OSDN Git Service

MIPS: VDSO: Prevent use of smp_processor_id()
[android-x86/kernel.git] / mm / migrate.c
1 /*
2  * Memory Migration functionality - linux/mm/migrate.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/ptrace.h>
44
45 #include <asm/tlbflush.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
49
50 #include "internal.h"
51
52 /*
53  * migrate_prep() needs to be called before we start compiling a list of pages
54  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55  * undesirable, use migrate_prep_local()
56  */
57 int migrate_prep(void)
58 {
59         /*
60          * Clear the LRU lists so pages can be isolated.
61          * Note that pages may be moved off the LRU after we have
62          * drained them. Those pages will fail to migrate like other
63          * pages that may be busy.
64          */
65         lru_add_drain_all();
66
67         return 0;
68 }
69
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
72 {
73         lru_add_drain();
74
75         return 0;
76 }
77
78 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
79 {
80         struct address_space *mapping;
81
82         /*
83          * Avoid burning cycles with pages that are yet under __free_pages(),
84          * or just got freed under us.
85          *
86          * In case we 'win' a race for a movable page being freed under us and
87          * raise its refcount preventing __free_pages() from doing its job
88          * the put_page() at the end of this block will take care of
89          * release this page, thus avoiding a nasty leakage.
90          */
91         if (unlikely(!get_page_unless_zero(page)))
92                 goto out;
93
94         /*
95          * Check PageMovable before holding a PG_lock because page's owner
96          * assumes anybody doesn't touch PG_lock of newly allocated page
97          * so unconditionally grapping the lock ruins page's owner side.
98          */
99         if (unlikely(!__PageMovable(page)))
100                 goto out_putpage;
101         /*
102          * As movable pages are not isolated from LRU lists, concurrent
103          * compaction threads can race against page migration functions
104          * as well as race against the releasing a page.
105          *
106          * In order to avoid having an already isolated movable page
107          * being (wrongly) re-isolated while it is under migration,
108          * or to avoid attempting to isolate pages being released,
109          * lets be sure we have the page lock
110          * before proceeding with the movable page isolation steps.
111          */
112         if (unlikely(!trylock_page(page)))
113                 goto out_putpage;
114
115         if (!PageMovable(page) || PageIsolated(page))
116                 goto out_no_isolated;
117
118         mapping = page_mapping(page);
119         VM_BUG_ON_PAGE(!mapping, page);
120
121         if (!mapping->a_ops->isolate_page(page, mode))
122                 goto out_no_isolated;
123
124         /* Driver shouldn't use PG_isolated bit of page->flags */
125         WARN_ON_ONCE(PageIsolated(page));
126         __SetPageIsolated(page);
127         unlock_page(page);
128
129         return true;
130
131 out_no_isolated:
132         unlock_page(page);
133 out_putpage:
134         put_page(page);
135 out:
136         return false;
137 }
138
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
141 {
142         struct address_space *mapping;
143
144         VM_BUG_ON_PAGE(!PageLocked(page), page);
145         VM_BUG_ON_PAGE(!PageMovable(page), page);
146         VM_BUG_ON_PAGE(!PageIsolated(page), page);
147
148         mapping = page_mapping(page);
149         mapping->a_ops->putback_page(page);
150         __ClearPageIsolated(page);
151 }
152
153 /*
154  * Put previously isolated pages back onto the appropriate lists
155  * from where they were once taken off for compaction/migration.
156  *
157  * This function shall be used whenever the isolated pageset has been
158  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159  * and isolate_huge_page().
160  */
161 void putback_movable_pages(struct list_head *l)
162 {
163         struct page *page;
164         struct page *page2;
165
166         list_for_each_entry_safe(page, page2, l, lru) {
167                 if (unlikely(PageHuge(page))) {
168                         putback_active_hugepage(page);
169                         continue;
170                 }
171                 list_del(&page->lru);
172                 /*
173                  * We isolated non-lru movable page so here we can use
174                  * __PageMovable because LRU page's mapping cannot have
175                  * PAGE_MAPPING_MOVABLE.
176                  */
177                 if (unlikely(__PageMovable(page))) {
178                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
179                         lock_page(page);
180                         if (PageMovable(page))
181                                 putback_movable_page(page);
182                         else
183                                 __ClearPageIsolated(page);
184                         unlock_page(page);
185                         put_page(page);
186                 } else {
187                         dec_node_page_state(page, NR_ISOLATED_ANON +
188                                         page_is_file_cache(page));
189                         putback_lru_page(page);
190                 }
191         }
192 }
193
194 /*
195  * Restore a potential migration pte to a working pte entry
196  */
197 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
198                                  unsigned long addr, void *old)
199 {
200         struct mm_struct *mm = vma->vm_mm;
201         swp_entry_t entry;
202         pmd_t *pmd;
203         pte_t *ptep, pte;
204         spinlock_t *ptl;
205
206         if (unlikely(PageHuge(new))) {
207                 ptep = huge_pte_offset(mm, addr);
208                 if (!ptep)
209                         goto out;
210                 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
211         } else {
212                 pmd = mm_find_pmd(mm, addr);
213                 if (!pmd)
214                         goto out;
215
216                 ptep = pte_offset_map(pmd, addr);
217
218                 /*
219                  * Peek to check is_swap_pte() before taking ptlock?  No, we
220                  * can race mremap's move_ptes(), which skips anon_vma lock.
