OSDN Git Service

crypto: talitos - HMAC SNOOP NO AFEU mode requires SW icv checking.
[android-x86/kernel.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
86
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
90
91 /*
92  * A number of key systems in x86 including ioremap() rely on the assumption
93  * that high_memory defines the upper bound on direct map memory, then end
94  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
95  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96  * and ZONE_HIGHMEM.
97  */
98 void * high_memory;
99
100 EXPORT_SYMBOL(high_memory);
101
102 /*
103  * Randomize the address space (stacks, mmaps, brk, etc.).
104  *
105  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106  *   as ancient (libc5 based) binaries can segfault. )
107  */
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
110                                         1;
111 #else
112                                         2;
113 #endif
114
115 static int __init disable_randmaps(char *s)
116 {
117         randomize_va_space = 0;
118         return 1;
119 }
120 __setup("norandmaps", disable_randmaps);
121
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
124
125 EXPORT_SYMBOL(zero_pfn);
126
127 /*
128  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129  */
130 static int __init init_zero_pfn(void)
131 {
132         zero_pfn = page_to_pfn(ZERO_PAGE(0));
133         return 0;
134 }
135 core_initcall(init_zero_pfn);
136
137
138 #if defined(SPLIT_RSS_COUNTING)
139
140 void sync_mm_rss(struct mm_struct *mm)
141 {
142         int i;
143
144         for (i = 0; i < NR_MM_COUNTERS; i++) {
145                 if (current->rss_stat.count[i]) {
146                         add_mm_counter(mm, i, current->rss_stat.count[i]);
147                         current->rss_stat.count[i] = 0;
148                 }
149         }
150         current->rss_stat.events = 0;
151 }
152
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 {
155         struct task_struct *task = current;
156
157         if (likely(task->mm == mm))
158                 task->rss_stat.count[member] += val;
159         else
160                 add_mm_counter(mm, member, val);
161 }
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH  (64)
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169         if (unlikely(task != current))
170                 return;
171         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172                 sync_mm_rss(task->mm);
173 }
174 #else /* SPLIT_RSS_COUNTING */
175
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179 static void check_sync_rss_stat(struct task_struct *task)
180 {
181 }
182
183 #endif /* SPLIT_RSS_COUNTING */
184
185 #ifdef HAVE_GENERIC_MMU_GATHER
186
187 static bool tlb_next_batch(struct mmu_gather *tlb)
188 {
189         struct mmu_gather_batch *batch;
190
191         batch = tlb->active;
192         if (batch->next) {
193                 tlb->active = batch->next;
194                 return true;
195         }
196
197         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198                 return false;
199
200         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201         if (!batch)
202                 return false;
203
204         tlb->batch_count++;
205         batch->next = NULL;
206         batch->nr   = 0;
207         batch->max  = MAX_GATHER_BATCH;
208
209         tlb->active->next = batch;
210         tlb->active = batch;
211
212         return true;
213 }
214
215 /* tlb_gather_mmu
216  *      Called to initialize an (on-stack) mmu_gather structure for page-table
217  *      tear-down from @mm. The @fullmm argument is used when @mm is without
218  *      users and we're going to destroy the full address space (exit/execve).
219  */
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276 {
277         struct mmu_gather_batch *batch, *next;
278
279         tlb_flush_mmu(tlb);
280
281         /* keep the page table cache within bounds */
282         check_pgt_cache();
283
284         for (batch = tlb->local.next; batch; batch = next) {
285                 next = batch->next;
286                 free_pages((unsigned long)batch, 0);
287         }
288         tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293  *      handling the additional races in SMP caused by other CPUs caching valid
294  *      mappings in their TLBs. Returns the number of free page slots left.
295  *      When out of page slots we must call tlb_flush_mmu().
296  *returns true if the caller should flush.
297  */
298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
299 {
300         struct mmu_gather_batch *batch;
301
302         VM_BUG_ON(!tlb->end);
303
304         if (!tlb->page_size)
305                 tlb->page_size = page_size;
306         else {
307                 if (page_size != tlb->page_size)
308                         return true;
309         }
310
311         batch = tlb->active;
312         if (batch->nr == batch->max) {
313                 if (!tlb_next_batch(tlb))
314                         return true;
315                 batch = tlb->active;
316         }
317         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
318
319         batch->pages[batch->nr++] = page;
320         return false;
321 }
322
323 #endif /* HAVE_GENERIC_MMU_GATHER */
324
325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
326
327 /*
328  * See the comment near struct mmu_table_batch.
329  */
330
331 static void tlb_remove_table_smp_sync(void *arg)
332 {
333         /* Simply deliver the interrupt */
334 }
335
336 static void tlb_remove_table_one(void *table)
337 {
338         /*
339          * This isn't an RCU grace period and hence the page-tables cannot be
340          * assumed to be actually RCU-freed.
341          *
342          * It is however sufficient for software page-table walkers that rely on
343          * IRQ disabling. See the comment near struct mmu_table_batch.
344          */
345         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
346         __tlb_remove_table(table);
347 }
348
349 static void tlb_remove_table_rcu(struct rcu_head *head)
350 {
351         struct mmu_table_batch *batch;
352         int i;
353
354         batch = container_of(head, struct mmu_table_batch, rcu);
355
356         for (i = 0; i < batch->nr; i++)
357                 __tlb_remove_table(batch->tables[i]);
358
359         free_page((unsigned long)batch);
360 }
361
362 void tlb_table_flush(struct mmu_gather *tlb)
363 {
364         struct mmu_table_batch **batch = &tlb->batch;
365
366         if (*batch) {
367                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
368                 *batch = NULL;
369         }
370 }
371
372 void tlb_remove_table(struct mmu_gather *tlb, void *table)
373 {
374         struct mmu_table_batch **batch = &tlb->batch;
375
376         if (*batch == NULL) {
377                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
378                 if (*batch == NULL) {
379                         tlb_remove_table_one(table);
380                         return;
381                 }
382                 (*batch)->nr = 0;
383         }
384         (*batch)->tables[(*batch)->nr++] = table;
385         if ((*batch)->nr == MAX_TABLE_BATCH)
386                 tlb_table_flush(tlb);
387 }
388
389 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
390
391 /*
392  * Note: this doesn't free the actual pages themselves. That
393  * has been handled earlier when unmapping all the memory regions.
394  */
395 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
396                            unsigned long addr)
397 {
398         pgtable_t token = pmd_pgtable(*pmd);
399         pmd_clear(pmd);
400         pte_free_tlb(tlb, token, addr);
401         atomic_long_dec(&tlb->mm->nr_ptes);
402 }
403
404 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
405                                 unsigned long addr, unsigned long end,
406                                 unsigned long floor, unsigned long ceiling)
407 {
408         pmd_t *pmd;
409         unsigned long next;
410         unsigned long start;
411
412         start = addr;
413         pmd = pmd_offset(pud, addr);
414         do {
415                 next = pmd_addr_end(addr, end);
416                 if (pmd_none_or_clear_bad(pmd))
417                         continue;
418                 free_pte_range(tlb, pmd, addr);
419         } while (pmd++, addr = next, addr != end);
420
421         start &= PUD_MASK;
422         if (start < floor)
423                 return;
424         if (ceiling) {
425                 ceiling &= PUD_MASK;
426                 if (!ceiling)
427                         return;
428         }
429         if (end - 1 > ceiling - 1)
430                 return;
431
432         pmd = pmd_offset(pud, start);
433         pud_clear(pud);
434         pmd_free_tlb(tlb, pmd, start);
435         mm_dec_nr_pmds(tlb->mm);
436 }
437
438 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
439                                 unsigned long addr, unsigned long end,
440                                 unsigned long floor, unsigned long ceiling)
441 {
442         pud_t *pud;
443         unsigned long next;
444         unsigned long start;
445
446         start = addr;
447         pud = pud_offset(pgd, addr);
448         do {
449                 next = pud_addr_end(addr, end);
450                 if (pud_none_or_clear_bad(pud))
451                         continue;
452                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
453         } while (pud++, addr = next, addr != end);
454
455         start &= PGDIR_MASK;
456         if (start < floor)
457                 return;
458         if (ceiling) {
459                 ceiling &= PGDIR_MASK;
460                 if (!ceiling)
461                         return;
462         }
463         if (end - 1 > ceiling - 1)
464                 return;
465
466         pud = pud_offset(pgd, start);
467         pgd_clear(pgd);
468         pud_free_tlb(tlb, pud, start);
469 }
470
471 /*
472  * This function frees user-level page tables of a process.
473  */
474 void free_pgd_range(struct mmu_gather *tlb,
475                         unsigned long addr, unsigned long end,
476                         unsigned long floor, unsigned long ceiling)
477 {
478         pgd_t *pgd;
479         unsigned long next;
480
481         /*
482          * The next few lines have given us lots of grief...
483          *
484          * Why are we testing PMD* at this top level?  Because often
485          * there will be no work to do at all, and we'd prefer not to
486          * go all the way down to the bottom just to discover that.
487          *
488          * Why all these "- 1"s?  Because 0 represents both the bottom
489          * of the address space and the top of it (using -1 for the
490          * top wouldn't help much: the masks would do the wrong thing).
491          * The rule is that addr 0 and floor 0 refer to the bottom of
492          * the address space, but end 0 and ceiling 0 refer to the top
493          * Comparisons need to use "end - 1" and "ceiling - 1" (though
494          * that end 0 case should be mythical).
495          *
496          * Wherever addr is brought up or ceiling brought down, we must
497          * be careful to reject "the opposite 0" before it confuses the
498          * subsequent tests.  But what about where end is brought down
499          * by PMD_SIZE below? no, end can't go down to 0 there.
500          *
501          * Whereas we round start (addr) and ceiling down, by different
502          * masks at different levels, in order to test whether a table
503          * now has no other vmas using it, so can be freed, we don't
504          * bother to round floor or end up - the tests don't need that.
505          */
506
507         addr &= PMD_MASK;
508         if (addr < floor) {
509                 addr += PMD_SIZE;
510                 if (!addr)
511                         return;
512         }
513         if (ceiling) {
514                 ceiling &= PMD_MASK;
515                 if (!ceiling)
516                         return;
517         }
518         if (end - 1 > ceiling - 1)
519                 end -= PMD_SIZE;
520         if (addr > end - 1)
521                 return;
522
523         pgd = pgd_offset(tlb->mm, addr);
524         do {
525                 next = pgd_addr_end(addr, end);
526                 if (pgd_none_or_clear_bad(pgd))
527                         continue;
528                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
529         } while (pgd++, addr = next, addr != end);
530 }
531
532 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
533                 unsigned long floor, unsigned long ceiling)
534 {
535         while (vma) {
536                 struct vm_area_struct *next = vma->vm_next;
537                 unsigned long addr = vma->vm_start;
538
539                 /*
540                  * Hide vma from rmap and truncate_pagecache before freeing
541                  * pgtables
542                  */
543                 unlink_anon_vmas(vma);
544                 unlink_file_vma(vma);
545
546                 if (is_vm_hugetlb_page(vma)) {
547                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
548                                 floor, next? next->vm_start: ceiling);
549                 } else {
550                         /*
551                          * Optimization: gather nearby vmas into one call down
552                          */
553                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
554                                && !is_vm_hugetlb_page(next)) {
555                                 vma = next;
556                                 next = vma->vm_next;
557                                 unlink_anon_vmas(vma);
558                                 unlink_file_vma(vma);
559                         }
560                         free_pgd_range(tlb, addr, vma->vm_end,
561                                 floor, next? next->vm_start: ceiling);
562                 }
563                 vma = next;
564         }
565 }
566
567 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
568 {
569         spinlock_t *ptl;
570         pgtable_t new = pte_alloc_one(mm, address);
571         if (!new)
572                 return -ENOMEM;
573
574         /*
575          * Ensure all pte setup (eg. pte page lock and page clearing) are
576          * visible before the pte is made visible to other CPUs by being
577          * put into page tables.
578          *
579          * The other side of the story is the pointer chasing in the page
580          * table walking code (when walking the page table without locking;
581          * ie. most of the time). Fortunately, these data accesses consist
582          * of a chain of data-dependent loads, meaning most CPUs (alpha
583          * being the notable exception) will already guarantee loads are
584          * seen in-order. See the alpha page table accessors for the
585          * smp_read_barrier_depends() barriers in page table walking code.
586          */
587         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588
589         ptl = pmd_lock(mm, pmd);
590         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
591                 atomic_long_inc(&mm->nr_ptes);
592                 pmd_populate(mm, pmd, new);
593                 new = NULL;
594         }
595         spin_unlock(ptl);
596         if (new)
597                 pte_free(mm, new);
598         return 0;
599 }
600
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604         if (!new)
605                 return -ENOMEM;
606
607         smp_wmb(); /* See comment in __pte_alloc */
608
609         spin_lock(&init_mm.page_table_lock);
610         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
611                 pmd_populate_kernel(&init_mm, pmd, new);
612                 new = NULL;
613         }
614         spin_unlock(&init_mm.page_table_lock);
615         if (new)
616                 pte_free_kernel(&init_mm, new);
617         return 0;
618 }
619
620 static inline void init_rss_vec(int *rss)
621 {
622         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
623 }
624
625 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
626 {
627         int i;
628
629         if (current->mm == mm)
630                 sync_mm_rss(mm);
631         for (i = 0; i < NR_MM_COUNTERS; i++)
632                 if (rss[i])
633                         add_mm_counter(mm, i, rss[i]);
634 }
635
636 /*
637  * This function is called to print an error when a bad pte
638  * is found. For example, we might have a PFN-mapped pte in
639  * a region that doesn't allow it.
640  *
641  * The calling function must still handle the error.
642  */
643 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
644                           pte_t pte, struct page *page)
645 {
646         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
647         pud_t *pud = pud_offset(pgd, addr);
648         pmd_t *pmd = pmd_offset(pud, addr);
649         struct address_space *mapping;
650         pgoff_t index;
651         static unsigned long resume;
652         static unsigned long nr_shown;
653         static unsigned long nr_unshown;
654
655         /*
656          * Allow a burst of 60 reports, then keep quiet for that minute;
657          * or allow a steady drip of one report per second.
658          */
659         if (nr_shown == 60) {
660                 if (time_before(jiffies, resume)) {
661                         nr_unshown++;
662                         return;
663                 }
664                 if (nr_unshown) {
665                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
666                                  nr_unshown);
667                         nr_unshown = 0;
668                 }
669                 nr_shown = 0;
670         }
671         if (nr_shown++ == 0)
672                 resume = jiffies + 60 * HZ;
673
674         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675         index = linear_page_index(vma, addr);
676
677         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
678                  current->comm,
679                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
680         if (page)
681                 dump_page(page, "bad pte");
682         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
683                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
684         /*
685          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
686          */
687         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
688                  vma->vm_file,
689                  vma->vm_ops ? vma->vm_ops->fault : NULL,
690                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
691                  mapping ? mapping->a_ops->readpage : NULL);
692         dump_stack();
693         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
694 }
695
696 /*
697  * vm_normal_page -- This function gets the "struct page" associated with a pte.
698  *
699  * "Special" mappings do not wish to be associated with a "struct page" (either
700  * it doesn't exist, or it exists but they don't want to touch it). In this
701  * case, NULL is returned here. "Normal" mappings do have a struct page.
702  *
703  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704  * pte bit, in which case this function is trivial. Secondly, an architecture
705  * may not have a spare pte bit, which requires a more complicated scheme,
706  * described below.
707  *
708  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709  * special mapping (even if there are underlying and valid "struct pages").
710  * COWed pages of a VM_PFNMAP are always normal.
711  *
712  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715  * mapping will always honor the rule
716  *
717  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718  *
719  * And for normal mappings this is false.
