OSDN Git Service

crypto: talitos - HMAC SNOOP NO AFEU mode requires SW icv checking.
[android-x86/kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   smp_mb(); (A) <-- paired with -.
128  *                                  |
129  *   lock(hash_bucket(futex));      |
130  *                                  |
131  *   uval = *futex;                 |
132  *                                  |        *futex = newval;
133  *                                  |        sys_futex(WAKE, futex);
134  *                                  |          futex_wake(futex);
135  *                                  |
136  *                                  `--------> smp_mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #ifdef CONFIG_MMU
183 # define FLAGS_SHARED           0x01
184 #else
185 /*
186  * NOMMU does not have per process address space. Let the compiler optimize
187  * code away.
188  */
189 # define FLAGS_SHARED           0x00
190 #endif
191 #define FLAGS_CLOCKRT           0x02
192 #define FLAGS_HAS_TIMEOUT       0x04
193
194 /*
195  * Priority Inheritance state:
196  */
197 struct futex_pi_state {
198         /*
199          * list of 'owned' pi_state instances - these have to be
200          * cleaned up in do_exit() if the task exits prematurely:
201          */
202         struct list_head list;
203
204         /*
205          * The PI object:
206          */
207         struct rt_mutex pi_mutex;
208
209         struct task_struct *owner;
210         atomic_t refcount;
211
212         union futex_key key;
213 };
214
215 /**
216  * struct futex_q - The hashed futex queue entry, one per waiting task
217  * @list:               priority-sorted list of tasks waiting on this futex
218  * @task:               the task waiting on the futex
219  * @lock_ptr:           the hash bucket lock
220  * @key:                the key the futex is hashed on
221  * @pi_state:           optional priority inheritance state
222  * @rt_waiter:          rt_waiter storage for use with requeue_pi
223  * @requeue_pi_key:     the requeue_pi target futex key
224  * @bitset:             bitset for the optional bitmasked wakeup
225  *
226  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
227  * we can wake only the relevant ones (hashed queues may be shared).
228  *
229  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
230  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
231  * The order of wakeup is always to make the first condition true, then
232  * the second.
233  *
234  * PI futexes are typically woken before they are removed from the hash list via
235  * the rt_mutex code. See unqueue_me_pi().
236  */
237 struct futex_q {
238         struct plist_node list;
239
240         struct task_struct *task;
241         spinlock_t *lock_ptr;
242         union futex_key key;
243         struct futex_pi_state *pi_state;
244         struct rt_mutex_waiter *rt_waiter;
245         union futex_key *requeue_pi_key;
246         u32 bitset;
247 };
248
249 static const struct futex_q futex_q_init = {
250         /* list gets initialized in queue_me()*/
251         .key = FUTEX_KEY_INIT,
252         .bitset = FUTEX_BITSET_MATCH_ANY
253 };
254
255 /*
256  * Hash buckets are shared by all the futex_keys that hash to the same
257  * location.  Each key may have multiple futex_q structures, one for each task
258  * waiting on a futex.
259  */
260 struct futex_hash_bucket {
261         atomic_t waiters;
262         spinlock_t lock;
263         struct plist_head chain;
264 } ____cacheline_aligned_in_smp;
265
266 /*
267  * The base of the bucket array and its size are always used together
268  * (after initialization only in hash_futex()), so ensure that they
269  * reside in the same cacheline.
270  */
271 static struct {
272         struct futex_hash_bucket *queues;
273         unsigned long            hashsize;
274 } __futex_data __read_mostly __aligned(2*sizeof(long));
275 #define futex_queues   (__futex_data.queues)
276 #define futex_hashsize (__futex_data.hashsize)
277
278
279 /*
280  * Fault injections for futexes.
281  */
282 #ifdef CONFIG_FAIL_FUTEX
283
284 static struct {
285         struct fault_attr attr;
286
287         bool ignore_private;
288 } fail_futex = {
289         .attr = FAULT_ATTR_INITIALIZER,
290         .ignore_private = false,
291 };
292
293 static int __init setup_fail_futex(char *str)
294 {
295         return setup_fault_attr(&fail_futex.attr, str);
296 }
297 __setup("fail_futex=", setup_fail_futex);
298
299 static bool should_fail_futex(bool fshared)
300 {
301         if (fail_futex.ignore_private && !fshared)
302                 return false;
303
304         return should_fail(&fail_futex.attr, 1);
305 }
306
307 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
308
309 static int __init fail_futex_debugfs(void)
310 {
311         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
312         struct dentry *dir;
313
314         dir = fault_create_debugfs_attr("fail_futex", NULL,
315                                         &fail_futex.attr);
316         if (IS_ERR(dir))
317                 return PTR_ERR(dir);
318
319         if (!debugfs_create_bool("ignore-private", mode, dir,
320                                  &fail_futex.ignore_private)) {
321                 debugfs_remove_recursive(dir);
322                 return -ENOMEM;
323         }
324
325         return 0;
326 }
327
328 late_initcall(fail_futex_debugfs);
329
330 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
331
332 #else
333 static inline bool should_fail_futex(bool fshared)
334 {
335         return false;
336 }
337 #endif /* CONFIG_FAIL_FUTEX */
338
339 static inline void futex_get_mm(union futex_key *key)
340 {
341         atomic_inc(&key->private.mm->mm_count);
342         /*
343          * Ensure futex_get_mm() implies a full barrier such that
344          * get_futex_key() implies a full barrier. This is relied upon
345          * as smp_mb(); (B), see the ordering comment above.
346          */
347         smp_mb__after_atomic();
348 }
349
350 /*
351  * Reflects a new waiter being added to the waitqueue.
352  */
353 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
354 {
355 #ifdef CONFIG_SMP
356         atomic_inc(&hb->waiters);
357         /*
358          * Full barrier (A), see the ordering comment above.
359          */
360         smp_mb__after_atomic();
361 #endif
362 }
363
364 /*
365  * Reflects a waiter being removed from the waitqueue by wakeup
366  * paths.
367  */
368 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
369 {
370 #ifdef CONFIG_SMP
371         atomic_dec(&hb->waiters);
372 #endif
373 }
374
375 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
376 {
377 #ifdef CONFIG_SMP
378         return atomic_read(&hb->waiters);
379 #else
380         return 1;
381 #endif
382 }
383
384 /**
385  * hash_futex - Return the hash bucket in the global hash
386  * @key:        Pointer to the futex key for which the hash is calculated
387  *
388  * We hash on the keys returned from get_futex_key (see below) and return the
389  * corresponding hash bucket in the global hash.
390  */
391 static struct futex_hash_bucket *hash_futex(union futex_key *key)
392 {
393         u32 hash = jhash2((u32*)&key->both.word,
394                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
395                           key->both.offset);
396         return &futex_queues[hash & (futex_hashsize - 1)];
397 }
398
399
400 /**
401  * match_futex - Check whether two futex keys are equal
402  * @key1:       Pointer to key1
403  * @key2:       Pointer to key2
404  *
405  * Return 1 if two futex_keys are equal, 0 otherwise.
406  */
407 static inline int match_futex(union futex_key *key1, union futex_key *key2)
408 {
409         return (key1 && key2
410                 && key1->both.word == key2->both.word
411                 && key1->both.ptr == key2->both.ptr
412                 && key1->both.offset == key2->both.offset);
413 }
414
415 /*
416  * Take a reference to the resource addressed by a key.
417  * Can be called while holding spinlocks.
418  *
419  */
420 static void get_futex_key_refs(union futex_key *key)
421 {
422         if (!key->both.ptr)
423                 return;
424
425         /*
426          * On MMU less systems futexes are always "private" as there is no per
427          * process address space. We need the smp wmb nevertheless - yes,
428          * arch/blackfin has MMU less SMP ...
429          */
430         if (!IS_ENABLED(CONFIG_MMU)) {
431                 smp_mb(); /* explicit smp_mb(); (B) */
432                 return;
433         }
434
435         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
436         case FUT_OFF_INODE:
437                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
438                 break;
439         case FUT_OFF_MMSHARED:
440                 futex_get_mm(key); /* implies smp_mb(); (B) */
441                 break;
442         default:
443                 /*
444                  * Private futexes do not hold reference on an inode or
445                  * mm, therefore the only purpose of calling get_futex_key_refs
446                  * is because we need the barrier for the lockless waiter check.
447                  */
448                 smp_mb(); /* explicit smp_mb(); (B) */
449         }
450 }
451
452 /*
453  * Drop a reference to the resource addressed by a key.
454  * The hash bucket spinlock must not be held. This is
455  * a no-op for private futexes, see comment in the get
456  * counterpart.
457  */
458 static void drop_futex_key_refs(union futex_key *key)
459 {
460         if (!key->both.ptr) {
461                 /* If we're here then we tried to put a key we failed to get */
462                 WARN_ON_ONCE(1);
463                 return;
464         }
465
466         if (!IS_ENABLED(CONFIG_MMU))
467                 return;
468
469         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
470         case FUT_OFF_INODE:
471                 iput(key->shared.inode);
472                 break;
473         case FUT_OFF_MMSHARED:
474                 mmdrop(key->private.mm);
475                 break;
476         }
477 }
478
479 /**
480  * get_futex_key() - Get parameters which are the keys for a futex
481  * @uaddr:      virtual address of the futex
482  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
483  * @key:        address where result is stored.
484  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
485  *              VERIFY_WRITE)
486  *
487  * Return: a negative error code or 0
488  *
489  * The key words are stored in *key on success.
490  *
491  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
492  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
493  * We can usually work out the index without swapping in the page.
494  *
495  * lock_page() might sleep, the caller should not hold a spinlock.
496  */
497 static int
498 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
499 {
500         unsigned long address = (unsigned long)uaddr;
501         struct mm_struct *mm = current->mm;
502         struct page *page, *tail;
503         struct address_space *mapping;
504         int err, ro = 0;
505
506         /*
507          * The futex address must be "naturally" aligned.
508          */
509         key->both.offset = address % PAGE_SIZE;
510         if (unlikely((address % sizeof(u32)) != 0))
511                 return -EINVAL;
512         address -= key->both.offset;
513
514         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
515                 return -EFAULT;
516
517         if (unlikely(should_fail_futex(fshared)))
518                 return -EFAULT;
519
520         /*
521          * PROCESS_PRIVATE futexes are fast.
522          * As the mm cannot disappear under us and the 'key' only needs
523          * virtual address, we dont even have to find the underlying vma.
524          * Note : We do have to check 'uaddr' is a valid user address,
525          *        but access_ok() should be faster than find_vma()
526          */
527         if (!fshared) {
528                 key->private.mm = mm;
529                 key->private.address = address;
530                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
531                 return 0;
532         }
533
534 again:
535         /* Ignore any VERIFY_READ mapping (futex common case) */
536         if (unlikely(should_fail_futex(fshared)))
537                 return -EFAULT;
538
539         err = get_user_pages_fast(address, 1, 1, &page);
540         /*
541          * If write access is not required (eg. FUTEX_WAIT), try
542          * and get read-only access.
543          */
544         if (err == -EFAULT && rw == VERIFY_READ) {
545                 err = get_user_pages_fast(address, 1, 0, &page);
546                 ro = 1;
547         }
548         if (err < 0)
549                 return err;
550         else
551                 err = 0;
552
553         /*
554          * The treatment of mapping from this point on is critical. The page
555          * lock protects many things but in this context the page lock
556          * stabilizes mapping, prevents inode freeing in the shared
557          * file-backed region case and guards against movement to swap cache.
558          *
559          * Strictly speaking the page lock is not needed in all cases being
560          * considered here and page lock forces unnecessarily serialization
561          * From this point on, mapping will be re-verified if necessary and
562          * page lock will be acquired only if it is unavoidable
563          *
564          * Mapping checks require the head page for any compound page so the
565          * head page and mapping is looked up now. For anonymous pages, it
566          * does not matter if the page splits in the future as the key is
567          * based on the address. For filesystem-backed pages, the tail is
568          * required as the index of the page determines the key. For
569          * base pages, there is no tail page and tail == page.
