OSDN Git Service

MIPS: VDSO: Prevent use of smp_processor_id()
[android-x86/kernel.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81         raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86         return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100         struct list_head list;
101         kprobe_opcode_t *insns;         /* Page of instruction slots */
102         struct kprobe_insn_cache *cache;
103         int nused;
104         int ngarbage;
105         char slot_used[];
106 };
107
108 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
109         (offsetof(struct kprobe_insn_page, slot_used) + \
110          (sizeof(char) * (slots)))
111
112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116
117 enum kprobe_slot_state {
118         SLOT_CLEAN = 0,
119         SLOT_DIRTY = 1,
120         SLOT_USED = 2,
121 };
122
123 static void *alloc_insn_page(void)
124 {
125         return module_alloc(PAGE_SIZE);
126 }
127
128 void __weak free_insn_page(void *page)
129 {
130         module_memfree(page);
131 }
132
133 struct kprobe_insn_cache kprobe_insn_slots = {
134         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135         .alloc = alloc_insn_page,
136         .free = free_insn_page,
137         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138         .insn_size = MAX_INSN_SIZE,
139         .nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149         struct kprobe_insn_page *kip;
150         kprobe_opcode_t *slot = NULL;
151
152         mutex_lock(&c->mutex);
153  retry:
154         list_for_each_entry(kip, &c->pages, list) {
155                 if (kip->nused < slots_per_page(c)) {
156                         int i;
157                         for (i = 0; i < slots_per_page(c); i++) {
158                                 if (kip->slot_used[i] == SLOT_CLEAN) {
159                                         kip->slot_used[i] = SLOT_USED;
160                                         kip->nused++;
161                                         slot = kip->insns + (i * c->insn_size);
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170
171         /* If there are any garbage slots, collect it and try again. */
172         if (c->nr_garbage && collect_garbage_slots(c) == 0)
173                 goto retry;
174
175         /* All out of space.  Need to allocate a new page. */
176         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177         if (!kip)
178                 goto out;
179
180         /*
181          * Use module_alloc so this page is within +/- 2GB of where the
182          * kernel image and loaded module images reside. This is required
183          * so x86_64 can correctly handle the %rip-relative fixups.
184          */
185         kip->insns = c->alloc();
186         if (!kip->insns) {
187                 kfree(kip);
188                 goto out;
189         }
190         INIT_LIST_HEAD(&kip->list);
191         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192         kip->slot_used[0] = SLOT_USED;
193         kip->nused = 1;
194         kip->ngarbage = 0;
195         kip->cache = c;
196         list_add(&kip->list, &c->pages);
197         slot = kip->insns;
198 out:
199         mutex_unlock(&c->mutex);
200         return slot;
201 }
202
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206         kip->slot_used[idx] = SLOT_CLEAN;
207         kip->nused--;
208         if (kip->nused == 0) {
209                 /*
210                  * Page is no longer in use.  Free it unless
211                  * it's the last one.  We keep the last one
212                  * so as not to have to set it up again the
213                  * next time somebody inserts a probe.
214                  */
215                 if (!list_is_singular(&kip->list)) {
216                         list_del(&kip->list);
217                         kip->cache->free(kip->insns);
218                         kfree(kip);
219                 }
220                 return 1;
221         }
222         return 0;
223 }
224
225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227         struct kprobe_insn_page *kip, *next;
228
229         /* Ensure no-one is interrupted on the garbages */
230         synchronize_sched();
231
232         list_for_each_entry_safe(kip, next, &c->pages, list) {
233                 int i;
234                 if (kip->ngarbage == 0)
235                         continue;
236                 kip->ngarbage = 0;      /* we will collect all garbages */
237                 for (i = 0; i < slots_per_page(c); i++) {
238                         if (kip->slot_used[i] == SLOT_DIRTY &&
239                             collect_one_slot(kip, i))
240                                 break;
241                 }
242         }
243         c->nr_garbage = 0;
244         return 0;
245 }
246
247 void __free_insn_slot(struct kprobe_insn_cache *c,
248                       kprobe_opcode_t *slot, int dirty)
249 {
250         struct kprobe_insn_page *kip;
251
252         mutex_lock(&c->mutex);
253         list_for_each_entry(kip, &c->pages, list) {
254                 long idx = ((long)slot - (long)kip->insns) /
255                                 (c->insn_size * sizeof(kprobe_opcode_t));
256                 if (idx >= 0 && idx < slots_per_page(c)) {
257                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
258                         if (dirty) {
259                                 kip->slot_used[idx] = SLOT_DIRTY;
260                                 kip->ngarbage++;
261                                 if (++c->nr_garbage > slots_per_page(c))
262                                         collect_garbage_slots(c);
263                         } else
264                                 collect_one_slot(kip, idx);
265                         goto out;
266                 }
267         }
268         /* Could not free this slot. */
269         WARN_ON(1);
270 out:
271         mutex_unlock(&c->mutex);
272 }
273
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278         .alloc = alloc_insn_page,
279         .free = free_insn_page,
280         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281         /* .insn_size is initialized later */
282         .nr_garbage = 0,
283 };
284 #endif
285 #endif
286
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290         __this_cpu_write(kprobe_instance, kp);
291 }
292
293 static inline void reset_kprobe_instance(void)
294 {
295         __this_cpu_write(kprobe_instance, NULL);
296 }
297
298 /*
299  * This routine is called either:
300  *      - under the kprobe_mutex - during kprobe_[un]register()
301  *                              OR
302  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
303  */
304 struct kprobe *get_kprobe(void *addr)
305 {
306         struct hlist_head *head;
307         struct kprobe *p;
308
309         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310         hlist_for_each_entry_rcu(p, head, hlist) {
311                 if (p->addr == addr)
312                         return p;
313         }
314
315         return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320
321 /* Return true if the kprobe is an aggregator */
322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324         return p->pre_handler == aggr_pre_handler;
325 }
326
327 /* Return true(!0) if the kprobe is unused */
328 static inline int kprobe_unused(struct kprobe *p)
329 {
330         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331                list_empty(&p->list);
332 }
333
334 /*
335  * Keep all fields in the kprobe consistent
336  */
337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346
347 /*
348  * Call all pre_handler on the list, but ignores its return value.
349  * This must be called from arch-dep optimized caller.
350  */
351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353         struct kprobe *kp;
354
355         list_for_each_entry_rcu(kp, &p->list, list) {
356                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357                         set_kprobe_instance(kp);
358                         kp->pre_handler(kp, regs);
359                 }
360                 reset_kprobe_instance();
361         }
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364
365 /* Free optimized instructions and optimized_kprobe */
366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368         struct optimized_kprobe *op;
369
370         op = container_of(p, struct optimized_kprobe, kp);
371         arch_remove_optimized_kprobe(op);
372         arch_remove_kprobe(p);
373         kfree(op);
374 }
375
376 /* Return true(!0) if the kprobe is ready for optimization. */
377 static inline int kprobe_optready(struct kprobe *p)
378 {
379         struct optimized_kprobe *op;
380
381         if (kprobe_aggrprobe(p)) {
382                 op = container_of(p, struct optimized_kprobe, kp);
383                 return arch_prepared_optinsn(&op->optinsn);
384         }
385
386         return 0;
387 }
388
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392         struct optimized_kprobe *op;
393
394         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395         if (!kprobe_aggrprobe(p))
396                 return kprobe_disabled(p);
397
398         op = container_of(p, struct optimized_kprobe, kp);
399
400         return kprobe_disabled(p) && list_empty(&op->list);
401 }
402
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
404 static int kprobe_queued(struct kprobe *p)
405 {
406         struct optimized_kprobe *op;
407
408         if (kprobe_aggrprobe(p)) {
409                 op = container_of(p, struct optimized_kprobe, kp);
410                 if (!list_empty(&op->list))
411                         return 1;
412         }
413         return 0;
414 }
415
416 /*
417  * Return an optimized kprobe whose optimizing code replaces
418  * instructions including addr (exclude breakpoint).
419  */
420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422         int i;
423         struct kprobe *p = NULL;
424         struct optimized_kprobe *op;
425
426         /* Don't check i == 0, since that is a breakpoint case. */
427         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428                 p = get_kprobe((void *)(addr - i));
429
430         if (p && kprobe_optready(p)) {
431                 op = container_of(p, struct optimized_kprobe, kp);
432                 if (arch_within_optimized_kprobe(op, addr))
433                         return p;
434         }
435
436         return NULL;
437 }
438
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447
448 /*
449  * Optimize (replace a breakpoint with a jump) kprobes listed on
450  * optimizing_list.
451  */
452 static void do_optimize_kprobes(void)
453 {
454         /* Optimization never be done when disarmed */
455         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456             list_empty(&optimizing_list))
457                 return;
458
459         /*
460          * The optimization/unoptimization refers online_cpus via
461          * stop_machine() and cpu-hotplug modifies online_cpus.
462          * And same time, text_mutex will be held in cpu-hotplug and here.
463          * This combination can cause a deadlock (cpu-hotplug try to lock
464          * text_mutex but stop_machine can not be done because online_cpus
465          * has been changed)
466          * To avoid this deadlock, we need to call get_online_cpus()
467          * for preventing cpu-hotplug outside of text_mutex locking.
