow_handler;
10931                 event->overflow_handler_context = context;
10932         } else if (is_write_backward(event)){
10933                 event->overflow_handler = perf_event_output_backward;
10934                 event->overflow_handler_context = NULL;
10935         } else {
10936                 event->overflow_handler = perf_event_output_forward;
10937                 event->overflow_handler_context = NULL;
10938         }
10939
10940         perf_event__state_init(event);
10941
10942         pmu = NULL;
10943
10944         hwc = &event->hw;
10945         hwc->sample_period = attr->sample_period;
10946         if (attr->freq && attr->sample_freq)
10947                 hwc->sample_period = 1;
10948         hwc->last_period = hwc->sample_period;
10949
10950         local64_set(&hwc->period_left, hwc->sample_period);
10951
10952         /*
10953          * We currently do not support PERF_SAMPLE_READ on inherited events.
10954          * See perf_output_read().
10955          */
10956         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10957                 goto err_ns;
10958
10959         if (!has_branch_stack(event))
10960                 event->attr.branch_sample_type = 0;
10961
10962         pmu = perf_init_event(event);
10963         if (IS_ERR(pmu)) {
10964                 err = PTR_ERR(pmu);
10965                 goto err_ns;
10966         }
10967
10968         /*
10969          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10970          * be different on other CPUs in the uncore mask.
10971          */
10972         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10973                 err = -EINVAL;
10974                 goto err_pmu;
10975         }
10976
10977         if (event->attr.aux_output &&
10978             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10979                 err = -EOPNOTSUPP;
10980                 goto err_pmu;
10981         }
10982
10983         if (cgroup_fd != -1) {
10984                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10985                 if (err)
10986                         goto err_pmu;
10987         }
10988
10989         err = exclusive_event_init(event);
10990         if (err)
10991                 goto err_pmu;
10992
10993         if (has_addr_filter(event)) {
10994                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10995                                                     sizeof(struct perf_addr_filter_range),
10996                                                     GFP_KERNEL);
10997                 if (!event->addr_filter_ranges) {
10998                         err = -ENOMEM;
10999                         goto err_per_task;
11000                 }
11001
11002                 /*
11003                  * Clone the parent's vma offsets: they are valid until exec()
11004                  * even if the mm is not shared with the parent.
11005                  */
11006                 if (event->parent) {
11007                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11008
11009                         raw_spin_lock_irq(&ifh->lock);
11010                         memcpy(event->addr_filter_ranges,
11011                                event->parent->addr_filter_ranges,
11012                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11013                         raw_spin_unlock_irq(&ifh->lock);
11014                 }
11015
11016                 /* force hw sync on the address filters */
11017                 event->addr_filters_gen = 1;
11018         }
11019
11020         if (!event->parent) {
11021                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11022                         err = get_callchain_buffers(attr->sample_max_stack);
11023                         if (err)
11024                                 goto err_addr_filters;
11025                 }
11026         }
11027
11028         err = security_perf_event_alloc(event);
11029         if (err)
11030                 goto err_callchain_buffer;
11031
11032         /* symmetric to unaccount_event() in _free_event() */
11033         account_event(event);
11034
11035         return event;
11036
11037 err_callchain_buffer:
11038         if (!event->parent) {
11039                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11040                         put_callchain_buffers();
11041         }
11042 err_addr_filters:
11043         kfree(event->addr_filter_ranges);
11044
11045 err_per_task:
11046         exclusive_event_destroy(event);
11047
11048 err_pmu:
11049         if (is_cgroup_event(event))
11050                 perf_detach_cgroup(event);
11051         if (event->destroy)
11052                 event->destroy(event);
11053         module_put(pmu->module);
11054 err_ns:
11055         if (event->ns)
11056                 put_pid_ns(event->ns);
11057         if (event->hw.target)
11058                 put_task_struct(event->hw.target);
11059         kfree(event);
11060
11061         return ERR_PTR(err);
11062 }
11063
11064 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11065                           struct perf_event_attr *attr)
11066 {
11067         u32 size;
11068         int ret;
11069
11070         /* Zero the full structure, so that a short copy will be nice. */
11071         memset(attr, 0, sizeof(*attr));
11072
11073         ret = get_user(size, &uattr->size);
11074         if (ret)
11075                 return ret;
11076
11077         /* ABI compatibility quirk: */
11078         if (!size)
11079                 size = PERF_ATTR_SIZE_VER0;
11080         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11081                 goto err_size;
11082
11083         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11084         if (ret) {
11085                 if (ret == -E2BIG)
11086                         goto err_size;
11087                 return ret;
11088         }
11089
11090         attr->size = size;
11091
11092         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11093                 return -EINVAL;
11094
11095         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11096                 return -EINVAL;
11097
11098         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11099                 return -EINVAL;
11100
11101         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11102                 u64 mask = attr->branch_sample_type;
11103
11104                 /* only using defined bits */
11105                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11106                         return -EINVAL;
11107
11108                 /* at least one branch bit must be set */
11109                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11110                         return -EINVAL;
11111
11112                 /* propagate priv level, when not set for branch */
11113                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11114
11115                         /* exclude_kernel checked on syscall entry */
11116                         if (!attr->exclude_kernel)
11117                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11118
11119                         if (!attr->exclude_user)
11120                                 mask |= PERF_SAMPLE_BRANCH_USER;
11121
11122                         if (!attr->exclude_hv)
11123                                 mask |= PERF_SAMPLE_BRANCH_HV;
11124                         /*
11125                          * adjust user setting (for HW filter setup)
11126                          */
11127                         attr->branch_sample_type = mask;
11128                 }
11129                 /* privileged levels capture (kernel, hv): check permissions */
11130                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11131                         ret = perf_allow_kernel(attr);
11132                         if (ret)
11133                                 return ret;
11134                 }
11135         }
11136
11137         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11138                 ret = perf_reg_validate(attr->sample_regs_user);
11139                 if (ret)
11140                         return ret;
11141         }
11142
11143         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11144                 if (!arch_perf_have_user_stack_dump())
11145                         return -ENOSYS;
11146
11147                 /*
11148                  * We have __u32 type for the size, but so far
11149                  * we can only use __u16 as maximum due to the
11150                  * __u16 sample size limit.
11151                  */
11152                 if (attr->sample_stack_user >= USHRT_MAX)
11153                         return -EINVAL;
11154                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11155                         return -EINVAL;
11156         }
11157
11158         if (!attr->sample_max_stack)
11159                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11160
11161         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11162                 ret = perf_reg_validate(attr->sample_regs_intr);
11163 out:
11164         return ret;
11165
11166 err_size:
11167         put_user(sizeof(*attr), &uattr->size);
11168         ret = -E2BIG;
11169         goto out;
11170 }
11171
11172 static int
11173 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11174 {
11175         struct perf_buffer *rb = NULL;
11176         int ret = -EINVAL;
11177
11178         if (!output_event)
11179                 goto set;
11180
11181         /* don't allow circular references */
11182         if (event == output_event)
11183                 goto out;
11184
11185         /*
11186          * Don't allow cross-cpu buffers
11187          */
11188         if (output_event->cpu != event->cpu)
11189                 goto out;
11190
11191         /*
11192          * If its not a per-cpu rb, it must be the same task.