221                  */
222
223                 ptl = pte_lockptr(mm, pmd);
224         }
225
226         spin_lock(ptl);
227         pte = *ptep;
228         if (!is_swap_pte(pte))
229                 goto unlock;
230
231         entry = pte_to_swp_entry(pte);
232
233         if (!is_migration_entry(entry) ||
234             migration_entry_to_page(entry) != old)
235                 goto unlock;
236
237         get_page(new);
238         pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
239         if (pte_swp_soft_dirty(*ptep))
240                 pte = pte_mksoft_dirty(pte);
241
242         /* Recheck VMA as permissions can change since migration started  */
243         if (is_write_migration_entry(entry))
244                 pte = maybe_mkwrite(pte, vma);
245
246 #ifdef CONFIG_HUGETLB_PAGE
247         if (PageHuge(new)) {
248                 pte = pte_mkhuge(pte);
249                 pte = arch_make_huge_pte(pte, vma, new, 0);
250         }
251 #endif
252         flush_dcache_page(new);
253         set_pte_at(mm, addr, ptep, pte);
254
255         if (PageHuge(new)) {
256                 if (PageAnon(new))
257                         hugepage_add_anon_rmap(new, vma, addr);
258                 else
259                         page_dup_rmap(new, true);
260         } else if (PageAnon(new))
261                 page_add_anon_rmap(new, vma, addr, false);
262         else
263                 page_add_file_rmap(new, false);
264
265         if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
266                 mlock_vma_page(new);
267
268         /* No need to invalidate - it was non-present before */
269         update_mmu_cache(vma, addr, ptep);
270 unlock:
271         pte_unmap_unlock(ptep, ptl);
272 out:
273         return SWAP_AGAIN;
274 }
275
276 /*
277  * Get rid of all migration entries and replace them by
278  * references to the indicated page.
279  */
280 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
281 {
282         struct rmap_walk_control rwc = {
283                 .rmap_one = remove_migration_pte,
284                 .arg = old,
285         };
286
287         if (locked)
288                 rmap_walk_locked(new, &rwc);
289         else
290                 rmap_walk(new, &rwc);
291 }
292
293 /*
294  * Something used the pte of a page under migration. We need to
295  * get to the page and wait until migration is finished.
296  * When we return from this function the fault will be retried.
297  */
298 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
299                                 spinlock_t *ptl)
300 {
301         pte_t pte;
302         swp_entry_t entry;
303         struct page *page;
304
305         spin_lock(ptl);
306         pte = *ptep;
307         if (!is_swap_pte(pte))
308                 goto out;
309
310         entry = pte_to_swp_entry(pte);
311         if (!is_migration_entry(entry))
312                 goto out;
313
314         page = migration_entry_to_page(entry);
315
316         /*
317          * Once radix-tree replacement of page migration started, page_count
318          * *must* be zero. And, we don't want to call wait_on_page_locked()
319          * against a page without get_page().
320          * So, we use get_page_unless_zero(), here. Even failed, page fault
321          * will occur again.
322          */
323         if (!get_page_unless_zero(page))
324                 goto out;
325         pte_unmap_unlock(ptep, ptl);
326         wait_on_page_locked(page);
327         put_page(page);
328         return;
329 out:
330         pte_unmap_unlock(ptep, ptl);
331 }
332
333 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
334                                 unsigned long address)
335 {
336         spinlock_t *ptl = pte_lockptr(mm, pmd);
337         pte_t *ptep = pte_offset_map(pmd, address);
338         __migration_entry_wait(mm, ptep, ptl);
339 }
340
341 void migration_entry_wait_huge(struct vm_area_struct *vma,
342                 struct mm_struct *mm, pte_t *pte)
343 {
344         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
345         __migration_entry_wait(mm, pte, ptl);
346 }
347
348 #ifdef CONFIG_BLOCK
349 /* Returns true if all buffers are successfully locked */
350 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
351                                                         enum migrate_mode mode)
352 {
353         struct buffer_head *bh = head;
354
355         /* Simple case, sync compaction */
356         if (mode != MIGRATE_ASYNC) {
357                 do {
358                         get_bh(bh);
359                         lock_buffer(bh);
360                         bh = bh->b_this_page;
361
362                 } while (bh != head);
363
364                 return true;
365         }
366
367         /* async case, we cannot block on lock_buffer so use trylock_buffer */
368         do {
369                 get_bh(bh);
370                 if (!trylock_buffer(bh)) {
371                         /*
372                          * We failed to lock the buffer and cannot stall in
373                          * async migration. Release the taken locks
374                          */
375                         struct buffer_head *failed_bh = bh;
376                         put_bh(failed_bh);
377                         bh = head;
378                         while (bh != failed_bh) {
379                                 unlock_buffer(bh);
380                                 put_bh(bh);
381                                 bh = bh->b_this_page;
382                         }
383                         return false;
384                 }
385
386                 bh = bh->b_this_page;
387         } while (bh != head);
388         return true;
389 }
390 #else
391 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
392                                                         enum migrate_mode mode)
393 {
394         return true;
395 }
396 #endif /* CONFIG_BLOCK */
397
398 /*
399  * Replace the page in the mapping.