570          */
571         tail = page;
572         page = compound_head(page);
573         mapping = READ_ONCE(page->mapping);
574
575         /*
576          * If page->mapping is NULL, then it cannot be a PageAnon
577          * page; but it might be the ZERO_PAGE or in the gate area or
578          * in a special mapping (all cases which we are happy to fail);
579          * or it may have been a good file page when get_user_pages_fast
580          * found it, but truncated or holepunched or subjected to
581          * invalidate_complete_page2 before we got the page lock (also
582          * cases which we are happy to fail).  And we hold a reference,
583          * so refcount care in invalidate_complete_page's remove_mapping
584          * prevents drop_caches from setting mapping to NULL beneath us.
585          *
586          * The case we do have to guard against is when memory pressure made
587          * shmem_writepage move it from filecache to swapcache beneath us:
588          * an unlikely race, but we do need to retry for page->mapping.
589          */
590         if (unlikely(!mapping)) {
591                 int shmem_swizzled;
592
593                 /*
594                  * Page lock is required to identify which special case above
595                  * applies. If this is really a shmem page then the page lock
596                  * will prevent unexpected transitions.
597                  */
598                 lock_page(page);
599                 shmem_swizzled = PageSwapCache(page) || page->mapping;
600                 unlock_page(page);
601                 put_page(page);
602
603                 if (shmem_swizzled)
604                         goto again;
605
606                 return -EFAULT;
607         }
608
609         /*
610          * Private mappings are handled in a simple way.
611          *
612          * If the futex key is stored on an anonymous page, then the associated
613          * object is the mm which is implicitly pinned by the calling process.
614          *
615          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
616          * it's a read-only handle, it's expected that futexes attach to
617          * the object not the particular process.
618          */
619         if (PageAnon(page)) {
620                 /*
621                  * A RO anonymous page will never change and thus doesn't make
622                  * sense for futex operations.
623                  */
624                 if (unlikely(should_fail_futex(fshared)) || ro) {
625                         err = -EFAULT;
626                         goto out;
627                 }
628
629                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
630                 key->private.mm = mm;
631                 key->private.address = address;
632
633                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
634
635         } else {
636                 struct inode *inode;
637
638                 /*
639                  * The associated futex object in this case is the inode and
640                  * the page->mapping must be traversed. Ordinarily this should
641                  * be stabilised under page lock but it's not strictly
642                  * necessary in this case as we just want to pin the inode, not
643                  * update the radix tree or anything like that.
644                  *
645                  * The RCU read lock is taken as the inode is finally freed
646                  * under RCU. If the mapping still matches expectations then the
647                  * mapping->host can be safely accessed as being a valid inode.
648                  */
649                 rcu_read_lock();
650
651                 if (READ_ONCE(page->mapping) != mapping) {
652                         rcu_read_unlock();
653                         put_page(page);
654
655                         goto again;
656                 }
657
658                 inode = READ_ONCE(mapping->host);
659                 if (!inode) {
660                         rcu_read_unlock();
661                         put_page(page);
662
663                         goto again;
664                 }
665
666                 /*
667                  * Take a reference unless it is about to be freed. Previously
668                  * this reference was taken by ihold under the page lock
669                  * pinning the inode in place so i_lock was unnecessary. The
670                  * only way for this check to fail is if the inode was
671                  * truncated in parallel which is almost certainly an
672                  * application bug. In such a case, just retry.
673                  *
674                  * We are not calling into get_futex_key_refs() in file-backed
675                  * cases, therefore a successful atomic_inc return below will
676                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
677                  */
678                 if (!atomic_inc_not_zero(&inode->i_count)) {
679                         rcu_read_unlock();
680                         put_page(page);
681
682                         goto again;
683                 }
684
685                 /* Should be impossible but lets be paranoid for now */
686                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
687                         err = -EFAULT;
688                         rcu_read_unlock();
689                         iput(inode);
690
691                         goto out;
692                 }
693
694                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
695                 key->shared.inode = inode;
696                 key->shared.pgoff = basepage_index(tail);
697                 rcu_read_unlock();
698         }
699
700 out:
701         put_page(page);
702         return err;
703 }
704
705 static inline void put_futex_key(union futex_key *key)
706 {
707         drop_futex_key_refs(key);
708 }
709
710 /**
711  * fault_in_user_writeable() - Fault in user address and verify RW access
712  * @uaddr:      pointer to faulting user space address
713  *
714  * Slow path to fixup the fault we just took in the atomic write
715  * access to @uaddr.
716  *
717  * We have no generic implementation of a non-destructive write to the
718  * user address. We know that we faulted in the atomic pagefault
719  * disabled section so we can as well avoid the #PF overhead by
720  * calling get_user_pages() right away.
721  */
722 static int fault_in_user_writeable(u32 __user *uaddr)
723 {
724         struct mm_struct *mm = current->mm;
725         int ret;
726
727         down_read(&mm->mmap_sem);
728         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
729                                FAULT_FLAG_WRITE, NULL);
730         up_read(&mm->mmap_sem);
731
732         return ret < 0 ? ret : 0;
733 }
734
735 /**
736  * futex_top_waiter() - Return the highest priority waiter on a futex
737  * @hb:         the hash bucket the futex_q's reside in
738  * @key:        the futex key (to distinguish it from other futex futex_q's)
739  *
740  * Must be called with the hb lock held.
741  */
742 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
743                                         union futex_key *key)
744 {
745         struct futex_q *this;
746
747         plist_for_each_entry(this, &hb->chain, list) {
748                 if (match_futex(&this->key, key))
749                         return this;
750         }
751         return NULL;
752 }
753
754 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
755                                       u32 uval, u32 newval)
756 {
757         int ret;
758
759         pagefault_disable();
760         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
761         pagefault_enable();
762
763         return ret;
764 }
765
766 static int get_futex_value_locked(u32 *dest, u32 __user *from)
767 {
768         int ret;
769
770         pagefault_disable();
771         ret = __get_user(*dest, from);
772         pagefault_enable();
773
774         return ret ? -EFAULT : 0;
775 }
776
777
778 /*
779  * PI code:
780  */
781 static int refill_pi_state_cache(void)
782 {
783         struct futex_pi_state *pi_state;
784
785         if (likely(current->pi_state_cache))
786                 return 0;
787
788         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
789
790         if (!pi_state)
791                 return -ENOMEM;
792
793         INIT_LIST_HEAD(&pi_state->list);
794         /* pi_mutex gets initialized later */
795         pi_state->owner = NULL;
796         atomic_set(&pi_state->refcount, 1);
797         pi_state->key = FUTEX_KEY_INIT;
798
799         current->pi_state_cache = pi_state;
800
801         return 0;
802 }
803
804 static struct futex_pi_state * alloc_pi_state(void)
805 {
806         struct futex_pi_state *pi_state = current->pi_state_cache;
807
808         WARN_ON(!pi_state);
809         current->pi_state_cache = NULL;
810
811         return pi_state;
812 }
813
814 /*
815  * Drops a reference to the pi_state object and frees or caches it
816  * when the last reference is gone.
817  *
818  * Must be called with the hb lock held.
819  */
820 static void put_pi_state(struct futex_pi_state *pi_state)
821 {
822         if (!pi_state)
823                 return;
824
825         if (!atomic_dec_and_test(&pi_state->refcount))
826                 return;
827
828         /*
829          * If pi_state->owner is NULL, the owner is most probably dying
830          * and has cleaned up the pi_state already
831          */
832         if (pi_state->owner) {
833                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
834                 list_del_init(&pi_state->list);
835                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
836
837                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
838         }
839
840         if (current->pi_state_cache)
841                 kfree(pi_state);
842         else {
843                 /*
844                  * pi_state->list is already empty.
845                  * clear pi_state->owner.
846                  * refcount is at 0 - put it back to 1.
847                  */
848                 pi_state->owner = NULL;
849                 atomic_set(&pi_state->refcount, 1);
850                 current->pi_state_cache = pi_state;
851         }
852 }
853
854 /*
855  * Look up the task based on what TID userspace gave us.
856  * We dont trust it.
857  */
858 static struct task_struct * futex_find_get_task(pid_t pid)
859 {
860         struct task_struct *p;
861
862         rcu_read_lock();
863         p = find_task_by_vpid(pid);
864         if (p)
865                 get_task_struct(p);
866
867         rcu_read_unlock();
868
869         return p;
870 }
871
872 /*
873  * This task is holding PI mutexes at exit time => bad.
874  * Kernel cleans up PI-state, but userspace is likely hosed.
875  * (Robust-futex cleanup is separate and might save the day for userspace.)
876  */
877 void exit_pi_state_list(struct task_struct *curr)
878 {
879         struct list_head *next, *head = &curr->pi_state_list;
880         struct futex_pi_state *pi_state;
881         struct futex_hash_bucket *hb;
882         union futex_key key = FUTEX_KEY_INIT;
883
884         if (!futex_cmpxchg_enabled)
885                 return;
886         /*
887          * We are a ZOMBIE and nobody can enqueue itself on
888          * pi_state_list anymore, but we have to be careful
889          * versus waiters unqueueing themselves:
890          */
891         raw_spin_lock_irq(&curr->pi_lock);
892         while (!list_empty(head)) {
893
894                 next = head->next;
895                 pi_state = list_entry(next, struct futex_pi_state, list);
896                 key = pi_state->key;
897                 hb = hash_futex(&key);
898                 raw_spin_unlock_irq(&curr->pi_lock);
899
900                 spin_lock(&hb->lock);
901
902                 raw_spin_lock_irq(&curr->pi_lock);
903                 /*
904                  * We dropped the pi-lock, so re-check whether this
905                  * task still owns the PI-state:
906                  */
907                 if (head->next != next) {
908                         spin_unlock(&hb->lock);
909                         continue;
910                 }
911
912                 WARN_ON(pi_state->owner != curr);
913                 WARN_ON(list_empty(&pi_state->list));
914                 list_del_init(&pi_state->list);
915                 pi_state->owner = NULL;
916                 raw_spin_unlock_irq(&curr->pi_lock);
917
918                 rt_mutex_unlock(&pi_state->pi_mutex);
919
920                 spin_unlock(&hb->lock);
921
922                 raw_spin_lock_irq(&curr->pi_lock);
923         }
924         raw_spin_unlock_irq(&curr->pi_lock);
925 }
926
927 /*
928  * We need to check the following states:
929  *
930  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
931  *
932  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
933  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
934  *
935  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
936  *
937  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
938  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
939  *
940  * [6]  Found  | Found    | task      | 0         | 1      | Valid
941  *
942  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
943  *
944  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
945  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
946  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
947  *
948  * [1]  Indicates that the kernel can acquire the futex atomically. We
949  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
950  *
951  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
952  *      thread is found then it indicates that the owner TID has died.
953  *
954  * [3]  Invalid. The waiter is queued on a non PI futex
955  *
956  * [4]  Valid state after exit_robust_list(), which sets the user space
957  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
958  *
959  * [5]  The user space value got manipulated between exit_robust_list()
960  *      and exit_pi_state_list()
961  *
962  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
963  *      the pi_state but cannot access the user space value.
964  *
965  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
966  *
967  * [8]  Owner and user space value match
968  *
969  * [9]  There is no transient state which sets the user space TID to 0
970  *      except exit_robust_list(), but this is indicated by the
971  *      FUTEX_OWNER_DIED bit. See [4]
972  *
973  * [10] There is no transient state which leaves owner and user space
974  *      TID out of sync.
975  */
976
977 /*
978  * Validate that the existing waiter has a pi_state and sanity check
979  * the pi_state against the user space value. If correct, attach to
980  * it.
981  */
982 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
983                               struct futex_pi_state **ps)
984 {
985         pid_t pid = uval & FUTEX_TID_MASK;
986
987         /*
988          * Userspace might have messed up non-PI and PI futexes [3]
989          */
990         if (unlikely(!pi_state))
991                 return -EINVAL;
992
993         WARN_ON(!atomic_read(&pi_state->refcount));
994
995         /*
996          * Handle the owner died case:
997          */
998         if (uval & FUTEX_OWNER_DIED) {
999                 /*
1000                  * exit_pi_state_list sets owner to NULL and wakes the
1001                  * topmost waiter. The task which acquires the
1002                  * pi_state->rt_mutex will fixup owner.