468          */
469         get_online_cpus();
470         mutex_lock(&text_mutex);
471         arch_optimize_kprobes(&optimizing_list);
472         mutex_unlock(&text_mutex);
473         put_online_cpus();
474 }
475
476 /*
477  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478  * if need) kprobes listed on unoptimizing_list.
479  */
480 static void do_unoptimize_kprobes(void)
481 {
482         struct optimized_kprobe *op, *tmp;
483
484         /* Unoptimization must be done anytime */
485         if (list_empty(&unoptimizing_list))
486                 return;
487
488         /* Ditto to do_optimize_kprobes */
489         get_online_cpus();
490         mutex_lock(&text_mutex);
491         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492         /* Loop free_list for disarming */
493         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494                 /* Disarm probes if marked disabled */
495                 if (kprobe_disabled(&op->kp))
496                         arch_disarm_kprobe(&op->kp);
497                 if (kprobe_unused(&op->kp)) {
498                         /*
499                          * Remove unused probes from hash list. After waiting
500                          * for synchronization, these probes are reclaimed.
501                          * (reclaiming is done by do_free_cleaned_kprobes.)
502                          */
503                         hlist_del_rcu(&op->kp.hlist);
504                 } else
505                         list_del_init(&op->list);
506         }
507         mutex_unlock(&text_mutex);
508         put_online_cpus();
509 }
510
511 /* Reclaim all kprobes on the free_list */
512 static void do_free_cleaned_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517                 BUG_ON(!kprobe_unused(&op->kp));
518                 list_del_init(&op->list);
519                 free_aggr_kprobe(&op->kp);
520         }
521 }
522
523 /* Start optimizer after OPTIMIZE_DELAY passed */
524 static void kick_kprobe_optimizer(void)
525 {
526         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527 }
528
529 /* Kprobe jump optimizer */
530 static void kprobe_optimizer(struct work_struct *work)
531 {
532         mutex_lock(&kprobe_mutex);
533         /* Lock modules while optimizing kprobes */
534         mutex_lock(&module_mutex);
535
536         /*
537          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538          * kprobes before waiting for quiesence period.
539          */
540         do_unoptimize_kprobes();
541
542         /*
543          * Step 2: Wait for quiesence period to ensure all running interrupts
544          * are done. Because optprobe may modify multiple instructions
545          * there is a chance that Nth instruction is interrupted. In that
546          * case, running interrupt can return to 2nd-Nth byte of jump
547          * instruction. This wait is for avoiding it.
548          */
549         synchronize_sched();
550
551         /* Step 3: Optimize kprobes after quiesence period */
552         do_optimize_kprobes();
553
554         /* Step 4: Free cleaned kprobes after quiesence period */
555         do_free_cleaned_kprobes();
556
557         mutex_unlock(&module_mutex);
558         mutex_unlock(&kprobe_mutex);
559
560         /* Step 5: Kick optimizer again if needed */
561         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562                 kick_kprobe_optimizer();
563 }
564
565 /* Wait for completing optimization and unoptimization */
566 void wait_for_kprobe_optimizer(void)
567 {
568         mutex_lock(&kprobe_mutex);
569
570         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571                 mutex_unlock(&kprobe_mutex);
572
573                 /* this will also make optimizing_work execute immmediately */
574                 flush_delayed_work(&optimizing_work);
575                 /* @optimizing_work might not have been queued yet, relax */
576                 cpu_relax();
577
578                 mutex_lock(&kprobe_mutex);
579         }
580
581         mutex_unlock(&kprobe_mutex);
582 }
583
584 /* Optimize kprobe if p is ready to be optimized */
585 static void optimize_kprobe(struct kprobe *p)
586 {
587         struct optimized_kprobe *op;
588
589         /* Check if the kprobe is disabled or not ready for optimization. */
590         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591             (kprobe_disabled(p) || kprobes_all_disarmed))
592                 return;
593
594         /* Both of break_handler and post_handler are not supported. */
595         if (p->break_handler || p->post_handler)
596                 return;
597
598         op = container_of(p, struct optimized_kprobe, kp);
599
600         /* Check there is no other kprobes at the optimized instructions */
601         if (arch_check_optimized_kprobe(op) < 0)
602                 return;
603
604         /* Check if it is already optimized. */
605         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606                 return;
607         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608
609         if (!list_empty(&op->list))
610                 /* This is under unoptimizing. Just dequeue the probe */
611                 list_del_init(&op->list);
612         else {
613                 list_add(&op->list, &optimizing_list);
614                 kick_kprobe_optimizer();
615         }
616 }
617
618 /* Short cut to direct unoptimizing */
619 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620 {
621         get_online_cpus();
622         arch_unoptimize_kprobe(op);
623         put_online_cpus();
624         if (kprobe_disabled(&op->kp))
625                 arch_disarm_kprobe(&op->kp);
626 }
627
628 /* Unoptimize a kprobe if p is optimized */
629 static void unoptimize_kprobe(struct kprobe *p, bool force)
630 {
631         struct optimized_kprobe *op;
632
633         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634                 return; /* This is not an optprobe nor optimized */
635
636         op = container_of(p, struct optimized_kprobe, kp);
637         if (!kprobe_optimized(p)) {
638                 /* Unoptimized or unoptimizing case */
639                 if (force && !list_empty(&op->list)) {
640                         /*
641                          * Only if this is unoptimizing kprobe and forced,
642                          * forcibly unoptimize it. (No need to unoptimize
643                          * unoptimized kprobe again :)
644                          */
645                         list_del_init(&op->list);
646                         force_unoptimize_kprobe(op);
647                 }
648                 return;
649         }
650
651         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652         if (!list_empty(&op->list)) {
653                 /* Dequeue from the optimization queue */
654                 list_del_init(&op->list);
655                 return;
656         }
657         /* Optimized kprobe case */
658         if (force)
659                 /* Forcibly update the code: this is a special case */
660                 force_unoptimize_kprobe(op);
661         else {
662                 list_add(&op->list, &unoptimizing_list);
663                 kick_kprobe_optimizer();
664         }
665 }
666
667 /* Cancel unoptimizing for reusing */
668 static int reuse_unused_kprobe(struct kprobe *ap)
669 {
670         struct optimized_kprobe *op;
671
672         BUG_ON(!kprobe_unused(ap));
673         /*
674          * Unused kprobe MUST be on the way of delayed unoptimizing (means
675          * there is still a relative jump) and disabled.
676          */
677         op = container_of(ap, struct optimized_kprobe, kp);
678         if (unlikely(list_empty(&op->list)))
679                 printk(KERN_WARNING "Warning: found a stray unused "
680                         "aggrprobe@%p\n", ap->addr);
681         /* Enable the probe again */
682         ap->flags &= ~KPROBE_FLAG_DISABLED;
683         /* Optimize it again (remove from op->list) */
684         if (!kprobe_optready(ap))
685                 return -EINVAL;
686
687         optimize_kprobe(ap);
688         return 0;
689 }
690
691 /* Remove optimized instructions */
692 static void kill_optimized_kprobe(struct kprobe *p)
693 {
694         struct optimized_kprobe *op;
695
696         op = container_of(p, struct optimized_kprobe, kp);
697         if (!list_empty(&op->list))
698                 /* Dequeue from the (un)optimization queue */
699                 list_del_init(&op->list);
700         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
701
702         if (kprobe_unused(p)) {
703                 /* Enqueue if it is unused */
704                 list_add(&op->list, &freeing_list);
705                 /*
706                  * Remove unused probes from the hash list. After waiting
707                  * for synchronization, this probe is reclaimed.
708                  * (reclaiming is done by do_free_cleaned_kprobes().)