400  *
401  * The number of remaining references must be:
402  * 1 for anonymous pages without a mapping
403  * 2 for pages with a mapping
404  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
405  */
406 int migrate_page_move_mapping(struct address_space *mapping,
407                 struct page *newpage, struct page *page,
408                 struct buffer_head *head, enum migrate_mode mode,
409                 int extra_count)
410 {
411         struct zone *oldzone, *newzone;
412         int dirty;
413         int expected_count = 1 + extra_count;
414         void **pslot;
415
416         if (!mapping) {
417                 /* Anonymous page without mapping */
418                 if (page_count(page) != expected_count)
419                         return -EAGAIN;
420
421                 /* No turning back from here */
422                 newpage->index = page->index;
423                 newpage->mapping = page->mapping;
424                 if (PageSwapBacked(page))
425                         __SetPageSwapBacked(newpage);
426
427                 return MIGRATEPAGE_SUCCESS;
428         }
429
430         oldzone = page_zone(page);
431         newzone = page_zone(newpage);
432
433         spin_lock_irq(&mapping->tree_lock);
434
435         pslot = radix_tree_lookup_slot(&mapping->page_tree,
436                                         page_index(page));
437
438         expected_count += 1 + page_has_private(page);
439         if (page_count(page) != expected_count ||
440                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
441                 spin_unlock_irq(&mapping->tree_lock);
442                 return -EAGAIN;
443         }
444
445         if (!page_ref_freeze(page, expected_count)) {
446                 spin_unlock_irq(&mapping->tree_lock);
447                 return -EAGAIN;
448         }
449
450         /*
451          * In the async migration case of moving a page with buffers, lock the
452          * buffers using trylock before the mapping is moved. If the mapping
453          * was moved, we later failed to lock the buffers and could not move
454          * the mapping back due to an elevated page count, we would have to
455          * block waiting on other references to be dropped.
456          */
457         if (mode == MIGRATE_ASYNC && head &&
458                         !buffer_migrate_lock_buffers(head, mode)) {
459                 page_ref_unfreeze(page, expected_count);
460                 spin_unlock_irq(&mapping->tree_lock);
461                 return -EAGAIN;
462         }
463
464         /*
465          * Now we know that no one else is looking at the page:
466          * no turning back from here.
467          */
468         newpage->index = page->index;
469         newpage->mapping = page->mapping;
470         if (PageSwapBacked(page))
471                 __SetPageSwapBacked(newpage);
472
473         get_page(newpage);      /* add cache reference */
474         if (PageSwapCache(page)) {
475                 SetPageSwapCache(newpage);
476                 set_page_private(newpage, page_private(page));
477         }
478
479         /* Move dirty while page refs frozen and newpage not yet exposed */
480         dirty = PageDirty(page);
481         if (dirty) {
482                 ClearPageDirty(page);
483                 SetPageDirty(newpage);
484         }
485
486         radix_tree_replace_slot(pslot, newpage);
487
488         /*
489          * Drop cache reference from old page by unfreezing
490          * to one less reference.
491          * We know this isn't the last reference.
492          */
493         page_ref_unfreeze(page, expected_count - 1);
494
495         spin_unlock(&mapping->tree_lock);
496         /* Leave irq disabled to prevent preemption while updating stats */
497
498         /*
499          * If moved to a different zone then also account
500          * the page for that zone. Other VM counters will be
501          * taken care of when we establish references to the
502          * new page and drop references to the old page.
503          *
504          * Note that anonymous pages are accounted for
505          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
506          * are mapped to swap space.
507          */
508         if (newzone != oldzone) {
509                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
510                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
511                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
512                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
513                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
514                 }
515                 if (dirty && mapping_cap_account_dirty(mapping)) {
516                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
517                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
518                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
519                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
520                 }
521         }
522         local_irq_enable();
523
524         return MIGRATEPAGE_SUCCESS;
525 }
526 EXPORT_SYMBOL(migrate_page_move_mapping);
527
528 /*
529  * The expected number of remaining references is the same as that
530  * of migrate_page_move_mapping().
531  */
532 int migrate_huge_page_move_mapping(struct address_space *mapping,
533                                    struct page *newpage, struct page *page)
534 {
535         int expected_count;
536         void **pslot;
537
538         spin_lock_irq(&mapping->tree_lock);
539
540         pslot = radix_tree_lookup_slot(&mapping->page_tree,
541                                         page_index(page));
542
543         expected_count = 2 + page_has_private(page);
544         if (page_count(page) != expected_count ||
545                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
546                 spin_unlock_irq(&mapping->tree_lock);
547                 return -EAGAIN;
548         }
549
550         if (!page_ref_freeze(page, expected_count)) {
551                 spin_unlock_irq(&mapping->tree_lock);
552                 return -EAGAIN;
553         }
554
555         newpage->index = page->index;
556         newpage->mapping = page->mapping;
557
558         get_page(newpage);
559
560         radix_tree_replace_slot(pslot, newpage);
561
562         page_ref_unfreeze(page, expected_count - 1);
563
564         spin_unlock_irq(&mapping->tree_lock);
565
566         return MIGRATEPAGE_SUCCESS;
567 }
568
569 /*
570  * Gigantic pages are so large that we do not guarantee that page++ pointer
571  * arithmetic will work across the entire page.  We need something more
572  * specialized.