11193          */
11194         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11195                 goto out;
11196
11197         /*
11198          * Mixing clocks in the same buffer is trouble you don't need.
11199          */
11200         if (output_event->clock != event->clock)
11201                 goto out;
11202
11203         /*
11204          * Either writing ring buffer from beginning or from end.
11205          * Mixing is not allowed.
11206          */
11207         if (is_write_backward(output_event) != is_write_backward(event))
11208                 goto out;
11209
11210         /*
11211          * If both events generate aux data, they must be on the same PMU
11212          */
11213         if (has_aux(event) && has_aux(output_event) &&
11214             event->pmu != output_event->pmu)
11215                 goto out;
11216
11217 set:
11218         mutex_lock(&event->mmap_mutex);
11219         /* Can't redirect output if we've got an active mmap() */
11220         if (atomic_read(&event->mmap_count))
11221                 goto unlock;
11222
11223         if (output_event) {
11224                 /* get the rb we want to redirect to */
11225                 rb = ring_buffer_get(output_event);
11226                 if (!rb)
11227                         goto unlock;
11228         }
11229
11230         ring_buffer_attach(event, rb);
11231
11232         ret = 0;
11233 unlock:
11234         mutex_unlock(&event->mmap_mutex);
11235
11236 out:
11237         return ret;
11238 }
11239
11240 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11241 {
11242         if (b < a)
11243                 swap(a, b);
11244
11245         mutex_lock(a);
11246         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11247 }
11248
11249 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11250 {
11251         bool nmi_safe = false;
11252
11253         switch (clk_id) {
11254         case CLOCK_MONOTONIC:
11255                 event->clock = &ktime_get_mono_fast_ns;
11256                 nmi_safe = true;
11257                 break;
11258
11259         case CLOCK_MONOTONIC_RAW:
11260                 event->clock = &ktime_get_raw_fast_ns;
11261                 nmi_safe = true;
11262                 break;
11263
11264         case CLOCK_REALTIME:
11265                 event->clock = &ktime_get_real_ns;
11266                 break;
11267
11268         case CLOCK_BOOTTIME:
11269                 event->clock = &ktime_get_boottime_ns;
11270                 break;
11271
11272         case CLOCK_TAI:
11273                 event->clock = &ktime_get_clocktai_ns;
11274                 break;
11275
11276         default:
11277                 return -EINVAL;
11278         }
11279
11280         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11281                 return -EINVAL;
11282
11283         return 0;
11284 }
11285
11286 /*
11287  * Variation on perf_event_ctx_lock_nested(), except we take two context
11288  * mutexes.
11289  */
11290 static struct perf_event_context *
11291 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11292                              struct perf_event_context *ctx)
11293 {
11294         struct perf_event_context *gctx;
11295
11296 again:
11297         rcu_read_lock();
11298         gctx = READ_ONCE(group_leader->ctx);
11299         if (!refcount_inc_not_zero(&gctx->refcount)) {
11300                 rcu_read_unlock();
11301                 goto again;
11302         }
11303         rcu_read_unlock();
11304
11305         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11306
11307         if (group_leader->ctx != gctx) {
11308                 mutex_unlock(&ctx->mutex);
11309                 mutex_unlock(&gctx->mutex);
11310                 put_ctx(gctx);
11311                 goto again;
11312         }
11313
11314         return gctx;
11315 }
11316
11317 /**
11318  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11319  *
11320  * @attr_uptr:  event_id type attributes for monitoring/sampling
11321  * @pid:                target pid
11322  * @cpu:                target cpu
11323  * @group_fd:           group leader event fd
11324  */
11325 SYSCALL_DEFINE5(perf_event_open,
11326                 struct perf_event_attr __user *, attr_uptr,
11327                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11328 {
11329         struct perf_event *group_leader = NULL, *output_event = NULL;
11330         struct perf_event *event, *sibling;
11331         struct perf_event_attr attr;
11332         struct perf_event_context *ctx, *uninitialized_var(gctx);
11333         struct file *event_file = NULL;
11334         struct fd group = {NULL, 0};
11335         struct task_struct *task = NULL;
11336         struct pmu *pmu;
11337         int event_fd;
11338         int move_group = 0;
11339         int err;
11340         int f_flags = O_RDWR;
11341         int cgroup_fd = -1;
11342
11343         /* for future expandability... */
11344         if (flags & ~PERF_FLAG_ALL)
11345                 return -EINVAL;
11346
11347         /* Do we allow access to perf_event_open(2) ? */
11348         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11349         if (err)
11350                 return err;
11351
11352         err = perf_copy_attr(attr_uptr, &attr);
11353         if (err)
11354                 return err;
11355
11356         if (!attr.exclude_kernel) {
11357                 err = perf_allow_kernel(&attr);
11358                 if (err)
11359                         return err;
11360         }
11361
11362         if (attr.namespaces) {
11363                 if (!capable(CAP_SYS_ADMIN))
11364                         return -EACCES;
11365         }
11366
11367         if (attr.freq) {
11368                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11369                         return -EINVAL;
11370         } else {
11371                 if (attr.sample_period & (1ULL << 63))
11372                         return -EINVAL;
11373         }
11374
11375         /* Only privileged users can get physical addresses */
11376         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11377                 err = perf_allow_kernel(&attr);
11378                 if (err)
11379                         return err;
11380         }
11381
11382         err = security_locked_down(LOCKDOWN_PERF);
11383         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11384                 /* REGS_INTR can leak data, lockdown must prevent this */
11385                 return err;
11386
11387         err = 0;
11388
11389         /*
11390          * In cgroup mode, the pid argument is used to pass the fd
11391          * opened to the cgroup directory in cgroupfs. The cpu argument
11392          * designates the cpu on which to monitor threads from that
11393          * cgroup.
11394          */
11395         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11396                 return -EINVAL;
11397
11398         if (flags & PERF_FLAG_FD_CLOEXEC)
11399                 f_flags |= O_CLOEXEC;
11400
11401         event_fd = get_unused_fd_flags(f_flags);
11402         if (event_fd < 0)
11403                 return event_fd;
11404
11405         if (group_fd != -1) {
11406                 err = perf_fget_light(group_fd, &group);
11407                 if (err)
11408                         goto err_fd;
11409                 group_leader = group.file->private_data;
11410                 if (flags & PERF_FLAG_FD_OUTPUT)
11411                         output_event = group_leader;
11412                 if (flags & PERF_FLAG_FD_NO_GROUP)
11413                         group_leader = NULL;
11414         }
11415
11416         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11417                 task = find_lively_task_by_vpid(pid);
11418                 if (IS_ERR(task)) {
11419                         err = PTR_ERR(task);
11420                         goto err_group_fd;
11421                 }
11422         }
11423
11424         if (task && group_leader &&
11425             group_leader->attr.inherit != attr.inherit) {
11426                 err = -EINVAL;
11427                 goto err_task;
11428         }
11429
11430         if (task) {
11431                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11432                 if (err)
11433                         goto err_task;
11434
11435                 /*
11436                  * Reuse ptrace permission checks for now.