709                  */
710                 hlist_del_rcu(&op->kp.hlist);
711         }
712
713         /* Don't touch the code, because it is already freed. */
714         arch_remove_optimized_kprobe(op);
715 }
716
717 /* Try to prepare optimized instructions */
718 static void prepare_optimized_kprobe(struct kprobe *p)
719 {
720         struct optimized_kprobe *op;
721
722         op = container_of(p, struct optimized_kprobe, kp);
723         arch_prepare_optimized_kprobe(op, p);
724 }
725
726 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
727 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
728 {
729         struct optimized_kprobe *op;
730
731         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
732         if (!op)
733                 return NULL;
734
735         INIT_LIST_HEAD(&op->list);
736         op->kp.addr = p->addr;
737         arch_prepare_optimized_kprobe(op, p);
738
739         return &op->kp;
740 }
741
742 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
743
744 /*
745  * Prepare an optimized_kprobe and optimize it
746  * NOTE: p must be a normal registered kprobe
747  */
748 static void try_to_optimize_kprobe(struct kprobe *p)
749 {
750         struct kprobe *ap;
751         struct optimized_kprobe *op;
752
753         /* Impossible to optimize ftrace-based kprobe */
754         if (kprobe_ftrace(p))
755                 return;
756
757         /* For preparing optimization, jump_label_text_reserved() is called */
758         jump_label_lock();
759         mutex_lock(&text_mutex);
760
761         ap = alloc_aggr_kprobe(p);
762         if (!ap)
763                 goto out;
764
765         op = container_of(ap, struct optimized_kprobe, kp);
766         if (!arch_prepared_optinsn(&op->optinsn)) {
767                 /* If failed to setup optimizing, fallback to kprobe */
768                 arch_remove_optimized_kprobe(op);
769                 kfree(op);
770                 goto out;
771         }
772
773         init_aggr_kprobe(ap, p);
774         optimize_kprobe(ap);    /* This just kicks optimizer thread */
775
776 out:
777         mutex_unlock(&text_mutex);
778         jump_label_unlock();
779 }
780
781 #ifdef CONFIG_SYSCTL
782 static void optimize_all_kprobes(void)
783 {
784         struct hlist_head *head;
785         struct kprobe *p;
786         unsigned int i;
787
788         mutex_lock(&kprobe_mutex);
789         /* If optimization is already allowed, just return */
790         if (kprobes_allow_optimization)
791                 goto out;
792
793         kprobes_allow_optimization = true;
794         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
795                 head = &kprobe_table[i];
796                 hlist_for_each_entry_rcu(p, head, hlist)
797                         if (!kprobe_disabled(p))
798                                 optimize_kprobe(p);
799         }
800         printk(KERN_INFO "Kprobes globally optimized\n");
801 out:
802         mutex_unlock(&kprobe_mutex);
803 }
804
805 static void unoptimize_all_kprobes(void)
806 {
807         struct hlist_head *head;
808         struct kprobe *p;
809         unsigned int i;
810
811         mutex_lock(&kprobe_mutex);
812         /* If optimization is already prohibited, just return */
813         if (!kprobes_allow_optimization) {
814                 mutex_unlock(&kprobe_mutex);
815                 return;
816         }
817
818         kprobes_allow_optimization = false;
819         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
820                 head = &kprobe_table[i];
821                 hlist_for_each_entry_rcu(p, head, hlist) {
822                         if (!kprobe_disabled(p))
823                                 unoptimize_kprobe(p, false);
824                 }
825         }
826         mutex_unlock(&kprobe_mutex);
827
828         /* Wait for unoptimizing completion */
829         wait_for_kprobe_optimizer();
830         printk(KERN_INFO "Kprobes globally unoptimized\n");
831 }
832
833 static DEFINE_MUTEX(kprobe_sysctl_mutex);
834 int sysctl_kprobes_optimization;
835 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
836                                       void __user *buffer, size_t *length,
837                                       loff_t *ppos)
838 {
839         int ret;
840
841         mutex_lock(&kprobe_sysctl_mutex);
842         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
843         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
844
845         if (sysctl_kprobes_optimization)
846                 optimize_all_kprobes();
847         else
848                 unoptimize_all_kprobes();
849         mutex_unlock(&kprobe_sysctl_mutex);
850
851         return ret;
852 }
853 #endif /* CONFIG_SYSCTL */
854
855 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
856 static void __arm_kprobe(struct kprobe *p)
857 {
858         struct kprobe *_p;
859
860         /* Check collision with other optimized kprobes */
861         _p = get_optimized_kprobe((unsigned long)p->addr);
862         if (unlikely(_p))
863                 /* Fallback to unoptimized kprobe */
864                 unoptimize_kprobe(_p, true);
865
866         arch_arm_kprobe(p);
867         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
868 }
869
870 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
871 static void __disarm_kprobe(struct kprobe *p, bool reopt)
872 {
873         struct kprobe *_p;
874
875         /* Try to unoptimize */
876         unoptimize_kprobe(p, kprobes_all_disarmed);
877
878         if (!kprobe_queued(p)) {
879                 arch_disarm_kprobe(p);
880                 /* If another kprobe was blocked, optimize it. */
881                 _p = get_optimized_kprobe((unsigned long)p->addr);
882                 if (unlikely(_p) && reopt)
883                         optimize_kprobe(_p);
884         }
885         /* TODO: reoptimize others after unoptimized this probe */
886 }
887
888 #else /* !CONFIG_OPTPROBES */
889
890 #define optimize_kprobe(p)                      do {} while (0)
891 #define unoptimize_kprobe(p, f)                 do {} while (0)
892 #define kill_optimized_kprobe(p)                do {} while (0)
893 #define prepare_optimized_kprobe(p)             do {} while (0)
894 #define try_to_optimize_kprobe(p)               do {} while (0)
895 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
896 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
897 #define kprobe_disarmed(p)                      kprobe_disabled(p)
898 #define wait_for_kprobe_optimizer()             do {} while (0)
899
900 static int reuse_unused_kprobe(struct kprobe *ap)
901 {
902         /*
903          * If the optimized kprobe is NOT supported, the aggr kprobe is
904          * released at the same time that the last aggregated kprobe is
905          * unregistered.
906          * Thus there should be no chance to reuse unused kprobe.
907          */
908         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
909         return -EINVAL;
910 }
911
912 static void free_aggr_kprobe(struct kprobe *p)
913 {
914         arch_remove_kprobe(p);
915         kfree(p);
916 }
917
918 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
919 {
920         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
921 }
922 #endif /* CONFIG_OPTPROBES */
923
924 #ifdef CONFIG_KPROBES_ON_FTRACE
925 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
926         .func = kprobe_ftrace_handler,
927         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
928 };
929 static int kprobe_ftrace_enabled;
930
931 /* Must ensure p->addr is really on ftrace */
932 static int prepare_kprobe(struct kprobe *p)
933 {
934         if (!kprobe_ftrace(p))
935                 return arch_prepare_kprobe(p);
936
937         return arch_prepare_kprobe_ftrace(p);
938 }
939
940 /* Caller must lock kprobe_mutex */
941 static void arm_kprobe_ftrace(struct kprobe *p)
942 {
943         int ret;
944
945         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
946                                    (unsigned long)p->addr, 0, 0);
947         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
948         kprobe_ftrace_enabled++;
949         if (kprobe_ftrace_enabled == 1) {
950                 ret = register_ftrace_function(&kprobe_ftrace_ops);
951                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
952         }
953 }
954
955 /* Caller must lock kprobe_mutex */
956 static void disarm_kprobe_ftrace(struct kprobe *p)
957 {
958         int ret;
959
960         kprobe_ftrace_enabled--;
961         if (kprobe_ftrace_enabled == 0) {
962                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
963                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
964         }
965         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
966                            (unsigned long)p->addr, 1, 0);
967         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
968 }
969 #else   /* !CONFIG_KPROBES_ON_FTRACE */
970 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
971 #define arm_kprobe_ftrace(p)    do {} while (0)
972 #define disarm_kprobe_ftrace(p) do {} while (0)
973 #endif
974
975 /* Arm a kprobe with text_mutex */
976 static void arm_kprobe(struct kprobe *kp)
977 {
978         if (unlikely(kprobe_ftrace(kp))) {
979                 arm_kprobe_ftrace(kp);
980                 return;
981         }
982         /*
983          * Here, since __arm_kprobe() doesn't use stop_machine(),
984          * this doesn't cause deadlock on text_mutex. So, we don't
985          * need get_online_cpus().