573  */
574 static void __copy_gigantic_page(struct page *dst, struct page *src,
575                                 int nr_pages)
576 {
577         int i;
578         struct page *dst_base = dst;
579         struct page *src_base = src;
580
581         for (i = 0; i < nr_pages; ) {
582                 cond_resched();
583                 copy_highpage(dst, src);
584
585                 i++;
586                 dst = mem_map_next(dst, dst_base, i);
587                 src = mem_map_next(src, src_base, i);
588         }
589 }
590
591 static void copy_huge_page(struct page *dst, struct page *src)
592 {
593         int i;
594         int nr_pages;
595
596         if (PageHuge(src)) {
597                 /* hugetlbfs page */
598                 struct hstate *h = page_hstate(src);
599                 nr_pages = pages_per_huge_page(h);
600
601                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
602                         __copy_gigantic_page(dst, src, nr_pages);
603                         return;
604                 }
605         } else {
606                 /* thp page */
607                 BUG_ON(!PageTransHuge(src));
608                 nr_pages = hpage_nr_pages(src);
609         }
610
611         for (i = 0; i < nr_pages; i++) {
612                 cond_resched();
613                 copy_highpage(dst + i, src + i);
614         }
615 }
616
617 /*
618  * Copy the page to its new location
619  */
620 void migrate_page_copy(struct page *newpage, struct page *page)
621 {
622         int cpupid;
623
624         if (PageHuge(page) || PageTransHuge(page))
625                 copy_huge_page(newpage, page);
626         else
627                 copy_highpage(newpage, page);
628
629         if (PageError(page))
630                 SetPageError(newpage);
631         if (PageReferenced(page))
632                 SetPageReferenced(newpage);
633         if (PageUptodate(page))
634                 SetPageUptodate(newpage);
635         if (TestClearPageActive(page)) {
636                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
637                 SetPageActive(newpage);
638         } else if (TestClearPageUnevictable(page))
639                 SetPageUnevictable(newpage);
640         if (PageChecked(page))
641                 SetPageChecked(newpage);
642         if (PageMappedToDisk(page))
643                 SetPageMappedToDisk(newpage);
644
645         /* Move dirty on pages not done by migrate_page_move_mapping() */
646         if (PageDirty(page))
647                 SetPageDirty(newpage);
648
649         if (page_is_young(page))
650                 set_page_young(newpage);
651         if (page_is_idle(page))
652                 set_page_idle(newpage);
653
654         /*
655          * Copy NUMA information to the new page, to prevent over-eager
656          * future migrations of this same page.
657          */
658         cpupid = page_cpupid_xchg_last(page, -1);
659         page_cpupid_xchg_last(newpage, cpupid);
660
661         ksm_migrate_page(newpage, page);
662         /*
663          * Please do not reorder this without considering how mm/ksm.c's
664          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
665          */
666         if (PageSwapCache(page))
667                 ClearPageSwapCache(page);
668         ClearPagePrivate(page);
669         set_page_private(page, 0);
670
671         /*
672          * If any waiters have accumulated on the new page then
673          * wake them up.
674          */
675         if (PageWriteback(newpage))
676                 end_page_writeback(newpage);
677
678         copy_page_owner(page, newpage);
679
680         mem_cgroup_migrate(page, newpage);
681 }
682 EXPORT_SYMBOL(migrate_page_copy);
683
684 /************************************************************
685  *                    Migration functions
686  ***********************************************************/
687
688 /*
689  * Common logic to directly migrate a single LRU page suitable for
690  * pages that do not use PagePrivate/PagePrivate2.
691  *
692  * Pages are locked upon entry and exit.
693  */
694 int migrate_page(struct address_space *mapping,
695                 struct page *newpage, struct page *page,
696                 enum migrate_mode mode)
697 {
698         int rc;
699
700         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
701
702         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
703
704         if (rc != MIGRATEPAGE_SUCCESS)
705                 return rc;
706
707         migrate_page_copy(newpage, page);
708         return MIGRATEPAGE_SUCCESS;
709 }
710 EXPORT_SYMBOL(migrate_page);
711
712 #ifdef CONFIG_BLOCK
713 /*
714  * Migration function for pages with buffers. This function can only be used
715  * if the underlying filesystem guarantees that no other references to "page"
716  * exist.
717  */
718 int buffer_migrate_page(struct address_space *mapping,
719                 struct page *newpage, struct page *page, enum migrate_mode mode)
720 {
721         struct buffer_head *bh, *head;
722         int rc;
723
724         if (!page_has_buffers(page))
725                 return migrate_page(mapping, newpage, page, mode);
726
727         head = page_buffers(page);
728
729         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
730
731         if (rc != MIGRATEPAGE_SUCCESS)
732                 return rc;
733
734         /*
735          * In the async case, migrate_page_move_mapping locked the buffers
736          * with an IRQ-safe spinlock held. In the sync case, the buffers
737          * need to be locked now
738          */
739         if (mode != MIGRATE_ASYNC)
740                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
741
742         ClearPagePrivate(page);
743         set_page_private(newpage, page_private(page));
744         set_page_private(page, 0);
745         put_page(page);
746         get_page(newpage);
747
748         bh = head;
749         do {
750                 set_bh_page(bh, newpage, bh_offset(bh));
751                 bh = bh->b_this_page;
752
753         } while (bh != head);
754
755         SetPagePrivate(newpage);
756
757         migrate_page_copy(newpage, page);
758
759         bh = head;
760         do {
761                 unlock_buffer(bh);
762                 put_bh(bh);
763                 bh = bh->b_this_page;
764
765         } while (bh != head);
766
767         return MIGRATEPAGE_SUCCESS;
768 }
769 EXPORT_SYMBOL(buffer_migrate_page);
770 #endif
771
772 /*
773  * Writeback a page to clean the dirty state
774  */
775 static int writeout(struct address_space *mapping, struct page *page)
776 {
777         struct writeback_control wbc = {
778                 .sync_mode = WB_SYNC_NONE,
779                 .nr_to_write = 1,
780                 .range_start = 0,
781                 .range_end = LLONG_MAX,
782                 .for_reclaim = 1
783         };
784         int rc;
785
786         if (!mapping->a_ops->writepage)
787                 /* No write method for the address space */
788                 return -EINVAL;
789
790         if (!clear_page_dirty_for_io(page))
791                 /* Someone else already triggered a write */
792                 return -EAGAIN;
793
794         /*
795          * A dirty page may imply that the underlying filesystem has
796          * the page on some queue. So the page must be clean for
797          * migration. Writeout may mean we loose the lock and the
798          * page state is no longer what we checked for earlier.