720  *
721  * This restricts such mappings to be a linear translation from virtual address
722  * to pfn. To get around this restriction, we allow arbitrary mappings so long
723  * as the vma is not a COW mapping; in that case, we know that all ptes are
724  * special (because none can have been COWed).
725  *
726  *
727  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728  *
729  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730  * page" backing, however the difference is that _all_ pages with a struct
731  * page (that is, those where pfn_valid is true) are refcounted and considered
732  * normal pages by the VM. The disadvantage is that pages are refcounted
733  * (which can be slower and simply not an option for some PFNMAP users). The
734  * advantage is that we don't have to follow the strict linearity rule of
735  * PFNMAP mappings in order to support COWable mappings.
736  *
737  */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744                                 pte_t pte)
745 {
746         unsigned long pfn = pte_pfn(pte);
747
748         if (HAVE_PTE_SPECIAL) {
749                 if (likely(!pte_special(pte)))
750                         goto check_pfn;
751                 if (vma->vm_ops && vma->vm_ops->find_special_page)
752                         return vma->vm_ops->find_special_page(vma, addr);
753                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
754                         return NULL;
755                 if (!is_zero_pfn(pfn))
756                         print_bad_pte(vma, addr, pte, NULL);
757                 return NULL;
758         }
759
760         /* !HAVE_PTE_SPECIAL case follows: */
761
762         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
763                 if (vma->vm_flags & VM_MIXEDMAP) {
764                         if (!pfn_valid(pfn))
765                                 return NULL;
766                         goto out;
767                 } else {
768                         unsigned long off;
769                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
770                         if (pfn == vma->vm_pgoff + off)
771                                 return NULL;
772                         if (!is_cow_mapping(vma->vm_flags))
773                                 return NULL;
774                 }
775         }
776
777         if (is_zero_pfn(pfn))
778                 return NULL;
779 check_pfn:
780         if (unlikely(pfn > highest_memmap_pfn)) {
781                 print_bad_pte(vma, addr, pte, NULL);
782                 return NULL;
783         }
784
785         /*
786          * NOTE! We still have PageReserved() pages in the page tables.
787          * eg. VDSO mappings can cause them to exist.
788          */
789 out:
790         return pfn_to_page(pfn);
791 }
792
793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
795                                 pmd_t pmd)
796 {
797         unsigned long pfn = pmd_pfn(pmd);
798
799         /*
800          * There is no pmd_special() but there may be special pmds, e.g.
801          * in a direct-access (dax) mapping, so let's just replicate the
802          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
803          */
804         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
805                 if (vma->vm_flags & VM_MIXEDMAP) {
806                         if (!pfn_valid(pfn))
807                                 return NULL;
808                         goto out;
809                 } else {
810                         unsigned long off;
811                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
812                         if (pfn == vma->vm_pgoff + off)
813                                 return NULL;
814                         if (!is_cow_mapping(vma->vm_flags))
815                                 return NULL;
816                 }
817         }
818
819         if (is_zero_pfn(pfn))
820                 return NULL;
821         if (unlikely(pfn > highest_memmap_pfn))
822                 return NULL;
823
824         /*
825          * NOTE! We still have PageReserved() pages in the page tables.
826          * eg. VDSO mappings can cause them to exist.
827          */
828 out:
829         return pfn_to_page(pfn);
830 }
831 #endif
832
833 /*
834  * copy one vm_area from one task to the other. Assumes the page tables
835  * already present in the new task to be cleared in the whole range
836  * covered by this vma.
837  */
838
839 static inline unsigned long
840 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
842                 unsigned long addr, int *rss)
843 {
844         unsigned long vm_flags = vma->vm_flags;
845         pte_t pte = *src_pte;
846         struct page *page;
847
848         /* pte contains position in swap or file, so copy. */
849         if (unlikely(!pte_present(pte))) {
850                 swp_entry_t entry = pte_to_swp_entry(pte);
851
852                 if (likely(!non_swap_entry(entry))) {
853                         if (swap_duplicate(entry) < 0)
854                                 return entry.val;
855
856                         /* make sure dst_mm is on swapoff's mmlist. */
857                         if (unlikely(list_empty(&dst_mm->mmlist))) {
858                                 spin_lock(&mmlist_lock);
859                                 if (list_empty(&dst_mm->mmlist))
860                                         list_add(&dst_mm->mmlist,
861                                                         &src_mm->mmlist);
862                                 spin_unlock(&mmlist_lock);
863                         }
864                         rss[MM_SWAPENTS]++;
865                 } else if (is_migration_entry(entry)) {
866                         page = migration_entry_to_page(entry);
867
868                         rss[mm_counter(page)]++;
869
870                         if (is_write_migration_entry(entry) &&
871                                         is_cow_mapping(vm_flags)) {
872                                 /*
873                                  * COW mappings require pages in both
874                                  * parent and child to be set to read.
875                                  */
876                                 make_migration_entry_read(&entry);
877                                 pte = swp_entry_to_pte(entry);
878                                 if (pte_swp_soft_dirty(*src_pte))
879                                         pte = pte_swp_mksoft_dirty(pte);
880                                 set_pte_at(src_mm, addr, src_pte, pte);
881                         }
882                 }
883                 goto out_set_pte;
884         }
885
886         /*
887          * If it's a COW mapping, write protect it both
888          * in the parent and the child
889          */
890         if (is_cow_mapping(vm_flags)) {
891                 ptep_set_wrprotect(src_mm, addr, src_pte);
892                 pte = pte_wrprotect(pte);
893         }
894
895         /*
896          * If it's a shared mapping, mark it clean in
897          * the child
898          */
899         if (vm_flags & VM_SHARED)
900                 pte = pte_mkclean(pte);
901         pte = pte_mkold(pte);
902
903         page = vm_normal_page(vma, addr, pte);
904         if (page) {
905                 get_page(page);
906                 page_dup_rmap(page, false);
907                 rss[mm_counter(page)]++;
908         }
909
910 out_set_pte:
911         set_pte_at(dst_mm, addr, dst_pte, pte);
912         return 0;
913 }
914
915 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917                    unsigned long addr, unsigned long end)
918 {
919         pte_t *orig_src_pte, *orig_dst_pte;
920         pte_t *src_pte, *dst_pte;
921         spinlock_t *src_ptl, *dst_ptl;
922         int progress = 0;
923         int rss[NR_MM_COUNTERS];
924         swp_entry_t entry = (swp_entry_t){0};
925
926 again:
927         init_rss_vec(rss);
928
929         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
930         if (!dst_pte)
931                 return -ENOMEM;
932         src_pte = pte_offset_map(src_pmd, addr);
933         src_ptl = pte_lockptr(src_mm, src_pmd);
934         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935         orig_src_pte = src_pte;
936         orig_dst_pte = dst_pte;
937         arch_enter_lazy_mmu_mode();
938
939         do {
940                 /*
941                  * We are holding two locks at this point - either of them
942                  * could generate latencies in another task on another CPU.
943                  */
944                 if (progress >= 32) {
945                         progress = 0;
946                         if (need_resched() ||
947                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
948                                 break;
949                 }
950                 if (pte_none(*src_pte)) {
951                         progress++;
952                         continue;
953                 }
954                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955                                                         vma, addr, rss);
956                 if (entry.val)
957                         break;
958                 progress += 8;
959         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960
961         arch_leave_lazy_mmu_mode();
962         spin_unlock(src_ptl);
963         pte_unmap(orig_src_pte);
964         add_mm_rss_vec(dst_mm, rss);
965         pte_unmap_unlock(orig_dst_pte, dst_ptl);
966         cond_resched();
967
968         if (entry.val) {
969                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970                         return -ENOMEM;
971                 progress = 0;
972         }
973         if (addr != end)
974                 goto again;
975         return 0;
976 }
977
978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980                 unsigned long addr, unsigned long end)
981 {
982         pmd_t *src_pmd, *dst_pmd;
983         unsigned long next;
984
985         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986         if (!dst_pmd)
987                 return -ENOMEM;
988         src_pmd = pmd_offset(src_pud, addr);
989         do {
990                 next = pmd_addr_end(addr, end);
991                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
992                         int err;
993                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
994                         err = copy_huge_pmd(dst_mm, src_mm,
995                                             dst_pmd, src_pmd, addr, vma);
996                         if (err == -ENOMEM)
997                                 return -ENOMEM;
998                         if (!err)
999                                 continue;
1000                         /* fall through */
1001                 }
1002                 if (pmd_none_or_clear_bad(src_pmd))
1003                         continue;
1004                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005                                                 vma, addr, next))
1006                         return -ENOMEM;
1007         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008         return 0;
1009 }
1010
1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013                 unsigned long addr, unsigned long end)
1014 {
1015         pud_t *src_pud, *dst_pud;
1016         unsigned long next;
1017
1018         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019         if (!dst_pud)
1020                 return -ENOMEM;
1021         src_pud = pud_offset(src_pgd, addr);
1022         do {
1023                 next = pud_addr_end(addr, end);
1024                 if (pud_none_or_clear_bad(src_pud))
1025                         continue;
1026                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027                                                 vma, addr, next))
1028                         return -ENOMEM;
1029         } while (dst_pud++, src_pud++, addr = next, addr != end);
1030         return 0;
1031 }
1032
1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034                 struct vm_area_struct *vma)
1035 {
1036         pgd_t *src_pgd, *dst_pgd;
1037         unsigned long next;
1038         unsigned long addr = vma->vm_start;
1039         unsigned long end = vma->vm_end;
1040         unsigned long mmun_start;       /* For mmu_notifiers */
1041         unsigned long mmun_end;         /* For mmu_notifiers */
1042         bool is_cow;
1043         int ret;
1044
1045         /*
1046          * Don't copy ptes where a page fault will fill them correctly.
1047          * Fork becomes much lighter when there are big shared or private
1048          * readonly mappings. The tradeoff is that copy_page_range is more
1049          * efficient than faulting.
1050          */
1051         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1052                         !vma->anon_vma)
1053                 return 0;
1054
1055         if (is_vm_hugetlb_page(vma))
1056                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057
1058         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1059                 /*
1060                  * We do not free on error cases below as remove_vma
1061                  * gets called on error from higher level routine
1062                  */
1063                 ret = track_pfn_copy(vma);
1064                 if (ret)
1065                         return ret;
1066         }
1067
1068         /*
1069          * We need to invalidate the secondary MMU mappings only when
1070          * there could be a permission downgrade on the ptes of the
1071          * parent mm. And a permission downgrade will only happen if
1072          * is_cow_mapping() returns true.
1073          */
1074         is_cow = is_cow_mapping(vma->vm_flags);
1075         mmun_start = addr;
1076         mmun_end   = end;
1077         if (is_cow)
1078                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1079                                                     mmun_end);
1080
1081         ret = 0;
1082         dst_pgd = pgd_offset(dst_mm, addr);
1083         src_pgd = pgd_offset(src_mm, addr);
1084         do {
1085                 next = pgd_addr_end(addr, end);
1086                 if (pgd_none_or_clear_bad(src_pgd))
1087                         continue;
1088                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1089                                             vma, addr, next))) {
1090                         ret = -ENOMEM;
1091                         break;
1092                 }
1093         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1094
1095         if (is_cow)
1096                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1097         return ret;
1098 }
1099
1100 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1101                                 struct vm_area_struct *vma, pmd_t *pmd,
1102                                 unsigned long addr, unsigned long end,
1103                                 struct zap_details *details)
1104 {
1105         struct mm_struct *mm = tlb->mm;
1106         int force_flush = 0;
1107         int rss[NR_MM_COUNTERS];
1108         spinlock_t *ptl;
1109         pte_t *start_pte;
1110         pte_t *pte;
1111         swp_entry_t entry;
1112         struct page *pending_page = NULL;
1113
1114 again:
1115         init_rss_vec(rss);
1116         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1117         pte = start_pte;
1118         flush_tlb_batched_pending(mm);
1119         arch_enter_lazy_mmu_mode();
1120         do {
1121                 pte_t ptent = *pte;
1122                 if (pte_none(ptent)) {
1123                         continue;
1124                 }
1125
1126                 if (pte_present(ptent)) {
1127                         struct page *page;
1128
1129                         page = vm_normal_page(vma, addr, ptent);
1130                         if (unlikely(details) && page) {
1131                                 /*
1132                                  * unmap_shared_mapping_pages() wants to
1133                                  * invalidate cache without truncating:
1134                                  * unmap shared but keep private pages.
1135                                  */
1136                                 if (details->check_mapping &&
1137                                     details->check_mapping != page_rmapping(page))
1138                                         continue;
1139                         }
1140                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1141                                                         tlb->fullmm);
1142                         tlb_remove_tlb_entry(tlb, pte, addr);
1143                         if (unlikely(!page))
1144                                 continue;
1145
1146                         if (!PageAnon(page)) {
1147                                 if (pte_dirty(ptent)) {
1148                                         /*
1149                                          * oom_reaper cannot tear down dirty
1150                                          * pages
1151                                          */
1152                                         if (unlikely(details && details->ignore_dirty))
1153                                                 continue;
1154                                         force_flush = 1;
1155                                         set_page_dirty(page);
1156                                 }
1157                                 if (pte_young(ptent) &&
1158                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1159                                         mark_page_accessed(page);
1160                         }
1161                         rss[mm_counter(page)]--;
1162                         page_remove_rmap(page, false);
1163                         if (unlikely(page_mapcount(page) < 0))
1164                                 print_bad_pte(vma, addr, ptent, page);
1165                         if (unlikely(__tlb_remove_page(tlb, page))) {
1166                                 force_flush = 1;
1167                                 pending_page = page;
1168                                 addr += PAGE_SIZE;
1169                                 break;
1170                         }
1171                         continue;
1172                 }
1173                 /* only check swap_entries if explicitly asked for in details */
1174                 if (unlikely(details && !details->check_swap_entries))
1175                         continue;
1176
1177                 entry = pte_to_swp_entry(ptent);
1178                 if (!non_swap_entry(entry))
1179                         rss[MM_SWAPENTS]--;
1180                 else if (is_migration_entry(entry)) {
1181                         struct page *page;
1182
1183                         page = migration_entry_to_page(entry);
1184                         rss[mm_counter(page)]--;
1185                 }
1186                 if (unlikely(!free_swap_and_cache(entry)))
1187                         print_bad_pte(vma, addr, ptent, NULL);
1188                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1189         } while (pte++, addr += PAGE_SIZE, addr != end);
1190
1191         add_mm_rss_vec(mm, rss);
1192         arch_leave_lazy_mmu_mode();
1193
1194         /* Do the actual TLB flush before dropping ptl */
1195         if (force_flush)
1196                 tlb_flush_mmu_tlbonly(tlb);
1197         pte_unmap_unlock(start_pte, ptl);
1198
1199         /*
1200          * If we forced a TLB flush (either due to running out of
1201          * batch buffers or because we needed to flush dirty TLB
1202          * entries before releasing the ptl), free the batched
1203          * memory too. Restart if we didn't do everything.
1204          */
1205         if (force_flush) {
1206                 force_flush = 0;
1207                 tlb_flush_mmu_free(tlb);
1208                 if (pending_page) {
1209                         /* remove the page with new size */
1210                         __tlb_remove_pte_page(tlb, pending_page);
1211                         pending_page = NULL;
1212                 }
1213                 if (addr != end)
1214                         goto again;
1215         }
1216
1217         return addr;
1218 }
1219
1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221                                 struct vm_area_struct *vma, pud_t *pud,
1222                                 unsigned long addr, unsigned long end,
1223                                 struct zap_details *details)
1224 {
1225         pmd_t *pmd;
1226         unsigned long next;
1227
1228         pmd = pmd_offset(pud, addr);
1229         do {
1230                 next = pmd_addr_end(addr, end);
1231                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1232                         if (next - addr != HPAGE_PMD_SIZE) {
1233                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1234                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1235                                 split_huge_pmd(vma, pmd, addr);
1236                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1237                                 goto next;
1238                         /* fall through */
1239                 }
1240                 /*
1241                  * Here there can be other concurrent MADV_DONTNEED or
1242                  * trans huge page faults running, and if the pmd is
1243                  * none or trans huge it can change under us. This is
1244                  * because MADV_DONTNEED holds the mmap_sem in read
1245                  * mode.