11437                  *
11438                  * We must hold cred_guard_mutex across this and any potential
11439                  * perf_install_in_context() call for this new event to
11440                  * serialize against exec() altering our credentials (and the
11441                  * perf_event_exit_task() that could imply).
11442                  */
11443                 err = -EACCES;
11444                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11445                         goto err_cred;
11446         }
11447
11448         if (flags & PERF_FLAG_PID_CGROUP)
11449                 cgroup_fd = pid;
11450
11451         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11452                                  NULL, NULL, cgroup_fd);
11453         if (IS_ERR(event)) {
11454                 err = PTR_ERR(event);
11455                 goto err_cred;
11456         }
11457
11458         if (is_sampling_event(event)) {
11459                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11460                         err = -EOPNOTSUPP;
11461                         goto err_alloc;
11462                 }
11463         }
11464
11465         /*
11466          * Special case software events and allow them to be part of
11467          * any hardware group.
11468          */
11469         pmu = event->pmu;
11470
11471         if (attr.use_clockid) {
11472                 err = perf_event_set_clock(event, attr.clockid);
11473                 if (err)
11474                         goto err_alloc;
11475         }
11476
11477         if (pmu->task_ctx_nr == perf_sw_context)
11478                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11479
11480         if (group_leader) {
11481                 if (is_software_event(event) &&
11482                     !in_software_context(group_leader)) {
11483                         /*
11484                          * If the event is a sw event, but the group_leader
11485                          * is on hw context.
11486                          *
11487                          * Allow the addition of software events to hw
11488                          * groups, this is safe because software events
11489                          * never fail to schedule.
11490                          */
11491                         pmu = group_leader->ctx->pmu;
11492                 } else if (!is_software_event(event) &&
11493                            is_software_event(group_leader) &&
11494                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11495                         /*
11496                          * In case the group is a pure software group, and we
11497                          * try to add a hardware event, move the whole group to
11498                          * the hardware context.
11499                          */
11500                         move_group = 1;
11501                 }
11502         }
11503
11504         /*
11505          * Get the target context (task or percpu):
11506          */
11507         ctx = find_get_context(pmu, task, event);
11508         if (IS_ERR(ctx)) {
11509                 err = PTR_ERR(ctx);
11510                 goto err_alloc;
11511         }
11512
11513         /*
11514          * Look up the group leader (we will attach this event to it):
11515          */
11516         if (group_leader) {
11517                 err = -EINVAL;
11518
11519                 /*
11520                  * Do not allow a recursive hierarchy (this new sibling
11521                  * becoming part of another group-sibling):
11522                  */
11523                 if (group_leader->group_leader != group_leader)
11524                         goto err_context;
11525
11526                 /* All events in a group should have the same clock */
11527                 if (group_leader->clock != event->clock)
11528                         goto err_context;
11529
11530                 /*
11531                  * Make sure we're both events for the same CPU;
11532                  * grouping events for different CPUs is broken; since
11533                  * you can never concurrently schedule them anyhow.
11534                  */
11535                 if (group_leader->cpu != event->cpu)
11536                         goto err_context;
11537
11538                 /*
11539                  * Make sure we're both on the same task, or both
11540                  * per-CPU events.
11541                  */
11542                 if (group_leader->ctx->task != ctx->task)
11543                         goto err_context;
11544
11545                 /*
11546                  * Do not allow to attach to a group in a different task
11547                  * or CPU context. If we're moving SW events, we'll fix
11548                  * this up later, so allow that.
11549                  */
11550                 if (!move_group && group_leader->ctx != ctx)
11551                         goto err_context;
11552
11553                 /*
11554                  * Only a group leader can be exclusive or pinned
11555                  */
11556                 if (attr.exclusive || attr.pinned)
11557                         goto err_context;
11558         }
11559
11560         if (output_event) {
11561                 err = perf_event_set_output(event, output_event);
11562                 if (err)
11563                         goto err_context;
11564         }
11565
11566         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11567                                         f_flags);
11568         if (IS_ERR(event_file)) {
11569                 err = PTR_ERR(event_file);
11570                 event_file = NULL;
11571                 goto err_context;
11572         }
11573
11574         if (move_group) {
11575                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11576
11577                 if (gctx->task == TASK_TOMBSTONE) {
11578                         err = -ESRCH;
11579                         goto err_locked;
11580                 }
11581
11582                 /*
11583                  * Check if we raced against another sys_perf_event_open() call
11584                  * moving the software group underneath us.
11585                  */
11586                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11587                         /*
11588                          * If someone moved the group out from under us, check
11589                          * if this new event wound up on the same ctx, if so
11590                          * its the regular !move_group case, otherwise fail.
11591                          */
11592                         if (gctx != ctx) {
11593                                 err = -EINVAL;
11594                                 goto err_locked;
11595                         } else {
11596                                 perf_event_ctx_unlock(group_leader, gctx);
11597                                 move_group = 0;
11598                         }
11599                 }
11600
11601                 /*
11602                  * Failure to create exclusive events returns -EBUSY.
11603                  */
11604                 err = -EBUSY;
11605                 if (!exclusive_event_installable(group_leader, ctx))
11606                         goto err_locked;
11607
11608                 for_each_sibling_event(sibling, group_leader) {
11609                         if (!exclusive_event_installable(sibling, ctx))
11610                                 goto err_locked;
11611                 }
11612         } else {
11613                 mutex_lock(&ctx->mutex);
11614         }
11615
11616         if (ctx->task == TASK_TOMBSTONE) {
11617                 err = -ESRCH;
11618                 goto err_locked;
11619         }
11620
11621         if (!perf_event_validate_size(event)) {
11622                 err = -E2BIG;
11623                 goto err_locked;
11624         }
11625
11626         if (!task) {
11627                 /*
11628                  * Check if the @cpu we're creating an event for is online.
11629                  *
11630                  * We use the perf_cpu_context::ctx::mutex to serialize against
11631                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11632                  */
11633                 struct perf_cpu_context *cpuctx =
11634                         container_of(ctx, struct perf_cpu_context, ctx);
11635
11636                 if (!cpuctx->online) {
11637                         err = -ENODEV;
11638                         goto err_locked;
11639                 }
11640         }
11641
11642         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11643                 err = -EINVAL;
11644                 goto err_locked;
11645         }
11646
11647         /*
11648          * Must be under the same ctx::mutex as perf_install_in_context(),
11649          * because we need to serialize with concurrent event creation.
11650          */
11651         if (!exclusive_event_installable(event, ctx)) {
11652                 err = -EBUSY;
11653                 goto err_locked;
11654         }
11655
11656         WARN_ON_ONCE(ctx->parent_ctx);
11657
11658         /*
11659          * This is the point on no return; we cannot fail hereafter. This is
11660          * where we start modifying current state.
11661          */
11662
11663         if (move_group) {
11664                 /*
11665                  * See perf_event_ctx_lock() for comments on the details
11666                  * of swizzling perf_event::ctx.