799          * At this point we know that the migration attempt cannot
800          * be successful.
801          */
802         remove_migration_ptes(page, page, false);
803
804         rc = mapping->a_ops->writepage(page, &wbc);
805
806         if (rc != AOP_WRITEPAGE_ACTIVATE)
807                 /* unlocked. Relock */
808                 lock_page(page);
809
810         return (rc < 0) ? -EIO : -EAGAIN;
811 }
812
813 /*
814  * Default handling if a filesystem does not provide a migration function.
815  */
816 static int fallback_migrate_page(struct address_space *mapping,
817         struct page *newpage, struct page *page, enum migrate_mode mode)
818 {
819         if (PageDirty(page)) {
820                 /* Only writeback pages in full synchronous migration */
821                 if (mode != MIGRATE_SYNC)
822                         return -EBUSY;
823                 return writeout(mapping, page);
824         }
825
826         /*
827          * Buffers may be managed in a filesystem specific way.
828          * We must have no buffers or drop them.
829          */
830         if (page_has_private(page) &&
831             !try_to_release_page(page, GFP_KERNEL))
832                 return -EAGAIN;
833
834         return migrate_page(mapping, newpage, page, mode);
835 }
836
837 /*
838  * Move a page to a newly allocated page
839  * The page is locked and all ptes have been successfully removed.
840  *
841  * The new page will have replaced the old page if this function
842  * is successful.
843  *
844  * Return value:
845  *   < 0 - error code
846  *  MIGRATEPAGE_SUCCESS - success
847  */
848 static int move_to_new_page(struct page *newpage, struct page *page,
849                                 enum migrate_mode mode)
850 {
851         struct address_space *mapping;
852         int rc = -EAGAIN;
853         bool is_lru = !__PageMovable(page);
854
855         VM_BUG_ON_PAGE(!PageLocked(page), page);
856         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
857
858         mapping = page_mapping(page);
859
860         if (likely(is_lru)) {
861                 if (!mapping)
862                         rc = migrate_page(mapping, newpage, page, mode);
863                 else if (mapping->a_ops->migratepage)
864                         /*
865                          * Most pages have a mapping and most filesystems
866                          * provide a migratepage callback. Anonymous pages
867                          * are part of swap space which also has its own
868                          * migratepage callback. This is the most common path
869                          * for page migration.
870                          */
871                         rc = mapping->a_ops->migratepage(mapping, newpage,
872                                                         page, mode);
873                 else
874                         rc = fallback_migrate_page(mapping, newpage,
875                                                         page, mode);
876         } else {
877                 /*
878                  * In case of non-lru page, it could be released after
879                  * isolation step. In that case, we shouldn't try migration.
880                  */
881                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
882                 if (!PageMovable(page)) {
883                         rc = MIGRATEPAGE_SUCCESS;
884                         __ClearPageIsolated(page);
885                         goto out;
886                 }
887
888                 rc = mapping->a_ops->migratepage(mapping, newpage,
889                                                 page, mode);
890                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
891                         !PageIsolated(page));
892         }
893
894         /*
895          * When successful, old pagecache page->mapping must be cleared before
896          * page is freed; but stats require that PageAnon be left as PageAnon.
897          */
898         if (rc == MIGRATEPAGE_SUCCESS) {
899                 if (__PageMovable(page)) {
900                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
901
902                         /*
903                          * We clear PG_movable under page_lock so any compactor
904                          * cannot try to migrate this page.
905                          */
906                         __ClearPageIsolated(page);
907                 }
908
909                 /*
910                  * Anonymous and movable page->mapping will be cleard by
911                  * free_pages_prepare so don't reset it here for keeping
912                  * the type to work PageAnon, for example.
913                  */
914                 if (!PageMappingFlags(page))
915                         page->mapping = NULL;
916         }
917 out:
918         return rc;
919 }
920
921 static int __unmap_and_move(struct page *page, struct page *newpage,
922                                 int force, enum migrate_mode mode)
923 {
924         int rc = -EAGAIN;
925         int page_was_mapped = 0;
926         struct anon_vma *anon_vma = NULL;
927         bool is_lru = !__PageMovable(page);
928
929         if (!trylock_page(page)) {
930                 if (!force || mode == MIGRATE_ASYNC)
931                         goto out;
932
933                 /*
934                  * It's not safe for direct compaction to call lock_page.
935                  * For example, during page readahead pages are added locked
936                  * to the LRU. Later, when the IO completes the pages are
937                  * marked uptodate and unlocked. However, the queueing
938                  * could be merging multiple pages for one bio (e.g.
939                  * mpage_readpages). If an allocation happens for the
940                  * second or third page, the process can end up locking
941                  * the same page twice and deadlocking. Rather than
942                  * trying to be clever about what pages can be locked,
943                  * avoid the use of lock_page for direct compaction
944                  * altogether.
945                  */
946                 if (current->flags & PF_MEMALLOC)
947                         goto out;
948
949                 lock_page(page);
950         }
951
952         if (PageWriteback(page)) {
953                 /*
954                  * Only in the case of a full synchronous migration is it
955                  * necessary to wait for PageWriteback. In the async case,
956                  * the retry loop is too short and in the sync-light case,
957                  * the overhead of stalling is too much
958                  */
959                 if (mode != MIGRATE_SYNC) {
960                         rc = -EBUSY;
961                         goto out_unlock;
962                 }
963                 if (!force)
964                         goto out_unlock;
965                 wait_on_page_writeback(page);
966         }
967
968         /*
969          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
970          * we cannot notice that anon_vma is freed while we migrates a page.