1246                  */
1247                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1248                         goto next;
1249                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1250 next:
1251                 cond_resched();
1252         } while (pmd++, addr = next, addr != end);
1253
1254         return addr;
1255 }
1256
1257 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1258                                 struct vm_area_struct *vma, pgd_t *pgd,
1259                                 unsigned long addr, unsigned long end,
1260                                 struct zap_details *details)
1261 {
1262         pud_t *pud;
1263         unsigned long next;
1264
1265         pud = pud_offset(pgd, addr);
1266         do {
1267                 next = pud_addr_end(addr, end);
1268                 if (pud_none_or_clear_bad(pud))
1269                         continue;
1270                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1271         } while (pud++, addr = next, addr != end);
1272
1273         return addr;
1274 }
1275
1276 void unmap_page_range(struct mmu_gather *tlb,
1277                              struct vm_area_struct *vma,
1278                              unsigned long addr, unsigned long end,
1279                              struct zap_details *details)
1280 {
1281         pgd_t *pgd;
1282         unsigned long next;
1283
1284         BUG_ON(addr >= end);
1285         tlb_start_vma(tlb, vma);
1286         pgd = pgd_offset(vma->vm_mm, addr);
1287         do {
1288                 next = pgd_addr_end(addr, end);
1289                 if (pgd_none_or_clear_bad(pgd))
1290                         continue;
1291                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1292         } while (pgd++, addr = next, addr != end);
1293         tlb_end_vma(tlb, vma);
1294 }
1295
1296
1297 static void unmap_single_vma(struct mmu_gather *tlb,
1298                 struct vm_area_struct *vma, unsigned long start_addr,
1299                 unsigned long end_addr,
1300                 struct zap_details *details)
1301 {
1302         unsigned long start = max(vma->vm_start, start_addr);
1303         unsigned long end;
1304
1305         if (start >= vma->vm_end)
1306                 return;
1307         end = min(vma->vm_end, end_addr);
1308         if (end <= vma->vm_start)
1309                 return;
1310
1311         if (vma->vm_file)
1312                 uprobe_munmap(vma, start, end);
1313
1314         if (unlikely(vma->vm_flags & VM_PFNMAP))
1315                 untrack_pfn(vma, 0, 0);
1316
1317         if (start != end) {
1318                 if (unlikely(is_vm_hugetlb_page(vma))) {
1319                         /*
1320                          * It is undesirable to test vma->vm_file as it
1321                          * should be non-null for valid hugetlb area.
1322                          * However, vm_file will be NULL in the error
1323                          * cleanup path of mmap_region. When
1324                          * hugetlbfs ->mmap method fails,
1325                          * mmap_region() nullifies vma->vm_file
1326                          * before calling this function to clean up.
1327                          * Since no pte has actually been setup, it is
1328                          * safe to do nothing in this case.
1329                          */
1330                         if (vma->vm_file) {
1331                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1332                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1334                         }
1335                 } else
1336                         unmap_page_range(tlb, vma, start, end, details);
1337         }
1338 }
1339
1340 /**
1341  * unmap_vmas - unmap a range of memory covered by a list of vma's
1342  * @tlb: address of the caller's struct mmu_gather
1343  * @vma: the starting vma
1344  * @start_addr: virtual address at which to start unmapping
1345  * @end_addr: virtual address at which to end unmapping
1346  *
1347  * Unmap all pages in the vma list.
1348  *
1349  * Only addresses between `start' and `end' will be unmapped.
1350  *
1351  * The VMA list must be sorted in ascending virtual address order.
1352  *
1353  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354  * range after unmap_vmas() returns.  So the only responsibility here is to
1355  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356  * drops the lock and schedules.
1357  */
1358 void unmap_vmas(struct mmu_gather *tlb,
1359                 struct vm_area_struct *vma, unsigned long start_addr,
1360                 unsigned long end_addr)
1361 {
1362         struct mm_struct *mm = vma->vm_mm;
1363
1364         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1368 }
1369
1370 /**
1371  * zap_page_range - remove user pages in a given range
1372  * @vma: vm_area_struct holding the applicable pages
1373  * @start: starting address of pages to zap
1374  * @size: number of bytes to zap
1375  * @details: details of shared cache invalidation
1376  *
1377  * Caller must protect the VMA list
1378  */
1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380                 unsigned long size, struct zap_details *details)
1381 {
1382         struct mm_struct *mm = vma->vm_mm;
1383         struct mmu_gather tlb;
1384         unsigned long end = start + size;
1385
1386         lru_add_drain();
1387         tlb_gather_mmu(&tlb, mm, start, end);
1388         update_hiwater_rss(mm);
1389         mmu_notifier_invalidate_range_start(mm, start, end);
1390         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391                 unmap_single_vma(&tlb, vma, start, end, details);
1392         mmu_notifier_invalidate_range_end(mm, start, end);
1393         tlb_finish_mmu(&tlb, start, end);
1394 }
1395
1396 /**
1397  * zap_page_range_single - remove user pages in a given range
1398  * @vma: vm_area_struct holding the applicable pages
1399  * @address: starting address of pages to zap
1400  * @size: number of bytes to zap
1401  * @details: details of shared cache invalidation
1402  *
1403  * The range must fit into one VMA.
1404  */
1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406                 unsigned long size, struct zap_details *details)
1407 {
1408         struct mm_struct *mm = vma->vm_mm;
1409         struct mmu_gather tlb;
1410         unsigned long end = address + size;
1411
1412         lru_add_drain();
1413         tlb_gather_mmu(&tlb, mm, address, end);
1414         update_hiwater_rss(mm);
1415         mmu_notifier_invalidate_range_start(mm, address, end);
1416         unmap_single_vma(&tlb, vma, address, end, details);
1417         mmu_notifier_invalidate_range_end(mm, address, end);
1418         tlb_finish_mmu(&tlb, address, end);
1419 }
1420
1421 /**
1422  * zap_vma_ptes - remove ptes mapping the vma
1423  * @vma: vm_area_struct holding ptes to be zapped
1424  * @address: starting address of pages to zap
1425  * @size: number of bytes to zap
1426  *
1427  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428  *
1429  * The entire address range must be fully contained within the vma.
1430  *
1431  * Returns 0 if successful.
1432  */
1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434                 unsigned long size)
1435 {
1436         if (address < vma->vm_start || address + size > vma->vm_end ||
1437                         !(vma->vm_flags & VM_PFNMAP))
1438                 return -1;
1439         zap_page_range_single(vma, address, size, NULL);
1440         return 0;
1441 }
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443
1444 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1445                         spinlock_t **ptl)
1446 {
1447         pgd_t * pgd = pgd_offset(mm, addr);
1448         pud_t * pud = pud_alloc(mm, pgd, addr);
1449         if (pud) {
1450                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1451                 if (pmd) {
1452                         VM_BUG_ON(pmd_trans_huge(*pmd));
1453                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1454                 }
1455         }
1456         return NULL;
1457 }
1458
1459 /*
1460  * This is the old fallback for page remapping.
1461  *
1462  * For historical reasons, it only allows reserved pages. Only
1463  * old drivers should use this, and they needed to mark their
1464  * pages reserved for the old functions anyway.
1465  */
1466 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1467                         struct page *page, pgprot_t prot)
1468 {
1469         struct mm_struct *mm = vma->vm_mm;
1470         int retval;
1471         pte_t *pte;
1472         spinlock_t *ptl;
1473
1474         retval = -EINVAL;
1475         if (PageAnon(page))
1476                 goto out;
1477         retval = -ENOMEM;
1478         flush_dcache_page(page);
1479         pte = get_locked_pte(mm, addr, &ptl);
1480         if (!pte)
1481                 goto out;
1482         retval = -EBUSY;
1483         if (!pte_none(*pte))
1484                 goto out_unlock;
1485
1486         /* Ok, finally just insert the thing.. */
1487         get_page(page);
1488         inc_mm_counter_fast(mm, mm_counter_file(page));
1489         page_add_file_rmap(page, false);
1490         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1491
1492         retval = 0;
1493         pte_unmap_unlock(pte, ptl);
1494         return retval;
1495 out_unlock:
1496         pte_unmap_unlock(pte, ptl);
1497 out:
1498         return retval;
1499 }
1500
1501 /**
1502  * vm_insert_page - insert single page into user vma
1503  * @vma: user vma to map to
1504  * @addr: target user address of this page
1505  * @page: source kernel page
1506  *
1507  * This allows drivers to insert individual pages they've allocated
1508  * into a user vma.
1509  *
1510  * The page has to be a nice clean _individual_ kernel allocation.
1511  * If you allocate a compound page, you need to have marked it as
1512  * such (__GFP_COMP), or manually just split the page up yourself
1513  * (see split_page()).
1514  *
1515  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1516  * took an arbitrary page protection parameter. This doesn't allow
1517  * that. Your vma protection will have to be set up correctly, which
1518  * means that if you want a shared writable mapping, you'd better
1519  * ask for a shared writable mapping!
1520  *
1521  * The page does not need to be reserved.
1522  *
1523  * Usually this function is called from f_op->mmap() handler
1524  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1525  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1526  * function from other places, for example from page-fault handler.
1527  */
1528 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1529                         struct page *page)
1530 {
1531         if (addr < vma->vm_start || addr >= vma->vm_end)
1532                 return -EFAULT;
1533         if (!page_count(page))
1534                 return -EINVAL;
1535         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1536                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1537                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1538                 vma->vm_flags |= VM_MIXEDMAP;
1539         }
1540         return insert_page(vma, addr, page, vma->vm_page_prot);
1541 }
1542 EXPORT_SYMBOL(vm_insert_page);
1543
1544 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1545                         pfn_t pfn, pgprot_t prot)
1546 {
1547         struct mm_struct *mm = vma->vm_mm;
1548         int retval;
1549         pte_t *pte, entry;
1550         spinlock_t *ptl;
1551
1552         retval = -ENOMEM;
1553         pte = get_locked_pte(mm, addr, &ptl);
1554         if (!pte)
1555                 goto out;
1556         retval = -EBUSY;
1557         if (!pte_none(*pte))
1558                 goto out_unlock;
1559
1560         /* Ok, finally just insert the thing.. */
1561         if (pfn_t_devmap(pfn))
1562                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1563         else
1564                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1565         set_pte_at(mm, addr, pte, entry);
1566         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1567
1568         retval = 0;
1569 out_unlock:
1570         pte_unmap_unlock(pte, ptl);
1571 out:
1572         return retval;
1573 }
1574
1575 /**
1576  * vm_insert_pfn - insert single pfn into user vma
1577  * @vma: user vma to map to
1578  * @addr: target user address of this page
1579  * @pfn: source kernel pfn
1580  *
1581  * Similar to vm_insert_page, this allows drivers to insert individual pages
1582  * they've allocated into a user vma. Same comments apply.
1583  *
1584  * This function should only be called from a vm_ops->fault handler, and
1585  * in that case the handler should return NULL.
1586  *
1587  * vma cannot be a COW mapping.
1588  *
1589  * As this is called only for pages that do not currently exist, we
1590  * do not need to flush old virtual caches or the TLB.
1591  */
1592 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1593                         unsigned long pfn)
1594 {
1595         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1596 }
1597 EXPORT_SYMBOL(vm_insert_pfn);
1598
1599 /**
1600  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1601  * @vma: user vma to map to
1602  * @addr: target user address of this page
1603  * @pfn: source kernel pfn
1604  * @pgprot: pgprot flags for the inserted page
1605  *
1606  * This is exactly like vm_insert_pfn, except that it allows drivers to
1607  * to override pgprot on a per-page basis.
1608  *
1609  * This only makes sense for IO mappings, and it makes no sense for
1610  * cow mappings.  In general, using multiple vmas is preferable;
1611  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1612  * impractical.
1613  */
1614 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1615                         unsigned long pfn, pgprot_t pgprot)
1616 {
1617         int ret;
1618         /*
1619          * Technically, architectures with pte_special can avoid all these
1620          * restrictions (same for remap_pfn_range).  However we would like
1621          * consistency in testing and feature parity among all, so we should
1622          * try to keep these invariants in place for everybody.
1623          */
1624         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1625         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1626                                                 (VM_PFNMAP|VM_MIXEDMAP));
1627         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1628         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1629
1630         if (addr < vma->vm_start || addr >= vma->vm_end)
1631                 return -EFAULT;
1632         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1633                 return -EINVAL;
1634
1635         if (!pfn_modify_allowed(pfn, pgprot))
1636                 return -EACCES;
1637
1638         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1639
1640         return ret;
1641 }
1642 EXPORT_SYMBOL(vm_insert_pfn_prot);
1643
1644 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1645                         pfn_t pfn)
1646 {
1647         pgprot_t pgprot = vma->vm_page_prot;
1648
1649         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1650
1651         if (addr < vma->vm_start || addr >= vma->vm_end)
1652                 return -EFAULT;
1653         if (track_pfn_insert(vma, &pgprot, pfn))
1654                 return -EINVAL;
1655
1656         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1657                 return -EACCES;
1658
1659         /*
1660          * If we don't have pte special, then we have to use the pfn_valid()
1661          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1662          * refcount the page if pfn_valid is true (hence insert_page rather
1663          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1664          * without pte special, it would there be refcounted as a normal page.
1665          */
1666         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1667                 struct page *page;
1668
1669                 /*
1670                  * At this point we are committed to insert_page()
1671                  * regardless of whether the caller specified flags that
1672                  * result in pfn_t_has_page() == false.
1673                  */
1674                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1675                 return insert_page(vma, addr, page, pgprot);
1676         }
1677         return insert_pfn(vma, addr, pfn, pgprot);
1678 }
1679 EXPORT_SYMBOL(vm_insert_mixed);
1680
1681 /*
1682  * maps a range of physical memory into the requested pages. the old
1683  * mappings are removed. any references to nonexistent pages results
1684  * in null mappings (currently treated as "copy-on-access")
1685  */
1686 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1687                         unsigned long addr, unsigned long end,
1688                         unsigned long pfn, pgprot_t prot)
1689 {
1690         pte_t *pte;
1691         spinlock_t *ptl;
1692         int err = 0;
1693
1694         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1695         if (!pte)
1696                 return -ENOMEM;
1697         arch_enter_lazy_mmu_mode();
1698         do {
1699                 BUG_ON(!pte_none(*pte));
1700                 if (!pfn_modify_allowed(pfn, prot)) {
1701                         err = -EACCES;
1702                         break;
1703                 }
1704                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1705                 pfn++;
1706         } while (pte++, addr += PAGE_SIZE, addr != end);
1707         arch_leave_lazy_mmu_mode();
1708         pte_unmap_unlock(pte - 1, ptl);
1709         return err;
1710 }
1711
1712 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1713                         unsigned long addr, unsigned long end,
1714                         unsigned long pfn, pgprot_t prot)
1715 {
1716         pmd_t *pmd;
1717         unsigned long next;
1718         int err;
1719
1720         pfn -= addr >> PAGE_SHIFT;
1721         pmd = pmd_alloc(mm, pud, addr);
1722         if (!pmd)
1723                 return -ENOMEM;
1724         VM_BUG_ON(pmd_trans_huge(*pmd));
1725         do {
1726                 next = pmd_addr_end(addr, end);
1727                 err = remap_pte_range(mm, pmd, addr, next,
1728                                 pfn + (addr >> PAGE_SHIFT), prot);
1729                 if (err)
1730                         return err;
1731         } while (pmd++, addr = next, addr != end);
1732         return 0;
1733 }
1734
1735 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1736                         unsigned long addr, unsigned long end,
1737                         unsigned long pfn, pgprot_t prot)
1738 {
1739         pud_t *pud;
1740         unsigned long next;
1741         int err;
1742
1743         pfn -= addr >> PAGE_SHIFT;
1744         pud = pud_alloc(mm, pgd, addr);
1745         if (!pud)
1746                 return -ENOMEM;
1747         do {
1748                 next = pud_addr_end(addr, end);
1749                 err = remap_pmd_range(mm, pud, addr, next,
1750                                 pfn + (addr >> PAGE_SHIFT), prot);
1751                 if (err)
1752                         return err;
1753         } while (pud++, addr = next, addr != end);
1754         return 0;
1755 }
1756
1757 /**
1758  * remap_pfn_range - remap kernel memory to userspace
1759  * @vma: user vma to map to
1760  * @addr: target user address to start at
1761  * @pfn: physical address of kernel memory
1762  * @size: size of map area
1763  * @prot: page protection flags for this mapping
1764  *
1765  *  Note: this is only safe if the mm semaphore is held when called.