986          */
987         mutex_lock(&text_mutex);
988         __arm_kprobe(kp);
989         mutex_unlock(&text_mutex);
990 }
991
992 /* Disarm a kprobe with text_mutex */
993 static void disarm_kprobe(struct kprobe *kp, bool reopt)
994 {
995         if (unlikely(kprobe_ftrace(kp))) {
996                 disarm_kprobe_ftrace(kp);
997                 return;
998         }
999         /* Ditto */
1000         mutex_lock(&text_mutex);
1001         __disarm_kprobe(kp, reopt);
1002         mutex_unlock(&text_mutex);
1003 }
1004
1005 /*
1006  * Aggregate handlers for multiple kprobes support - these handlers
1007  * take care of invoking the individual kprobe handlers on p->list
1008  */
1009 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1010 {
1011         struct kprobe *kp;
1012
1013         list_for_each_entry_rcu(kp, &p->list, list) {
1014                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1015                         set_kprobe_instance(kp);
1016                         if (kp->pre_handler(kp, regs))
1017                                 return 1;
1018                 }
1019                 reset_kprobe_instance();
1020         }
1021         return 0;
1022 }
1023 NOKPROBE_SYMBOL(aggr_pre_handler);
1024
1025 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1026                               unsigned long flags)
1027 {
1028         struct kprobe *kp;
1029
1030         list_for_each_entry_rcu(kp, &p->list, list) {
1031                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1032                         set_kprobe_instance(kp);
1033                         kp->post_handler(kp, regs, flags);
1034                         reset_kprobe_instance();
1035                 }
1036         }
1037 }
1038 NOKPROBE_SYMBOL(aggr_post_handler);
1039
1040 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1041                               int trapnr)
1042 {
1043         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1044
1045         /*
1046          * if we faulted "during" the execution of a user specified
1047          * probe handler, invoke just that probe's fault handler
1048          */
1049         if (cur && cur->fault_handler) {
1050                 if (cur->fault_handler(cur, regs, trapnr))
1051                         return 1;
1052         }
1053         return 0;
1054 }
1055 NOKPROBE_SYMBOL(aggr_fault_handler);
1056
1057 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1058 {
1059         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1060         int ret = 0;
1061
1062         if (cur && cur->break_handler) {
1063                 if (cur->break_handler(cur, regs))
1064                         ret = 1;
1065         }
1066         reset_kprobe_instance();
1067         return ret;
1068 }
1069 NOKPROBE_SYMBOL(aggr_break_handler);
1070
1071 /* Walks the list and increments nmissed count for multiprobe case */
1072 void kprobes_inc_nmissed_count(struct kprobe *p)
1073 {
1074         struct kprobe *kp;
1075         if (!kprobe_aggrprobe(p)) {
1076                 p->nmissed++;
1077         } else {
1078                 list_for_each_entry_rcu(kp, &p->list, list)
1079                         kp->nmissed++;
1080         }
1081         return;
1082 }
1083 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1084
1085 void recycle_rp_inst(struct kretprobe_instance *ri,
1086                      struct hlist_head *head)
1087 {
1088         struct kretprobe *rp = ri->rp;
1089
1090         /* remove rp inst off the rprobe_inst_table */
1091         hlist_del(&ri->hlist);
1092         INIT_HLIST_NODE(&ri->hlist);
1093         if (likely(rp)) {
1094                 raw_spin_lock(&rp->lock);
1095                 hlist_add_head(&ri->hlist, &rp->free_instances);
1096                 raw_spin_unlock(&rp->lock);
1097         } else
1098                 /* Unregistering */
1099                 hlist_add_head(&ri->hlist, head);
1100 }
1101 NOKPROBE_SYMBOL(recycle_rp_inst);
1102
1103 void kretprobe_hash_lock(struct task_struct *tsk,
1104                          struct hlist_head **head, unsigned long *flags)
1105 __acquires(hlist_lock)
1106 {
1107         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1108         raw_spinlock_t *hlist_lock;
1109
1110         *head = &kretprobe_inst_table[hash];
1111         hlist_lock = kretprobe_table_lock_ptr(hash);
1112         raw_spin_lock_irqsave(hlist_lock, *flags);
1113 }
1114 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1115
1116 static void kretprobe_table_lock(unsigned long hash,
1117                                  unsigned long *flags)
1118 __acquires(hlist_lock)
1119 {
1120         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1121         raw_spin_lock_irqsave(hlist_lock, *flags);
1122 }
1123 NOKPROBE_SYMBOL(kretprobe_table_lock);
1124
1125 void kretprobe_hash_unlock(struct task_struct *tsk,
1126                            unsigned long *flags)
1127 __releases(hlist_lock)
1128 {
1129         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1130         raw_spinlock_t *hlist_lock;
1131
1132         hlist_lock = kretprobe_table_lock_ptr(hash);
1133         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1134 }
1135 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1136
1137 static void kretprobe_table_unlock(unsigned long hash,
1138                                    unsigned long *flags)
1139 __releases(hlist_lock)
1140 {
1141         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1142         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1143 }
1144 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1145
1146 /*
1147  * This function is called from finish_task_switch when task tk becomes dead,
1148  * so that we can recycle any function-return probe instances associated
1149  * with this task. These left over instances represent probed functions
1150  * that have been called but will never return.
1151  */
1152 void kprobe_flush_task(struct task_struct *tk)
1153 {
1154         struct kretprobe_instance *ri;
1155         struct hlist_head *head, empty_rp;
1156         struct hlist_node *tmp;
1157         unsigned long hash, flags = 0;
1158
1159         if (unlikely(!kprobes_initialized))
1160                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1161                 return;
1162
1163         INIT_HLIST_HEAD(&empty_rp);
1164         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1165         head = &kretprobe_inst_table[hash];
1166         kretprobe_table_lock(hash, &flags);
1167         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1168                 if (ri->task == tk)
1169                         recycle_rp_inst(ri, &empty_rp);
1170         }
1171         kretprobe_table_unlock(hash, &flags);
1172         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1173                 hlist_del(&ri->hlist);
1174                 kfree(ri);
1175         }
1176 }
1177 NOKPROBE_SYMBOL(kprobe_flush_task);
1178
1179 static inline void free_rp_inst(struct kretprobe *rp)
1180 {
1181         struct kretprobe_instance *ri;
1182         struct hlist_node *next;
1183
1184         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1185                 hlist_del(&ri->hlist);
1186                 kfree(ri);
1187         }
1188 }
1189
1190 static void cleanup_rp_inst(struct kretprobe *rp)
1191 {
1192         unsigned long flags, hash;
1193         struct kretprobe_instance *ri;
1194         struct hlist_node *next;
1195         struct hlist_head *head;
1196
1197         /* No race here */
1198         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1199                 kretprobe_table_lock(hash, &flags);
1200                 head = &kretprobe_inst_table[hash];
1201                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1202                         if (ri->rp == rp)
1203                                 ri->rp = NULL;
1204                 }
1205                 kretprobe_table_unlock(hash, &flags);
1206         }
1207         free_rp_inst(rp);
1208 }
1209 NOKPROBE_SYMBOL(cleanup_rp_inst);
1210
1211 /*
1212 * Add the new probe to ap->list. Fail if this is the
1213 * second jprobe at the address - two jprobes can't coexist
1214 */
1215 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1216 {
1217         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1218
1219         if (p->break_handler || p->post_handler)
1220                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1221
1222         if (p->break_handler) {
1223                 if (ap->break_handler)
1224                         return -EEXIST;
1225                 list_add_tail_rcu(&p->list, &ap->list);
1226                 ap->break_handler = aggr_break_handler;
1227         } else
1228                 list_add_rcu(&p->list, &ap->list);
1229         if (p->post_handler && !ap->post_handler)
1230                 ap->post_handler = aggr_post_handler;
1231
1232         return 0;
1233 }
1234
1235 /*
1236  * Fill in the required fields of the "manager kprobe". Replace the
1237  * earlier kprobe in the hlist with the manager kprobe
1238  */
1239 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1240 {
1241         /* Copy p's insn slot to ap */
1242         copy_kprobe(p, ap);
1243         flush_insn_slot(ap);
1244         ap->addr = p->addr;
1245         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1246         ap->pre_handler = aggr_pre_handler;
1247         ap->fault_handler = aggr_fault_handler;
1248         /* We don't care the kprobe which has gone. */
1249         if (p->post_handler && !kprobe_gone(p))
1250                 ap->post_handler = aggr_post_handler;
1251         if (p->break_handler && !kprobe_gone(p))
1252                 ap->break_handler = aggr_break_handler;
1253
1254         INIT_LIST_HEAD(&ap->list);
1255         INIT_HLIST_NODE(&ap->hlist);
1256
1257         list_add_rcu(&p->list, &ap->list);
1258         hlist_replace_rcu(&p->hlist, &ap->hlist);
1259 }
1260
1261 /*
1262  * This is the second or subsequent kprobe at the address - handle
1263  * the intricacies
1264  */
1265 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1266 {
1267         int ret = 0;
1268         struct kprobe *ap = orig_p;
1269
1270         /* For preparing optimization, jump_label_text_reserved() is called */
1271         jump_label_lock();
1272         /*
1273          * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1274          * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1275          */
1276         get_online_cpus();
1277         mutex_lock(&text_mutex);
1278
1279         if (!kprobe_aggrprobe(orig_p)) {
1280                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1281                 ap = alloc_aggr_kprobe(orig_p);
1282                 if (!ap) {
1283                         ret = -ENOMEM;
1284                         goto out;
1285                 }
1286                 init_aggr_kprobe(ap, orig_p);
1287         } else if (kprobe_unused(ap)) {
1288                 /* This probe is going to die. Rescue it */
1289                 ret = reuse_unused_kprobe(ap);
1290                 if (ret)
1291                         goto out;
1292         }
1293
1294         if (kprobe_gone(ap)) {
1295                 /*
1296                  * Attempting to insert new probe at the same location that
1297                  * had a probe in the module vaddr area which already
1298                  * freed. So, the instruction slot has already been
1299                  * released. We need a new slot for the new probe.
1300                  */
1301                 ret = arch_prepare_kprobe(ap);
1302                 if (ret)
1303                         /*
1304                          * Even if fail to allocate new slot, don't need to
1305                          * free aggr_probe. It will be used next time, or
1306                          * freed by unregister_kprobe.
1307                          */
1308                         goto out;
1309
1310                 /* Prepare optimized instructions if possible. */
1311                 prepare_optimized_kprobe(ap);
1312
1313                 /*
1314                  * Clear gone flag to prevent allocating new slot again, and
1315                  * set disabled flag because it is not armed yet.