971          * This get_anon_vma() delays freeing anon_vma pointer until the end
972          * of migration. File cache pages are no problem because of page_lock()
973          * File Caches may use write_page() or lock_page() in migration, then,
974          * just care Anon page here.
975          *
976          * Only page_get_anon_vma() understands the subtleties of
977          * getting a hold on an anon_vma from outside one of its mms.
978          * But if we cannot get anon_vma, then we won't need it anyway,
979          * because that implies that the anon page is no longer mapped
980          * (and cannot be remapped so long as we hold the page lock).
981          */
982         if (PageAnon(page) && !PageKsm(page))
983                 anon_vma = page_get_anon_vma(page);
984
985         /*
986          * Block others from accessing the new page when we get around to
987          * establishing additional references. We are usually the only one
988          * holding a reference to newpage at this point. We used to have a BUG
989          * here if trylock_page(newpage) fails, but would like to allow for
990          * cases where there might be a race with the previous use of newpage.
991          * This is much like races on refcount of oldpage: just don't BUG().
992          */
993         if (unlikely(!trylock_page(newpage)))
994                 goto out_unlock;
995
996         if (unlikely(!is_lru)) {
997                 rc = move_to_new_page(newpage, page, mode);
998                 goto out_unlock_both;
999         }
1000
1001         /*
1002          * Corner case handling:
1003          * 1. When a new swap-cache page is read into, it is added to the LRU
1004          * and treated as swapcache but it has no rmap yet.
1005          * Calling try_to_unmap() against a page->mapping==NULL page will
1006          * trigger a BUG.  So handle it here.
1007          * 2. An orphaned page (see truncate_complete_page) might have
1008          * fs-private metadata. The page can be picked up due to memory
1009          * offlining.  Everywhere else except page reclaim, the page is
1010          * invisible to the vm, so the page can not be migrated.  So try to
1011          * free the metadata, so the page can be freed.
1012          */
1013         if (!page->mapping) {
1014                 VM_BUG_ON_PAGE(PageAnon(page), page);
1015                 if (page_has_private(page)) {
1016                         try_to_free_buffers(page);
1017                         goto out_unlock_both;
1018                 }
1019         } else if (page_mapped(page)) {
1020                 /* Establish migration ptes */
1021                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1022                                 page);
1023                 try_to_unmap(page,
1024                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1025                 page_was_mapped = 1;
1026         }
1027
1028         if (!page_mapped(page))
1029                 rc = move_to_new_page(newpage, page, mode);
1030
1031         if (page_was_mapped)
1032                 remove_migration_ptes(page,
1033                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1034
1035 out_unlock_both:
1036         unlock_page(newpage);
1037 out_unlock:
1038         /* Drop an anon_vma reference if we took one */
1039         if (anon_vma)
1040                 put_anon_vma(anon_vma);
1041         unlock_page(page);
1042 out:
1043         /*
1044          * If migration is successful, decrease refcount of the newpage
1045          * which will not free the page because new page owner increased
1046          * refcounter. As well, if it is LRU page, add the page to LRU
1047          * list in here. Use the old state of the isolated source page to
1048          * determine if we migrated a LRU page. newpage was already unlocked
1049          * and possibly modified by its owner - don't rely on the page
1050          * state.
1051          */
1052         if (rc == MIGRATEPAGE_SUCCESS) {
1053                 if (unlikely(!is_lru))
1054                         put_page(newpage);
1055                 else
1056                         putback_lru_page(newpage);
1057         }
1058
1059         return rc;
1060 }
1061
1062 /*
1063  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1064  * around it.
1065  */
1066 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1067 #define ICE_noinline noinline
1068 #else
1069 #define ICE_noinline
1070 #endif
1071
1072 /*
1073  * Obtain the lock on page, remove all ptes and migrate the page
1074  * to the newly allocated page in newpage.
1075  */
1076 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1077                                    free_page_t put_new_page,
1078                                    unsigned long private, struct page *page,
1079                                    int force, enum migrate_mode mode,
1080                                    enum migrate_reason reason)
1081 {
1082         int rc = MIGRATEPAGE_SUCCESS;
1083         int *result = NULL;
1084         struct page *newpage;
1085
1086         newpage = get_new_page(page, private, &result);
1087         if (!newpage)
1088                 return -ENOMEM;
1089
1090         if (page_count(page) == 1) {
1091                 /* page was freed from under us. So we are done. */
1092                 ClearPageActive(page);
1093                 ClearPageUnevictable(page);
1094                 if (unlikely(__PageMovable(page))) {
1095                         lock_page(page);
1096                         if (!PageMovable(page))
1097                                 __ClearPageIsolated(page);
1098                         unlock_page(page);
1099                 }
1100                 if (put_new_page)
1101                         put_new_page(newpage, private);
1102                 else
1103                         put_page(newpage);
1104                 goto out;
1105         }
1106
1107         if (unlikely(PageTransHuge(page))) {
1108                 lock_page(page);
1109                 rc = split_huge_page(page);
1110                 unlock_page(page);
1111                 if (rc)
1112                         goto out;
1113         }
1114
1115         rc = __unmap_and_move(page, newpage, force, mode);
1116         if (rc == MIGRATEPAGE_SUCCESS)
1117                 set_page_owner_migrate_reason(newpage, reason);
1118
1119 out:
1120         if (rc != -EAGAIN) {
1121                 /*
1122                  * A page that has been migrated has all references
1123                  * removed and will be freed. A page that has not been
1124                  * migrated will have kepts its references and be
1125                  * restored.