1766  */
1767 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1768                     unsigned long pfn, unsigned long size, pgprot_t prot)
1769 {
1770         pgd_t *pgd;
1771         unsigned long next;
1772         unsigned long end = addr + PAGE_ALIGN(size);
1773         struct mm_struct *mm = vma->vm_mm;
1774         unsigned long remap_pfn = pfn;
1775         int err;
1776
1777         /*
1778          * Physically remapped pages are special. Tell the
1779          * rest of the world about it:
1780          *   VM_IO tells people not to look at these pages
1781          *      (accesses can have side effects).
1782          *   VM_PFNMAP tells the core MM that the base pages are just
1783          *      raw PFN mappings, and do not have a "struct page" associated
1784          *      with them.
1785          *   VM_DONTEXPAND
1786          *      Disable vma merging and expanding with mremap().
1787          *   VM_DONTDUMP
1788          *      Omit vma from core dump, even when VM_IO turned off.
1789          *
1790          * There's a horrible special case to handle copy-on-write
1791          * behaviour that some programs depend on. We mark the "original"
1792          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1793          * See vm_normal_page() for details.
1794          */
1795         if (is_cow_mapping(vma->vm_flags)) {
1796                 if (addr != vma->vm_start || end != vma->vm_end)
1797                         return -EINVAL;
1798                 vma->vm_pgoff = pfn;
1799         }
1800
1801         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1802         if (err)
1803                 return -EINVAL;
1804
1805         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1806
1807         BUG_ON(addr >= end);
1808         pfn -= addr >> PAGE_SHIFT;
1809         pgd = pgd_offset(mm, addr);
1810         flush_cache_range(vma, addr, end);
1811         do {
1812                 next = pgd_addr_end(addr, end);
1813                 err = remap_pud_range(mm, pgd, addr, next,
1814                                 pfn + (addr >> PAGE_SHIFT), prot);
1815                 if (err)
1816                         break;
1817         } while (pgd++, addr = next, addr != end);
1818
1819         if (err)
1820                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1821
1822         return err;
1823 }
1824 EXPORT_SYMBOL(remap_pfn_range);
1825
1826 /**
1827  * vm_iomap_memory - remap memory to userspace
1828  * @vma: user vma to map to
1829  * @start: start of area
1830  * @len: size of area
1831  *
1832  * This is a simplified io_remap_pfn_range() for common driver use. The
1833  * driver just needs to give us the physical memory range to be mapped,
1834  * we'll figure out the rest from the vma information.
1835  *
1836  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1837  * whatever write-combining details or similar.
1838  */
1839 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1840 {
1841         unsigned long vm_len, pfn, pages;
1842
1843         /* Check that the physical memory area passed in looks valid */
1844         if (start + len < start)
1845                 return -EINVAL;
1846         /*
1847          * You *really* shouldn't map things that aren't page-aligned,
1848          * but we've historically allowed it because IO memory might
1849          * just have smaller alignment.
1850          */
1851         len += start & ~PAGE_MASK;
1852         pfn = start >> PAGE_SHIFT;
1853         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1854         if (pfn + pages < pfn)
1855                 return -EINVAL;
1856
1857         /* We start the mapping 'vm_pgoff' pages into the area */
1858         if (vma->vm_pgoff > pages)
1859                 return -EINVAL;
1860         pfn += vma->vm_pgoff;
1861         pages -= vma->vm_pgoff;
1862
1863         /* Can we fit all of the mapping? */
1864         vm_len = vma->vm_end - vma->vm_start;
1865         if (vm_len >> PAGE_SHIFT > pages)
1866                 return -EINVAL;
1867
1868         /* Ok, let it rip */
1869         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1870 }
1871 EXPORT_SYMBOL(vm_iomap_memory);
1872
1873 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1874                                      unsigned long addr, unsigned long end,
1875                                      pte_fn_t fn, void *data)
1876 {
1877         pte_t *pte;
1878         int err;
1879         pgtable_t token;
1880         spinlock_t *uninitialized_var(ptl);
1881
1882         pte = (mm == &init_mm) ?
1883                 pte_alloc_kernel(pmd, addr) :
1884                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1885         if (!pte)
1886                 return -ENOMEM;
1887
1888         BUG_ON(pmd_huge(*pmd));
1889
1890         arch_enter_lazy_mmu_mode();
1891
1892         token = pmd_pgtable(*pmd);
1893
1894         do {
1895                 err = fn(pte++, token, addr, data);
1896                 if (err)
1897                         break;
1898         } while (addr += PAGE_SIZE, addr != end);
1899
1900         arch_leave_lazy_mmu_mode();
1901
1902         if (mm != &init_mm)
1903                 pte_unmap_unlock(pte-1, ptl);
1904         return err;
1905 }
1906
1907 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1908                                      unsigned long addr, unsigned long end,
1909                                      pte_fn_t fn, void *data)
1910 {
1911         pmd_t *pmd;
1912         unsigned long next;
1913         int err;
1914
1915         BUG_ON(pud_huge(*pud));
1916
1917         pmd = pmd_alloc(mm, pud, addr);
1918         if (!pmd)
1919                 return -ENOMEM;
1920         do {
1921                 next = pmd_addr_end(addr, end);
1922                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1923                 if (err)
1924                         break;
1925         } while (pmd++, addr = next, addr != end);
1926         return err;
1927 }
1928
1929 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1930                                      unsigned long addr, unsigned long end,
1931                                      pte_fn_t fn, void *data)
1932 {
1933         pud_t *pud;
1934         unsigned long next;
1935         int err;
1936
1937         pud = pud_alloc(mm, pgd, addr);
1938         if (!pud)
1939                 return -ENOMEM;
1940         do {
1941                 next = pud_addr_end(addr, end);
1942                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1943                 if (err)
1944                         break;
1945         } while (pud++, addr = next, addr != end);
1946         return err;
1947 }
1948
1949 /*
1950  * Scan a region of virtual memory, filling in page tables as necessary
1951  * and calling a provided function on each leaf page table.
1952  */
1953 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1954                         unsigned long size, pte_fn_t fn, void *data)
1955 {
1956         pgd_t *pgd;
1957         unsigned long next;
1958         unsigned long end = addr + size;
1959         int err;
1960
1961         if (WARN_ON(addr >= end))
1962                 return -EINVAL;
1963
1964         pgd = pgd_offset(mm, addr);
1965         do {
1966                 next = pgd_addr_end(addr, end);
1967                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1968                 if (err)
1969                         break;
1970         } while (pgd++, addr = next, addr != end);
1971
1972         return err;
1973 }
1974 EXPORT_SYMBOL_GPL(apply_to_page_range);
1975
1976 /*
1977  * handle_pte_fault chooses page fault handler according to an entry which was
1978  * read non-atomically.  Before making any commitment, on those architectures
1979  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1980  * parts, do_swap_page must check under lock before unmapping the pte and
1981  * proceeding (but do_wp_page is only called after already making such a check;
1982  * and do_anonymous_page can safely check later on).
1983  */
1984 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1985                                 pte_t *page_table, pte_t orig_pte)
1986 {
1987         int same = 1;
1988 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1989         if (sizeof(pte_t) > sizeof(unsigned long)) {
1990                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1991                 spin_lock(ptl);
1992                 same = pte_same(*page_table, orig_pte);
1993                 spin_unlock(ptl);
1994         }
1995 #endif
1996         pte_unmap(page_table);
1997         return same;
1998 }
1999
2000 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2001 {
2002         debug_dma_assert_idle(src);
2003
2004         /*
2005          * If the source page was a PFN mapping, we don't have
2006          * a "struct page" for it. We do a best-effort copy by
2007          * just copying from the original user address. If that
2008          * fails, we just zero-fill it. Live with it.
2009          */
2010         if (unlikely(!src)) {
2011                 void *kaddr = kmap_atomic(dst);
2012                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2013
2014                 /*
2015                  * This really shouldn't fail, because the page is there
2016                  * in the page tables. But it might just be unreadable,
2017                  * in which case we just give up and fill the result with
2018                  * zeroes.
2019                  */
2020                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2021                         clear_page(kaddr);
2022                 kunmap_atomic(kaddr);
2023                 flush_dcache_page(dst);
2024         } else
2025                 copy_user_highpage(dst, src, va, vma);
2026 }
2027
2028 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2029 {
2030         struct file *vm_file = vma->vm_file;
2031
2032         if (vm_file)
2033                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2034
2035         /*
2036          * Special mappings (e.g. VDSO) do not have any file so fake
2037          * a default GFP_KERNEL for them.
2038          */
2039         return GFP_KERNEL;
2040 }
2041
2042 /*
2043  * Notify the address space that the page is about to become writable so that
2044  * it can prohibit this or wait for the page to get into an appropriate state.
2045  *
2046  * We do this without the lock held, so that it can sleep if it needs to.
2047  */
2048 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2049                unsigned long address)
2050 {
2051         struct vm_fault vmf;
2052         int ret;
2053
2054         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2055         vmf.pgoff = page->index;
2056         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2057         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2058         vmf.page = page;
2059         vmf.cow_page = NULL;
2060
2061         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2062         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2063                 return ret;
2064         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2065                 lock_page(page);
2066                 if (!page->mapping) {
2067                         unlock_page(page);
2068                         return 0; /* retry */
2069                 }
2070                 ret |= VM_FAULT_LOCKED;
2071         } else
2072                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2073         return ret;
2074 }
2075
2076 /*
2077  * Handle write page faults for pages that can be reused in the current vma
2078  *
2079  * This can happen either due to the mapping being with the VM_SHARED flag,
2080  * or due to us being the last reference standing to the page. In either
2081  * case, all we need to do here is to mark the page as writable and update
2082  * any related book-keeping.
2083  */
2084 static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte,
2085                         struct page *page, int page_mkwrite, int dirty_shared)
2086         __releases(fe->ptl)
2087 {
2088         struct vm_area_struct *vma = fe->vma;
2089         pte_t entry;
2090         /*
2091          * Clear the pages cpupid information as the existing
2092          * information potentially belongs to a now completely
2093          * unrelated process.
2094          */
2095         if (page)
2096                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2097
2098         flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2099         entry = pte_mkyoung(orig_pte);
2100         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2101         if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1))
2102                 update_mmu_cache(vma, fe->address, fe->pte);
2103         pte_unmap_unlock(fe->pte, fe->ptl);
2104
2105         if (dirty_shared) {
2106                 struct address_space *mapping;
2107                 int dirtied;
2108
2109                 if (!page_mkwrite)
2110                         lock_page(page);
2111
2112                 dirtied = set_page_dirty(page);
2113                 VM_BUG_ON_PAGE(PageAnon(page), page);
2114                 mapping = page->mapping;
2115                 unlock_page(page);
2116                 put_page(page);
2117
2118                 if ((dirtied || page_mkwrite) && mapping) {
2119                         /*
2120                          * Some device drivers do not set page.mapping
2121                          * but still dirty their pages
2122                          */
2123                         balance_dirty_pages_ratelimited(mapping);
2124                 }
2125
2126                 if (!page_mkwrite)
2127                         file_update_time(vma->vm_file);
2128         }
2129
2130         return VM_FAULT_WRITE;
2131 }
2132
2133 /*
2134  * Handle the case of a page which we actually need to copy to a new page.
2135  *
2136  * Called with mmap_sem locked and the old page referenced, but
2137  * without the ptl held.
2138  *
2139  * High level logic flow:
2140  *
2141  * - Allocate a page, copy the content of the old page to the new one.
2142  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2143  * - Take the PTL. If the pte changed, bail out and release the allocated page
2144  * - If the pte is still the way we remember it, update the page table and all
2145  *   relevant references. This includes dropping the reference the page-table
2146  *   held to the old page, as well as updating the rmap.
2147  * - In any case, unlock the PTL and drop the reference we took to the old page.
2148  */
2149 static int wp_page_copy(struct fault_env *fe, pte_t orig_pte,
2150                 struct page *old_page)
2151 {
2152         struct vm_area_struct *vma = fe->vma;
2153         struct mm_struct *mm = vma->vm_mm;
2154         struct page *new_page = NULL;
2155         pte_t entry;
2156         int page_copied = 0;
2157         const unsigned long mmun_start = fe->address & PAGE_MASK;
2158         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2159         struct mem_cgroup *memcg;
2160
2161         if (unlikely(anon_vma_prepare(vma)))
2162                 goto oom;
2163
2164         if (is_zero_pfn(pte_pfn(orig_pte))) {
2165                 new_page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2166                 if (!new_page)
2167                         goto oom;
2168         } else {
2169                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2170                                 fe->address);
2171                 if (!new_page)
2172                         goto oom;
2173                 cow_user_page(new_page, old_page, fe->address, vma);
2174         }
2175
2176         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2177                 goto oom_free_new;
2178
2179         __SetPageUptodate(new_page);
2180
2181         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2182
2183         /*
2184          * Re-check the pte - we dropped the lock
2185          */
2186         fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl);
2187         if (likely(pte_same(*fe->pte, orig_pte))) {
2188                 if (old_page) {
2189                         if (!PageAnon(old_page)) {
2190                                 dec_mm_counter_fast(mm,
2191                                                 mm_counter_file(old_page));
2192                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2193                         }
2194                 } else {
2195                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2196                 }
2197                 flush_cache_page(vma, fe->address, pte_pfn(orig_pte));
2198                 entry = mk_pte(new_page, vma->vm_page_prot);
2199                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2200                 /*
2201                  * Clear the pte entry and flush it first, before updating the
2202                  * pte with the new entry. This will avoid a race condition
2203                  * seen in the presence of one thread doing SMC and another
2204                  * thread doing COW.
2205                  */
2206                 ptep_clear_flush_notify(vma, fe->address, fe->pte);
2207                 page_add_new_anon_rmap(new_page, vma, fe->address, false);
2208                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2209                 lru_cache_add_active_or_unevictable(new_page, vma);
2210                 /*
2211                  * We call the notify macro here because, when using secondary
2212                  * mmu page tables (such as kvm shadow page tables), we want the
2213                  * new page to be mapped directly into the secondary page table.
2214                  */
2215                 set_pte_at_notify(mm, fe->address, fe->pte, entry);
2216                 update_mmu_cache(vma, fe->address, fe->pte);
2217                 if (old_page) {
2218                         /*
2219                          * Only after switching the pte to the new page may
2220                          * we remove the mapcount here. Otherwise another
2221                          * process may come and find the rmap count decremented
2222                          * before the pte is switched to the new page, and
2223                          * "reuse" the old page writing into it while our pte
2224                          * here still points into it and can be read by other
2225                          * threads.