1316                  */
1317                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1318                             | KPROBE_FLAG_DISABLED;
1319         }
1320
1321         /* Copy ap's insn slot to p */
1322         copy_kprobe(ap, p);
1323         ret = add_new_kprobe(ap, p);
1324
1325 out:
1326         mutex_unlock(&text_mutex);
1327         put_online_cpus();
1328         jump_label_unlock();
1329
1330         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1331                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1332                 if (!kprobes_all_disarmed)
1333                         /* Arm the breakpoint again. */
1334                         arm_kprobe(ap);
1335         }
1336         return ret;
1337 }
1338
1339 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1340 {
1341         /* The __kprobes marked functions and entry code must not be probed */
1342         return addr >= (unsigned long)__kprobes_text_start &&
1343                addr < (unsigned long)__kprobes_text_end;
1344 }
1345
1346 bool within_kprobe_blacklist(unsigned long addr)
1347 {
1348         struct kprobe_blacklist_entry *ent;
1349
1350         if (arch_within_kprobe_blacklist(addr))
1351                 return true;
1352         /*
1353          * If there exists a kprobe_blacklist, verify and
1354          * fail any probe registration in the prohibited area
1355          */
1356         list_for_each_entry(ent, &kprobe_blacklist, list) {
1357                 if (addr >= ent->start_addr && addr < ent->end_addr)
1358                         return true;
1359         }
1360
1361         return false;
1362 }
1363
1364 /*
1365  * If we have a symbol_name argument, look it up and add the offset field
1366  * to it. This way, we can specify a relative address to a symbol.
1367  * This returns encoded errors if it fails to look up symbol or invalid
1368  * combination of parameters.
1369  */
1370 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1371 {
1372         kprobe_opcode_t *addr = p->addr;
1373
1374         if ((p->symbol_name && p->addr) ||
1375             (!p->symbol_name && !p->addr))
1376                 goto invalid;
1377
1378         if (p->symbol_name) {
1379                 kprobe_lookup_name(p->symbol_name, addr);
1380                 if (!addr)
1381                         return ERR_PTR(-ENOENT);
1382         }
1383
1384         addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1385         if (addr)
1386                 return addr;
1387
1388 invalid:
1389         return ERR_PTR(-EINVAL);
1390 }
1391
1392 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1393 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1394 {
1395         struct kprobe *ap, *list_p;
1396
1397         ap = get_kprobe(p->addr);
1398         if (unlikely(!ap))
1399                 return NULL;
1400
1401         if (p != ap) {
1402                 list_for_each_entry_rcu(list_p, &ap->list, list)
1403                         if (list_p == p)
1404                         /* kprobe p is a valid probe */
1405                                 goto valid;
1406                 return NULL;
1407         }
1408 valid:
1409         return ap;
1410 }
1411
1412 /* Return error if the kprobe is being re-registered */
1413 static inline int check_kprobe_rereg(struct kprobe *p)
1414 {
1415         int ret = 0;
1416
1417         mutex_lock(&kprobe_mutex);
1418         if (__get_valid_kprobe(p))
1419                 ret = -EINVAL;
1420         mutex_unlock(&kprobe_mutex);
1421
1422         return ret;
1423 }
1424
1425 int __weak arch_check_ftrace_location(struct kprobe *p)
1426 {
1427         unsigned long ftrace_addr;
1428
1429         ftrace_addr = ftrace_location((unsigned long)p->addr);
1430         if (ftrace_addr) {
1431 #ifdef CONFIG_KPROBES_ON_FTRACE
1432                 /* Given address is not on the instruction boundary */
1433                 if ((unsigned long)p->addr != ftrace_addr)
1434                         return -EILSEQ;
1435                 p->flags |= KPROBE_FLAG_FTRACE;
1436 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1437                 return -EINVAL;
1438 #endif
1439         }
1440         return 0;
1441 }
1442
1443 static int check_kprobe_address_safe(struct kprobe *p,
1444                                      struct module **probed_mod)
1445 {
1446         int ret;
1447
1448         ret = arch_check_ftrace_location(p);
1449         if (ret)
1450                 return ret;
1451         jump_label_lock();
1452         preempt_disable();
1453
1454         /* Ensure it is not in reserved area nor out of text */
1455         if (!kernel_text_address((unsigned long) p->addr) ||
1456             within_kprobe_blacklist((unsigned long) p->addr) ||
1457             jump_label_text_reserved(p->addr, p->addr)) {
1458                 ret = -EINVAL;
1459                 goto out;
1460         }
1461
1462         /* Check if are we probing a module */
1463         *probed_mod = __module_text_address((unsigned long) p->addr);
1464         if (*probed_mod) {
1465                 /*
1466                  * We must hold a refcount of the probed module while updating
1467                  * its code to prohibit unexpected unloading.
1468                  */
1469                 if (unlikely(!try_module_get(*probed_mod))) {
1470                         ret = -ENOENT;
1471                         goto out;
1472                 }
1473
1474                 /*
1475                  * If the module freed .init.text, we couldn't insert
1476                  * kprobes in there.
1477                  */
1478                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1479                     (*probed_mod)->state != MODULE_STATE_COMING) {
1480                         module_put(*probed_mod);
1481                         *probed_mod = NULL;
1482                         ret = -ENOENT;
1483                 }
1484         }
1485 out:
1486         preempt_enable();
1487         jump_label_unlock();
1488
1489         return ret;
1490 }
1491
1492 int register_kprobe(struct kprobe *p)
1493 {
1494         int ret;
1495         struct kprobe *old_p;
1496         struct module *probed_mod;
1497         kprobe_opcode_t *addr;
1498
1499         /* Adjust probe address from symbol */
1500         addr = kprobe_addr(p);
1501         if (IS_ERR(addr))
1502                 return PTR_ERR(addr);
1503         p->addr = addr;
1504
1505         ret = check_kprobe_rereg(p);
1506         if (ret)
1507                 return ret;
1508
1509         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1510         p->flags &= KPROBE_FLAG_DISABLED;
1511         p->nmissed = 0;
1512         INIT_LIST_HEAD(&p->list);
1513
1514         ret = check_kprobe_address_safe(p, &probed_mod);
1515         if (ret)
1516                 return ret;
1517
1518         mutex_lock(&kprobe_mutex);
1519
1520         old_p = get_kprobe(p->addr);
1521         if (old_p) {
1522                 /* Since this may unoptimize old_p, locking text_mutex. */
1523                 ret = register_aggr_kprobe(old_p, p);
1524                 goto out;
1525         }
1526
1527         mutex_lock(&text_mutex);        /* Avoiding text modification */
1528         ret = prepare_kprobe(p);
1529         mutex_unlock(&text_mutex);
1530         if (ret)
1531                 goto out;
1532
1533         INIT_HLIST_NODE(&p->hlist);
1534         hlist_add_head_rcu(&p->hlist,
1535                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1536
1537         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1538                 arm_kprobe(p);
1539
1540         /* Try to optimize kprobe */
1541         try_to_optimize_kprobe(p);
1542
1543 out:
1544         mutex_unlock(&kprobe_mutex);
1545
1546         if (probed_mod)
1547                 module_put(probed_mod);
1548
1549         return ret;
1550 }
1551 EXPORT_SYMBOL_GPL(register_kprobe);
1552
1553 /* Check if all probes on the aggrprobe are disabled */
1554 static int aggr_kprobe_disabled(struct kprobe *ap)
1555 {
1556         struct kprobe *kp;
1557
1558         list_for_each_entry_rcu(kp, &ap->list, list)
1559                 if (!kprobe_disabled(kp))
1560                         /*
1561                          * There is an active probe on the list.
1562                          * We can't disable this ap.
1563                          */
1564                         return 0;
1565
1566         return 1;
1567 }
1568
1569 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1570 static struct kprobe *__disable_kprobe(struct kprobe *p)
1571 {
1572         struct kprobe *orig_p;
1573
1574         /* Get an original kprobe for return */
1575         orig_p = __get_valid_kprobe(p);
1576         if (unlikely(orig_p == NULL))
1577                 return NULL;
1578
1579         if (!kprobe_disabled(p)) {
1580                 /* Disable probe if it is a child probe */
1581                 if (p != orig_p)
1582                         p->flags |= KPROBE_FLAG_DISABLED;
1583
1584                 /* Try to disarm and disable this/parent probe */
1585                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1586                         /*
1587                          * If kprobes_all_disarmed is set, orig_p
1588                          * should have already been disarmed, so
1589                          * skip unneed disarming process.
1590                          */
1591                         if (!kprobes_all_disarmed)
1592                                 disarm_kprobe(orig_p, true);
1593                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1594                 }
1595         }
1596
1597         return orig_p;
1598 }
1599
1600 /*
1601  * Unregister a kprobe without a scheduler synchronization.
1602  */
1603 static int __unregister_kprobe_top(struct kprobe *p)
1604 {
1605         struct kprobe *ap, *list_p;
1606
1607         /* Disable kprobe. This will disarm it if needed. */
1608         ap = __disable_kprobe(p);
1609         if (ap == NULL)
1610                 return -EINVAL;
1611
1612         if (ap == p)
1613                 /*
1614                  * This probe is an independent(and non-optimized) kprobe
1615                  * (not an aggrprobe). Remove from the hash list.
1616                  */
1617                 goto disarmed;
1618
1619         /* Following process expects this probe is an aggrprobe */
1620         WARN_ON(!kprobe_aggrprobe(ap));
1621
1622         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1623                 /*
1624                  * !disarmed could be happen if the probe is under delayed
1625                  * unoptimizing.