1126                  */
1127                 list_del(&page->lru);
1128
1129                 /*
1130                  * Compaction can migrate also non-LRU pages which are
1131                  * not accounted to NR_ISOLATED_*. They can be recognized
1132                  * as __PageMovable
1133                  */
1134                 if (likely(!__PageMovable(page)))
1135                         dec_node_page_state(page, NR_ISOLATED_ANON +
1136                                         page_is_file_cache(page));
1137         }
1138
1139         /*
1140          * If migration is successful, releases reference grabbed during
1141          * isolation. Otherwise, restore the page to right list unless
1142          * we want to retry.
1143          */
1144         if (rc == MIGRATEPAGE_SUCCESS) {
1145                 put_page(page);
1146                 if (reason == MR_MEMORY_FAILURE) {
1147                         /*
1148                          * Set PG_HWPoison on just freed page
1149                          * intentionally. Although it's rather weird,
1150                          * it's how HWPoison flag works at the moment.
1151                          */
1152                         if (!test_set_page_hwpoison(page))
1153                                 num_poisoned_pages_inc();
1154                 }
1155         } else {
1156                 if (rc != -EAGAIN) {
1157                         if (likely(!__PageMovable(page))) {
1158                                 putback_lru_page(page);
1159                                 goto put_new;
1160                         }
1161
1162                         lock_page(page);
1163                         if (PageMovable(page))
1164                                 putback_movable_page(page);
1165                         else
1166                                 __ClearPageIsolated(page);
1167                         unlock_page(page);
1168                         put_page(page);
1169                 }
1170 put_new:
1171                 if (put_new_page)
1172                         put_new_page(newpage, private);
1173                 else
1174                         put_page(newpage);
1175         }
1176
1177         if (result) {
1178                 if (rc)
1179                         *result = rc;
1180                 else
1181                         *result = page_to_nid(newpage);
1182         }
1183         return rc;
1184 }
1185
1186 /*
1187  * Counterpart of unmap_and_move_page() for hugepage migration.
1188  *
1189  * This function doesn't wait the completion of hugepage I/O
1190  * because there is no race between I/O and migration for hugepage.
1191  * Note that currently hugepage I/O occurs only in direct I/O
1192  * where no lock is held and PG_writeback is irrelevant,
1193  * and writeback status of all subpages are counted in the reference
1194  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1195  * under direct I/O, the reference of the head page is 512 and a bit more.)
1196  * This means that when we try to migrate hugepage whose subpages are
1197  * doing direct I/O, some references remain after try_to_unmap() and
1198  * hugepage migration fails without data corruption.
1199  *
1200  * There is also no race when direct I/O is issued on the page under migration,
1201  * because then pte is replaced with migration swap entry and direct I/O code
1202  * will wait in the page fault for migration to complete.
1203  */
1204 static int unmap_and_move_huge_page(new_page_t get_new_page,
1205                                 free_page_t put_new_page, unsigned long private,
1206                                 struct page *hpage, int force,
1207                                 enum migrate_mode mode, int reason)
1208 {
1209         int rc = -EAGAIN;
1210         int *result = NULL;
1211         int page_was_mapped = 0;
1212         struct page *new_hpage;
1213         struct anon_vma *anon_vma = NULL;
1214
1215         /*
1216          * Movability of hugepages depends on architectures and hugepage size.
1217          * This check is necessary because some callers of hugepage migration
1218          * like soft offline and memory hotremove don't walk through page
1219          * tables or check whether the hugepage is pmd-based or not before
1220          * kicking migration.
1221          */
1222         if (!hugepage_migration_supported(page_hstate(hpage))) {
1223                 putback_active_hugepage(hpage);
1224                 return -ENOSYS;
1225         }
1226
1227         new_hpage = get_new_page(hpage, private, &result);
1228         if (!new_hpage)
1229                 return -ENOMEM;
1230
1231         if (!trylock_page(hpage)) {
1232                 if (!force || mode != MIGRATE_SYNC)
1233                         goto out;
1234                 lock_page(hpage);
1235         }
1236
1237         /*
1238          * Check for pages which are in the process of being freed.  Without
1239          * page_mapping() set, hugetlbfs specific move page routine will not
1240          * be called and we could leak usage counts for subpools.
1241          */
1242         if (page_private(hpage) && !page_mapping(hpage)) {
1243                 rc = -EBUSY;
1244                 goto out_unlock;
1245         }
1246
1247         if (PageAnon(hpage))
1248                 anon_vma = page_get_anon_vma(hpage);
1249
1250         if (unlikely(!trylock_page(new_hpage)))
1251                 goto put_anon;
1252
1253         if (page_mapped(hpage)) {
1254                 try_to_unmap(hpage,
1255                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1256                 page_was_mapped = 1;
1257         }
1258
1259         if (!page_mapped(hpage))
1260                 rc = move_to_new_page(new_hpage, hpage, mode);
1261
1262         if (page_was_mapped)
1263                 remove_migration_ptes(hpage,
1264                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1265
1266         unlock_page(new_hpage);
1267
1268 put_anon:
1269         if (anon_vma)
1270                 put_anon_vma(anon_vma);
1271
1272         if (rc == MIGRATEPAGE_SUCCESS) {
1273                 hugetlb_cgroup_migrate(hpage, new_hpage);
1274                 put_new_page = NULL;
1275                 set_page_owner_migrate_reason(new_hpage, reason);
1276         }
1277
1278 out_unlock:
1279         unlock_page(hpage);
1280 out:
1281         if (rc != -EAGAIN)
1282                 putback_active_hugepage(hpage);
1283
1284         /*
1285          * If migration was not successful and there's a freeing callback, use
1286          * it.  Otherwise, put_page() will drop the reference grabbed during
1287          * isolation.