1003                  */
1004                 if (!pi_state->owner) {
1005                         /*
1006                          * No pi state owner, but the user space TID
1007                          * is not 0. Inconsistent state. [5]
1008                          */
1009                         if (pid)
1010                                 return -EINVAL;
1011                         /*
1012                          * Take a ref on the state and return success. [4]
1013                          */
1014                         goto out_state;
1015                 }
1016
1017                 /*
1018                  * If TID is 0, then either the dying owner has not
1019                  * yet executed exit_pi_state_list() or some waiter
1020                  * acquired the rtmutex in the pi state, but did not
1021                  * yet fixup the TID in user space.
1022                  *
1023                  * Take a ref on the state and return success. [6]
1024                  */
1025                 if (!pid)
1026                         goto out_state;
1027         } else {
1028                 /*
1029                  * If the owner died bit is not set, then the pi_state
1030                  * must have an owner. [7]
1031                  */
1032                 if (!pi_state->owner)
1033                         return -EINVAL;
1034         }
1035
1036         /*
1037          * Bail out if user space manipulated the futex value. If pi
1038          * state exists then the owner TID must be the same as the
1039          * user space TID. [9/10]
1040          */
1041         if (pid != task_pid_vnr(pi_state->owner))
1042                 return -EINVAL;
1043 out_state:
1044         atomic_inc(&pi_state->refcount);
1045         *ps = pi_state;
1046         return 0;
1047 }
1048
1049 /*
1050  * Lookup the task for the TID provided from user space and attach to
1051  * it after doing proper sanity checks.
1052  */
1053 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1054                               struct futex_pi_state **ps)
1055 {
1056         pid_t pid = uval & FUTEX_TID_MASK;
1057         struct futex_pi_state *pi_state;
1058         struct task_struct *p;
1059
1060         /*
1061          * We are the first waiter - try to look up the real owner and attach
1062          * the new pi_state to it, but bail out when TID = 0 [1]
1063          */
1064         if (!pid)
1065                 return -ESRCH;
1066         p = futex_find_get_task(pid);
1067         if (!p)
1068                 return -ESRCH;
1069
1070         if (unlikely(p->flags & PF_KTHREAD)) {
1071                 put_task_struct(p);
1072                 return -EPERM;
1073         }
1074
1075         /*
1076          * We need to look at the task state flags to figure out,
1077          * whether the task is exiting. To protect against the do_exit
1078          * change of the task flags, we do this protected by
1079          * p->pi_lock:
1080          */
1081         raw_spin_lock_irq(&p->pi_lock);
1082         if (unlikely(p->flags & PF_EXITING)) {
1083                 /*
1084                  * The task is on the way out. When PF_EXITPIDONE is
1085                  * set, we know that the task has finished the
1086                  * cleanup:
1087                  */
1088                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1089
1090                 raw_spin_unlock_irq(&p->pi_lock);
1091                 put_task_struct(p);
1092                 return ret;
1093         }
1094
1095         /*
1096          * No existing pi state. First waiter. [2]
1097          */
1098         pi_state = alloc_pi_state();
1099
1100         /*
1101          * Initialize the pi_mutex in locked state and make @p
1102          * the owner of it:
1103          */
1104         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1105
1106         /* Store the key for possible exit cleanups: */
1107         pi_state->key = *key;
1108
1109         WARN_ON(!list_empty(&pi_state->list));
1110         list_add(&pi_state->list, &p->pi_state_list);
1111         pi_state->owner = p;
1112         raw_spin_unlock_irq(&p->pi_lock);
1113
1114         put_task_struct(p);
1115
1116         *ps = pi_state;
1117
1118         return 0;
1119 }
1120
1121 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1122                            union futex_key *key, struct futex_pi_state **ps)
1123 {
1124         struct futex_q *match = futex_top_waiter(hb, key);
1125
1126         /*
1127          * If there is a waiter on that futex, validate it and
1128          * attach to the pi_state when the validation succeeds.
1129          */
1130         if (match)
1131                 return attach_to_pi_state(uval, match->pi_state, ps);
1132
1133         /*
1134          * We are the first waiter - try to look up the owner based on
1135          * @uval and attach to it.
1136          */
1137         return attach_to_pi_owner(uval, key, ps);
1138 }
1139
1140 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1141 {
1142         u32 uninitialized_var(curval);
1143
1144         if (unlikely(should_fail_futex(true)))
1145                 return -EFAULT;
1146
1147         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1148                 return -EFAULT;
1149
1150         /*If user space value changed, let the caller retry */
1151         return curval != uval ? -EAGAIN : 0;
1152 }
1153
1154 /**
1155  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1156  * @uaddr:              the pi futex user address
1157  * @hb:                 the pi futex hash bucket
1158  * @key:                the futex key associated with uaddr and hb
1159  * @ps:                 the pi_state pointer where we store the result of the
1160  *                      lookup
1161  * @task:               the task to perform the atomic lock work for.  This will
1162  *                      be "current" except in the case of requeue pi.
1163  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1164  *
1165  * Return:
1166  *  0 - ready to wait;
1167  *  1 - acquired the lock;
1168  * <0 - error
1169  *
1170  * The hb->lock and futex_key refs shall be held by the caller.
1171  */
1172 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1173                                 union futex_key *key,
1174                                 struct futex_pi_state **ps,
1175                                 struct task_struct *task, int set_waiters)
1176 {
1177         u32 uval, newval, vpid = task_pid_vnr(task);
1178         struct futex_q *match;
1179         int ret;
1180
1181         /*
1182          * Read the user space value first so we can validate a few
1183          * things before proceeding further.
1184          */
1185         if (get_futex_value_locked(&uval, uaddr))
1186                 return -EFAULT;
1187
1188         if (unlikely(should_fail_futex(true)))
1189                 return -EFAULT;
1190
1191         /*
1192          * Detect deadlocks.
1193          */
1194         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1195                 return -EDEADLK;
1196
1197         if ((unlikely(should_fail_futex(true))))
1198                 return -EDEADLK;
1199
1200         /*
1201          * Lookup existing state first. If it exists, try to attach to
1202          * its pi_state.
1203          */
1204         match = futex_top_waiter(hb, key);
1205         if (match)
1206                 return attach_to_pi_state(uval, match->pi_state, ps);
1207
1208         /*
1209          * No waiter and user TID is 0. We are here because the
1210          * waiters or the owner died bit is set or called from
1211          * requeue_cmp_pi or for whatever reason something took the
1212          * syscall.
1213          */
1214         if (!(uval & FUTEX_TID_MASK)) {
1215                 /*
1216                  * We take over the futex. No other waiters and the user space
1217                  * TID is 0. We preserve the owner died bit.
1218                  */
1219                 newval = uval & FUTEX_OWNER_DIED;
1220                 newval |= vpid;
1221
1222                 /* The futex requeue_pi code can enforce the waiters bit */
1223                 if (set_waiters)
1224                         newval |= FUTEX_WAITERS;
1225
1226                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1227                 /* If the take over worked, return 1 */
1228                 return ret < 0 ? ret : 1;
1229         }
1230
1231         /*
1232          * First waiter. Set the waiters bit before attaching ourself to
1233          * the owner. If owner tries to unlock, it will be forced into
1234          * the kernel and blocked on hb->lock.
1235          */
1236         newval = uval | FUTEX_WAITERS;
1237         ret = lock_pi_update_atomic(uaddr, uval, newval);
1238         if (ret)
1239                 return ret;
1240         /*
1241          * If the update of the user space value succeeded, we try to
1242          * attach to the owner. If that fails, no harm done, we only
1243          * set the FUTEX_WAITERS bit in the user space variable.
1244          */
1245         return attach_to_pi_owner(uval, key, ps);
1246 }
1247
1248 /**
1249  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1250  * @q:  The futex_q to unqueue
1251  *
1252  * The q->lock_ptr must not be NULL and must be held by the caller.
1253  */
1254 static void __unqueue_futex(struct futex_q *q)
1255 {
1256         struct futex_hash_bucket *hb;
1257
1258         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1259             || WARN_ON(plist_node_empty(&q->list)))
1260                 return;
1261
1262         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1263         plist_del(&q->list, &hb->chain);
1264         hb_waiters_dec(hb);
1265 }
1266
1267 /*
1268  * The hash bucket lock must be held when this is called.
1269  * Afterwards, the futex_q must not be accessed. Callers
1270  * must ensure to later call wake_up_q() for the actual
1271  * wakeups to occur.
1272  */
1273 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1274 {
1275         struct task_struct *p = q->task;
1276
1277         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1278                 return;
1279
1280         /*
1281          * Queue the task for later wakeup for after we've released
1282          * the hb->lock. wake_q_add() grabs reference to p.
1283          */
1284         wake_q_add(wake_q, p);
1285         __unqueue_futex(q);
1286         /*
1287          * The waiting task can free the futex_q as soon as
1288          * q->lock_ptr = NULL is written, without taking any locks. A
1289          * memory barrier is required here to prevent the following
1290          * store to lock_ptr from getting ahead of the plist_del.
1291          */
1292         smp_wmb();
1293         q->lock_ptr = NULL;
1294 }
1295
1296 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1297                          struct futex_hash_bucket *hb)
1298 {
1299         struct task_struct *new_owner;
1300         struct futex_pi_state *pi_state = this->pi_state;
1301         u32 uninitialized_var(curval), newval;
1302         WAKE_Q(wake_q);
1303         bool deboost;
1304         int ret = 0;
1305
1306         if (!pi_state)
1307                 return -EINVAL;
1308
1309         /*
1310          * If current does not own the pi_state then the futex is
1311          * inconsistent and user space fiddled with the futex value.
1312          */
1313         if (pi_state->owner != current)
1314                 return -EINVAL;
1315
1316         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1317         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1318
1319         /*
1320          * It is possible that the next waiter (the one that brought
1321          * this owner to the kernel) timed out and is no longer
1322          * waiting on the lock.
1323          */
1324         if (!new_owner)
1325                 new_owner = this->task;
1326
1327         /*
1328          * We pass it to the next owner. The WAITERS bit is always
1329          * kept enabled while there is PI state around. We cleanup the
1330          * owner died bit, because we are the owner.
1331          */
1332         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1333
1334         if (unlikely(should_fail_futex(true)))
1335                 ret = -EFAULT;
1336
1337         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1338                 ret = -EFAULT;
1339         } else if (curval != uval) {
1340                 /*
1341                  * If a unconditional UNLOCK_PI operation (user space did not
1342                  * try the TID->0 transition) raced with a waiter setting the
1343                  * FUTEX_WAITERS flag between get_user() and locking the hash
1344                  * bucket lock, retry the operation.
1345                  */
1346                 if ((FUTEX_TID_MASK & curval) == uval)
1347                         ret = -EAGAIN;
1348                 else
1349                         ret = -EINVAL;
1350         }
1351         if (ret) {
1352                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1353                 return ret;
1354         }
1355
1356         raw_spin_lock(&pi_state->owner->pi_lock);
1357         WARN_ON(list_empty(&pi_state->list));
1358         list_del_init(&pi_state->list);
1359         raw_spin_unlock(&pi_state->owner->pi_lock);
1360
1361         raw_spin_lock(&new_owner->pi_lock);
1362         WARN_ON(!list_empty(&pi_state->list));
1363         list_add(&pi_state->list, &new_owner->pi_state_list);
1364         pi_state->owner = new_owner;
1365         raw_spin_unlock(&new_owner->pi_lock);
1366
1367         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1368
1369         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1370
1371         /*
1372          * First unlock HB so the waiter does not spin on it once he got woken
1373          * up. Second wake up the waiter before the priority is adjusted. If we
1374          * deboost first (and lose our higher priority), then the task might get
1375          * scheduled away before the wake up can take place.
1376          */
1377         spin_unlock(&hb->lock);
1378         wake_up_q(&wake_q);
1379         if (deboost)
1380                 rt_mutex_adjust_prio(current);
1381
1382         return 0;
1383 }
1384
1385 /*
1386  * Express the locking dependencies for lockdep:
1387  */
1388 static inline void
1389 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1390 {
1391         if (hb1 <= hb2) {
1392                 spin_lock(&hb1->lock);
1393                 if (hb1 < hb2)
1394                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1395         } else { /* hb1 > hb2 */
1396                 spin_lock(&hb2->lock);
1397                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1398         }
1399 }
1400
1401 static inline void
1402 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1403 {
1404         spin_unlock(&hb1->lock);
1405         if (hb1 != hb2)
1406                 spin_unlock(&hb2->lock);
1407 }
1408
1409 /*
1410  * Wake up waiters matching bitset queued on this futex (uaddr).