2226                          *
2227                          * The critical issue is to order this
2228                          * page_remove_rmap with the ptp_clear_flush above.
2229                          * Those stores are ordered by (if nothing else,)
2230                          * the barrier present in the atomic_add_negative
2231                          * in page_remove_rmap.
2232                          *
2233                          * Then the TLB flush in ptep_clear_flush ensures that
2234                          * no process can access the old page before the
2235                          * decremented mapcount is visible. And the old page
2236                          * cannot be reused until after the decremented
2237                          * mapcount is visible. So transitively, TLBs to
2238                          * old page will be flushed before it can be reused.
2239                          */
2240                         page_remove_rmap(old_page, false);
2241                 }
2242
2243                 /* Free the old page.. */
2244                 new_page = old_page;
2245                 page_copied = 1;
2246         } else {
2247                 mem_cgroup_cancel_charge(new_page, memcg, false);
2248         }
2249
2250         if (new_page)
2251                 put_page(new_page);
2252
2253         pte_unmap_unlock(fe->pte, fe->ptl);
2254         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2255         if (old_page) {
2256                 /*
2257                  * Don't let another task, with possibly unlocked vma,
2258                  * keep the mlocked page.
2259                  */
2260                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2261                         lock_page(old_page);    /* LRU manipulation */
2262                         if (PageMlocked(old_page))
2263                                 munlock_vma_page(old_page);
2264                         unlock_page(old_page);
2265                 }
2266                 put_page(old_page);
2267         }
2268         return page_copied ? VM_FAULT_WRITE : 0;
2269 oom_free_new:
2270         put_page(new_page);
2271 oom:
2272         if (old_page)
2273                 put_page(old_page);
2274         return VM_FAULT_OOM;
2275 }
2276
2277 /*
2278  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2279  * mapping
2280  */
2281 static int wp_pfn_shared(struct fault_env *fe,  pte_t orig_pte)
2282 {
2283         struct vm_area_struct *vma = fe->vma;
2284
2285         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2286                 struct vm_fault vmf = {
2287                         .page = NULL,
2288                         .pgoff = linear_page_index(vma, fe->address),
2289                         .virtual_address =
2290                                 (void __user *)(fe->address & PAGE_MASK),
2291                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2292                 };
2293                 int ret;
2294
2295                 pte_unmap_unlock(fe->pte, fe->ptl);
2296                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2297                 if (ret & VM_FAULT_ERROR)
2298                         return ret;
2299                 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2300                                 &fe->ptl);
2301                 /*
2302                  * We might have raced with another page fault while we
2303                  * released the pte_offset_map_lock.
2304                  */
2305                 if (!pte_same(*fe->pte, orig_pte)) {
2306                         pte_unmap_unlock(fe->pte, fe->ptl);
2307                         return 0;
2308                 }
2309         }
2310         return wp_page_reuse(fe, orig_pte, NULL, 0, 0);
2311 }
2312
2313 static int wp_page_shared(struct fault_env *fe, pte_t orig_pte,
2314                 struct page *old_page)
2315         __releases(fe->ptl)
2316 {
2317         struct vm_area_struct *vma = fe->vma;
2318         int page_mkwrite = 0;
2319
2320         get_page(old_page);
2321
2322         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2323                 int tmp;
2324
2325                 pte_unmap_unlock(fe->pte, fe->ptl);
2326                 tmp = do_page_mkwrite(vma, old_page, fe->address);
2327                 if (unlikely(!tmp || (tmp &
2328                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2329                         put_page(old_page);
2330                         return tmp;
2331                 }
2332                 /*
2333                  * Since we dropped the lock we need to revalidate
2334                  * the PTE as someone else may have changed it.  If
2335                  * they did, we just return, as we can count on the
2336                  * MMU to tell us if they didn't also make it writable.
2337                  */
2338                 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2339                                                  &fe->ptl);
2340                 if (!pte_same(*fe->pte, orig_pte)) {
2341                         unlock_page(old_page);
2342                         pte_unmap_unlock(fe->pte, fe->ptl);
2343                         put_page(old_page);
2344                         return 0;
2345                 }
2346                 page_mkwrite = 1;
2347         }
2348
2349         return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1);
2350 }
2351
2352 /*
2353  * This routine handles present pages, when users try to write
2354  * to a shared page. It is done by copying the page to a new address
2355  * and decrementing the shared-page counter for the old page.
2356  *
2357  * Note that this routine assumes that the protection checks have been
2358  * done by the caller (the low-level page fault routine in most cases).
2359  * Thus we can safely just mark it writable once we've done any necessary
2360  * COW.
2361  *
2362  * We also mark the page dirty at this point even though the page will
2363  * change only once the write actually happens. This avoids a few races,
2364  * and potentially makes it more efficient.
2365  *
2366  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2367  * but allow concurrent faults), with pte both mapped and locked.
2368  * We return with mmap_sem still held, but pte unmapped and unlocked.
2369  */
2370 static int do_wp_page(struct fault_env *fe, pte_t orig_pte)
2371         __releases(fe->ptl)
2372 {
2373         struct vm_area_struct *vma = fe->vma;
2374         struct page *old_page;
2375
2376         old_page = vm_normal_page(vma, fe->address, orig_pte);
2377         if (!old_page) {
2378                 /*
2379                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2380                  * VM_PFNMAP VMA.
2381                  *
2382                  * We should not cow pages in a shared writeable mapping.
2383                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2384                  */
2385                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2386                                      (VM_WRITE|VM_SHARED))
2387                         return wp_pfn_shared(fe, orig_pte);
2388
2389                 pte_unmap_unlock(fe->pte, fe->ptl);
2390                 return wp_page_copy(fe, orig_pte, old_page);
2391         }
2392
2393         /*
2394          * Take out anonymous pages first, anonymous shared vmas are
2395          * not dirty accountable.
2396          */
2397         if (PageAnon(old_page) && !PageKsm(old_page)) {
2398                 int total_mapcount;
2399                 if (!trylock_page(old_page)) {
2400                         get_page(old_page);
2401                         pte_unmap_unlock(fe->pte, fe->ptl);
2402                         lock_page(old_page);
2403                         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2404                                         fe->address, &fe->ptl);
2405                         if (!pte_same(*fe->pte, orig_pte)) {
2406                                 unlock_page(old_page);
2407                                 pte_unmap_unlock(fe->pte, fe->ptl);
2408                                 put_page(old_page);
2409                                 return 0;
2410                         }
2411                         put_page(old_page);
2412                 }
2413                 if (reuse_swap_page(old_page, &total_mapcount)) {
2414                         if (total_mapcount == 1) {
2415                                 /*
2416                                  * The page is all ours. Move it to
2417                                  * our anon_vma so the rmap code will
2418                                  * not search our parent or siblings.
2419                                  * Protected against the rmap code by
2420                                  * the page lock.
2421                                  */
2422                                 page_move_anon_rmap(old_page, vma);
2423                         }
2424                         unlock_page(old_page);
2425                         return wp_page_reuse(fe, orig_pte, old_page, 0, 0);
2426                 }
2427                 unlock_page(old_page);
2428         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2429                                         (VM_WRITE|VM_SHARED))) {
2430                 return wp_page_shared(fe, orig_pte, old_page);
2431         }
2432
2433         /*
2434          * Ok, we need to copy. Oh, well..
2435          */
2436         get_page(old_page);
2437
2438         pte_unmap_unlock(fe->pte, fe->ptl);
2439         return wp_page_copy(fe, orig_pte, old_page);
2440 }
2441
2442 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2443                 unsigned long start_addr, unsigned long end_addr,
2444                 struct zap_details *details)
2445 {
2446         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2447 }
2448
2449 static inline void unmap_mapping_range_tree(struct rb_root *root,
2450                                             struct zap_details *details)
2451 {
2452         struct vm_area_struct *vma;
2453         pgoff_t vba, vea, zba, zea;
2454
2455         vma_interval_tree_foreach(vma, root,
2456                         details->first_index, details->last_index) {
2457
2458                 vba = vma->vm_pgoff;
2459                 vea = vba + vma_pages(vma) - 1;
2460                 zba = details->first_index;
2461                 if (zba < vba)
2462                         zba = vba;
2463                 zea = details->last_index;
2464                 if (zea > vea)
2465                         zea = vea;
2466
2467                 unmap_mapping_range_vma(vma,
2468                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2469                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2470                                 details);
2471         }
2472 }
2473
2474 /**
2475  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2476  * address_space corresponding to the specified page range in the underlying
2477  * file.
2478  *
2479  * @mapping: the address space containing mmaps to be unmapped.
2480  * @holebegin: byte in first page to unmap, relative to the start of
2481  * the underlying file.  This will be rounded down to a PAGE_SIZE
2482  * boundary.  Note that this is different from truncate_pagecache(), which
2483  * must keep the partial page.  In contrast, we must get rid of
2484  * partial pages.
2485  * @holelen: size of prospective hole in bytes.  This will be rounded
2486  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2487  * end of the file.
2488  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2489  * but 0 when invalidating pagecache, don't throw away private data.
2490  */
2491 void unmap_mapping_range(struct address_space *mapping,
2492                 loff_t const holebegin, loff_t const holelen, int even_cows)
2493 {
2494         struct zap_details details = { };
2495         pgoff_t hba = holebegin >> PAGE_SHIFT;
2496         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2497
2498         /* Check for overflow. */
2499         if (sizeof(holelen) > sizeof(hlen)) {
2500                 long long holeend =
2501                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2502                 if (holeend & ~(long long)ULONG_MAX)
2503                         hlen = ULONG_MAX - hba + 1;
2504         }
2505
2506         details.check_mapping = even_cows? NULL: mapping;
2507         details.first_index = hba;
2508         details.last_index = hba + hlen - 1;
2509         if (details.last_index < details.first_index)
2510                 details.last_index = ULONG_MAX;
2511
2512         i_mmap_lock_write(mapping);
2513         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2514                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2515         i_mmap_unlock_write(mapping);
2516 }
2517 EXPORT_SYMBOL(unmap_mapping_range);
2518
2519 /*
2520  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2521  * but allow concurrent faults), and pte mapped but not yet locked.
2522  * We return with pte unmapped and unlocked.
2523  *
2524  * We return with the mmap_sem locked or unlocked in the same cases
2525  * as does filemap_fault().
2526  */
2527 int do_swap_page(struct fault_env *fe, pte_t orig_pte)
2528 {
2529         struct vm_area_struct *vma = fe->vma;
2530         struct page *page, *swapcache;
2531         struct mem_cgroup *memcg;
2532         swp_entry_t entry;
2533         pte_t pte;
2534         int locked;
2535         int exclusive = 0;
2536         int ret = 0;
2537
2538         if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte))
2539                 goto out;
2540
2541         entry = pte_to_swp_entry(orig_pte);
2542         if (unlikely(non_swap_entry(entry))) {
2543                 if (is_migration_entry(entry)) {
2544                         migration_entry_wait(vma->vm_mm, fe->pmd, fe->address);
2545                 } else if (is_hwpoison_entry(entry)) {
2546                         ret = VM_FAULT_HWPOISON;
2547                 } else {
2548                         print_bad_pte(vma, fe->address, orig_pte, NULL);
2549                         ret = VM_FAULT_SIGBUS;
2550                 }
2551                 goto out;
2552         }
2553         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2554         page = lookup_swap_cache(entry);
2555         if (!page) {
2556                 page = swapin_readahead(entry,
2557                                         GFP_HIGHUSER_MOVABLE, vma, fe->address);
2558                 if (!page) {
2559                         /*
2560                          * Back out if somebody else faulted in this pte
2561                          * while we released the pte lock.
2562                          */
2563                         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd,
2564                                         fe->address, &fe->ptl);
2565                         if (likely(pte_same(*fe->pte, orig_pte)))
2566                                 ret = VM_FAULT_OOM;
2567                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2568                         goto unlock;
2569                 }
2570
2571                 /* Had to read the page from swap area: Major fault */
2572                 ret = VM_FAULT_MAJOR;
2573                 count_vm_event(PGMAJFAULT);
2574                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2575         } else if (PageHWPoison(page)) {
2576                 /*
2577                  * hwpoisoned dirty swapcache pages are kept for killing
2578                  * owner processes (which may be unknown at hwpoison time)
2579                  */
2580                 ret = VM_FAULT_HWPOISON;
2581                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2582                 swapcache = page;
2583                 goto out_release;
2584         }
2585
2586         swapcache = page;
2587         locked = lock_page_or_retry(page, vma->vm_mm, fe->flags);
2588
2589         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2590         if (!locked) {
2591                 ret |= VM_FAULT_RETRY;
2592                 goto out_release;
2593         }
2594
2595         /*
2596          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2597          * release the swapcache from under us.  The page pin, and pte_same
2598          * test below, are not enough to exclude that.  Even if it is still
2599          * swapcache, we need to check that the page's swap has not changed.
2600          */
2601         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2602                 goto out_page;
2603
2604         page = ksm_might_need_to_copy(page, vma, fe->address);
2605         if (unlikely(!page)) {
2606                 ret = VM_FAULT_OOM;
2607                 page = swapcache;
2608                 goto out_page;
2609         }
2610
2611         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2612                                 &memcg, false)) {
2613                 ret = VM_FAULT_OOM;
2614                 goto out_page;
2615         }
2616
2617         /*
2618          * Back out if somebody else already faulted in this pte.
2619          */
2620         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2621                         &fe->ptl);
2622         if (unlikely(!pte_same(*fe->pte, orig_pte)))
2623                 goto out_nomap;
2624
2625         if (unlikely(!PageUptodate(page))) {
2626                 ret = VM_FAULT_SIGBUS;
2627                 goto out_nomap;
2628         }
2629
2630         /*
2631          * The page isn't present yet, go ahead with the fault.
2632          *
2633          * Be careful about the sequence of operations here.
2634          * To get its accounting right, reuse_swap_page() must be called
2635          * while the page is counted on swap but not yet in mapcount i.e.
2636          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2637          * must be called after the swap_free(), or it will never succeed.
2638          */
2639
2640         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2641         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2642         pte = mk_pte(page, vma->vm_page_prot);
2643         if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2644                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2645                 fe->flags &= ~FAULT_FLAG_WRITE;
2646                 ret |= VM_FAULT_WRITE;
2647                 exclusive = RMAP_EXCLUSIVE;
2648         }
2649         flush_icache_page(vma, page);
2650         if (pte_swp_soft_dirty(orig_pte))
2651                 pte = pte_mksoft_dirty(pte);
2652         set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
2653         if (page == swapcache) {
2654                 do_page_add_anon_rmap(page, vma, fe->address, exclusive);
2655                 mem_cgroup_commit_charge(page, memcg, true, false);
2656                 activate_page(page);
2657         } else { /* ksm created a completely new copy */
2658                 page_add_new_anon_rmap(page, vma, fe->address, false);
2659                 mem_cgroup_commit_charge(page, memcg, false, false);
2660                 lru_cache_add_active_or_unevictable(page, vma);
2661         }
2662
2663         swap_free(entry);
2664         if (mem_cgroup_swap_full(page) ||
2665             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2666                 try_to_free_swap(page);
2667         unlock_page(page);
2668         if (page != swapcache) {
2669                 /*
2670                  * Hold the lock to avoid the swap entry to be reused
2671                  * until we take the PT lock for the pte_same() check
2672                  * (to avoid false positives from pte_same). For
2673                  * further safety release the lock after the swap_free
2674                  * so that the swap count won't change under a
2675                  * parallel locked swapcache.