1626                  */
1627                 goto disarmed;
1628         else {
1629                 /* If disabling probe has special handlers, update aggrprobe */
1630                 if (p->break_handler && !kprobe_gone(p))
1631                         ap->break_handler = NULL;
1632                 if (p->post_handler && !kprobe_gone(p)) {
1633                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1634                                 if ((list_p != p) && (list_p->post_handler))
1635                                         goto noclean;
1636                         }
1637                         ap->post_handler = NULL;
1638                 }
1639 noclean:
1640                 /*
1641                  * Remove from the aggrprobe: this path will do nothing in
1642                  * __unregister_kprobe_bottom().
1643                  */
1644                 list_del_rcu(&p->list);
1645                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1646                         /*
1647                          * Try to optimize this probe again, because post
1648                          * handler may have been changed.
1649                          */
1650                         optimize_kprobe(ap);
1651         }
1652         return 0;
1653
1654 disarmed:
1655         BUG_ON(!kprobe_disarmed(ap));
1656         hlist_del_rcu(&ap->hlist);
1657         return 0;
1658 }
1659
1660 static void __unregister_kprobe_bottom(struct kprobe *p)
1661 {
1662         struct kprobe *ap;
1663
1664         if (list_empty(&p->list))
1665                 /* This is an independent kprobe */
1666                 arch_remove_kprobe(p);
1667         else if (list_is_singular(&p->list)) {
1668                 /* This is the last child of an aggrprobe */
1669                 ap = list_entry(p->list.next, struct kprobe, list);
1670                 list_del(&p->list);
1671                 free_aggr_kprobe(ap);
1672         }
1673         /* Otherwise, do nothing. */
1674 }
1675
1676 int register_kprobes(struct kprobe **kps, int num)
1677 {
1678         int i, ret = 0;
1679
1680         if (num <= 0)
1681                 return -EINVAL;
1682         for (i = 0; i < num; i++) {
1683                 ret = register_kprobe(kps[i]);
1684                 if (ret < 0) {
1685                         if (i > 0)
1686                                 unregister_kprobes(kps, i);
1687                         break;
1688                 }
1689         }
1690         return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(register_kprobes);
1693
1694 void unregister_kprobe(struct kprobe *p)
1695 {
1696         unregister_kprobes(&p, 1);
1697 }
1698 EXPORT_SYMBOL_GPL(unregister_kprobe);
1699
1700 void unregister_kprobes(struct kprobe **kps, int num)
1701 {
1702         int i;
1703
1704         if (num <= 0)
1705                 return;
1706         mutex_lock(&kprobe_mutex);
1707         for (i = 0; i < num; i++)
1708                 if (__unregister_kprobe_top(kps[i]) < 0)
1709                         kps[i]->addr = NULL;
1710         mutex_unlock(&kprobe_mutex);
1711
1712         synchronize_sched();
1713         for (i = 0; i < num; i++)
1714                 if (kps[i]->addr)
1715                         __unregister_kprobe_bottom(kps[i]);
1716 }
1717 EXPORT_SYMBOL_GPL(unregister_kprobes);
1718
1719 static struct notifier_block kprobe_exceptions_nb = {
1720         .notifier_call = kprobe_exceptions_notify,
1721         .priority = 0x7fffffff /* we need to be notified first */
1722 };
1723
1724 unsigned long __weak arch_deref_entry_point(void *entry)
1725 {
1726         return (unsigned long)entry;
1727 }
1728
1729 int register_jprobes(struct jprobe **jps, int num)
1730 {
1731         struct jprobe *jp;
1732         int ret = 0, i;
1733
1734         if (num <= 0)
1735                 return -EINVAL;
1736         for (i = 0; i < num; i++) {
1737                 unsigned long addr, offset;
1738                 jp = jps[i];
1739                 addr = arch_deref_entry_point(jp->entry);
1740
1741                 /* Verify probepoint is a function entry point */
1742                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1743                     offset == 0) {
1744                         jp->kp.pre_handler = setjmp_pre_handler;
1745                         jp->kp.break_handler = longjmp_break_handler;
1746                         ret = register_kprobe(&jp->kp);
1747                 } else
1748                         ret = -EINVAL;
1749
1750                 if (ret < 0) {
1751                         if (i > 0)
1752                                 unregister_jprobes(jps, i);
1753                         break;
1754                 }
1755         }
1756         return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(register_jprobes);
1759
1760 int register_jprobe(struct jprobe *jp)
1761 {
1762         return register_jprobes(&jp, 1);
1763 }
1764 EXPORT_SYMBOL_GPL(register_jprobe);
1765
1766 void unregister_jprobe(struct jprobe *jp)
1767 {
1768         unregister_jprobes(&jp, 1);
1769 }
1770 EXPORT_SYMBOL_GPL(unregister_jprobe);
1771
1772 void unregister_jprobes(struct jprobe **jps, int num)
1773 {
1774         int i;
1775
1776         if (num <= 0)
1777                 return;
1778         mutex_lock(&kprobe_mutex);
1779         for (i = 0; i < num; i++)
1780                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1781                         jps[i]->kp.addr = NULL;
1782         mutex_unlock(&kprobe_mutex);
1783
1784         synchronize_sched();
1785         for (i = 0; i < num; i++) {
1786                 if (jps[i]->kp.addr)
1787                         __unregister_kprobe_bottom(&jps[i]->kp);
1788         }
1789 }
1790 EXPORT_SYMBOL_GPL(unregister_jprobes);
1791
1792 #ifdef CONFIG_KRETPROBES
1793 /*
1794  * This kprobe pre_handler is registered with every kretprobe. When probe
1795  * hits it will set up the return probe.
1796  */
1797 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1798 {
1799         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1800         unsigned long hash, flags = 0;
1801         struct kretprobe_instance *ri;
1802
1803         /*
1804          * To avoid deadlocks, prohibit return probing in NMI contexts,
1805          * just skip the probe and increase the (inexact) 'nmissed'
1806          * statistical counter, so that the user is informed that
1807          * something happened:
1808          */
1809         if (unlikely(in_nmi())) {
1810                 rp->nmissed++;
1811                 return 0;
1812         }
1813
1814         /* TODO: consider to only swap the RA after the last pre_handler fired */
1815         hash = hash_ptr(current, KPROBE_HASH_BITS);
1816         raw_spin_lock_irqsave(&rp->lock, flags);
1817         if (!hlist_empty(&rp->free_instances)) {
1818                 ri = hlist_entry(rp->free_instances.first,
1819                                 struct kretprobe_instance, hlist);
1820                 hlist_del(&ri->hlist);
1821                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1822
1823                 ri->rp = rp;
1824                 ri->task = current;
1825
1826                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1827                         raw_spin_lock_irqsave(&rp->lock, flags);
1828                         hlist_add_head(&ri->hlist, &rp->free_instances);
1829                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1830                         return 0;
1831                 }
1832
1833                 arch_prepare_kretprobe(ri, regs);
1834
1835                 /* XXX(hch): why is there no hlist_move_head? */
1836                 INIT_HLIST_NODE(&ri->hlist);
1837                 kretprobe_table_lock(hash, &flags);
1838                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1839                 kretprobe_table_unlock(hash, &flags);
1840         } else {
1841                 rp->nmissed++;
1842                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1843         }
1844         return 0;
1845 }
1846 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1847
1848 int register_kretprobe(struct kretprobe *rp)
1849 {
1850         int ret = 0;
1851         struct kretprobe_instance *inst;
1852         int i;
1853         void *addr;
1854
1855         if (kretprobe_blacklist_size) {
1856                 addr = kprobe_addr(&rp->kp);
1857                 if (IS_ERR(addr))
1858                         return PTR_ERR(addr);
1859
1860                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1861                         if (kretprobe_blacklist[i].addr == addr)
1862                                 return -EINVAL;
1863                 }
1864         }
1865
1866         rp->kp.pre_handler = pre_handler_kretprobe;
1867         rp->kp.post_handler = NULL;
1868         rp->kp.fault_handler = NULL;
1869         rp->kp.break_handler = NULL;
1870
1871         /* Pre-allocate memory for max kretprobe instances */
1872         if (rp->maxactive <= 0) {
1873 #ifdef CONFIG_PREEMPT
1874                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1875 #else
1876                 rp->maxactive = num_possible_cpus();
1877 #endif
1878         }
1879         raw_spin_lock_init(&rp->lock);
1880         INIT_HLIST_HEAD(&rp->free_instances);
1881         for (i = 0; i < rp->maxactive; i++) {
1882                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1883                                rp->data_size, GFP_KERNEL);
1884                 if (inst == NULL) {
1885                         free_rp_inst(rp);
1886                         return -ENOMEM;
1887                 }
1888                 INIT_HLIST_NODE(&inst->hlist);
1889                 hlist_add_head(&inst->hlist, &rp->free_instances);
1890         }
1891
1892         rp->nmissed = 0;
1893         /* Establish function entry probe point */
1894         ret = register_kprobe(&rp->kp);
1895         if (ret != 0)
1896                 free_rp_inst(rp);
1897         return ret;
1898 }
1899 EXPORT_SYMBOL_GPL(register_kretprobe);
1900
1901 int register_kretprobes(struct kretprobe **rps, int num)
1902 {
1903         int ret = 0, i;
1904
1905         if (num <= 0)
1906                 return -EINVAL;
1907         for (i = 0; i < num; i++) {
1908                 ret = register_kretprobe(rps[i]);
1909                 if (ret < 0) {
1910                         if (i > 0)
1911                                 unregister_kretprobes(rps, i);
1912                         break;
1913                 }
1914         }
1915         return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(register_kretprobes);
1918
1919 void unregister_kretprobe(struct kretprobe *rp)
1920 {
1921         unregister_kretprobes(&rp, 1);
1922 }
1923 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1924
1925 void unregister_kretprobes(struct kretprobe **rps, int num)
1926 {
1927         int i;
1928
1929         if (num <= 0)
1930                 return;
1931         mutex_lock(&kprobe_mutex);
1932         for (i = 0; i < num; i++)
1933                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1934                         rps[i]->kp.addr = NULL;
1935         mutex_unlock(&kprobe_mutex);
1936
1937         synchronize_sched();
1938         for (i = 0; i < num; i++) {
1939                 if (rps[i]->kp.addr) {
1940                         __unregister_kprobe_bottom(&rps[i]->kp);
1941                         cleanup_rp_inst(rps[i]);
1942                 }
1943         }
1944 }
1945 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1946
1947 #else /* CONFIG_KRETPROBES */
1948 int register_kretprobe(struct kretprobe *rp)
1949 {
1950         return -ENOSYS;
1951 }
1952 EXPORT_SYMBOL_GPL(register_kretprobe);
1953
1954 int register_kretprobes(struct kretprobe **rps, int num)
1955 {
1956         return -ENOSYS;
1957 }
1958 EXPORT_SYMBOL_GPL(register_kretprobes);
1959
1960 void unregister_kretprobe(struct kretprobe *rp)
1961 {
1962 }
1963 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1964
1965 void unregister_kretprobes(struct kretprobe **rps, int num)
1966 {
1967 }
1968 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1969
1970 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1971 {
1972         return 0;
1973 }
1974 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1975
1976 #endif /* CONFIG_KRETPROBES */
1977
1978 /* Set the kprobe gone and remove its instruction buffer. */
1979 static void kill_kprobe(struct kprobe *p)
1980 {
1981         struct kprobe *kp;
1982
1983         p->flags |= KPROBE_FLAG_GONE;
1984         if (kprobe_aggrprobe(p)) {
1985                 /*
1986                  * If this is an aggr_kprobe, we have to list all the
1987                  * chained probes and mark them GONE.