1411  */
1412 static int
1413 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1414 {
1415         struct futex_hash_bucket *hb;
1416         struct futex_q *this, *next;
1417         union futex_key key = FUTEX_KEY_INIT;
1418         int ret;
1419         WAKE_Q(wake_q);
1420
1421         if (!bitset)
1422                 return -EINVAL;
1423
1424         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1425         if (unlikely(ret != 0))
1426                 goto out;
1427
1428         hb = hash_futex(&key);
1429
1430         /* Make sure we really have tasks to wakeup */
1431         if (!hb_waiters_pending(hb))
1432                 goto out_put_key;
1433
1434         spin_lock(&hb->lock);
1435
1436         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1437                 if (match_futex (&this->key, &key)) {
1438                         if (this->pi_state || this->rt_waiter) {
1439                                 ret = -EINVAL;
1440                                 break;
1441                         }
1442
1443                         /* Check if one of the bits is set in both bitsets */
1444                         if (!(this->bitset & bitset))
1445                                 continue;
1446
1447                         mark_wake_futex(&wake_q, this);
1448                         if (++ret >= nr_wake)
1449                                 break;
1450                 }
1451         }
1452
1453         spin_unlock(&hb->lock);
1454         wake_up_q(&wake_q);
1455 out_put_key:
1456         put_futex_key(&key);
1457 out:
1458         return ret;
1459 }
1460
1461 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1462 {
1463         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1464         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1465         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1466         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1467         int oldval, ret;
1468
1469         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1470                 if (oparg < 0 || oparg > 31) {
1471                         char comm[sizeof(current->comm)];
1472                         /*
1473                          * kill this print and return -EINVAL when userspace
1474                          * is sane again
1475                          */
1476                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1477                                         get_task_comm(comm, current), oparg);
1478                         oparg &= 31;
1479                 }
1480                 oparg = 1 << oparg;
1481         }
1482
1483         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1484                 return -EFAULT;
1485
1486         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1487         if (ret)
1488                 return ret;
1489
1490         switch (cmp) {
1491         case FUTEX_OP_CMP_EQ:
1492                 return oldval == cmparg;
1493         case FUTEX_OP_CMP_NE:
1494                 return oldval != cmparg;
1495         case FUTEX_OP_CMP_LT:
1496                 return oldval < cmparg;
1497         case FUTEX_OP_CMP_GE:
1498                 return oldval >= cmparg;
1499         case FUTEX_OP_CMP_LE:
1500                 return oldval <= cmparg;
1501         case FUTEX_OP_CMP_GT:
1502                 return oldval > cmparg;
1503         default:
1504                 return -ENOSYS;
1505         }
1506 }
1507
1508 /*
1509  * Wake up all waiters hashed on the physical page that is mapped
1510  * to this virtual address:
1511  */
1512 static int
1513 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1514               int nr_wake, int nr_wake2, int op)
1515 {
1516         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1517         struct futex_hash_bucket *hb1, *hb2;
1518         struct futex_q *this, *next;
1519         int ret, op_ret;
1520         WAKE_Q(wake_q);
1521
1522 retry:
1523         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1524         if (unlikely(ret != 0))
1525                 goto out;
1526         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1527         if (unlikely(ret != 0))
1528                 goto out_put_key1;
1529
1530         hb1 = hash_futex(&key1);
1531         hb2 = hash_futex(&key2);
1532
1533 retry_private:
1534         double_lock_hb(hb1, hb2);
1535         op_ret = futex_atomic_op_inuser(op, uaddr2);
1536         if (unlikely(op_ret < 0)) {
1537
1538                 double_unlock_hb(hb1, hb2);
1539
1540 #ifndef CONFIG_MMU
1541                 /*
1542                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1543                  * but we might get them from range checking
1544                  */
1545                 ret = op_ret;
1546                 goto out_put_keys;
1547 #endif
1548
1549                 if (unlikely(op_ret != -EFAULT)) {
1550                         ret = op_ret;
1551                         goto out_put_keys;
1552                 }
1553
1554                 ret = fault_in_user_writeable(uaddr2);
1555                 if (ret)
1556                         goto out_put_keys;
1557
1558                 if (!(flags & FLAGS_SHARED))
1559                         goto retry_private;
1560
1561                 put_futex_key(&key2);
1562                 put_futex_key(&key1);
1563                 goto retry;
1564         }
1565
1566         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1567                 if (match_futex (&this->key, &key1)) {
1568                         if (this->pi_state || this->rt_waiter) {
1569                                 ret = -EINVAL;
1570                                 goto out_unlock;
1571                         }
1572                         mark_wake_futex(&wake_q, this);
1573                         if (++ret >= nr_wake)
1574                                 break;
1575                 }
1576         }
1577
1578         if (op_ret > 0) {
1579                 op_ret = 0;
1580                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1581                         if (match_futex (&this->key, &key2)) {
1582                                 if (this->pi_state || this->rt_waiter) {
1583                                         ret = -EINVAL;
1584                                         goto out_unlock;
1585                                 }
1586                                 mark_wake_futex(&wake_q, this);
1587                                 if (++op_ret >= nr_wake2)
1588                                         break;
1589                         }
1590                 }
1591                 ret += op_ret;
1592         }
1593
1594 out_unlock:
1595         double_unlock_hb(hb1, hb2);
1596         wake_up_q(&wake_q);
1597 out_put_keys:
1598         put_futex_key(&key2);
1599 out_put_key1:
1600         put_futex_key(&key1);
1601 out:
1602         return ret;
1603 }
1604
1605 /**
1606  * requeue_futex() - Requeue a futex_q from one hb to another
1607  * @q:          the futex_q to requeue
1608  * @hb1:        the source hash_bucket
1609  * @hb2:        the target hash_bucket
1610  * @key2:       the new key for the requeued futex_q
1611  */
1612 static inline
1613 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1614                    struct futex_hash_bucket *hb2, union futex_key *key2)
1615 {
1616
1617         /*
1618          * If key1 and key2 hash to the same bucket, no need to
1619          * requeue.
1620          */
1621         if (likely(&hb1->chain != &hb2->chain)) {
1622                 plist_del(&q->list, &hb1->chain);
1623                 hb_waiters_dec(hb1);
1624                 hb_waiters_inc(hb2);
1625                 plist_add(&q->list, &hb2->chain);
1626                 q->lock_ptr = &hb2->lock;
1627         }
1628         get_futex_key_refs(key2);
1629         q->key = *key2;
1630 }
1631
1632 /**
1633  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1634  * @q:          the futex_q
1635  * @key:        the key of the requeue target futex
1636  * @hb:         the hash_bucket of the requeue target futex
1637  *
1638  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1639  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1640  * to the requeue target futex so the waiter can detect the wakeup on the right
1641  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1642  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1643  * to protect access to the pi_state to fixup the owner later.  Must be called
1644  * with both q->lock_ptr and hb->lock held.
1645  */
1646 static inline
1647 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1648                            struct futex_hash_bucket *hb)
1649 {
1650         get_futex_key_refs(key);
1651         q->key = *key;
1652
1653         __unqueue_futex(q);
1654
1655         WARN_ON(!q->rt_waiter);
1656         q->rt_waiter = NULL;
1657
1658         q->lock_ptr = &hb->lock;
1659
1660         wake_up_state(q->task, TASK_NORMAL);
1661 }
1662
1663 /**
1664  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1665  * @pifutex:            the user address of the to futex
1666  * @hb1:                the from futex hash bucket, must be locked by the caller
1667  * @hb2:                the to futex hash bucket, must be locked by the caller
1668  * @key1:               the from futex key
1669  * @key2:               the to futex key
1670  * @ps:                 address to store the pi_state pointer
1671  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1672  *
1673  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1674  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1675  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1676  * hb1 and hb2 must be held by the caller.
1677  *
1678  * Return:
1679  *  0 - failed to acquire the lock atomically;
1680  * >0 - acquired the lock, return value is vpid of the top_waiter
1681  * <0 - error
1682  */
1683 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1684                                  struct futex_hash_bucket *hb1,
1685                                  struct futex_hash_bucket *hb2,
1686                                  union futex_key *key1, union futex_key *key2,
1687                                  struct futex_pi_state **ps, int set_waiters)
1688 {
1689         struct futex_q *top_waiter = NULL;
1690         u32 curval;
1691         int ret, vpid;
1692
1693         if (get_futex_value_locked(&curval, pifutex))
1694                 return -EFAULT;
1695
1696         if (unlikely(should_fail_futex(true)))
1697                 return -EFAULT;
1698
1699         /*
1700          * Find the top_waiter and determine if there are additional waiters.
1701          * If the caller intends to requeue more than 1 waiter to pifutex,
1702          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1703          * as we have means to handle the possible fault.  If not, don't set
1704          * the bit unecessarily as it will force the subsequent unlock to enter
1705          * the kernel.
1706          */
1707         top_waiter = futex_top_waiter(hb1, key1);
1708
1709         /* There are no waiters, nothing for us to do. */
1710         if (!top_waiter)
1711                 return 0;
1712
1713         /* Ensure we requeue to the expected futex. */
1714         if (!match_futex(top_waiter->requeue_pi_key, key2))
1715                 return -EINVAL;
1716
1717         /*
1718          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1719          * the contended case or if set_waiters is 1.  The pi_state is returned
1720          * in ps in contended cases.
1721          */
1722         vpid = task_pid_vnr(top_waiter->task);
1723         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1724                                    set_waiters);
1725         if (ret == 1) {
1726                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1727                 return vpid;
1728         }
1729         return ret;
1730 }
1731
1732 /**
1733  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1734  * @uaddr1:     source futex user address
1735  * @flags:      futex flags (FLAGS_SHARED, etc.)
1736  * @uaddr2:     target futex user address
1737  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1738  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1739  * @cmpval:     @uaddr1 expected value (or %NULL)
1740  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1741  *              pi futex (pi to pi requeue is not supported)
1742  *
1743  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1744  * uaddr2 atomically on behalf of the top waiter.
1745  *
1746  * Return:
1747  * >=0 - on success, the number of tasks requeued or woken;
1748  *  <0 - on error
1749  */
1750 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1751                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1752                          u32 *cmpval, int requeue_pi)
1753 {
1754         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1755         int drop_count = 0, task_count = 0, ret;
1756         struct futex_pi_state *pi_state = NULL;
1757         struct futex_hash_bucket *hb1, *hb2;
1758         struct futex_q *this, *next;
1759         WAKE_Q(wake_q);
1760
1761         if (nr_wake < 0 || nr_requeue < 0)
1762                 return -EINVAL;
1763
1764         if (requeue_pi) {
1765                 /*
1766                  * Requeue PI only works on two distinct uaddrs. This
1767                  * check is only valid for private futexes. See below.
1768                  */
1769                 if (uaddr1 == uaddr2)
1770                         return -EINVAL;
1771
1772                 /*
1773                  * requeue_pi requires a pi_state, try to allocate it now
1774                  * without any locks in case it fails.
1775                  */
1776                 if (refill_pi_state_cache())
1777                         return -ENOMEM;
1778                 /*
1779                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1780                  * + nr_requeue, since it acquires the rt_mutex prior to
1781                  * returning to userspace, so as to not leave the rt_mutex with
1782                  * waiters and no owner.  However, second and third wake-ups
1783                  * cannot be predicted as they involve race conditions with the
1784                  * first wake and a fault while looking up the pi_state.  Both
1785                  * pthread_cond_signal() and pthread_cond_broadcast() should
1786                  * use nr_wake=1.