2676                  */
2677                 unlock_page(swapcache);
2678                 put_page(swapcache);
2679         }
2680
2681         if (fe->flags & FAULT_FLAG_WRITE) {
2682                 ret |= do_wp_page(fe, pte);
2683                 if (ret & VM_FAULT_ERROR)
2684                         ret &= VM_FAULT_ERROR;
2685                 goto out;
2686         }
2687
2688         /* No need to invalidate - it was non-present before */
2689         update_mmu_cache(vma, fe->address, fe->pte);
2690 unlock:
2691         pte_unmap_unlock(fe->pte, fe->ptl);
2692 out:
2693         return ret;
2694 out_nomap:
2695         mem_cgroup_cancel_charge(page, memcg, false);
2696         pte_unmap_unlock(fe->pte, fe->ptl);
2697 out_page:
2698         unlock_page(page);
2699 out_release:
2700         put_page(page);
2701         if (page != swapcache) {
2702                 unlock_page(swapcache);
2703                 put_page(swapcache);
2704         }
2705         return ret;
2706 }
2707
2708 /*
2709  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2710  * but allow concurrent faults), and pte mapped but not yet locked.
2711  * We return with mmap_sem still held, but pte unmapped and unlocked.
2712  */
2713 static int do_anonymous_page(struct fault_env *fe)
2714 {
2715         struct vm_area_struct *vma = fe->vma;
2716         struct mem_cgroup *memcg;
2717         struct page *page;
2718         pte_t entry;
2719
2720         /* File mapping without ->vm_ops ? */
2721         if (vma->vm_flags & VM_SHARED)
2722                 return VM_FAULT_SIGBUS;
2723
2724         /*
2725          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2726          * pte_offset_map() on pmds where a huge pmd might be created
2727          * from a different thread.
2728          *
2729          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2730          * parallel threads are excluded by other means.
2731          *
2732          * Here we only have down_read(mmap_sem).
2733          */
2734         if (pte_alloc(vma->vm_mm, fe->pmd, fe->address))
2735                 return VM_FAULT_OOM;
2736
2737         /* See the comment in pte_alloc_one_map() */
2738         if (unlikely(pmd_trans_unstable(fe->pmd)))
2739                 return 0;
2740
2741         /* Use the zero-page for reads */
2742         if (!(fe->flags & FAULT_FLAG_WRITE) &&
2743                         !mm_forbids_zeropage(vma->vm_mm)) {
2744                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address),
2745                                                 vma->vm_page_prot));
2746                 fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2747                                 &fe->ptl);
2748                 if (!pte_none(*fe->pte))
2749                         goto unlock;
2750                 /* Deliver the page fault to userland, check inside PT lock */
2751                 if (userfaultfd_missing(vma)) {
2752                         pte_unmap_unlock(fe->pte, fe->ptl);
2753                         return handle_userfault(fe, VM_UFFD_MISSING);
2754                 }
2755                 goto setpte;
2756         }
2757
2758         /* Allocate our own private page. */
2759         if (unlikely(anon_vma_prepare(vma)))
2760                 goto oom;
2761         page = alloc_zeroed_user_highpage_movable(vma, fe->address);
2762         if (!page)
2763                 goto oom;
2764
2765         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2766                 goto oom_free_page;
2767
2768         /*
2769          * The memory barrier inside __SetPageUptodate makes sure that
2770          * preceeding stores to the page contents become visible before
2771          * the set_pte_at() write.
2772          */
2773         __SetPageUptodate(page);
2774
2775         entry = mk_pte(page, vma->vm_page_prot);
2776         if (vma->vm_flags & VM_WRITE)
2777                 entry = pte_mkwrite(pte_mkdirty(entry));
2778
2779         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2780                         &fe->ptl);
2781         if (!pte_none(*fe->pte))
2782                 goto release;
2783
2784         /* Deliver the page fault to userland, check inside PT lock */
2785         if (userfaultfd_missing(vma)) {
2786                 pte_unmap_unlock(fe->pte, fe->ptl);
2787                 mem_cgroup_cancel_charge(page, memcg, false);
2788                 put_page(page);
2789                 return handle_userfault(fe, VM_UFFD_MISSING);
2790         }
2791
2792         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2793         page_add_new_anon_rmap(page, vma, fe->address, false);
2794         mem_cgroup_commit_charge(page, memcg, false, false);
2795         lru_cache_add_active_or_unevictable(page, vma);
2796 setpte:
2797         set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
2798
2799         /* No need to invalidate - it was non-present before */
2800         update_mmu_cache(vma, fe->address, fe->pte);
2801 unlock:
2802         pte_unmap_unlock(fe->pte, fe->ptl);
2803         return 0;
2804 release:
2805         mem_cgroup_cancel_charge(page, memcg, false);
2806         put_page(page);
2807         goto unlock;
2808 oom_free_page:
2809         put_page(page);
2810 oom:
2811         return VM_FAULT_OOM;
2812 }
2813
2814 /*
2815  * The mmap_sem must have been held on entry, and may have been
2816  * released depending on flags and vma->vm_ops->fault() return value.
2817  * See filemap_fault() and __lock_page_retry().
2818  */
2819 static int __do_fault(struct fault_env *fe, pgoff_t pgoff,
2820                 struct page *cow_page, struct page **page, void **entry)
2821 {
2822         struct vm_area_struct *vma = fe->vma;
2823         struct vm_fault vmf;
2824         int ret;
2825
2826         /*
2827          * Preallocate pte before we take page_lock because this might lead to
2828          * deadlocks for memcg reclaim which waits for pages under writeback:
2829          *                              lock_page(A)
2830          *                              SetPageWriteback(A)
2831          *                              unlock_page(A)
2832          * lock_page(B)
2833          *                              lock_page(B)
2834          * pte_alloc_pne
2835          *   shrink_page_list
2836          *     wait_on_page_writeback(A)
2837          *                              SetPageWriteback(B)
2838          *                              unlock_page(B)
2839          *                              # flush A, B to clear the writeback
2840          */
2841         if (pmd_none(*fe->pmd) && !fe->prealloc_pte) {
2842                 fe->prealloc_pte = pte_alloc_one(vma->vm_mm, fe->address);
2843                 if (!fe->prealloc_pte)
2844                         return VM_FAULT_OOM;
2845                 smp_wmb(); /* See comment in __pte_alloc() */
2846         }
2847
2848         vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK);
2849         vmf.pgoff = pgoff;
2850         vmf.flags = fe->flags;
2851         vmf.page = NULL;
2852         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2853         vmf.cow_page = cow_page;
2854
2855         ret = vma->vm_ops->fault(vma, &vmf);
2856         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2857                 return ret;
2858         if (ret & VM_FAULT_DAX_LOCKED) {
2859                 *entry = vmf.entry;
2860                 return ret;
2861         }
2862
2863         if (unlikely(PageHWPoison(vmf.page))) {
2864                 if (ret & VM_FAULT_LOCKED)
2865                         unlock_page(vmf.page);
2866                 put_page(vmf.page);
2867                 return VM_FAULT_HWPOISON;
2868         }
2869
2870         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2871                 lock_page(vmf.page);
2872         else
2873                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2874
2875         *page = vmf.page;
2876         return ret;
2877 }
2878
2879 /*
2880  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
2881  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
2882  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
2883  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
2884  */
2885 static int pmd_devmap_trans_unstable(pmd_t *pmd)
2886 {
2887         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
2888 }
2889
2890 static int pte_alloc_one_map(struct fault_env *fe)
2891 {
2892         struct vm_area_struct *vma = fe->vma;
2893
2894         if (!pmd_none(*fe->pmd))
2895                 goto map_pte;
2896         if (fe->prealloc_pte) {
2897                 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2898                 if (unlikely(!pmd_none(*fe->pmd))) {
2899                         spin_unlock(fe->ptl);
2900                         goto map_pte;
2901                 }
2902
2903                 atomic_long_inc(&vma->vm_mm->nr_ptes);
2904                 pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte);
2905                 spin_unlock(fe->ptl);
2906                 fe->prealloc_pte = 0;
2907         } else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) {
2908                 return VM_FAULT_OOM;
2909         }
2910 map_pte:
2911         /*
2912          * If a huge pmd materialized under us just retry later.  Use
2913          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
2914          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
2915          * under us and then back to pmd_none, as a result of MADV_DONTNEED
2916          * running immediately after a huge pmd fault in a different thread of
2917          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
2918          * All we have to ensure is that it is a regular pmd that we can walk
2919          * with pte_offset_map() and we can do that through an atomic read in
2920          * C, which is what pmd_trans_unstable() provides.
2921          */
2922         if (pmd_devmap_trans_unstable(fe->pmd))
2923                 return VM_FAULT_NOPAGE;
2924
2925         /*
2926          * At this point we know that our vmf->pmd points to a page of ptes
2927          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
2928          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
2929          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
2930          * be valid and we will re-check to make sure the vmf->pte isn't
2931          * pte_none() under vmf->ptl protection when we return to
2932          * alloc_set_pte().
2933          */
2934         fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address,
2935                         &fe->ptl);
2936         return 0;
2937 }
2938
2939 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2940
2941 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2942 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2943                 unsigned long haddr)
2944 {
2945         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2946                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2947                 return false;
2948         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2949                 return false;
2950         return true;
2951 }
2952
2953 static int do_set_pmd(struct fault_env *fe, struct page *page)
2954 {
2955         struct vm_area_struct *vma = fe->vma;
2956         bool write = fe->flags & FAULT_FLAG_WRITE;
2957         unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2958         pmd_t entry;
2959         int i, ret;
2960
2961         if (!transhuge_vma_suitable(vma, haddr))
2962                 return VM_FAULT_FALLBACK;
2963
2964         ret = VM_FAULT_FALLBACK;
2965         page = compound_head(page);
2966
2967         fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
2968         if (unlikely(!pmd_none(*fe->pmd)))
2969                 goto out;
2970
2971         for (i = 0; i < HPAGE_PMD_NR; i++)
2972                 flush_icache_page(vma, page + i);
2973
2974         entry = mk_huge_pmd(page, vma->vm_page_prot);
2975         if (write)
2976                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2977
2978         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2979         page_add_file_rmap(page, true);
2980
2981         set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
2982
2983         update_mmu_cache_pmd(vma, haddr, fe->pmd);
2984
2985         /* fault is handled */
2986         ret = 0;
2987         count_vm_event(THP_FILE_MAPPED);
2988 out:
2989         spin_unlock(fe->ptl);
2990         return ret;
2991 }
2992 #else
2993 static int do_set_pmd(struct fault_env *fe, struct page *page)
2994 {
2995         BUILD_BUG();
2996         return 0;
2997 }
2998 #endif
2999
3000 /**
3001  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3002  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3003  *
3004  * @fe: fault environment
3005  * @memcg: memcg to charge page (only for private mappings)
3006  * @page: page to map
3007  *
3008  * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return.
3009  *
3010  * Target users are page handler itself and implementations of
3011  * vm_ops->map_pages.
3012  */
3013 int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
3014                 struct page *page)
3015 {
3016         struct vm_area_struct *vma = fe->vma;
3017         bool write = fe->flags & FAULT_FLAG_WRITE;
3018         pte_t entry;
3019         int ret;
3020
3021         if (pmd_none(*fe->pmd) && PageTransCompound(page) &&
3022                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3023                 /* THP on COW? */
3024                 VM_BUG_ON_PAGE(memcg, page);
3025
3026                 ret = do_set_pmd(fe, page);
3027                 if (ret != VM_FAULT_FALLBACK)
3028                         return ret;
3029         }
3030
3031         if (!fe->pte) {
3032                 ret = pte_alloc_one_map(fe);
3033                 if (ret)
3034                         return ret;
3035         }
3036
3037         /* Re-check under ptl */
3038         if (unlikely(!pte_none(*fe->pte)))
3039                 return VM_FAULT_NOPAGE;
3040
3041         flush_icache_page(vma, page);
3042         entry = mk_pte(page, vma->vm_page_prot);
3043         if (write)
3044                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3045         /* copy-on-write page */
3046         if (write && !(vma->vm_flags & VM_SHARED)) {
3047                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3048                 page_add_new_anon_rmap(page, vma, fe->address, false);
3049                 mem_cgroup_commit_charge(page, memcg, false, false);
3050                 lru_cache_add_active_or_unevictable(page, vma);
3051         } else {
3052                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3053                 page_add_file_rmap(page, false);
3054         }
3055         set_pte_at(vma->vm_mm, fe->address, fe->pte, entry);
3056
3057         /* no need to invalidate: a not-present page won't be cached */
3058         update_mmu_cache(vma, fe->address, fe->pte);
3059
3060         return 0;
3061 }
3062
3063 static unsigned long fault_around_bytes __read_mostly =
3064         rounddown_pow_of_two(65536);
3065
3066 #ifdef CONFIG_DEBUG_FS
3067 static int fault_around_bytes_get(void *data, u64 *val)
3068 {
3069         *val = fault_around_bytes;
3070         return 0;
3071 }
3072
3073 /*
3074  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3075  * rounded down to nearest page order. It's what do_fault_around() expects to
3076  * see.
3077  */
3078 static int fault_around_bytes_set(void *data, u64 val)
3079 {
3080         if (val / PAGE_SIZE > PTRS_PER_PTE)
3081                 return -EINVAL;
3082         if (val > PAGE_SIZE)
3083                 fault_around_bytes = rounddown_pow_of_two(val);
3084         else
3085                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3086         return 0;
3087 }
3088 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3089                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3090
3091 static int __init fault_around_debugfs(void)
3092 {
3093         void *ret;
3094
3095         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3096                         &fault_around_bytes_fops);
3097         if (!ret)
3098                 pr_warn("Failed to create fault_around_bytes in debugfs");
3099         return 0;
3100 }
3101 late_initcall(fault_around_debugfs);
3102 #endif
3103
3104 /*
3105  * do_fault_around() tries to map few pages around the fault address. The hope
3106  * is that the pages will be needed soon and this will lower the number of
3107  * faults to handle.
3108  *
3109  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3110  * not ready to be mapped: not up-to-date, locked, etc.
3111  *
3112  * This function is called with the page table lock taken. In the split ptlock
3113  * case the page table lock only protects only those entries which belong to
3114  * the page table corresponding to the fault address.
3115  *
3116  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3117  * only once.
3118  *
3119  * fault_around_pages() defines how many pages we'll try to map.
3120  * do_fault_around() expects it to return a power of two less than or equal to
3121  * PTRS_PER_PTE.
3122  *
3123  * The virtual address of the area that we map is naturally aligned to the
3124  * fault_around_pages() value (and therefore to page order).  This way it's
3125  * easier to guarantee that we don't cross page table boundaries.