11667                  */
11668                 perf_remove_from_context(group_leader, 0);
11669                 put_ctx(gctx);
11670
11671                 for_each_sibling_event(sibling, group_leader) {
11672                         perf_remove_from_context(sibling, 0);
11673                         put_ctx(gctx);
11674                 }
11675
11676                 /*
11677                  * Wait for everybody to stop referencing the events through
11678                  * the old lists, before installing it on new lists.
11679                  */
11680                 synchronize_rcu();
11681
11682                 /*
11683                  * Install the group siblings before the group leader.
11684                  *
11685                  * Because a group leader will try and install the entire group
11686                  * (through the sibling list, which is still in-tact), we can
11687                  * end up with siblings installed in the wrong context.
11688                  *
11689                  * By installing siblings first we NO-OP because they're not
11690                  * reachable through the group lists.
11691                  */
11692                 for_each_sibling_event(sibling, group_leader) {
11693                         perf_event__state_init(sibling);
11694                         perf_install_in_context(ctx, sibling, sibling->cpu);
11695                         get_ctx(ctx);
11696                 }
11697
11698                 /*
11699                  * Removing from the context ends up with disabled
11700                  * event. What we want here is event in the initial
11701                  * startup state, ready to be add into new context.
11702                  */
11703                 perf_event__state_init(group_leader);
11704                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11705                 get_ctx(ctx);
11706         }
11707
11708         /*
11709          * Precalculate sample_data sizes; do while holding ctx::mutex such
11710          * that we're serialized against further additions and before
11711          * perf_install_in_context() which is the point the event is active and
11712          * can use these values.
11713          */
11714         perf_event__header_size(event);
11715         perf_event__id_header_size(event);
11716
11717         event->owner = current;
11718
11719         perf_install_in_context(ctx, event, event->cpu);
11720         perf_unpin_context(ctx);
11721
11722         if (move_group)
11723                 perf_event_ctx_unlock(group_leader, gctx);
11724         mutex_unlock(&ctx->mutex);
11725
11726         if (task) {
11727                 mutex_unlock(&task->signal->cred_guard_mutex);
11728                 put_task_struct(task);
11729         }
11730
11731         mutex_lock(&current->perf_event_mutex);
11732         list_add_tail(&event->owner_entry, &current->perf_event_list);
11733         mutex_unlock(&current->perf_event_mutex);
11734
11735         /*
11736          * Drop the reference on the group_event after placing the
11737          * new event on the sibling_list. This ensures destruction
11738          * of the group leader will find the pointer to itself in
11739          * perf_group_detach().
11740          */
11741         fdput(group);
11742         fd_install(event_fd, event_file);
11743         return event_fd;
11744
11745 err_locked:
11746         if (move_group)
11747                 perf_event_ctx_unlock(group_leader, gctx);
11748         mutex_unlock(&ctx->mutex);
11749 /* err_file: */
11750         fput(event_file);
11751 err_context:
11752         perf_unpin_context(ctx);
11753         put_ctx(ctx);
11754 err_alloc:
11755         /*
11756          * If event_file is set, the fput() above will have called ->release()
11757          * and that will take care of freeing the event.
11758          */
11759         if (!event_file)
11760                 free_event(event);
11761 err_cred:
11762         if (task)
11763                 mutex_unlock(&task->signal->cred_guard_mutex);
11764 err_task:
11765         if (task)
11766                 put_task_struct(task);
11767 err_group_fd:
11768         fdput(group);
11769 err_fd:
11770         put_unused_fd(event_fd);
11771         return err;
11772 }
11773
11774 /**
11775  * perf_event_create_kernel_counter
11776  *
11777  * @attr: attributes of the counter to create
11778  * @cpu: cpu in which the counter is bound
11779  * @task: task to profile (NULL for percpu)
11780  */
11781 struct perf_event *
11782 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11783                                  struct task_struct *task,
11784                                  perf_overflow_handler_t overflow_handler,
11785                                  void *context)
11786 {
11787         struct perf_event_context *ctx;
11788         struct perf_event *event;
11789         int err;
11790
11791         /*
11792          * Grouping is not supported for kernel events, neither is 'AUX',
11793          * make sure the caller's intentions are adjusted.
11794          */
11795         if (attr->aux_output)
11796                 return ERR_PTR(-EINVAL);
11797
11798         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11799                                  overflow_handler, context, -1);
11800         if (IS_ERR(event)) {
11801                 err = PTR_ERR(event);
11802                 goto err;
11803         }
11804
11805         /* Mark owner so we could distinguish it from user events. */
11806         event->owner = TASK_TOMBSTONE;
11807
11808         /*
11809          * Get the target context (task or percpu):
11810          */
11811         ctx = find_get_context(event->pmu, task, event);
11812         if (IS_ERR(ctx)) {
11813                 err = PTR_ERR(ctx);
11814                 goto err_free;
11815         }
11816
11817         WARN_ON_ONCE(ctx->parent_ctx);
11818         mutex_lock(&ctx->mutex);
11819         if (ctx->task == TASK_TOMBSTONE) {
11820                 err = -ESRCH;
11821                 goto err_unlock;
11822         }
11823
11824         if (!task) {
11825                 /*
11826                  * Check if the @cpu we're creating an event for is online.
11827                  *
11828                  * We use the perf_cpu_context::ctx::mutex to serialize against
11829                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11830                  */
11831                 struct perf_cpu_context *cpuctx =
11832                         container_of(ctx, struct perf_cpu_context, ctx);
11833                 if (!cpuctx->online) {
11834                         err = -ENODEV;
11835                         goto err_unlock;
11836                 }
11837         }
11838
11839         if (!exclusive_event_installable(event, ctx)) {
11840                 err = -EBUSY;
11841                 goto err_unlock;
11842         }
11843
11844         perf_install_in_context(ctx, event, event->cpu);
11845         perf_unpin_context(ctx);
11846         mutex_unlock(&ctx->mutex);
11847
11848         return event;
11849
11850 err_unlock:
11851         mutex_unlock(&ctx->mutex);
11852         perf_unpin_context(ctx);
11853         put_ctx(ctx);
11854 err_free:
11855         free_event(event);
11856 err:
11857         return ERR_PTR(err);
11858 }
11859 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11860
11861 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11862 {
11863         struct perf_event_context *src_ctx;
11864         struct perf_event_context *dst_ctx;
11865         struct perf_event *event, *tmp;
11866         LIST_HEAD(events);
11867
11868         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11869         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11870
11871         /*
11872          * See perf_event_ctx_lock() for comments on the details
11873          * of swizzling perf_event::ctx.
11874          */
11875         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11876         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11877                                  event_entry) {
11878                 perf_remove_from_context(event, 0);
11879                 unaccount_event_cpu(event, src_cpu);
11880                 put_ctx(src_ctx);
11881                 list_add(&event->migrate_entry, &events);
11882         }
11883
11884         /*
11885          * Wait for the events to quiesce before re-instating them.