1787                  */
1788                 if (nr_wake != 1)
1789                         return -EINVAL;
1790         }
1791
1792 retry:
1793         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1794         if (unlikely(ret != 0))
1795                 goto out;
1796         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1797                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1798         if (unlikely(ret != 0))
1799                 goto out_put_key1;
1800
1801         /*
1802          * The check above which compares uaddrs is not sufficient for
1803          * shared futexes. We need to compare the keys:
1804          */
1805         if (requeue_pi && match_futex(&key1, &key2)) {
1806                 ret = -EINVAL;
1807                 goto out_put_keys;
1808         }
1809
1810         hb1 = hash_futex(&key1);
1811         hb2 = hash_futex(&key2);
1812
1813 retry_private:
1814         hb_waiters_inc(hb2);
1815         double_lock_hb(hb1, hb2);
1816
1817         if (likely(cmpval != NULL)) {
1818                 u32 curval;
1819
1820                 ret = get_futex_value_locked(&curval, uaddr1);
1821
1822                 if (unlikely(ret)) {
1823                         double_unlock_hb(hb1, hb2);
1824                         hb_waiters_dec(hb2);
1825
1826                         ret = get_user(curval, uaddr1);
1827                         if (ret)
1828                                 goto out_put_keys;
1829
1830                         if (!(flags & FLAGS_SHARED))
1831                                 goto retry_private;
1832
1833                         put_futex_key(&key2);
1834                         put_futex_key(&key1);
1835                         goto retry;
1836                 }
1837                 if (curval != *cmpval) {
1838                         ret = -EAGAIN;
1839                         goto out_unlock;
1840                 }
1841         }
1842
1843         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1844                 /*
1845                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1846                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1847                  * bit.  We force this here where we are able to easily handle
1848                  * faults rather in the requeue loop below.
1849                  */
1850                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1851                                                  &key2, &pi_state, nr_requeue);
1852
1853                 /*
1854                  * At this point the top_waiter has either taken uaddr2 or is
1855                  * waiting on it.  If the former, then the pi_state will not
1856                  * exist yet, look it up one more time to ensure we have a
1857                  * reference to it. If the lock was taken, ret contains the
1858                  * vpid of the top waiter task.
1859                  * If the lock was not taken, we have pi_state and an initial
1860                  * refcount on it. In case of an error we have nothing.
1861                  */
1862                 if (ret > 0) {
1863                         WARN_ON(pi_state);
1864                         drop_count++;
1865                         task_count++;
1866                         /*
1867                          * If we acquired the lock, then the user space value
1868                          * of uaddr2 should be vpid. It cannot be changed by
1869                          * the top waiter as it is blocked on hb2 lock if it
1870                          * tries to do so. If something fiddled with it behind
1871                          * our back the pi state lookup might unearth it. So
1872                          * we rather use the known value than rereading and
1873                          * handing potential crap to lookup_pi_state.
1874                          *
1875                          * If that call succeeds then we have pi_state and an
1876                          * initial refcount on it.
1877                          */
1878                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1879                 }
1880
1881                 switch (ret) {
1882                 case 0:
1883                         /* We hold a reference on the pi state. */
1884                         break;
1885
1886                         /* If the above failed, then pi_state is NULL */
1887                 case -EFAULT:
1888                         double_unlock_hb(hb1, hb2);
1889                         hb_waiters_dec(hb2);
1890                         put_futex_key(&key2);
1891                         put_futex_key(&key1);
1892                         ret = fault_in_user_writeable(uaddr2);
1893                         if (!ret)
1894                                 goto retry;
1895                         goto out;
1896                 case -EAGAIN:
1897                         /*
1898                          * Two reasons for this:
1899                          * - Owner is exiting and we just wait for the
1900                          *   exit to complete.
1901                          * - The user space value changed.
1902                          */
1903                         double_unlock_hb(hb1, hb2);
1904                         hb_waiters_dec(hb2);
1905                         put_futex_key(&key2);
1906                         put_futex_key(&key1);
1907                         cond_resched();
1908                         goto retry;
1909                 default:
1910                         goto out_unlock;
1911                 }
1912         }
1913
1914         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1915                 if (task_count - nr_wake >= nr_requeue)
1916                         break;
1917
1918                 if (!match_futex(&this->key, &key1))
1919                         continue;
1920
1921                 /*
1922                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1923                  * be paired with each other and no other futex ops.
1924                  *
1925                  * We should never be requeueing a futex_q with a pi_state,
1926                  * which is awaiting a futex_unlock_pi().
1927                  */
1928                 if ((requeue_pi && !this->rt_waiter) ||
1929                     (!requeue_pi && this->rt_waiter) ||
1930                     this->pi_state) {
1931                         ret = -EINVAL;
1932                         break;
1933                 }
1934
1935                 /*
1936                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1937                  * lock, we already woke the top_waiter.  If not, it will be
1938                  * woken by futex_unlock_pi().
1939                  */
1940                 if (++task_count <= nr_wake && !requeue_pi) {
1941                         mark_wake_futex(&wake_q, this);
1942                         continue;
1943                 }
1944
1945                 /* Ensure we requeue to the expected futex for requeue_pi. */
1946                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1947                         ret = -EINVAL;
1948                         break;
1949                 }
1950
1951                 /*
1952                  * Requeue nr_requeue waiters and possibly one more in the case
1953                  * of requeue_pi if we couldn't acquire the lock atomically.
1954                  */
1955                 if (requeue_pi) {
1956                         /*
1957                          * Prepare the waiter to take the rt_mutex. Take a
1958                          * refcount on the pi_state and store the pointer in
1959                          * the futex_q object of the waiter.
1960                          */
1961                         atomic_inc(&pi_state->refcount);
1962                         this->pi_state = pi_state;
1963                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1964                                                         this->rt_waiter,
1965                                                         this->task);
1966                         if (ret == 1) {
1967                                 /*
1968                                  * We got the lock. We do neither drop the
1969                                  * refcount on pi_state nor clear
1970                                  * this->pi_state because the waiter needs the
1971                                  * pi_state for cleaning up the user space
1972                                  * value. It will drop the refcount after
1973                                  * doing so.
1974                                  */
1975                                 requeue_pi_wake_futex(this, &key2, hb2);
1976                                 drop_count++;
1977                                 continue;
1978                         } else if (ret) {
1979                                 /*
1980                                  * rt_mutex_start_proxy_lock() detected a
1981                                  * potential deadlock when we tried to queue
1982                                  * that waiter. Drop the pi_state reference
1983                                  * which we took above and remove the pointer
1984                                  * to the state from the waiters futex_q
1985                                  * object.
1986                                  */
1987                                 this->pi_state = NULL;
1988                                 put_pi_state(pi_state);
1989                                 /*
1990                                  * We stop queueing more waiters and let user
1991                                  * space deal with the mess.
1992                                  */
1993                                 break;
1994                         }
1995                 }
1996                 requeue_futex(this, hb1, hb2, &key2);
1997                 drop_count++;
1998         }
1999
2000         /*
2001          * We took an extra initial reference to the pi_state either
2002          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2003          * need to drop it here again.
2004          */
2005         put_pi_state(pi_state);
2006
2007 out_unlock:
2008         double_unlock_hb(hb1, hb2);
2009         wake_up_q(&wake_q);
2010         hb_waiters_dec(hb2);
2011
2012         /*
2013          * drop_futex_key_refs() must be called outside the spinlocks. During
2014          * the requeue we moved futex_q's from the hash bucket at key1 to the
2015          * one at key2 and updated their key pointer.  We no longer need to
2016          * hold the references to key1.
2017          */
2018         while (--drop_count >= 0)
2019                 drop_futex_key_refs(&key1);
2020
2021 out_put_keys:
2022         put_futex_key(&key2);
2023 out_put_key1:
2024         put_futex_key(&key1);
2025 out:
2026         return ret ? ret : task_count;
2027 }
2028
2029 /* The key must be already stored in q->key. */
2030 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2031         __acquires(&hb->lock)
2032 {
2033         struct futex_hash_bucket *hb;
2034
2035         hb = hash_futex(&q->key);
2036
2037         /*
2038          * Increment the counter before taking the lock so that
2039          * a potential waker won't miss a to-be-slept task that is
2040          * waiting for the spinlock. This is safe as all queue_lock()
2041          * users end up calling queue_me(). Similarly, for housekeeping,
2042          * decrement the counter at queue_unlock() when some error has
2043          * occurred and we don't end up adding the task to the list.
2044          */
2045         hb_waiters_inc(hb);
2046
2047         q->lock_ptr = &hb->lock;
2048
2049         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2050         return hb;
2051 }
2052
2053 static inline void
2054 queue_unlock(struct futex_hash_bucket *hb)
2055         __releases(&hb->lock)
2056 {
2057         spin_unlock(&hb->lock);
2058         hb_waiters_dec(hb);
2059 }
2060
2061 /**
2062  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2063  * @q:  The futex_q to enqueue
2064  * @hb: The destination hash bucket
2065  *
2066  * The hb->lock must be held by the caller, and is released here. A call to
2067  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2068  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2069  * or nothing if the unqueue is done as part of the wake process and the unqueue
2070  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2071  * an example).
2072  */
2073 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2074         __releases(&hb->lock)
2075 {
2076         int prio;
2077
2078         /*
2079          * The priority used to register this element is
2080          * - either the real thread-priority for the real-time threads
2081          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2082          * - or MAX_RT_PRIO for non-RT threads.
2083          * Thus, all RT-threads are woken first in priority order, and
2084          * the others are woken last, in FIFO order.
2085          */
2086         prio = min(current->normal_prio, MAX_RT_PRIO);
2087
2088         plist_node_init(&q->list, prio);
2089         plist_add(&q->list, &hb->chain);
2090         q->task = current;
2091         spin_unlock(&hb->lock);
2092 }
2093
2094 /**
2095  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2096  * @q:  The futex_q to unqueue
2097  *
2098  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2099  * be paired with exactly one earlier call to queue_me().
2100  *
2101  * Return:
2102  *   1 - if the futex_q was still queued (and we removed unqueued it);
2103  *   0 - if the futex_q was already removed by the waking thread
2104  */
2105 static int unqueue_me(struct futex_q *q)
2106 {
2107         spinlock_t *lock_ptr;
2108         int ret = 0;
2109
2110         /* In the common case we don't take the spinlock, which is nice. */
2111 retry:
2112         /*
2113          * q->lock_ptr can change between this read and the following spin_lock.
2114          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2115          * optimizing lock_ptr out of the logic below.
2116          */
2117         lock_ptr = READ_ONCE(q->lock_ptr);
2118         if (lock_ptr != NULL) {
2119                 spin_lock(lock_ptr);
2120                 /*
2121                  * q->lock_ptr can change between reading it and
2122                  * spin_lock(), causing us to take the wrong lock.  This
2123                  * corrects the race condition.
2124                  *
2125                  * Reasoning goes like this: if we have the wrong lock,
2126                  * q->lock_ptr must have changed (maybe several times)
2127                  * between reading it and the spin_lock().  It can
2128                  * change again after the spin_lock() but only if it was
2129                  * already changed before the spin_lock().  It cannot,
2130                  * however, change back to the original value.  Therefore
2131                  * we can detect whether we acquired the correct lock.
2132                  */
2133                 if (unlikely(lock_ptr != q->lock_ptr)) {
2134                         spin_unlock(lock_ptr);
2135                         goto retry;
2136                 }
2137                 __unqueue_futex(q);
2138
2139                 BUG_ON(q->pi_state);
2140
2141                 spin_unlock(lock_ptr);
2142                 ret = 1;
2143         }
2144
2145         drop_futex_key_refs(&q->key);
2146         return ret;
2147 }
2148
2149 /*
2150  * PI futexes can not be requeued and must remove themself from the
2151  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2152  * and dropped here.
2153  */
2154 static void unqueue_me_pi(struct futex_q *q)
2155         __releases(q->lock_ptr)
2156 {
2157         __unqueue_futex(q);
2158
2159         BUG_ON(!q->pi_state);
2160         put_pi_state(q->pi_state);
2161         q->pi_state = NULL;
2162
2163         spin_unlock(q->lock_ptr);
2164 }
2165
2166 /*
2167  * Fixup the pi_state owner with the new owner.
2168  *
2169  * Must be called with hash bucket lock held and mm->sem held for non
2170  * private futexes.
2171  */
2172 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2173                                 struct task_struct *newowner)
2174 {
2175         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2176         struct futex_pi_state *pi_state = q->pi_state;
2177         struct task_struct *oldowner = pi_state->owner;
2178         u32 uval, uninitialized_var(curval), newval;
2179         int ret;
2180
2181         /* Owner died? */
2182         if (!pi_state->owner)
2183                 newtid |= FUTEX_OWNER_DIED;
2184
2185         /*
2186          * We are here either because we stole the rtmutex from the
2187          * previous highest priority waiter or we are the highest priority
2188          * waiter but failed to get the rtmutex the first time.