1988                  */
1989                 list_for_each_entry_rcu(kp, &p->list, list)
1990                         kp->flags |= KPROBE_FLAG_GONE;
1991                 p->post_handler = NULL;
1992                 p->break_handler = NULL;
1993                 kill_optimized_kprobe(p);
1994         }
1995         /*
1996          * Here, we can remove insn_slot safely, because no thread calls
1997          * the original probed function (which will be freed soon) any more.
1998          */
1999         arch_remove_kprobe(p);
2000 }
2001
2002 /* Disable one kprobe */
2003 int disable_kprobe(struct kprobe *kp)
2004 {
2005         int ret = 0;
2006
2007         mutex_lock(&kprobe_mutex);
2008
2009         /* Disable this kprobe */
2010         if (__disable_kprobe(kp) == NULL)
2011                 ret = -EINVAL;
2012
2013         mutex_unlock(&kprobe_mutex);
2014         return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(disable_kprobe);
2017
2018 /* Enable one kprobe */
2019 int enable_kprobe(struct kprobe *kp)
2020 {
2021         int ret = 0;
2022         struct kprobe *p;
2023
2024         mutex_lock(&kprobe_mutex);
2025
2026         /* Check whether specified probe is valid. */
2027         p = __get_valid_kprobe(kp);
2028         if (unlikely(p == NULL)) {
2029                 ret = -EINVAL;
2030                 goto out;
2031         }
2032
2033         if (kprobe_gone(kp)) {
2034                 /* This kprobe has gone, we couldn't enable it. */
2035                 ret = -EINVAL;
2036                 goto out;
2037         }
2038
2039         if (p != kp)
2040                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2041
2042         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2043                 p->flags &= ~KPROBE_FLAG_DISABLED;
2044                 arm_kprobe(p);
2045         }
2046 out:
2047         mutex_unlock(&kprobe_mutex);
2048         return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(enable_kprobe);
2051
2052 void dump_kprobe(struct kprobe *kp)
2053 {
2054         printk(KERN_WARNING "Dumping kprobe:\n");
2055         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2056                kp->symbol_name, kp->addr, kp->offset);
2057 }
2058 NOKPROBE_SYMBOL(dump_kprobe);
2059
2060 /*
2061  * Lookup and populate the kprobe_blacklist.
2062  *
2063  * Unlike the kretprobe blacklist, we'll need to determine
2064  * the range of addresses that belong to the said functions,
2065  * since a kprobe need not necessarily be at the beginning
2066  * of a function.
2067  */
2068 static int __init populate_kprobe_blacklist(unsigned long *start,
2069                                              unsigned long *end)
2070 {
2071         unsigned long *iter;
2072         struct kprobe_blacklist_entry *ent;
2073         unsigned long entry, offset = 0, size = 0;
2074
2075         for (iter = start; iter < end; iter++) {
2076                 entry = arch_deref_entry_point((void *)*iter);
2077
2078                 if (!kernel_text_address(entry) ||
2079                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2080                         pr_err("Failed to find blacklist at %p\n",
2081                                 (void *)entry);
2082                         continue;
2083                 }
2084
2085                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2086                 if (!ent)
2087                         return -ENOMEM;
2088                 ent->start_addr = entry;
2089                 ent->end_addr = entry + size;
2090                 INIT_LIST_HEAD(&ent->list);
2091                 list_add_tail(&ent->list, &kprobe_blacklist);
2092         }
2093         return 0;
2094 }
2095
2096 /* Module notifier call back, checking kprobes on the module */
2097 static int kprobes_module_callback(struct notifier_block *nb,
2098                                    unsigned long val, void *data)
2099 {
2100         struct module *mod = data;
2101         struct hlist_head *head;
2102         struct kprobe *p;
2103         unsigned int i;
2104         int checkcore = (val == MODULE_STATE_GOING);
2105
2106         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2107                 return NOTIFY_DONE;
2108
2109         /*
2110          * When MODULE_STATE_GOING was notified, both of module .text and
2111          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2112          * notified, only .init.text section would be freed. We need to
2113          * disable kprobes which have been inserted in the sections.
2114          */
2115         mutex_lock(&kprobe_mutex);
2116         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2117                 head = &kprobe_table[i];
2118                 hlist_for_each_entry_rcu(p, head, hlist)
2119                         if (within_module_init((unsigned long)p->addr, mod) ||
2120                             (checkcore &&
2121                              within_module_core((unsigned long)p->addr, mod))) {
2122                                 /*
2123                                  * The vaddr this probe is installed will soon
2124                                  * be vfreed buy not synced to disk. Hence,
2125                                  * disarming the breakpoint isn't needed.