11886          */
11887         synchronize_rcu();
11888
11889         /*
11890          * Re-instate events in 2 passes.
11891          *
11892          * Skip over group leaders and only install siblings on this first
11893          * pass, siblings will not get enabled without a leader, however a
11894          * leader will enable its siblings, even if those are still on the old
11895          * context.
11896          */
11897         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11898                 if (event->group_leader == event)
11899                         continue;
11900
11901                 list_del(&event->migrate_entry);
11902                 if (event->state >= PERF_EVENT_STATE_OFF)
11903                         event->state = PERF_EVENT_STATE_INACTIVE;
11904                 account_event_cpu(event, dst_cpu);
11905                 perf_install_in_context(dst_ctx, event, dst_cpu);
11906                 get_ctx(dst_ctx);
11907         }
11908
11909         /*
11910          * Once all the siblings are setup properly, install the group leaders
11911          * to make it go.
11912          */
11913         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11914                 list_del(&event->migrate_entry);
11915                 if (event->state >= PERF_EVENT_STATE_OFF)
11916                         event->state = PERF_EVENT_STATE_INACTIVE;
11917                 account_event_cpu(event, dst_cpu);
11918                 perf_install_in_context(dst_ctx, event, dst_cpu);
11919                 get_ctx(dst_ctx);
11920         }
11921         mutex_unlock(&dst_ctx->mutex);
11922         mutex_unlock(&src_ctx->mutex);
11923 }
11924 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11925
11926 static void sync_child_event(struct perf_event *child_event,
11927                                struct task_struct *child)
11928 {
11929         struct perf_event *parent_event = child_event->parent;
11930         u64 child_val;
11931
11932         if (child_event->attr.inherit_stat)
11933                 perf_event_read_event(child_event, child);
11934
11935         child_val = perf_event_count(child_event);
11936
11937         /*
11938          * Add back the child's count to the parent's count:
11939          */
11940         atomic64_add(child_val, &parent_event->child_count);
11941         atomic64_add(child_event->total_time_enabled,
11942                      &parent_event->child_total_time_enabled);
11943         atomic64_add(child_event->total_time_running,
11944                      &parent_event->child_total_time_running);
11945 }
11946
11947 static void
11948 perf_event_exit_event(struct perf_event *child_event,
11949                       struct perf_event_context *child_ctx,
11950                       struct task_struct *child)
11951 {
11952         struct perf_event *parent_event = child_event->parent;
11953
11954         /*
11955          * Do not destroy the 'original' grouping; because of the context
11956          * switch optimization the original events could've ended up in a
11957          * random child task.
11958          *
11959          * If we were to destroy the original group, all group related
11960          * operations would cease to function properly after this random
11961          * child dies.
11962          *
11963          * Do destroy all inherited groups, we don't care about those
11964          * and being thorough is better.
11965          */
11966         raw_spin_lock_irq(&child_ctx->lock);
11967         WARN_ON_ONCE(child_ctx->is_active);
11968
11969         if (parent_event)
11970                 perf_group_detach(child_event);
11971         list_del_event(child_event, child_ctx);
11972         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11973         raw_spin_unlock_irq(&child_ctx->lock);
11974
11975         /*
11976          * Parent events are governed by their filedesc, retain them.
11977          */
11978         if (!parent_event) {
11979                 perf_event_wakeup(child_event);
11980                 return;
11981         }
11982         /*
11983          * Child events can be cleaned up.
11984          */
11985
11986         sync_child_event(child_event, child);
11987
11988         /*
11989          * Remove this event from the parent's list
11990          */
11991         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11992         mutex_lock(&parent_event->child_mutex);
11993         list_del_init(&child_event->child_list);
11994         mutex_unlock(&parent_event->child_mutex);
11995
11996         /*
11997          * Kick perf_poll() for is_event_hup().
11998          */
11999         perf_event_wakeup(parent_event);
12000         free_event(child_event);
12001         put_event(parent_event);
12002 }
12003
12004 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12005 {
12006         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12007         struct perf_event *child_event, *next;
12008
12009         WARN_ON_ONCE(child != current);
12010
12011         child_ctx = perf_pin_task_context(child, ctxn);
12012         if (!child_ctx)
12013                 return;
12014
12015         /*
12016          * In order to reduce the amount of tricky in ctx tear-down, we hold
12017          * ctx::mutex over the entire thing. This serializes against almost
12018          * everything that wants to access the ctx.
12019          *
12020          * The exception is sys_perf_event_open() /
12021          * perf_event_create_kernel_count() which does find_get_context()
12022          * without ctx::mutex (it cannot because of the move_group double mutex
12023          * lock thing). See the comments in perf_install_in_context().
12024          */
12025         mutex_lock(&child_ctx->mutex);
12026
12027         /*
12028          * In a single ctx::lock section, de-schedule the events and detach the
12029          * context from the task such that we cannot ever get it scheduled back
12030          * in.
12031          */
12032         raw_spin_lock_irq(&child_ctx->lock);
12033         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12034
12035         /*
12036          * Now that the context is inactive, destroy the task <-> ctx relation
12037          * and mark the context dead.
12038          */
12039         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12040         put_ctx(child_ctx); /* cannot be last */
12041         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12042         put_task_struct(current); /* cannot be last */
12043
12044         clone_ctx = unclone_ctx(child_ctx);
12045         raw_spin_unlock_irq(&child_ctx->lock);
12046
12047         if (clone_ctx)
12048                 put_ctx(clone_ctx);
12049
12050         /*
12051          * Report the task dead after unscheduling the events so that we
12052          * won't get any samples after PERF_RECORD_EXIT. We can however still
12053          * get a few PERF_RECORD_READ events.
12054          */
12055         perf_event_task(child, child_ctx, 0);
12056
12057         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12058                 perf_event_exit_event(child_event, child_ctx, child);
12059
12060         mutex_unlock(&child_ctx->mutex);
12061
12062         put_ctx(child_ctx);
12063 }
12064
12065 /*
12066  * When a child task exits, feed back event values to parent events.
12067  *
12068  * Can be called with cred_guard_mutex held when called from
12069  * install_exec_creds().
12070  */
12071 void perf_event_exit_task(struct task_struct *child)
12072 {
12073         struct perf_event *event, *tmp;
12074         int ctxn;
12075
12076         mutex_lock(&child->perf_event_mutex);
12077         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12078                                  owner_entry) {
12079                 list_del_init(&event->owner_entry);
12080
12081                 /*
12082                  * Ensure the list deletion is visible before we clear
12083                  * the owner, closes a race against perf_release() where
12084                  * we need to serialize on the owner->perf_event_mutex.
12085                  */
12086                 smp_store_release(&event->owner, NULL);
12087         }
12088         mutex_unlock(&child->perf_event_mutex);
12089
12090         for_each_task_context_nr(ctxn)
12091                 perf_event_exit_task_context(child, ctxn);
12092
12093         /*
12094          * The perf_event_exit_task_context calls perf_event_task
12095          * with child's task_ctx, which generates EXIT events for
12096          * child contexts and sets child->perf_event_ctxp[] to NULL.