2189          * We have to replace the newowner TID in the user space variable.
2190          * This must be atomic as we have to preserve the owner died bit here.
2191          *
2192          * Note: We write the user space value _before_ changing the pi_state
2193          * because we can fault here. Imagine swapped out pages or a fork
2194          * that marked all the anonymous memory readonly for cow.
2195          *
2196          * Modifying pi_state _before_ the user space value would
2197          * leave the pi_state in an inconsistent state when we fault
2198          * here, because we need to drop the hash bucket lock to
2199          * handle the fault. This might be observed in the PID check
2200          * in lookup_pi_state.
2201          */
2202 retry:
2203         if (get_futex_value_locked(&uval, uaddr))
2204                 goto handle_fault;
2205
2206         while (1) {
2207                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2208
2209                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2210                         goto handle_fault;
2211                 if (curval == uval)
2212                         break;
2213                 uval = curval;
2214         }
2215
2216         /*
2217          * We fixed up user space. Now we need to fix the pi_state
2218          * itself.
2219          */
2220         if (pi_state->owner != NULL) {
2221                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2222                 WARN_ON(list_empty(&pi_state->list));
2223                 list_del_init(&pi_state->list);
2224                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2225         }
2226
2227         pi_state->owner = newowner;
2228
2229         raw_spin_lock_irq(&newowner->pi_lock);
2230         WARN_ON(!list_empty(&pi_state->list));
2231         list_add(&pi_state->list, &newowner->pi_state_list);
2232         raw_spin_unlock_irq(&newowner->pi_lock);
2233         return 0;
2234
2235         /*
2236          * To handle the page fault we need to drop the hash bucket
2237          * lock here. That gives the other task (either the highest priority
2238          * waiter itself or the task which stole the rtmutex) the
2239          * chance to try the fixup of the pi_state. So once we are
2240          * back from handling the fault we need to check the pi_state
2241          * after reacquiring the hash bucket lock and before trying to
2242          * do another fixup. When the fixup has been done already we
2243          * simply return.
2244          */
2245 handle_fault:
2246         spin_unlock(q->lock_ptr);
2247
2248         ret = fault_in_user_writeable(uaddr);
2249
2250         spin_lock(q->lock_ptr);
2251
2252         /*
2253          * Check if someone else fixed it for us:
2254          */
2255         if (pi_state->owner != oldowner)
2256                 return 0;
2257
2258         if (ret)
2259                 return ret;
2260
2261         goto retry;
2262 }
2263
2264 static long futex_wait_restart(struct restart_block *restart);
2265
2266 /**
2267  * fixup_owner() - Post lock pi_state and corner case management
2268  * @uaddr:      user address of the futex
2269  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2270  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2271  *
2272  * After attempting to lock an rt_mutex, this function is called to cleanup
2273  * the pi_state owner as well as handle race conditions that may allow us to
2274  * acquire the lock. Must be called with the hb lock held.
2275  *
2276  * Return:
2277  *  1 - success, lock taken;
2278  *  0 - success, lock not taken;
2279  * <0 - on error (-EFAULT)
2280  */
2281 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2282 {
2283         struct task_struct *owner;
2284         int ret = 0;
2285
2286         if (locked) {
2287                 /*
2288                  * Got the lock. We might not be the anticipated owner if we
2289                  * did a lock-steal - fix up the PI-state in that case:
2290                  */
2291                 if (q->pi_state->owner != current)
2292                         ret = fixup_pi_state_owner(uaddr, q, current);
2293                 goto out;
2294         }
2295
2296         /*
2297          * Catch the rare case, where the lock was released when we were on the
2298          * way back before we locked the hash bucket.
2299          */
2300         if (q->pi_state->owner == current) {
2301                 /*
2302                  * Try to get the rt_mutex now. This might fail as some other
2303                  * task acquired the rt_mutex after we removed ourself from the
2304                  * rt_mutex waiters list.
2305                  */
2306                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2307                         locked = 1;
2308                         goto out;
2309                 }
2310
2311                 /*
2312                  * pi_state is incorrect, some other task did a lock steal and
2313                  * we returned due to timeout or signal without taking the
2314                  * rt_mutex. Too late.
2315                  */
2316                 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2317                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2318                 if (!owner)
2319                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2320                 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2321                 ret = fixup_pi_state_owner(uaddr, q, owner);
2322                 goto out;
2323         }
2324
2325         /*
2326          * Paranoia check. If we did not take the lock, then we should not be
2327          * the owner of the rt_mutex.
2328          */
2329         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2330                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2331                                 "pi-state %p\n", ret,
2332                                 q->pi_state->pi_mutex.owner,
2333                                 q->pi_state->owner);
2334
2335 out:
2336         return ret ? ret : locked;
2337 }
2338
2339 /**
2340  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2341  * @hb:         the futex hash bucket, must be locked by the caller
2342  * @q:          the futex_q to queue up on
2343  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2344  */
2345 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2346                                 struct hrtimer_sleeper *timeout)
2347 {
2348         /*
2349          * The task state is guaranteed to be set before another task can
2350          * wake it. set_current_state() is implemented using smp_store_mb() and
2351          * queue_me() calls spin_unlock() upon completion, both serializing
2352          * access to the hash list and forcing another memory barrier.
2353          */
2354         set_current_state(TASK_INTERRUPTIBLE);
2355         queue_me(q, hb);
2356
2357         /* Arm the timer */
2358         if (timeout)
2359                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2360
2361         /*
2362          * If we have been removed from the hash list, then another task
2363          * has tried to wake us, and we can skip the call to schedule().
2364          */
2365         if (likely(!plist_node_empty(&q->list))) {
2366                 /*
2367                  * If the timer has already expired, current will already be
2368                  * flagged for rescheduling. Only call schedule if there
2369                  * is no timeout, or if it has yet to expire.
2370                  */
2371                 if (!timeout || timeout->task)
2372                         freezable_schedule();
2373         }
2374         __set_current_state(TASK_RUNNING);
2375 }
2376
2377 /**
2378  * futex_wait_setup() - Prepare to wait on a futex
2379  * @uaddr:      the futex userspace address
2380  * @val:        the expected value
2381  * @flags:      futex flags (FLAGS_SHARED, etc.)
2382  * @q:          the associated futex_q
2383  * @hb:         storage for hash_bucket pointer to be returned to caller
2384  *
2385  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2386  * compare it with the expected value.  Handle atomic faults internally.
2387  * Return with the hb lock held and a q.key reference on success, and unlocked
2388  * with no q.key reference on failure.
2389  *
2390  * Return:
2391  *  0 - uaddr contains val and hb has been locked;
2392  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2393  */
2394 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2395                            struct futex_q *q, struct futex_hash_bucket **hb)
2396 {
2397         u32 uval;
2398         int ret;
2399
2400         /*
2401          * Access the page AFTER the hash-bucket is locked.
2402          * Order is important:
2403          *
2404          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2405          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2406          *
2407          * The basic logical guarantee of a futex is that it blocks ONLY
2408          * if cond(var) is known to be true at the time of blocking, for
2409          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2410          * would open a race condition where we could block indefinitely with
2411          * cond(var) false, which would violate the guarantee.
2412          *
2413          * On the other hand, we insert q and release the hash-bucket only
2414          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2415          * absorb a wakeup if *uaddr does not match the desired values
2416          * while the syscall executes.
2417          */
2418 retry:
2419         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2420         if (unlikely(ret != 0))
2421                 return ret;
2422
2423 retry_private:
2424         *hb = queue_lock(q);
2425
2426         ret = get_futex_value_locked(&uval, uaddr);
2427
2428         if (ret) {
2429                 queue_unlock(*hb);
2430
2431                 ret = get_user(uval, uaddr);
2432                 if (ret)
2433                         goto out;
2434
2435                 if (!(flags & FLAGS_SHARED))
2436                         goto retry_private;
2437
2438                 put_futex_key(&q->key);
2439                 goto retry;
2440         }
2441
2442         if (uval != val) {
2443                 queue_unlock(*hb);
2444                 ret = -EWOULDBLOCK;
2445         }
2446
2447 out:
2448         if (ret)
2449                 put_futex_key(&q->key);
2450         return ret;
2451 }
2452
2453 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2454                       ktime_t *abs_time, u32 bitset)
2455 {
2456         struct hrtimer_sleeper timeout, *to = NULL;
2457         struct restart_block *restart;
2458         struct futex_hash_bucket *hb;
2459         struct futex_q q = futex_q_init;
2460         int ret;
2461
2462         if (!bitset)
2463                 return -EINVAL;
2464         q.bitset = bitset;
2465
2466         if (abs_time) {
2467                 to = &timeout;
2468
2469                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2470                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2471                                       HRTIMER_MODE_ABS);
2472                 hrtimer_init_sleeper(to, current);
2473                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2474                                              current->timer_slack_ns);
2475         }
2476
2477 retry:
2478         /*
2479          * Prepare to wait on uaddr. On success, holds hb lock and increments
2480          * q.key refs.
2481          */
2482         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2483         if (ret)
2484                 goto out;
2485
2486         /* queue_me and wait for wakeup, timeout, or a signal. */
2487         futex_wait_queue_me(hb, &q, to);
2488
2489         /* If we were woken (and unqueued), we succeeded, whatever. */
2490         ret = 0;
2491         /* unqueue_me() drops q.key ref */
2492         if (!unqueue_me(&q))
2493                 goto out;
2494         ret = -ETIMEDOUT;
2495         if (to && !to->task)
2496                 goto out;
2497
2498         /*
2499          * We expect signal_pending(current), but we might be the
2500          * victim of a spurious wakeup as well.
2501          */
2502         if (!signal_pending(current))
2503                 goto retry;
2504
2505         ret = -ERESTARTSYS;
2506         if (!abs_time)
2507                 goto out;
2508
2509         restart = &current->restart_block;
2510         restart->fn = futex_wait_restart;
2511         restart->futex.uaddr = uaddr;
2512         restart->futex.val = val;
2513         restart->futex.time = abs_time->tv64;
2514         restart->futex.bitset = bitset;
2515         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2516
2517         ret = -ERESTART_RESTARTBLOCK;
2518
2519 out:
2520         if (to) {
2521                 hrtimer_cancel(&to->timer);
2522                 destroy_hrtimer_on_stack(&to->timer);
2523         }
2524         return ret;
2525 }
2526
2527
2528 static long futex_wait_restart(struct restart_block *restart)
2529 {
2530         u32 __user *uaddr = restart->futex.uaddr;
2531         ktime_t t, *tp = NULL;
2532
2533         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2534                 t.tv64 = restart->futex.time;
2535                 tp = &t;
2536         }
2537         restart->fn = do_no_restart_syscall;
2538
2539         return (long)futex_wait(uaddr, restart->futex.flags,
2540                                 restart->futex.val, tp, restart->futex.bitset);
2541 }
2542
2543
2544 /*
2545  * Userspace tried a 0 -> TID atomic transition of the futex value
2546  * and failed. The kernel side here does the whole locking operation:
2547  * if there are waiters then it will block as a consequence of relying
2548  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2549  * a 0 value of the futex too.).
2550  *
2551  * Also serves as futex trylock_pi()'ing, and due semantics.
2552  */
2553 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2554                          ktime_t *time, int trylock)
2555 {
2556         struct hrtimer_sleeper timeout, *to = NULL;
2557         struct futex_hash_bucket *hb;
2558         struct futex_q q = futex_q_init;
2559         int res, ret;
2560
2561         if (refill_pi_state_cache())
2562                 return -ENOMEM;
2563
2564         if (time) {
2565                 to = &timeout;
2566                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2567                                       HRTIMER_MODE_ABS);
2568                 hrtimer_init_sleeper(to, current);
2569                 hrtimer_set_expires(&to->timer, *time);
2570         }
2571
2572 retry:
2573         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2574         if (unlikely(ret != 0))
2575                 goto out;
2576
2577 retry_private:
2578         hb = queue_lock(&q);
2579
2580         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2581         if (unlikely(ret)) {
2582                 /*
2583                  * Atomic work succeeded and we got the lock,
2584                  * or failed. Either way, we do _not_ block.