3126  */
3127 static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff)
3128 {
3129         unsigned long address = fe->address, nr_pages, mask;
3130         pgoff_t end_pgoff;
3131         int off, ret = 0;
3132
3133         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3134         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3135
3136         fe->address = max(address & mask, fe->vma->vm_start);
3137         off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3138         start_pgoff -= off;
3139
3140         /*
3141          *  end_pgoff is either end of page table or end of vma
3142          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3143          */
3144         end_pgoff = start_pgoff -
3145                 ((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3146                 PTRS_PER_PTE - 1;
3147         end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1,
3148                         start_pgoff + nr_pages - 1);
3149
3150         if (pmd_none(*fe->pmd)) {
3151                 fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address);
3152                 if (!fe->prealloc_pte)
3153                         goto out;
3154                 smp_wmb(); /* See comment in __pte_alloc() */
3155         }
3156
3157         fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff);
3158
3159         /* preallocated pagetable is unused: free it */
3160         if (fe->prealloc_pte) {
3161                 pte_free(fe->vma->vm_mm, fe->prealloc_pte);
3162                 fe->prealloc_pte = 0;
3163         }
3164         /* Huge page is mapped? Page fault is solved */
3165         if (pmd_trans_huge(*fe->pmd)) {
3166                 ret = VM_FAULT_NOPAGE;
3167                 goto out;
3168         }
3169
3170         /* ->map_pages() haven't done anything useful. Cold page cache? */
3171         if (!fe->pte)
3172                 goto out;
3173
3174         /* check if the page fault is solved */
3175         fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3176         if (!pte_none(*fe->pte))
3177                 ret = VM_FAULT_NOPAGE;
3178         pte_unmap_unlock(fe->pte, fe->ptl);
3179 out:
3180         fe->address = address;
3181         fe->pte = NULL;
3182         return ret;
3183 }
3184
3185 static int do_read_fault(struct fault_env *fe, pgoff_t pgoff)
3186 {
3187         struct vm_area_struct *vma = fe->vma;
3188         struct page *fault_page;
3189         int ret = 0;
3190
3191         /*
3192          * Let's call ->map_pages() first and use ->fault() as fallback
3193          * if page by the offset is not ready to be mapped (cold cache or
3194          * something).
3195          */
3196         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3197                 ret = do_fault_around(fe, pgoff);
3198                 if (ret)
3199                         return ret;
3200         }
3201
3202         ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3203         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3204                 return ret;
3205
3206         ret |= alloc_set_pte(fe, NULL, fault_page);
3207         if (fe->pte)
3208                 pte_unmap_unlock(fe->pte, fe->ptl);
3209         unlock_page(fault_page);
3210         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3211                 put_page(fault_page);
3212         return ret;
3213 }
3214
3215 static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff)
3216 {
3217         struct vm_area_struct *vma = fe->vma;
3218         struct page *fault_page, *new_page;
3219         void *fault_entry;
3220         struct mem_cgroup *memcg;
3221         int ret;
3222
3223         if (unlikely(anon_vma_prepare(vma)))
3224                 return VM_FAULT_OOM;
3225
3226         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address);
3227         if (!new_page)
3228                 return VM_FAULT_OOM;
3229
3230         if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
3231                                 &memcg, false)) {
3232                 put_page(new_page);
3233                 return VM_FAULT_OOM;
3234         }
3235
3236         ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry);
3237         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3238                 goto uncharge_out;
3239
3240         if (!(ret & VM_FAULT_DAX_LOCKED))
3241                 copy_user_highpage(new_page, fault_page, fe->address, vma);
3242         __SetPageUptodate(new_page);
3243
3244         ret |= alloc_set_pte(fe, memcg, new_page);
3245         if (fe->pte)
3246                 pte_unmap_unlock(fe->pte, fe->ptl);
3247         if (!(ret & VM_FAULT_DAX_LOCKED)) {
3248                 unlock_page(fault_page);
3249                 put_page(fault_page);
3250         } else {
3251                 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
3252         }
3253         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3254                 goto uncharge_out;
3255         return ret;
3256 uncharge_out:
3257         mem_cgroup_cancel_charge(new_page, memcg, false);
3258         put_page(new_page);
3259         return ret;
3260 }
3261
3262 static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff)
3263 {
3264         struct vm_area_struct *vma = fe->vma;
3265         struct page *fault_page;
3266         struct address_space *mapping;
3267         int dirtied = 0;
3268         int ret, tmp;
3269
3270         ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL);
3271         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3272                 return ret;
3273
3274         /*
3275          * Check if the backing address space wants to know that the page is
3276          * about to become writable
3277          */
3278         if (vma->vm_ops->page_mkwrite) {
3279                 unlock_page(fault_page);
3280                 tmp = do_page_mkwrite(vma, fault_page, fe->address);
3281                 if (unlikely(!tmp ||
3282                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3283                         put_page(fault_page);
3284                         return tmp;
3285                 }
3286         }
3287
3288         ret |= alloc_set_pte(fe, NULL, fault_page);
3289         if (fe->pte)
3290                 pte_unmap_unlock(fe->pte, fe->ptl);
3291         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3292                                         VM_FAULT_RETRY))) {
3293                 unlock_page(fault_page);
3294                 put_page(fault_page);
3295                 return ret;
3296         }
3297
3298         if (set_page_dirty(fault_page))
3299                 dirtied = 1;
3300         /*
3301          * Take a local copy of the address_space - page.mapping may be zeroed
3302          * by truncate after unlock_page().   The address_space itself remains
3303          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3304          * release semantics to prevent the compiler from undoing this copying.
3305          */
3306         mapping = page_rmapping(fault_page);
3307         unlock_page(fault_page);
3308         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3309                 /*
3310                  * Some device drivers do not set page.mapping but still
3311                  * dirty their pages
3312                  */
3313                 balance_dirty_pages_ratelimited(mapping);
3314         }
3315
3316         if (!vma->vm_ops->page_mkwrite)
3317                 file_update_time(vma->vm_file);
3318
3319         return ret;
3320 }
3321
3322 /*
3323  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3324  * but allow concurrent faults).
3325  * The mmap_sem may have been released depending on flags and our
3326  * return value.  See filemap_fault() and __lock_page_or_retry().
3327  */
3328 static int do_fault(struct fault_env *fe)
3329 {
3330         struct vm_area_struct *vma = fe->vma;
3331         pgoff_t pgoff = linear_page_index(vma, fe->address);
3332         int ret;
3333
3334         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3335         if (!vma->vm_ops->fault)
3336                 ret = VM_FAULT_SIGBUS;
3337         else if (!(fe->flags & FAULT_FLAG_WRITE))
3338                 ret = do_read_fault(fe, pgoff);
3339         else if (!(vma->vm_flags & VM_SHARED))
3340                 ret = do_cow_fault(fe, pgoff);
3341         else
3342                 ret = do_shared_fault(fe, pgoff);
3343
3344         /* preallocated pagetable is unused: free it */
3345         if (fe->prealloc_pte) {
3346                 pte_free(vma->vm_mm, fe->prealloc_pte);
3347                 fe->prealloc_pte = 0;
3348         }
3349         return ret;
3350 }
3351
3352 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3353                                 unsigned long addr, int page_nid,
3354                                 int *flags)
3355 {
3356         get_page(page);
3357
3358         count_vm_numa_event(NUMA_HINT_FAULTS);
3359         if (page_nid == numa_node_id()) {
3360                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3361                 *flags |= TNF_FAULT_LOCAL;
3362         }
3363
3364         return mpol_misplaced(page, vma, addr);
3365 }
3366
3367 static int do_numa_page(struct fault_env *fe, pte_t pte)
3368 {
3369         struct vm_area_struct *vma = fe->vma;
3370         struct page *page = NULL;
3371         int page_nid = -1;
3372         int last_cpupid;
3373         int target_nid;
3374         bool migrated = false;
3375         bool was_writable = pte_write(pte);
3376         int flags = 0;
3377
3378         /*
3379         * The "pte" at this point cannot be used safely without
3380         * validation through pte_unmap_same(). It's of NUMA type but
3381         * the pfn may be screwed if the read is non atomic.
3382         *
3383         * We can safely just do a "set_pte_at()", because the old
3384         * page table entry is not accessible, so there would be no
3385         * concurrent hardware modifications to the PTE.
3386         */
3387         fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd);
3388         spin_lock(fe->ptl);
3389         if (unlikely(!pte_same(*fe->pte, pte))) {
3390                 pte_unmap_unlock(fe->pte, fe->ptl);
3391                 goto out;
3392         }
3393
3394         /* Make it present again */
3395         pte = pte_modify(pte, vma->vm_page_prot);
3396         pte = pte_mkyoung(pte);
3397         if (was_writable)
3398                 pte = pte_mkwrite(pte);
3399         set_pte_at(vma->vm_mm, fe->address, fe->pte, pte);
3400         update_mmu_cache(vma, fe->address, fe->pte);
3401
3402         page = vm_normal_page(vma, fe->address, pte);
3403         if (!page) {
3404                 pte_unmap_unlock(fe->pte, fe->ptl);
3405                 return 0;
3406         }
3407
3408         /* TODO: handle PTE-mapped THP */
3409         if (PageCompound(page)) {
3410                 pte_unmap_unlock(fe->pte, fe->ptl);
3411                 return 0;
3412         }
3413
3414         /*
3415          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3416          * much anyway since they can be in shared cache state. This misses
3417          * the case where a mapping is writable but the process never writes
3418          * to it but pte_write gets cleared during protection updates and
3419          * pte_dirty has unpredictable behaviour between PTE scan updates,
3420          * background writeback, dirty balancing and application behaviour.
3421          */
3422         if (!pte_write(pte))
3423                 flags |= TNF_NO_GROUP;
3424
3425         /*
3426          * Flag if the page is shared between multiple address spaces. This
3427          * is later used when determining whether to group tasks together
3428          */
3429         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3430                 flags |= TNF_SHARED;
3431
3432         last_cpupid = page_cpupid_last(page);
3433         page_nid = page_to_nid(page);
3434         target_nid = numa_migrate_prep(page, vma, fe->address, page_nid,
3435                         &flags);
3436         pte_unmap_unlock(fe->pte, fe->ptl);
3437         if (target_nid == -1) {
3438                 put_page(page);
3439                 goto out;
3440         }
3441
3442         /* Migrate to the requested node */
3443         migrated = migrate_misplaced_page(page, vma, target_nid);
3444         if (migrated) {
3445                 page_nid = target_nid;
3446                 flags |= TNF_MIGRATED;
3447         } else
3448                 flags |= TNF_MIGRATE_FAIL;
3449
3450 out:
3451         if (page_nid != -1)
3452                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3453         return 0;
3454 }
3455
3456 static int create_huge_pmd(struct fault_env *fe)
3457 {
3458         struct vm_area_struct *vma = fe->vma;
3459         if (vma_is_anonymous(vma))
3460                 return do_huge_pmd_anonymous_page(fe);
3461         if (vma->vm_ops->pmd_fault)
3462                 return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd,
3463                                 fe->flags);
3464         return VM_FAULT_FALLBACK;
3465 }
3466
3467 static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd)
3468 {
3469         if (vma_is_anonymous(fe->vma))
3470                 return do_huge_pmd_wp_page(fe, orig_pmd);
3471         if (fe->vma->vm_ops->pmd_fault)
3472                 return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd,
3473                                 fe->flags);
3474
3475         /* COW handled on pte level: split pmd */
3476         VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma);
3477         split_huge_pmd(fe->vma, fe->pmd, fe->address);
3478
3479         return VM_FAULT_FALLBACK;
3480 }
3481
3482 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3483 {
3484         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3485 }
3486
3487 /*
3488  * These routines also need to handle stuff like marking pages dirty
3489  * and/or accessed for architectures that don't do it in hardware (most
3490  * RISC architectures).  The early dirtying is also good on the i386.
3491  *
3492  * There is also a hook called "update_mmu_cache()" that architectures
3493  * with external mmu caches can use to update those (ie the Sparc or
3494  * PowerPC hashed page tables that act as extended TLBs).
3495  *
3496  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3497  * concurrent faults).
3498  *
3499  * The mmap_sem may have been released depending on flags and our return value.
3500  * See filemap_fault() and __lock_page_or_retry().
3501  */
3502 static int handle_pte_fault(struct fault_env *fe)
3503 {
3504         pte_t entry;
3505
3506         if (unlikely(pmd_none(*fe->pmd))) {
3507                 /*
3508                  * Leave __pte_alloc() until later: because vm_ops->fault may
3509                  * want to allocate huge page, and if we expose page table
3510                  * for an instant, it will be difficult to retract from
3511                  * concurrent faults and from rmap lookups.
3512                  */
3513                 fe->pte = NULL;
3514         } else {
3515                 /* See comment in pte_alloc_one_map() */
3516                 if (pmd_devmap_trans_unstable(fe->pmd))
3517                         return 0;
3518                 /*
3519                  * A regular pmd is established and it can't morph into a huge
3520                  * pmd from under us anymore at this point because we hold the
3521                  * mmap_sem read mode and khugepaged takes it in write mode.
3522                  * So now it's safe to run pte_offset_map().
3523                  */
3524                 fe->pte = pte_offset_map(fe->pmd, fe->address);
3525
3526                 entry = *fe->pte;
3527
3528                 /*
3529                  * some architectures can have larger ptes than wordsize,
3530                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3531                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3532                  * atomic accesses.  The code below just needs a consistent
3533                  * view for the ifs and we later double check anyway with the
3534                  * ptl lock held. So here a barrier will do.
3535                  */
3536                 barrier();
3537                 if (pte_none(entry)) {
3538                         pte_unmap(fe->pte);
3539                         fe->pte = NULL;
3540                 }
3541         }
3542
3543         if (!fe->pte) {
3544                 if (vma_is_anonymous(fe->vma))
3545                         return do_anonymous_page(fe);
3546                 else
3547                         return do_fault(fe);
3548         }
3549
3550         if (!pte_present(entry))
3551                 return do_swap_page(fe, entry);
3552
3553         if (pte_protnone(entry) && vma_is_accessible(fe->vma))
3554                 return do_numa_page(fe, entry);
3555
3556         fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd);
3557         spin_lock(fe->ptl);
3558         if (unlikely(!pte_same(*fe->pte, entry)))
3559                 goto unlock;
3560         if (fe->flags & FAULT_FLAG_WRITE) {
3561                 if (!pte_write(entry))
3562                         return do_wp_page(fe, entry);
3563                 entry = pte_mkdirty(entry);
3564         }
3565         entry = pte_mkyoung(entry);
3566         if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry,
3567                                 fe->flags & FAULT_FLAG_WRITE)) {
3568                 update_mmu_cache(fe->vma, fe->address, fe->pte);
3569         } else {
3570                 /*
3571                  * This is needed only for protection faults but the arch code
3572                  * is not yet telling us if this is a protection fault or not.
3573                  * This still avoids useless tlb flushes for .text page faults
3574                  * with threads.
3575                  */
3576                 if (fe->flags & FAULT_FLAG_WRITE)
3577                         flush_tlb_fix_spurious_fault(fe->vma, fe->address);
3578         }
3579 unlock:
3580         pte_unmap_unlock(fe->pte, fe->ptl);
3581         return 0;
3582 }
3583
3584 /*
3585  * By the time we get here, we already hold the mm semaphore
3586  *
3587  * The mmap_sem may have been released depending on flags and our
3588  * return value.  See filemap_fault() and __lock_page_or_retry().
3589  */
3590 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3591                 unsigned int flags)
3592 {
3593         struct fault_env fe = {
3594                 .vma = vma,
3595                 .address = address,
3596                 .flags = flags,
3597         };
3598         struct mm_struct *mm = vma->vm_mm;
3599         pgd_t *pgd;
3600         pud_t *pud;
3601
3602         pgd = pgd_offset(mm, address);
3603         pud = pud_alloc(mm, pgd, address);
3604         if (!pud)
3605                 return VM_FAULT_OOM;
3606         fe.pmd = pmd_alloc(mm, pud, address);
3607         if (!fe.pmd)
3608                 return VM_FAULT_OOM;
3609         if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) {
3610                 int ret = create_huge_pmd(&fe);
3611                 if (!(ret & VM_FAULT_FALLBACK))
3612                         return ret;
3613         } else {
3614                 pmd_t orig_pmd = *fe.pmd;
3615                 int ret;
3616
3617                 barrier();
3618                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3619                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3620                                 return do_huge_pmd_numa_page(&fe, orig_pmd);
3621
3622                         if ((fe.flags & FAULT_FLAG_WRITE) &&
3623                                         !pmd_write(orig_pmd)) {
3624                                 ret = wp_huge_pmd(&fe, orig_pmd);
3625                                 if (!(ret & VM_FAULT_FALLBACK))
3626                                         return ret;
3627                         } else {
3628                                 huge_pmd_set_accessed(&fe, orig_pmd);
3629                                 return 0;
3630                         }
3631                 }
3632         }
3633
3634         return handle_pte_fault(&fe);
3635 }
3636
3637 /*
3638  * By the time we get here, we already hold the mm semaphore
3639  *
3640  * The mmap_sem may have been released depending on flags and our
3641  * return value.  See filemap_fault() and __lock_page_or_retry().