12097          * At this point we need to send EXIT events to cpu contexts.
12098          */
12099         perf_event_task(child, NULL, 0);
12100 }
12101
12102 static void perf_free_event(struct perf_event *event,
12103                             struct perf_event_context *ctx)
12104 {
12105         struct perf_event *parent = event->parent;
12106
12107         if (WARN_ON_ONCE(!parent))
12108                 return;
12109
12110         mutex_lock(&parent->child_mutex);
12111         list_del_init(&event->child_list);
12112         mutex_unlock(&parent->child_mutex);
12113
12114         put_event(parent);
12115
12116         raw_spin_lock_irq(&ctx->lock);
12117         perf_group_detach(event);
12118         list_del_event(event, ctx);
12119         raw_spin_unlock_irq(&ctx->lock);
12120         free_event(event);
12121 }
12122
12123 /*
12124  * Free a context as created by inheritance by perf_event_init_task() below,
12125  * used by fork() in case of fail.
12126  *
12127  * Even though the task has never lived, the context and events have been
12128  * exposed through the child_list, so we must take care tearing it all down.
12129  */
12130 void perf_event_free_task(struct task_struct *task)
12131 {
12132         struct perf_event_context *ctx;
12133         struct perf_event *event, *tmp;
12134         int ctxn;
12135
12136         for_each_task_context_nr(ctxn) {
12137                 ctx = task->perf_event_ctxp[ctxn];
12138                 if (!ctx)
12139                         continue;
12140
12141                 mutex_lock(&ctx->mutex);
12142                 raw_spin_lock_irq(&ctx->lock);
12143                 /*
12144                  * Destroy the task <-> ctx relation and mark the context dead.
12145                  *
12146                  * This is important because even though the task hasn't been
12147                  * exposed yet the context has been (through child_list).
12148                  */
12149                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12150                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12151                 put_task_struct(task); /* cannot be last */
12152                 raw_spin_unlock_irq(&ctx->lock);
12153
12154                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12155                         perf_free_event(event, ctx);
12156
12157                 mutex_unlock(&ctx->mutex);
12158
12159                 /*
12160                  * perf_event_release_kernel() could've stolen some of our
12161                  * child events and still have them on its free_list. In that
12162                  * case we must wait for these events to have been freed (in
12163                  * particular all their references to this task must've been
12164                  * dropped).
12165                  *
12166                  * Without this copy_process() will unconditionally free this
12167                  * task (irrespective of its reference count) and
12168                  * _free_event()'s put_task_struct(event->hw.target) will be a
12169                  * use-after-free.
12170                  *
12171                  * Wait for all events to drop their context reference.
12172                  */
12173                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12174                 put_ctx(ctx); /* must be last */
12175         }
12176 }
12177
12178 void perf_event_delayed_put(struct task_struct *task)
12179 {
12180         int ctxn;
12181
12182         for_each_task_context_nr(ctxn)
12183                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12184 }
12185
12186 struct file *perf_event_get(unsigned int fd)
12187 {
12188         struct file *file = fget(fd);
12189         if (!file)
12190                 return ERR_PTR(-EBADF);
12191
12192         if (file->f_op != &perf_fops) {
12193                 fput(file);
12194                 return ERR_PTR(-EBADF);
12195         }
12196
12197         return file;
12198 }
12199
12200 const struct perf_event *perf_get_event(struct file *file)
12201 {
12202         if (file->f_op != &perf_fops)
12203                 return ERR_PTR(-EINVAL);
12204
12205         return file->private_data;
12206 }
12207
12208 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12209 {
12210         if (!event)
12211                 return ERR_PTR(-EINVAL);
12212
12213         return &event->attr;
12214 }
12215
12216 /*
12217  * Inherit an event from parent task to child task.
12218  *
12219  * Returns:
12220  *  - valid pointer on success
12221  *  - NULL for orphaned events
12222  *  - IS_ERR() on error
12223  */
12224 static struct perf_event *
12225 inherit_event(struct perf_event *parent_event,
12226               struct task_struct *parent,
12227               struct perf_event_context *parent_ctx,
12228               struct task_struct *child,
12229               struct perf_event *group_leader,
12230               struct perf_event_context *child_ctx)
12231 {
12232         enum perf_event_state parent_state = parent_event->state;
12233         struct perf_event *child_event;
12234         unsigned long flags;
12235
12236         /*
12237          * Instead of creating recursive hierarchies of events,
12238          * we link inherited events back to the original parent,
12239          * which has a filp for sure, which we use as the reference
12240          * count:
12241          */
12242         if (parent_event->parent)
12243                 parent_event = parent_event->parent;
12244
12245         child_event = perf_event_alloc(&parent_event->attr,
12246                                            parent_event->cpu,
12247                                            child,
12248                                            group_leader, parent_event,
12249                                            NULL, NULL, -1);
12250         if (IS_ERR(child_event))
12251                 return child_event;
12252
12253
12254         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12255             !child_ctx->task_ctx_data) {
12256                 struct pmu *pmu = child_event->pmu;
12257
12258                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12259                                                    GFP_KERNEL);
12260                 if (!child_ctx->task_ctx_data) {
12261                         free_event(child_event);
12262                         return ERR_PTR(-ENOMEM);
12263                 }
12264         }
12265
12266         /*
12267          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12268          * must be under the same lock in order to serialize against
12269          * perf_event_release_kernel(), such that either we must observe
12270          * is_orphaned_event() or they will observe us on the child_list.
12271          */
12272         mutex_lock(&parent_event->child_mutex);
12273         if (is_orphaned_event(parent_event) ||
12274             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12275                 mutex_unlock(&parent_event->child_mutex);
12276                 /* task_ctx_data is freed with child_ctx */
12277                 free_event(child_event);
12278                 return NULL;
12279         }
12280
12281         get_ctx(child_ctx);
12282
12283         /*
12284          * Make the child state follow the state of the parent event,
12285          * not its attr.disabled bit.  We hold the parent's mutex,
12286          * so we won't race with perf_event_{en, dis}able_family.
12287          */
12288         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12289                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12290         else
12291                 child_event->state = PERF_EVENT_STATE_OFF;
12292
12293         if (parent_event->attr.freq) {
12294                 u64 sample_period = parent_event->hw.sample_period;
12295                 struct hw_perf_event *hwc = &child_event->hw;
12296
12297                 hwc->sample_period = sample_period;
12298                 hwc->last_period   = sample_period;
12299
12300                 local64_set(&hwc->period_left, sample_period);
12301         }
12302
12303         child_event->ctx = child_ctx;
12304         child_event->overflow_handler = parent_event->overflow_handler;
12305         child_event->overflow_handler_context
12306                 = parent_event->overflow_handler_context;
12307
12308         /*
12309          * Precalculate sample_data sizes
12310          */
12311         perf_event__header_size(child_event);
12312         perf_event__id_header_size(child_event);
12313
12314         /*
12315          * Link it up in the child's context:
12316          */
12317         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12318         add_event_to_ctx(child_event, child_ctx);
12319         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12320
12321         /*
12322          * Link this into the parent event's child list
12323          */
12324         list_add_tail(&child_event->child_list, &parent_event->child_list);
12325         mutex_unlock(&parent_event->child_mutex);
12326
12327         return child_event;
12328 }
12329
12330 /*
12331  * Inherits an event group.