2126                                  */
2127                                 kill_kprobe(p);
2128                         }
2129         }
2130         mutex_unlock(&kprobe_mutex);
2131         return NOTIFY_DONE;
2132 }
2133
2134 static struct notifier_block kprobe_module_nb = {
2135         .notifier_call = kprobes_module_callback,
2136         .priority = 0
2137 };
2138
2139 /* Markers of _kprobe_blacklist section */
2140 extern unsigned long __start_kprobe_blacklist[];
2141 extern unsigned long __stop_kprobe_blacklist[];
2142
2143 static int __init init_kprobes(void)
2144 {
2145         int i, err = 0;
2146
2147         /* FIXME allocate the probe table, currently defined statically */
2148         /* initialize all list heads */
2149         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2150                 INIT_HLIST_HEAD(&kprobe_table[i]);
2151                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2152                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2153         }
2154
2155         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2156                                         __stop_kprobe_blacklist);
2157         if (err) {
2158                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2159                 pr_err("Please take care of using kprobes.\n");
2160         }
2161
2162         if (kretprobe_blacklist_size) {
2163                 /* lookup the function address from its name */
2164                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2165                         kprobe_lookup_name(kretprobe_blacklist[i].name,
2166                                            kretprobe_blacklist[i].addr);
2167                         if (!kretprobe_blacklist[i].addr)
2168                                 printk("kretprobe: lookup failed: %s\n",
2169                                        kretprobe_blacklist[i].name);
2170                 }
2171         }
2172
2173 #if defined(CONFIG_OPTPROBES)
2174 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2175         /* Init kprobe_optinsn_slots */
2176         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2177 #endif
2178         /* By default, kprobes can be optimized */
2179         kprobes_allow_optimization = true;
2180 #endif
2181
2182         /* By default, kprobes are armed */
2183         kprobes_all_disarmed = false;
2184
2185         err = arch_init_kprobes();
2186         if (!err)
2187                 err = register_die_notifier(&kprobe_exceptions_nb);
2188         if (!err)
2189                 err = register_module_notifier(&kprobe_module_nb);
2190
2191         kprobes_initialized = (err == 0);
2192
2193         if (!err)
2194                 init_test_probes();
2195         return err;
2196 }
2197
2198 #ifdef CONFIG_DEBUG_FS
2199 static void report_probe(struct seq_file *pi, struct kprobe *p,
2200                 const char *sym, int offset, char *modname, struct kprobe *pp)
2201 {
2202         char *kprobe_type;
2203
2204         if (p->pre_handler == pre_handler_kretprobe)
2205                 kprobe_type = "r";
2206         else if (p->pre_handler == setjmp_pre_handler)
2207                 kprobe_type = "j";
2208         else
2209                 kprobe_type = "k";
2210
2211         if (sym)
2212                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2213                         p->addr, kprobe_type, sym, offset,
2214                         (modname ? modname : " "));
2215         else
2216                 seq_printf(pi, "%p  %s  %p ",
2217                         p->addr, kprobe_type, p->addr);
2218
2219         if (!pp)
2220                 pp = p;
2221         seq_printf(pi, "%s%s%s%s\n",
2222                 (kprobe_gone(p) ? "[GONE]" : ""),
2223                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2224                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2225                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2226 }
2227
2228 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2229 {
2230         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2231 }
2232
2233 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2234 {
2235         (*pos)++;
2236         if (*pos >= KPROBE_TABLE_SIZE)
2237                 return NULL;
2238         return pos;
2239 }
2240
2241 static void kprobe_seq_stop(struct seq_file *f, void *v)
2242 {
2243         /* Nothing to do */
2244 }
2245
2246 static int show_kprobe_addr(struct seq_file *pi, void *v)
2247 {
2248         struct hlist_head *head;
2249         struct kprobe *p, *kp;
2250         const char *sym = NULL;
2251         unsigned int i = *(loff_t *) v;
2252         unsigned long offset = 0;
2253         char *modname, namebuf[KSYM_NAME_LEN];
2254
2255         head = &kprobe_table[i];
2256         preempt_disable();
2257         hlist_for_each_entry_rcu(p, head, hlist) {
2258                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2259                                         &offset, &modname, namebuf);
2260                 if (kprobe_aggrprobe(p)) {
2261                         list_for_each_entry_rcu(kp, &p->list, list)
2262                                 report_probe(pi, kp, sym, offset, modname, p);
2263                 } else
2264                         report_probe(pi, p, sym, offset, modname, NULL);
2265         }
2266         preempt_enable();
2267         return 0;
2268 }
2269
2270 static const struct seq_operations kprobes_seq_ops = {
2271         .start = kprobe_seq_start,
2272         .next  = kprobe_seq_next,
2273         .stop  = kprobe_seq_stop,
2274         .show  = show_kprobe_addr
2275 };
2276
2277 static int kprobes_open(struct inode *inode, struct file *filp)
2278 {
2279         return seq_open(filp, &kprobes_seq_ops);
2280 }
2281
2282 static const struct file_operations debugfs_kprobes_operations = {
2283         .open           = kprobes_open,
2284         .read           = seq_read,
2285         .llseek         = seq_lseek,
2286         .release        = seq_release,
2287 };
2288
2289 /* kprobes/blacklist -- shows which functions can not be probed */
2290 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2291 {
2292         return seq_list_start(&kprobe_blacklist, *pos);
2293 }
2294
2295 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2296 {
2297         return seq_list_next(v, &kprobe_blacklist, pos);
2298 }
2299
2300 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2301 {
2302         struct kprobe_blacklist_entry *ent =
2303                 list_entry(v, struct kprobe_blacklist_entry, list);
2304
2305         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2306                    (void *)ent->end_addr, (void *)ent->start_addr);
2307         return 0;
2308 }
2309
2310 static const struct seq_operations kprobe_blacklist_seq_ops = {
2311         .start = kprobe_blacklist_seq_start,
2312         .next  = kprobe_blacklist_seq_next,
2313         .stop  = kprobe_seq_stop,       /* Reuse void function */
2314         .show  = kprobe_blacklist_seq_show,
2315 };
2316
2317 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2318 {
2319         return seq_open(filp, &kprobe_blacklist_seq_ops);
2320 }
2321
2322 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2323         .open           = kprobe_blacklist_open,
2324         .read           = seq_read,
2325         .llseek         = seq_lseek,
2326         .release        = seq_release,
2327 };
2328
2329 static void arm_all_kprobes(void)
2330 {
2331         struct hlist_head *head;
2332         struct kprobe *p;
2333         unsigned int i;
2334
2335         mutex_lock(&kprobe_mutex);
2336
2337         /* If kprobes are armed, just return */
2338         if (!kprobes_all_disarmed)
2339                 goto already_enabled;
2340
2341         /*
2342          * optimize_kprobe() called by arm_kprobe() checks
2343          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2344          * arm_kprobe.
2345          */
2346         kprobes_all_disarmed = false;
2347         /* Arming kprobes doesn't optimize kprobe itself */
2348         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2349                 head = &kprobe_table[i];
2350                 hlist_for_each_entry_rcu(p, head, hlist)
2351                         if (!kprobe_disabled(p))
2352                                 arm_kprobe(p);
2353         }
2354
2355         printk(KERN_INFO "Kprobes globally enabled\n");
2356
2357 already_enabled:
2358         mutex_unlock(&kprobe_mutex);
2359         return;
2360 }
2361
2362 static void disarm_all_kprobes(void)
2363 {
2364         struct hlist_head *head;
2365         struct kprobe *p;
2366         unsigned int i;
2367
2368         mutex_lock(&kprobe_mutex);
2369
2370         /* If kprobes are already disarmed, just return */
2371         if (kprobes_all_disarmed) {
2372                 mutex_unlock(&kprobe_mutex);
2373                 return;
2374         }
2375
2376         kprobes_all_disarmed = true;
2377         printk(KERN_INFO "Kprobes globally disabled\n");
2378
2379         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2380                 head = &kprobe_table[i];
2381                 hlist_for_each_entry_rcu(p, head, hlist) {
2382                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2383                                 disarm_kprobe(p, false);
2384                 }
2385         }
2386         mutex_unlock(&kprobe_mutex);
2387
2388         /* Wait for disarming all kprobes by optimizer */
2389         wait_for_kprobe_optimizer();
2390 }
2391
2392 /*
2393  * XXX: The debugfs bool file interface doesn't allow for callbacks
2394  * when the bool state is switched. We can reuse that facility when
2395  * available
2396  */
2397 static ssize_t read_enabled_file_bool(struct file *file,
2398                char __user *user_buf, size_t count, loff_t *ppos)
2399 {
2400         char buf[3];
2401
2402         if (!kprobes_all_disarmed)
2403                 buf[0] = '1';
2404         else
2405                 buf[0] = '0';
2406         buf[1] = '\n';
2407         buf[2] = 0x00;
2408         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2409 }
2410
2411 static ssize_t write_enabled_file_bool(struct file *file,
2412                const char __user *user_buf, size_t count, loff_t *ppos)
2413 {
2414         char buf[32];
2415         size_t buf_size;
2416
2417         buf_size = min(count, (sizeof(buf)-1));
2418         if (copy_from_user(buf, user_buf, buf_size))
2419                 return -EFAULT;
2420
2421         buf[buf_size] = '\0';
2422         switch (buf[0]) {
2423         case 'y':
2424         case 'Y':
2425         case '1':
2426                 arm_all_kprobes();
2427                 break;
2428         case 'n':
2429         case 'N':
2430         case '0':
2431                 disarm_all_kprobes();
2432                 break;
2433         default:
2434                 return -EINVAL;
2435         }
2436
2437         return count;
2438 }
2439
2440 static const struct file_operations fops_kp = {
2441         .read =         read_enabled_file_bool,
2442         .write =        write_enabled_file_bool,
2443         .llseek =       default_llseek,
2444 };
2445
2446 static int __init debugfs_kprobe_init(void)
2447 {
2448         struct dentry *dir, *file;
2449         unsigned int value = 1;
2450
2451         dir = debugfs_create_dir("kprobes", NULL);
2452         if (!dir)
2453                 return -ENOMEM;
2454
2455         file = debugfs_create_file("list", 0400, dir, NULL,
2456                                 &debugfs_kprobes_operations);
2457         if (!file)
2458                 goto error;
2459
2460         file = debugfs_create_file("enabled", 0600, dir,
2461                                         &value, &fops_kp);
2462         if (!file)
2463                 goto error;
2464
2465         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2466                                 &debugfs_kprobe_blacklist_ops);
2467         if (!file)
2468                 goto error;
2469
2470         return 0;
2471
2472 error:
2473         debugfs_remove(dir);
2474         return -ENOMEM;
2475 }
2476
2477 late_initcall(debugfs_kprobe_init);
2478 #endif /* CONFIG_DEBUG_FS */
2479
2480 module_init(init_kprobes);
2481
2482 /* defined in arch/.../kernel/kprobes.c */
2483 EXPORT_SYMBOL_GPL(jprobe_return);