3642  */
3643 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3644                 unsigned int flags)
3645 {
3646         int ret;
3647
3648         __set_current_state(TASK_RUNNING);
3649
3650         count_vm_event(PGFAULT);
3651         mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3652
3653         /* do counter updates before entering really critical section. */
3654         check_sync_rss_stat(current);
3655
3656         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3657                                             flags & FAULT_FLAG_INSTRUCTION,
3658                                             flags & FAULT_FLAG_REMOTE))
3659                 return VM_FAULT_SIGSEGV;
3660
3661         /*
3662          * Enable the memcg OOM handling for faults triggered in user
3663          * space.  Kernel faults are handled more gracefully.
3664          */
3665         if (flags & FAULT_FLAG_USER)
3666                 mem_cgroup_oom_enable();
3667
3668         if (unlikely(is_vm_hugetlb_page(vma)))
3669                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3670         else
3671                 ret = __handle_mm_fault(vma, address, flags);
3672
3673         if (flags & FAULT_FLAG_USER) {
3674                 mem_cgroup_oom_disable();
3675                 /*
3676                  * The task may have entered a memcg OOM situation but
3677                  * if the allocation error was handled gracefully (no
3678                  * VM_FAULT_OOM), there is no need to kill anything.
3679                  * Just clean up the OOM state peacefully.
3680                  */
3681                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3682                         mem_cgroup_oom_synchronize(false);
3683         }
3684
3685         /*
3686          * This mm has been already reaped by the oom reaper and so the
3687          * refault cannot be trusted in general. Anonymous refaults would
3688          * lose data and give a zero page instead e.g. This is especially
3689          * problem for use_mm() because regular tasks will just die and
3690          * the corrupted data will not be visible anywhere while kthread
3691          * will outlive the oom victim and potentially propagate the date
3692          * further.
3693          */
3694         if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3695                                 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) {
3696
3697                 /*
3698                  * We are going to enforce SIGBUS but the PF path might have
3699                  * dropped the mmap_sem already so take it again so that
3700                  * we do not break expectations of all arch specific PF paths
3701                  * and g-u-p
3702                  */
3703                 if (ret & VM_FAULT_RETRY)
3704                         down_read(&vma->vm_mm->mmap_sem);
3705                 ret = VM_FAULT_SIGBUS;
3706         }
3707
3708         return ret;
3709 }
3710 EXPORT_SYMBOL_GPL(handle_mm_fault);
3711
3712 #ifndef __PAGETABLE_PUD_FOLDED
3713 /*
3714  * Allocate page upper directory.
3715  * We've already handled the fast-path in-line.
3716  */
3717 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3718 {
3719         pud_t *new = pud_alloc_one(mm, address);
3720         if (!new)
3721                 return -ENOMEM;
3722
3723         smp_wmb(); /* See comment in __pte_alloc */
3724
3725         spin_lock(&mm->page_table_lock);
3726         if (pgd_present(*pgd))          /* Another has populated it */
3727                 pud_free(mm, new);
3728         else
3729                 pgd_populate(mm, pgd, new);
3730         spin_unlock(&mm->page_table_lock);
3731         return 0;
3732 }
3733 #endif /* __PAGETABLE_PUD_FOLDED */
3734
3735 #ifndef __PAGETABLE_PMD_FOLDED
3736 /*
3737  * Allocate page middle directory.
3738  * We've already handled the fast-path in-line.
3739  */
3740 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3741 {
3742         pmd_t *new = pmd_alloc_one(mm, address);
3743         if (!new)
3744                 return -ENOMEM;
3745
3746         smp_wmb(); /* See comment in __pte_alloc */
3747
3748         spin_lock(&mm->page_table_lock);
3749 #ifndef __ARCH_HAS_4LEVEL_HACK
3750         if (!pud_present(*pud)) {
3751                 mm_inc_nr_pmds(mm);
3752                 pud_populate(mm, pud, new);
3753         } else  /* Another has populated it */
3754                 pmd_free(mm, new);
3755 #else
3756         if (!pgd_present(*pud)) {
3757                 mm_inc_nr_pmds(mm);
3758                 pgd_populate(mm, pud, new);
3759         } else /* Another has populated it */
3760                 pmd_free(mm, new);
3761 #endif /* __ARCH_HAS_4LEVEL_HACK */
3762         spin_unlock(&mm->page_table_lock);
3763         return 0;
3764 }
3765 #endif /* __PAGETABLE_PMD_FOLDED */
3766
3767 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3768                 pte_t **ptepp, spinlock_t **ptlp)
3769 {
3770         pgd_t *pgd;
3771         pud_t *pud;
3772         pmd_t *pmd;
3773         pte_t *ptep;
3774
3775         pgd = pgd_offset(mm, address);
3776         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3777                 goto out;
3778
3779         pud = pud_offset(pgd, address);
3780         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3781                 goto out;
3782
3783         pmd = pmd_offset(pud, address);
3784         VM_BUG_ON(pmd_trans_huge(*pmd));
3785         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3786                 goto out;
3787
3788         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3789         if (pmd_huge(*pmd))
3790                 goto out;
3791
3792         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3793         if (!ptep)
3794                 goto out;
3795         if (!pte_present(*ptep))
3796                 goto unlock;
3797         *ptepp = ptep;
3798         return 0;
3799 unlock:
3800         pte_unmap_unlock(ptep, *ptlp);
3801 out:
3802         return -EINVAL;
3803 }
3804
3805 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3806                              pte_t **ptepp, spinlock_t **ptlp)
3807 {
3808         int res;
3809
3810         /* (void) is needed to make gcc happy */
3811         (void) __cond_lock(*ptlp,
3812                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3813         return res;
3814 }
3815
3816 /**
3817  * follow_pfn - look up PFN at a user virtual address
3818  * @vma: memory mapping
3819  * @address: user virtual address
3820  * @pfn: location to store found PFN
3821  *
3822  * Only IO mappings and raw PFN mappings are allowed.
3823  *
3824  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3825  */
3826 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3827         unsigned long *pfn)
3828 {
3829         int ret = -EINVAL;
3830         spinlock_t *ptl;
3831         pte_t *ptep;
3832
3833         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3834                 return ret;
3835
3836         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3837         if (ret)
3838                 return ret;
3839         *pfn = pte_pfn(*ptep);
3840         pte_unmap_unlock(ptep, ptl);
3841         return 0;
3842 }
3843 EXPORT_SYMBOL(follow_pfn);
3844
3845 #ifdef CONFIG_HAVE_IOREMAP_PROT
3846 int follow_phys(struct vm_area_struct *vma,
3847                 unsigned long address, unsigned int flags,
3848                 unsigned long *prot, resource_size_t *phys)
3849 {
3850         int ret = -EINVAL;
3851         pte_t *ptep, pte;
3852         spinlock_t *ptl;
3853
3854         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3855                 goto out;
3856
3857         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3858                 goto out;
3859         pte = *ptep;
3860
3861         if ((flags & FOLL_WRITE) && !pte_write(pte))
3862                 goto unlock;
3863
3864         *prot = pgprot_val(pte_pgprot(pte));
3865         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3866
3867         ret = 0;
3868 unlock:
3869         pte_unmap_unlock(ptep, ptl);
3870 out:
3871         return ret;
3872 }
3873
3874 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3875                         void *buf, int len, int write)
3876 {
3877         resource_size_t phys_addr;
3878         unsigned long prot = 0;
3879         void __iomem *maddr;
3880         int offset = addr & (PAGE_SIZE-1);
3881
3882         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3883                 return -EINVAL;
3884
3885         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3886         if (!maddr)
3887                 return -ENOMEM;
3888
3889         if (write)
3890                 memcpy_toio(maddr + offset, buf, len);
3891         else
3892                 memcpy_fromio(buf, maddr + offset, len);
3893         iounmap(maddr);
3894
3895         return len;
3896 }
3897 EXPORT_SYMBOL_GPL(generic_access_phys);
3898 #endif
3899
3900 /*
3901  * Access another process' address space as given in mm.  If non-NULL, use the
3902  * given task for page fault accounting.
3903  */
3904 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3905                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3906 {
3907         struct vm_area_struct *vma;
3908         void *old_buf = buf;
3909         int write = gup_flags & FOLL_WRITE;
3910
3911         down_read(&mm->mmap_sem);
3912         /* ignore errors, just check how much was successfully transferred */
3913         while (len) {
3914                 int bytes, ret, offset;
3915                 void *maddr;
3916                 struct page *page = NULL;
3917
3918                 ret = get_user_pages_remote(tsk, mm, addr, 1,
3919                                 gup_flags, &page, &vma);
3920                 if (ret <= 0) {
3921 #ifndef CONFIG_HAVE_IOREMAP_PROT
3922                         break;
3923 #else
3924                         /*
3925                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3926                          * we can access using slightly different code.
3927                          */
3928                         vma = find_vma(mm, addr);
3929                         if (!vma || vma->vm_start > addr)
3930                                 break;
3931                         if (vma->vm_ops && vma->vm_ops->access)
3932                                 ret = vma->vm_ops->access(vma, addr, buf,
3933                                                           len, write);
3934                         if (ret <= 0)
3935                                 break;
3936                         bytes = ret;
3937 #endif
3938                 } else {
3939                         bytes = len;
3940                         offset = addr & (PAGE_SIZE-1);
3941                         if (bytes > PAGE_SIZE-offset)
3942                                 bytes = PAGE_SIZE-offset;
3943
3944                         maddr = kmap(page);
3945                         if (write) {
3946                                 copy_to_user_page(vma, page, addr,
3947                                                   maddr + offset, buf, bytes);
3948                                 set_page_dirty_lock(page);
3949                         } else {
3950                                 copy_from_user_page(vma, page, addr,
3951                                                     buf, maddr + offset, bytes);
3952                         }
3953                         kunmap(page);
3954                         put_page(page);
3955                 }
3956                 len -= bytes;
3957                 buf += bytes;
3958                 addr += bytes;
3959         }
3960         up_read(&mm->mmap_sem);
3961
3962         return buf - old_buf;
3963 }
3964
3965 /**
3966  * access_remote_vm - access another process' address space
3967  * @mm:         the mm_struct of the target address space
3968  * @addr:       start address to access
3969  * @buf:        source or destination buffer
3970  * @len:        number of bytes to transfer
3971  * @gup_flags:  flags modifying lookup behaviour
3972  *
3973  * The caller must hold a reference on @mm.
3974  */
3975 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3976                 void *buf, int len, unsigned int gup_flags)
3977 {
3978         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
3979 }
3980
3981 /*
3982  * Access another process' address space.
3983  * Source/target buffer must be kernel space,
3984  * Do not walk the page table directly, use get_user_pages
3985  */
3986 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3987                 void *buf, int len, unsigned int gup_flags)
3988 {
3989         struct mm_struct *mm;
3990         int ret;
3991
3992         mm = get_task_mm(tsk);
3993         if (!mm)
3994                 return 0;
3995
3996         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
3997
3998         mmput(mm);
3999
4000         return ret;
4001 }
4002
4003 /*
4004  * Print the name of a VMA.
4005  */
4006 void print_vma_addr(char *prefix, unsigned long ip)
4007 {
4008         struct mm_struct *mm = current->mm;
4009         struct vm_area_struct *vma;
4010
4011         /*
4012          * Do not print if we are in atomic
4013          * contexts (in exception stacks, etc.):
4014          */
4015         if (preempt_count())
4016                 return;
4017
4018         down_read(&mm->mmap_sem);
4019         vma = find_vma(mm, ip);
4020         if (vma && vma->vm_file) {
4021                 struct file *f = vma->vm_file;
4022                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4023                 if (buf) {
4024                         char *p;
4025
4026                         p = file_path(f, buf, PAGE_SIZE);
4027                         if (IS_ERR(p))
4028                                 p = "?";
4029                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4030                                         vma->vm_start,
4031                                         vma->vm_end - vma->vm_start);
4032                         free_page((unsigned long)buf);
4033                 }
4034         }
4035         up_read(&mm->mmap_sem);
4036 }
4037
4038 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4039 void __might_fault(const char *file, int line)
4040 {
4041         /*
4042          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4043          * holding the mmap_sem, this is safe because kernel memory doesn't
4044          * get paged out, therefore we'll never actually fault, and the
4045          * below annotations will generate false positives.
4046          */
4047         if (segment_eq(get_fs(), KERNEL_DS))
4048                 return;
4049         if (pagefault_disabled())
4050                 return;
4051         __might_sleep(file, line, 0);
4052 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4053         if (current->mm)
4054                 might_lock_read(&current->mm->mmap_sem);
4055 #endif
4056 }
4057 EXPORT_SYMBOL(__might_fault);
4058 #endif
4059
4060 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4061 static void clear_gigantic_page(struct page *page,
4062                                 unsigned long addr,
4063                                 unsigned int pages_per_huge_page)
4064 {
4065         int i;
4066         struct page *p = page;
4067
4068         might_sleep();
4069         for (i = 0; i < pages_per_huge_page;
4070              i++, p = mem_map_next(p, page, i)) {
4071                 cond_resched();
4072                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4073         }
4074 }
4075 void clear_huge_page(struct page *page,
4076                      unsigned long addr, unsigned int pages_per_huge_page)
4077 {
4078         int i;
4079
4080         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4081                 clear_gigantic_page(page, addr, pages_per_huge_page);
4082                 return;
4083         }
4084
4085         might_sleep();
4086         for (i = 0; i < pages_per_huge_page; i++) {
4087                 cond_resched();
4088                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4089         }
4090 }
4091
4092 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4093                                     unsigned long addr,
4094                                     struct vm_area_struct *vma,
4095                                     unsigned int pages_per_huge_page)
4096 {
4097         int i;
4098         struct page *dst_base = dst;
4099         struct page *src_base = src;
4100
4101         for (i = 0; i < pages_per_huge_page; ) {
4102                 cond_resched();
4103                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4104
4105                 i++;
4106                 dst = mem_map_next(dst, dst_base, i);
4107                 src = mem_map_next(src, src_base, i);
4108         }
4109 }
4110
4111 void copy_user_huge_page(struct page *dst, struct page *src,
4112                          unsigned long addr, struct vm_area_struct *vma,
4113                          unsigned int pages_per_huge_page)
4114 {
4115         int i;
4116
4117         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4118                 copy_user_gigantic_page(dst, src, addr, vma,
4119                                         pages_per_huge_page);
4120                 return;
4121         }
4122
4123         might_sleep();
4124         for (i = 0; i < pages_per_huge_page; i++) {
4125                 cond_resched();
4126                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4127         }
4128 }
4129 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4130
4131 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4132
4133 static struct kmem_cache *page_ptl_cachep;
4134
4135 void __init ptlock_cache_init(void)
4136 {
4137         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4138                         SLAB_PANIC, NULL);
4139 }
4140
4141 bool ptlock_alloc(struct page *page)
4142 {
4143         spinlock_t *ptl;
4144
4145         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4146         if (!ptl)
4147                 return false;
4148         page->ptl = ptl;
4149         return true;
4150 }
4151
4152 void ptlock_free(struct page *page)
4153 {
4154         kmem_cache_free(page_ptl_cachep, page->ptl);
4155 }
4156 #endif