12332  *
12333  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12334  * This matches with perf_event_release_kernel() removing all child events.
12335  *
12336  * Returns:
12337  *  - 0 on success
12338  *  - <0 on error
12339  */
12340 static int inherit_group(struct perf_event *parent_event,
12341               struct task_struct *parent,
12342               struct perf_event_context *parent_ctx,
12343               struct task_struct *child,
12344               struct perf_event_context *child_ctx)
12345 {
12346         struct perf_event *leader;
12347         struct perf_event *sub;
12348         struct perf_event *child_ctr;
12349
12350         leader = inherit_event(parent_event, parent, parent_ctx,
12351                                  child, NULL, child_ctx);
12352         if (IS_ERR(leader))
12353                 return PTR_ERR(leader);
12354         /*
12355          * @leader can be NULL here because of is_orphaned_event(). In this
12356          * case inherit_event() will create individual events, similar to what
12357          * perf_group_detach() would do anyway.
12358          */
12359         for_each_sibling_event(sub, parent_event) {
12360                 child_ctr = inherit_event(sub, parent, parent_ctx,
12361                                             child, leader, child_ctx);
12362                 if (IS_ERR(child_ctr))
12363                         return PTR_ERR(child_ctr);
12364
12365                 if (sub->aux_event == parent_event && child_ctr &&
12366                     !perf_get_aux_event(child_ctr, leader))
12367                         return -EINVAL;
12368         }
12369         return 0;
12370 }
12371
12372 /*
12373  * Creates the child task context and tries to inherit the event-group.
12374  *
12375  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12376  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12377  * consistent with perf_event_release_kernel() removing all child events.
12378  *
12379  * Returns:
12380  *  - 0 on success
12381  *  - <0 on error
12382  */
12383 static int
12384 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12385                    struct perf_event_context *parent_ctx,
12386                    struct task_struct *child, int ctxn,
12387                    int *inherited_all)
12388 {
12389         int ret;
12390         struct perf_event_context *child_ctx;
12391
12392         if (!event->attr.inherit) {
12393                 *inherited_all = 0;
12394                 return 0;
12395         }
12396
12397         child_ctx = child->perf_event_ctxp[ctxn];
12398         if (!child_ctx) {
12399                 /*
12400                  * This is executed from the parent task context, so
12401                  * inherit events that have been marked for cloning.
12402                  * First allocate and initialize a context for the
12403                  * child.
12404                  */
12405                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12406                 if (!child_ctx)
12407                         return -ENOMEM;
12408
12409                 child->perf_event_ctxp[ctxn] = child_ctx;
12410         }
12411
12412         ret = inherit_group(event, parent, parent_ctx,
12413                             child, child_ctx);
12414
12415         if (ret)
12416                 *inherited_all = 0;
12417
12418         return ret;
12419 }
12420
12421 /*
12422  * Initialize the perf_event context in task_struct
12423  */
12424 static int perf_event_init_context(struct task_struct *child, int ctxn)
12425 {
12426         struct perf_event_context *child_ctx, *parent_ctx;
12427         struct perf_event_context *cloned_ctx;
12428         struct perf_event *event;
12429         struct task_struct *parent = current;
12430         int inherited_all = 1;
12431         unsigned long flags;
12432         int ret = 0;
12433
12434         if (likely(!parent->perf_event_ctxp[ctxn]))
12435                 return 0;
12436
12437         /*
12438          * If the parent's context is a clone, pin it so it won't get
12439          * swapped under us.
12440          */
12441         parent_ctx = perf_pin_task_context(parent, ctxn);
12442         if (!parent_ctx)
12443                 return 0;
12444
12445         /*
12446          * No need to check if parent_ctx != NULL here; since we saw
12447          * it non-NULL earlier, the only reason for it to become NULL
12448          * is if we exit, and since we're currently in the middle of
12449          * a fork we can't be exiting at the same time.
12450          */
12451
12452         /*
12453          * Lock the parent list. No need to lock the child - not PID
12454          * hashed yet and not running, so nobody can access it.
12455          */
12456         mutex_lock(&parent_ctx->mutex);
12457
12458         /*
12459          * We dont have to disable NMIs - we are only looking at
12460          * the list, not manipulating it:
12461          */
12462         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12463                 ret = inherit_task_group(event, parent, parent_ctx,
12464                                          child, ctxn, &inherited_all);
12465                 if (ret)
12466                         goto out_unlock;
12467         }
12468
12469         /*
12470          * We can't hold ctx->lock when iterating the ->flexible_group list due
12471          * to allocations, but we need to prevent rotation because
12472          * rotate_ctx() will change the list from interrupt context.
12473          */
12474         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12475         parent_ctx->rotate_disable = 1;
12476         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12477
12478         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12479                 ret = inherit_task_group(event, parent, parent_ctx,
12480                                          child, ctxn, &inherited_all);
12481                 if (ret)
12482                         goto out_unlock;
12483         }
12484
12485         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12486         parent_ctx->rotate_disable = 0;
12487
12488         child_ctx = child->perf_event_ctxp[ctxn];
12489
12490         if (child_ctx && inherited_all) {
12491                 /*
12492                  * Mark the child context as a clone of the parent
12493                  * context, or of whatever the parent is a clone of.
12494                  *
12495                  * Note that if the parent is a clone, the holding of
12496                  * parent_ctx->lock avoids it from being uncloned.