2585                  */
2586                 switch (ret) {
2587                 case 1:
2588                         /* We got the lock. */
2589                         ret = 0;
2590                         goto out_unlock_put_key;
2591                 case -EFAULT:
2592                         goto uaddr_faulted;
2593                 case -EAGAIN:
2594                         /*
2595                          * Two reasons for this:
2596                          * - Task is exiting and we just wait for the
2597                          *   exit to complete.
2598                          * - The user space value changed.
2599                          */
2600                         queue_unlock(hb);
2601                         put_futex_key(&q.key);
2602                         cond_resched();
2603                         goto retry;
2604                 default:
2605                         goto out_unlock_put_key;
2606                 }
2607         }
2608
2609         /*
2610          * Only actually queue now that the atomic ops are done:
2611          */
2612         queue_me(&q, hb);
2613
2614         WARN_ON(!q.pi_state);
2615         /*
2616          * Block on the PI mutex:
2617          */
2618         if (!trylock) {
2619                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2620         } else {
2621                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2622                 /* Fixup the trylock return value: */
2623                 ret = ret ? 0 : -EWOULDBLOCK;
2624         }
2625
2626         spin_lock(q.lock_ptr);
2627         /*
2628          * Fixup the pi_state owner and possibly acquire the lock if we
2629          * haven't already.
2630          */
2631         res = fixup_owner(uaddr, &q, !ret);
2632         /*
2633          * If fixup_owner() returned an error, proprogate that.  If it acquired
2634          * the lock, clear our -ETIMEDOUT or -EINTR.
2635          */
2636         if (res)
2637                 ret = (res < 0) ? res : 0;
2638
2639         /*
2640          * If fixup_owner() faulted and was unable to handle the fault, unlock
2641          * it and return the fault to userspace.
2642          */
2643         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2644                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2645
2646         /* Unqueue and drop the lock */
2647         unqueue_me_pi(&q);
2648
2649         goto out_put_key;
2650
2651 out_unlock_put_key:
2652         queue_unlock(hb);
2653
2654 out_put_key:
2655         put_futex_key(&q.key);
2656 out:
2657         if (to)
2658                 destroy_hrtimer_on_stack(&to->timer);
2659         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2660
2661 uaddr_faulted:
2662         queue_unlock(hb);
2663
2664         ret = fault_in_user_writeable(uaddr);
2665         if (ret)
2666                 goto out_put_key;
2667
2668         if (!(flags & FLAGS_SHARED))
2669                 goto retry_private;
2670
2671         put_futex_key(&q.key);
2672         goto retry;
2673 }
2674
2675 /*
2676  * Userspace attempted a TID -> 0 atomic transition, and failed.
2677  * This is the in-kernel slowpath: we look up the PI state (if any),
2678  * and do the rt-mutex unlock.
2679  */
2680 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2681 {
2682         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2683         union futex_key key = FUTEX_KEY_INIT;
2684         struct futex_hash_bucket *hb;
2685         struct futex_q *match;
2686         int ret;
2687
2688 retry:
2689         if (get_user(uval, uaddr))
2690                 return -EFAULT;
2691         /*
2692          * We release only a lock we actually own:
2693          */
2694         if ((uval & FUTEX_TID_MASK) != vpid)
2695                 return -EPERM;
2696
2697         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2698         if (ret)
2699                 return ret;
2700
2701         hb = hash_futex(&key);
2702         spin_lock(&hb->lock);
2703
2704         /*
2705          * Check waiters first. We do not trust user space values at
2706          * all and we at least want to know if user space fiddled
2707          * with the futex value instead of blindly unlocking.
2708          */
2709         match = futex_top_waiter(hb, &key);
2710         if (match) {
2711                 ret = wake_futex_pi(uaddr, uval, match, hb);
2712                 /*
2713                  * In case of success wake_futex_pi dropped the hash
2714                  * bucket lock.
2715                  */
2716                 if (!ret)
2717                         goto out_putkey;
2718                 /*
2719                  * The atomic access to the futex value generated a
2720                  * pagefault, so retry the user-access and the wakeup:
2721                  */
2722                 if (ret == -EFAULT)
2723                         goto pi_faulted;
2724                 /*
2725                  * A unconditional UNLOCK_PI op raced against a waiter
2726                  * setting the FUTEX_WAITERS bit. Try again.
2727                  */
2728                 if (ret == -EAGAIN) {
2729                         spin_unlock(&hb->lock);
2730                         put_futex_key(&key);
2731                         goto retry;
2732                 }
2733                 /*
2734                  * wake_futex_pi has detected invalid state. Tell user
2735                  * space.
2736                  */
2737                 goto out_unlock;
2738         }
2739
2740         /*
2741          * We have no kernel internal state, i.e. no waiters in the
2742          * kernel. Waiters which are about to queue themselves are stuck
2743          * on hb->lock. So we can safely ignore them. We do neither
2744          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2745          * owner.
2746          */
2747         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2748                 goto pi_faulted;
2749
2750         /*
2751          * If uval has changed, let user space handle it.
2752          */
2753         ret = (curval == uval) ? 0 : -EAGAIN;
2754
2755 out_unlock:
2756         spin_unlock(&hb->lock);
2757 out_putkey:
2758         put_futex_key(&key);
2759         return ret;
2760
2761 pi_faulted:
2762         spin_unlock(&hb->lock);
2763         put_futex_key(&key);
2764
2765         ret = fault_in_user_writeable(uaddr);
2766         if (!ret)
2767                 goto retry;
2768
2769         return ret;
2770 }
2771
2772 /**
2773  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2774  * @hb:         the hash_bucket futex_q was original enqueued on
2775  * @q:          the futex_q woken while waiting to be requeued
2776  * @key2:       the futex_key of the requeue target futex
2777  * @timeout:    the timeout associated with the wait (NULL if none)
2778  *
2779  * Detect if the task was woken on the initial futex as opposed to the requeue
2780  * target futex.  If so, determine if it was a timeout or a signal that caused
2781  * the wakeup and return the appropriate error code to the caller.  Must be
2782  * called with the hb lock held.
2783  *
2784  * Return:
2785  *  0 = no early wakeup detected;
2786  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2787  */
2788 static inline
2789 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2790                                    struct futex_q *q, union futex_key *key2,
2791                                    struct hrtimer_sleeper *timeout)
2792 {
2793         int ret = 0;
2794
2795         /*
2796          * With the hb lock held, we avoid races while we process the wakeup.
2797          * We only need to hold hb (and not hb2) to ensure atomicity as the
2798          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2799          * It can't be requeued from uaddr2 to something else since we don't
2800          * support a PI aware source futex for requeue.
2801          */
2802         if (!match_futex(&q->key, key2)) {
2803                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2804                 /*
2805                  * We were woken prior to requeue by a timeout or a signal.
2806                  * Unqueue the futex_q and determine which it was.
2807                  */
2808                 plist_del(&q->list, &hb->chain);
2809                 hb_waiters_dec(hb);
2810
2811                 /* Handle spurious wakeups gracefully */
2812                 ret = -EWOULDBLOCK;
2813                 if (timeout && !timeout->task)
2814                         ret = -ETIMEDOUT;
2815                 else if (signal_pending(current))
2816                         ret = -ERESTARTNOINTR;
2817         }
2818         return ret;
2819 }
2820
2821 /**
2822  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2823  * @uaddr:      the futex we initially wait on (non-pi)
2824  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2825  *              the same type, no requeueing from private to shared, etc.
2826  * @val:        the expected value of uaddr
2827  * @abs_time:   absolute timeout
2828  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2829  * @uaddr2:     the pi futex we will take prior to returning to user-space
2830  *
2831  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2832  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2833  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2834  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2835  * without one, the pi logic would not know which task to boost/deboost, if
2836  * there was a need to.
2837  *
2838  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2839  * via the following--
2840  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2841  * 2) wakeup on uaddr2 after a requeue
2842  * 3) signal
2843  * 4) timeout
2844  *
2845  * If 3, cleanup and return -ERESTARTNOINTR.
2846  *
2847  * If 2, we may then block on trying to take the rt_mutex and return via:
2848  * 5) successful lock
2849  * 6) signal
2850  * 7) timeout
2851  * 8) other lock acquisition failure
2852  *
2853  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2854  *
2855  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2856  *
2857  * Return:
2858  *  0 - On success;
2859  * <0 - On error
2860  */
2861 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2862                                  u32 val, ktime_t *abs_time, u32 bitset,
2863                                  u32 __user *uaddr2)
2864 {
2865         struct hrtimer_sleeper timeout, *to = NULL;
2866         struct rt_mutex_waiter rt_waiter;
2867         struct futex_hash_bucket *hb;
2868         union futex_key key2 = FUTEX_KEY_INIT;
2869         struct futex_q q = futex_q_init;
2870         int res, ret;
2871
2872         if (uaddr == uaddr2)
2873                 return -EINVAL;
2874
2875         if (!bitset)
2876                 return -EINVAL;
2877
2878         if (abs_time) {
2879                 to = &timeout;
2880                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2881                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2882                                       HRTIMER_MODE_ABS);
2883                 hrtimer_init_sleeper(to, current);
2884                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2885                                              current->timer_slack_ns);
2886         }
2887
2888         /*
2889          * The waiter is allocated on our stack, manipulated by the requeue
2890          * code while we sleep on uaddr.
2891          */
2892         debug_rt_mutex_init_waiter(&rt_waiter);
2893         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2894         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2895         rt_waiter.task = NULL;
2896
2897         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2898         if (unlikely(ret != 0))
2899                 goto out;
2900
2901         q.bitset = bitset;
2902         q.rt_waiter = &rt_waiter;
2903         q.requeue_pi_key = &key2;
2904
2905         /*
2906          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2907          * count.
2908          */
2909         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2910         if (ret)
2911                 goto out_key2;
2912
2913         /*
2914          * The check above which compares uaddrs is not sufficient for
2915          * shared futexes. We need to compare the keys:
2916          */
2917         if (match_futex(&q.key, &key2)) {
2918                 queue_unlock(hb);
2919                 ret = -EINVAL;
2920                 goto out_put_keys;
2921         }
2922
2923         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2924         futex_wait_queue_me(hb, &q, to);
2925
2926         spin_lock(&hb->lock);
2927         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2928         spin_unlock(&hb->lock);
2929         if (ret)
2930                 goto out_put_keys;
2931
2932         /*
2933          * In order for us to be here, we know our q.key == key2, and since
2934          * we took the hb->lock above, we also know that futex_requeue() has
2935          * completed and we no longer have to concern ourselves with a wakeup
2936          * race with the atomic proxy lock acquisition by the requeue code. The
2937          * futex_requeue dropped our key1 reference and incremented our key2
2938          * reference count.
2939          */
2940
2941         /* Check if the requeue code acquired the second futex for us. */
2942         if (!q.rt_waiter) {
2943                 /*
2944                  * Got the lock. We might not be the anticipated owner if we
2945                  * did a lock-steal - fix up the PI-state in that case.
2946                  */
2947                 if (q.pi_state && (q.pi_state->owner != current)) {
2948                         spin_lock(q.lock_ptr);
2949                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2950                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2951                                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2952                         /*
2953                          * Drop the reference to the pi state which
2954                          * the requeue_pi() code acquired for us.
2955                          */
2956                         put_pi_state(q.pi_state);
2957                         spin_unlock(q.lock_ptr);
2958                 }
2959         } else {
2960                 struct rt_mutex *pi_mutex;
2961
2962                 /*
2963                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2964                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2965                  * the pi_state.
2966                  */
2967                 WARN_ON(!q.pi_state);
2968                 pi_mutex = &q.pi_state->pi_mutex;
2969                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
2970
2971                 spin_lock(q.lock_ptr);
2972                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
2973                         ret = 0;
2974
2975                 debug_rt_mutex_free_waiter(&rt_waiter);
2976                 /*
2977                  * Fixup the pi_state owner and possibly acquire the lock if we
2978                  * haven't already.
2979                  */
2980                 res = fixup_owner(uaddr2, &q, !ret);
2981                 /*
2982                  * If fixup_owner() returned an error, proprogate that.  If it
2983                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2984                  */
2985                 if (res)
2986                         ret = (res < 0) ? res : 0;
2987
2988                 /*
2989                  * If fixup_pi_state_owner() faulted and was unable to handle
2990                  * the fault, unlock the rt_mutex and return the fault to
2991                  * userspace.