12497                  */
12498                 cloned_ctx = parent_ctx->parent_ctx;
12499                 if (cloned_ctx) {
12500                         child_ctx->parent_ctx = cloned_ctx;
12501                         child_ctx->parent_gen = parent_ctx->parent_gen;
12502                 } else {
12503                         child_ctx->parent_ctx = parent_ctx;
12504                         child_ctx->parent_gen = parent_ctx->generation;
12505                 }
12506                 get_ctx(child_ctx->parent_ctx);
12507         }
12508
12509         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12510 out_unlock:
12511         mutex_unlock(&parent_ctx->mutex);
12512
12513         perf_unpin_context(parent_ctx);
12514         put_ctx(parent_ctx);
12515
12516         return ret;
12517 }
12518
12519 /*
12520  * Initialize the perf_event context in task_struct
12521  */
12522 int perf_event_init_task(struct task_struct *child)
12523 {
12524         int ctxn, ret;
12525
12526         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12527         mutex_init(&child->perf_event_mutex);
12528         INIT_LIST_HEAD(&child->perf_event_list);
12529
12530         for_each_task_context_nr(ctxn) {
12531                 ret = perf_event_init_context(child, ctxn);
12532                 if (ret) {
12533                         perf_event_free_task(child);
12534                         return ret;
12535                 }
12536         }
12537
12538         return 0;
12539 }
12540
12541 static void __init perf_event_init_all_cpus(void)
12542 {
12543         struct swevent_htable *swhash;
12544         int cpu;
12545
12546         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12547
12548         for_each_possible_cpu(cpu) {
12549                 swhash = &per_cpu(swevent_htable, cpu);
12550                 mutex_init(&swhash->hlist_mutex);
12551                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12552
12553                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12554                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12555
12556 #ifdef CONFIG_CGROUP_PERF
12557                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12558 #endif
12559                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12560         }
12561 }
12562
12563 static void perf_swevent_init_cpu(unsigned int cpu)
12564 {
12565         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12566
12567         mutex_lock(&swhash->hlist_mutex);
12568         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12569                 struct swevent_hlist *hlist;
12570
12571                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12572                 WARN_ON(!hlist);
12573                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12574         }
12575         mutex_unlock(&swhash->hlist_mutex);
12576 }
12577
12578 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12579 static void __perf_event_exit_context(void *__info)
12580 {
12581         struct perf_event_context *ctx = __info;
12582         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12583         struct perf_event *event;
12584
12585         raw_spin_lock(&ctx->lock);
12586         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12587         list_for_each_entry(event, &ctx->event_list, event_entry)
12588                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12589         raw_spin_unlock(&ctx->lock);
12590 }
12591
12592 static void perf_event_exit_cpu_context(int cpu)
12593 {
12594         struct perf_cpu_context *cpuctx;
12595         struct perf_event_context *ctx;
12596         struct pmu *pmu;
12597
12598         mutex_lock(&pmus_lock);
12599         list_for_each_entry(pmu, &pmus, entry) {
12600                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12601                 ctx = &cpuctx->ctx;
12602
12603                 mutex_lock(&ctx->mutex);
12604                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12605                 cpuctx->online = 0;
12606                 mutex_unlock(&ctx->mutex);
12607         }
12608         cpumask_clear_cpu(cpu, perf_online_mask);
12609         mutex_unlock(&pmus_lock);
12610 }
12611 #else
12612
12613 static void perf_event_exit_cpu_context(int cpu) { }
12614
12615 #endif
12616
12617 int perf_event_init_cpu(unsigned int cpu)
12618 {
12619         struct perf_cpu_context *cpuctx;
12620         struct perf_event_context *ctx;
12621         struct pmu *pmu;
12622
12623         perf_swevent_init_cpu(cpu);
12624
12625         mutex_lock(&pmus_lock);
12626         cpumask_set_cpu(cpu, perf_online_mask);
12627         list_for_each_entry(pmu, &pmus, entry) {
12628                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12629                 ctx = &cpuctx->ctx;
12630
12631                 mutex_lock(&ctx->mutex);
12632                 cpuctx->online = 1;
12633                 mutex_unlock(&ctx->mutex);
12634         }
12635         mutex_unlock(&pmus_lock);
12636
12637         return 0;
12638 }
12639
12640 int perf_event_exit_cpu(unsigned int cpu)
12641 {
12642         perf_event_exit_cpu_context(cpu);
12643         return 0;
12644 }
12645
12646 static int
12647 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12648 {
12649         int cpu;
12650
12651         for_each_online_cpu(cpu)
12652                 perf_event_exit_cpu(cpu);
12653
12654         return NOTIFY_OK;
12655 }
12656
12657 /*
12658  * Run the perf reboot notifier at the very last possible moment so that
12659  * the generic watchdog code runs as long as possible.
12660  */
12661 static struct notifier_block perf_reboot_notifier = {
12662         .notifier_call = perf_reboot,
12663         .priority = INT_MIN,
12664 };
12665
12666 void __init perf_event_init(void)
12667 {
12668         int ret;
12669
12670         idr_init(&pmu_idr);
12671
12672         perf_event_init_all_cpus();
12673         init_srcu_struct(&pmus_srcu);
12674         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12675         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12676         perf_pmu_register(&perf_task_clock, NULL, -1);
12677         perf_tp_register();
12678         perf_event_init_cpu(smp_processor_id());
12679         register_reboot_notifier(&perf_reboot_notifier);
12680
12681         ret = init_hw_breakpoint();
12682         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12683
12684         /*
12685          * Build time assertion that we keep the data_head at the intended
12686          * location.  IOW, validation we got the __reserved[] size right.
12687          */
12688         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12689                      != 1024);
12690 }
12691
12692 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12693                               char *page)
12694 {
12695         struct perf_pmu_events_attr *pmu_attr =
12696                 container_of(attr, struct perf_pmu_events_attr, attr);
12697
12698         if (pmu_attr->event_str)
12699                 return sprintf(page, "%s\n", pmu_attr->event_str);
12700
12701         return 0;
12702 }
12703 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12704
12705 static int __init perf_event_sysfs_init(void)
12706 {
12707         struct pmu *pmu;
12708         int ret;
12709
12710         mutex_lock(&pmus_lock);
12711
12712         ret = bus_register(&pmu_bus);
12713         if (ret)
12714                 goto unlock;
12715
12716         list_for_each_entry(pmu, &pmus, entry) {
12717                 if (!pmu->name || pmu->type < 0)
12718                         continue;
12719
12720                 ret = pmu_dev_alloc(pmu);
12721                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12722         }
12723         pmu_bus_running = 1;
12724         ret = 0;
12725
12726 unlock:
12727         mutex_unlock(&pmus_lock);
12728
12729         return ret;
12730 }
12731 device_initcall(perf_event_sysfs_init);
12732
12733 #ifdef CONFIG_CGROUP_PERF
12734 static struct cgroup_subsys_state *
12735 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12736 {
12737         struct perf_cgroup *jc;
12738
12739         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12740         if (!jc)
12741                 return ERR_PTR(-ENOMEM);
12742
12743         jc->info = alloc_percpu(struct perf_cgroup_info);
12744         if (!jc->info) {
12745                 kfree(jc);
12746                 return ERR_PTR(-ENOMEM);
12747         }
12748
12749         return &jc->css;
12750 }
12751
12752 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12753 {
12754         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12755
12756         free_percpu(jc->info);
12757         kfree(jc);
12758 }
12759
12760 static int __perf_cgroup_move(void *info)
12761 {
12762         struct task_struct *task = info;
12763         rcu_read_lock();
12764         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12765         rcu_read_unlock();
12766         return 0;
12767 }
12768
12769 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12770 {
12771         struct task_struct *task;
12772         struct cgroup_subsys_state *css;
12773
12774         cgroup_taskset_for_each(task, css, tset)
12775                 task_function_call(task, __perf_cgroup_move, task);
12776 }
12777
12778 struct cgroup_subsys perf_event_cgrp_subsys = {
12779         .css_alloc      = perf_cgroup_css_alloc,
12780         .css_free       = perf_cgroup_css_free,
12781         .attach         = perf_cgroup_attach,
12782         /*
12783          * Implicitly enable on dfl hierarchy so that perf events can
12784          * always be filtered by cgroup2 path as long as perf_event
12785          * controller is not mounted on a legacy hierarchy.
12786          */
12787         .implicit_on_dfl = true,
12788         .threaded       = true,
12789 };
12790 #endif /* CONFIG_CGROUP_PERF */