2992                  */
2993                 if (ret && rt_mutex_owner(pi_mutex) == current)
2994                         rt_mutex_unlock(pi_mutex);
2995
2996                 /* Unqueue and drop the lock. */
2997                 unqueue_me_pi(&q);
2998         }
2999
3000         if (ret == -EINTR) {
3001                 /*
3002                  * We've already been requeued, but cannot restart by calling
3003                  * futex_lock_pi() directly. We could restart this syscall, but
3004                  * it would detect that the user space "val" changed and return
3005                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3006                  * -EWOULDBLOCK directly.
3007                  */
3008                 ret = -EWOULDBLOCK;
3009         }
3010
3011 out_put_keys:
3012         put_futex_key(&q.key);
3013 out_key2:
3014         put_futex_key(&key2);
3015
3016 out:
3017         if (to) {
3018                 hrtimer_cancel(&to->timer);
3019                 destroy_hrtimer_on_stack(&to->timer);
3020         }
3021         return ret;
3022 }
3023
3024 /*
3025  * Support for robust futexes: the kernel cleans up held futexes at
3026  * thread exit time.
3027  *
3028  * Implementation: user-space maintains a per-thread list of locks it
3029  * is holding. Upon do_exit(), the kernel carefully walks this list,
3030  * and marks all locks that are owned by this thread with the
3031  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3032  * always manipulated with the lock held, so the list is private and
3033  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3034  * field, to allow the kernel to clean up if the thread dies after
3035  * acquiring the lock, but just before it could have added itself to
3036  * the list. There can only be one such pending lock.
3037  */
3038
3039 /**
3040  * sys_set_robust_list() - Set the robust-futex list head of a task
3041  * @head:       pointer to the list-head
3042  * @len:        length of the list-head, as userspace expects
3043  */
3044 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3045                 size_t, len)
3046 {
3047         if (!futex_cmpxchg_enabled)
3048                 return -ENOSYS;
3049         /*
3050          * The kernel knows only one size for now:
3051          */
3052         if (unlikely(len != sizeof(*head)))
3053                 return -EINVAL;
3054
3055         current->robust_list = head;
3056
3057         return 0;
3058 }
3059
3060 /**
3061  * sys_get_robust_list() - Get the robust-futex list head of a task
3062  * @pid:        pid of the process [zero for current task]
3063  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3064  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3065  */
3066 SYSCALL_DEFINE3(get_robust_list, int, pid,
3067                 struct robust_list_head __user * __user *, head_ptr,
3068                 size_t __user *, len_ptr)
3069 {
3070         struct robust_list_head __user *head;
3071         unsigned long ret;
3072         struct task_struct *p;
3073
3074         if (!futex_cmpxchg_enabled)
3075                 return -ENOSYS;
3076
3077         rcu_read_lock();
3078
3079         ret = -ESRCH;
3080         if (!pid)
3081                 p = current;
3082         else {
3083                 p = find_task_by_vpid(pid);
3084                 if (!p)
3085                         goto err_unlock;
3086         }
3087
3088         ret = -EPERM;
3089         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3090                 goto err_unlock;
3091
3092         head = p->robust_list;
3093         rcu_read_unlock();
3094
3095         if (put_user(sizeof(*head), len_ptr))
3096                 return -EFAULT;
3097         return put_user(head, head_ptr);
3098
3099 err_unlock:
3100         rcu_read_unlock();
3101
3102         return ret;
3103 }
3104
3105 /*
3106  * Process a futex-list entry, check whether it's owned by the
3107  * dying task, and do notification if so:
3108  */
3109 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3110 {
3111         u32 uval, uninitialized_var(nval), mval;
3112
3113         /* Futex address must be 32bit aligned */
3114         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3115                 return -1;
3116
3117 retry:
3118         if (get_user(uval, uaddr))
3119                 return -1;
3120
3121         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3122                 /*
3123                  * Ok, this dying thread is truly holding a futex
3124                  * of interest. Set the OWNER_DIED bit atomically
3125                  * via cmpxchg, and if the value had FUTEX_WAITERS
3126                  * set, wake up a waiter (if any). (We have to do a
3127                  * futex_wake() even if OWNER_DIED is already set -
3128                  * to handle the rare but possible case of recursive
3129                  * thread-death.) The rest of the cleanup is done in
3130                  * userspace.
3131                  */
3132                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3133                 /*
3134                  * We are not holding a lock here, but we want to have
3135                  * the pagefault_disable/enable() protection because
3136                  * we want to handle the fault gracefully. If the
3137                  * access fails we try to fault in the futex with R/W
3138                  * verification via get_user_pages. get_user() above
3139                  * does not guarantee R/W access. If that fails we
3140                  * give up and leave the futex locked.
3141                  */
3142                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3143                         if (fault_in_user_writeable(uaddr))
3144                                 return -1;
3145                         goto retry;
3146                 }
3147                 if (nval != uval)
3148                         goto retry;
3149
3150                 /*
3151                  * Wake robust non-PI futexes here. The wakeup of
3152                  * PI futexes happens in exit_pi_state():
3153                  */
3154                 if (!pi && (uval & FUTEX_WAITERS))
3155                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3156         }
3157         return 0;
3158 }
3159
3160 /*
3161  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3162  */
3163 static inline int fetch_robust_entry(struct robust_list __user **entry,
3164                                      struct robust_list __user * __user *head,
3165                                      unsigned int *pi)
3166 {
3167         unsigned long uentry;
3168
3169         if (get_user(uentry, (unsigned long __user *)head))
3170                 return -EFAULT;
3171
3172         *entry = (void __user *)(uentry & ~1UL);
3173         *pi = uentry & 1;
3174
3175         return 0;
3176 }
3177
3178 /*
3179  * Walk curr->robust_list (very carefully, it's a userspace list!)
3180  * and mark any locks found there dead, and notify any waiters.
3181  *
3182  * We silently return on any sign of list-walking problem.
3183  */
3184 void exit_robust_list(struct task_struct *curr)
3185 {
3186         struct robust_list_head __user *head = curr->robust_list;
3187         struct robust_list __user *entry, *next_entry, *pending;
3188         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3189         unsigned int uninitialized_var(next_pi);
3190         unsigned long futex_offset;
3191         int rc;
3192
3193         if (!futex_cmpxchg_enabled)
3194                 return;
3195
3196         /*
3197          * Fetch the list head (which was registered earlier, via
3198          * sys_set_robust_list()):
3199          */
3200         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3201                 return;
3202         /*
3203          * Fetch the relative futex offset:
3204          */
3205         if (get_user(futex_offset, &head->futex_offset))
3206                 return;
3207         /*
3208          * Fetch any possibly pending lock-add first, and handle it
3209          * if it exists:
3210          */
3211         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3212                 return;
3213
3214         next_entry = NULL;      /* avoid warning with gcc */
3215         while (entry != &head->list) {
3216                 /*
3217                  * Fetch the next entry in the list before calling
3218                  * handle_futex_death:
3219                  */
3220                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3221                 /*
3222                  * A pending lock might already be on the list, so
3223                  * don't process it twice:
3224                  */
3225                 if (entry != pending)
3226                         if (handle_futex_death((void __user *)entry + futex_offset,
3227                                                 curr, pi))
3228                                 return;
3229                 if (rc)
3230                         return;
3231                 entry = next_entry;
3232                 pi = next_pi;
3233                 /*
3234                  * Avoid excessively long or circular lists:
3235                  */
3236                 if (!--limit)
3237                         break;
3238
3239                 cond_resched();
3240         }
3241
3242         if (pending)
3243                 handle_futex_death((void __user *)pending + futex_offset,
3244                                    curr, pip);
3245 }
3246
3247 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3248                 u32 __user *uaddr2, u32 val2, u32 val3)
3249 {
3250         int cmd = op & FUTEX_CMD_MASK;
3251         unsigned int flags = 0;
3252
3253         if (!(op & FUTEX_PRIVATE_FLAG))
3254                 flags |= FLAGS_SHARED;
3255
3256         if (op & FUTEX_CLOCK_REALTIME) {
3257                 flags |= FLAGS_CLOCKRT;
3258                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3259                     cmd != FUTEX_WAIT_REQUEUE_PI)
3260                         return -ENOSYS;
3261         }
3262
3263         switch (cmd) {
3264         case FUTEX_LOCK_PI:
3265         case FUTEX_UNLOCK_PI:
3266         case FUTEX_TRYLOCK_PI:
3267         case FUTEX_WAIT_REQUEUE_PI:
3268         case FUTEX_CMP_REQUEUE_PI:
3269                 if (!futex_cmpxchg_enabled)
3270                         return -ENOSYS;
3271         }
3272
3273         switch (cmd) {
3274         case FUTEX_WAIT:
3275                 val3 = FUTEX_BITSET_MATCH_ANY;
3276         case FUTEX_WAIT_BITSET:
3277                 return futex_wait(uaddr, flags, val, timeout, val3);
3278         case FUTEX_WAKE:
3279                 val3 = FUTEX_BITSET_MATCH_ANY;
3280         case FUTEX_WAKE_BITSET:
3281                 return futex_wake(uaddr, flags, val, val3);
3282         case FUTEX_REQUEUE:
3283                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3284         case FUTEX_CMP_REQUEUE:
3285                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3286         case FUTEX_WAKE_OP:
3287                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3288         case FUTEX_LOCK_PI:
3289                 return futex_lock_pi(uaddr, flags, timeout, 0);
3290         case FUTEX_UNLOCK_PI:
3291                 return futex_unlock_pi(uaddr, flags);
3292         case FUTEX_TRYLOCK_PI:
3293                 return futex_lock_pi(uaddr, flags, NULL, 1);
3294         case FUTEX_WAIT_REQUEUE_PI:
3295                 val3 = FUTEX_BITSET_MATCH_ANY;
3296                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3297                                              uaddr2);
3298         case FUTEX_CMP_REQUEUE_PI:
3299                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3300         }
3301         return -ENOSYS;
3302 }
3303
3304
3305 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3306                 struct timespec __user *, utime, u32 __user *, uaddr2,
3307                 u32, val3)
3308 {
3309         struct timespec ts;
3310         ktime_t t, *tp = NULL;
3311         u32 val2 = 0;
3312         int cmd = op & FUTEX_CMD_MASK;
3313
3314         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3315                       cmd == FUTEX_WAIT_BITSET ||
3316                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3317                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3318                         return -EFAULT;
3319                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3320                         return -EFAULT;
3321                 if (!timespec_valid(&ts))
3322                         return -EINVAL;
3323
3324                 t = timespec_to_ktime(ts);
3325                 if (cmd == FUTEX_WAIT)
3326                         t = ktime_add_safe(ktime_get(), t);
3327                 tp = &t;
3328         }
3329         /*
3330          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3331          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3332          */
3333         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3334             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3335                 val2 = (u32) (unsigned long) utime;
3336
3337         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3338 }
3339
3340 static void __init futex_detect_cmpxchg(void)
3341 {
3342 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3343         u32 curval;
3344
3345         /*
3346          * This will fail and we want it. Some arch implementations do
3347          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3348          * functionality. We want to know that before we call in any
3349          * of the complex code paths. Also we want to prevent
3350          * registration of robust lists in that case. NULL is
3351          * guaranteed to fault and we get -EFAULT on functional
3352          * implementation, the non-functional ones will return
3353          * -ENOSYS.
3354          */
3355         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3356                 futex_cmpxchg_enabled = 1;
3357 #endif
3358 }
3359
3360 static int __init futex_init(void)
3361 {
3362         unsigned int futex_shift;
3363         unsigned long i;
3364
3365 #if CONFIG_BASE_SMALL
3366         futex_hashsize = 16;
3367 #else
3368         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3369 #endif
3370
3371         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3372                                                futex_hashsize, 0,
3373                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3374                                                &futex_shift, NULL,
3375                                                futex_hashsize, futex_hashsize);
3376         futex_hashsize = 1UL << futex_shift;
3377
3378         futex_detect_cmpxchg();
3379
3380         for (i = 0; i < futex_hashsize; i++) {
3381                 atomic_set(&futex_queues[i].waiters, 0);
3382                 plist_head_init(&futex_queues[i].chain);
3383                 spin_lock_init(&futex_queues[i].lock);
3384         }
3385
3386         return 0;
3387 }
3388 core_initcall(futex_init);