1288          */
1289         if (put_new_page)
1290                 put_new_page(new_hpage, private);
1291         else
1292                 putback_active_hugepage(new_hpage);
1293
1294         if (result) {
1295                 if (rc)
1296                         *result = rc;
1297                 else
1298                         *result = page_to_nid(new_hpage);
1299         }
1300         return rc;
1301 }
1302
1303 /*
1304  * migrate_pages - migrate the pages specified in a list, to the free pages
1305  *                 supplied as the target for the page migration
1306  *
1307  * @from:               The list of pages to be migrated.
1308  * @get_new_page:       The function used to allocate free pages to be used
1309  *                      as the target of the page migration.
1310  * @put_new_page:       The function used to free target pages if migration
1311  *                      fails, or NULL if no special handling is necessary.
1312  * @private:            Private data to be passed on to get_new_page()
1313  * @mode:               The migration mode that specifies the constraints for
1314  *                      page migration, if any.
1315  * @reason:             The reason for page migration.
1316  *
1317  * The function returns after 10 attempts or if no pages are movable any more
1318  * because the list has become empty or no retryable pages exist any more.
1319  * The caller should call putback_movable_pages() to return pages to the LRU
1320  * or free list only if ret != 0.
1321  *
1322  * Returns the number of pages that were not migrated, or an error code.
1323  */
1324 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1325                 free_page_t put_new_page, unsigned long private,
1326                 enum migrate_mode mode, int reason)
1327 {
1328         int retry = 1;
1329         int nr_failed = 0;
1330         int nr_succeeded = 0;
1331         int pass = 0;
1332         struct page *page;
1333         struct page *page2;
1334         int swapwrite = current->flags & PF_SWAPWRITE;
1335         int rc;
1336
1337         if (!swapwrite)
1338                 current->flags |= PF_SWAPWRITE;
1339
1340         for(pass = 0; pass < 10 && retry; pass++) {
1341                 retry = 0;
1342
1343                 list_for_each_entry_safe(page, page2, from, lru) {
1344                         cond_resched();
1345
1346                         if (PageHuge(page))
1347                                 rc = unmap_and_move_huge_page(get_new_page,
1348                                                 put_new_page, private, page,
1349                                                 pass > 2, mode, reason);
1350                         else
1351                                 rc = unmap_and_move(get_new_page, put_new_page,
1352                                                 private, page, pass > 2, mode,
1353                                                 reason);
1354
1355                         switch(rc) {
1356                         case -ENOMEM:
1357                                 nr_failed++;
1358                                 goto out;
1359                         case -EAGAIN:
1360                                 retry++;
1361                                 break;
1362                         case MIGRATEPAGE_SUCCESS:
1363                                 nr_succeeded++;
1364                                 break;
1365                         default:
1366                                 /*
1367                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1368                                  * unlike -EAGAIN case, the failed page is
1369                                  * removed from migration page list and not
1370                                  * retried in the next outer loop.
1371                                  */
1372                                 nr_failed++;
1373                                 break;
1374                         }
1375                 }
1376         }
1377         nr_failed += retry;
1378         rc = nr_failed;
1379 out:
1380         if (nr_succeeded)
1381                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1382         if (nr_failed)
1383                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1384         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1385
1386         if (!swapwrite)
1387                 current->flags &= ~PF_SWAPWRITE;
1388
1389         return rc;
1390 }
1391
1392 #ifdef CONFIG_NUMA
1393 /*
1394  * Move a list of individual pages
1395  */
1396 struct page_to_node {
1397         unsigned long addr;
1398         struct page *page;
1399         int node;
1400         int status;
1401 };
1402
1403 static struct page *new_page_node(struct page *p, unsigned long private,
1404                 int **result)
1405 {
1406         struct page_to_node *pm = (struct page_to_node *)private;
1407
1408         while (pm->node != MAX_NUMNODES && pm->page != p)
1409                 pm++;
1410
1411         if (pm->node == MAX_NUMNODES)
1412                 return NULL;
1413
1414         *result = &pm->status;
1415
1416         if (PageHuge(p))
1417                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1418                                         pm->node);
1419         else
1420                 return __alloc_pages_node(pm->node,
1421                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1422 }
1423
1424 /*
1425  * Move a set of pages as indicated in the pm array. The addr
1426  * field must be set to the virtual address of the page to be moved
1427  * and the node number must contain a valid target node.
1428  * The pm array ends with node = MAX_NUMNODES.
1429  */
1430 static int do_move_page_to_node_array(struct mm_struct *mm,
1431                                       struct page_to_node *pm,
1432                                       int migrate_all)
1433 {
1434         int err;
1435         struct page_to_node *pp;
1436         LIST_HEAD(pagelist);
1437
1438         down_read(&mm->mmap_sem);
1439
1440         /*
1441          * Build a list of pages to migrate
1442          */
1443         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1444                 struct vm_area_struct *vma;
1445                 struct page *page;
1446
1447                 err = -EFAULT;
1448                 vma = find_vma(mm, pp->addr);
1449                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1450                         goto set_status;
1451
1452                 /* FOLL_DUMP to ignore special (like zero) pages */
1453                 page = follow_page(vma, pp->addr,
1454                                 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1455
1456                 err = PTR_ERR(page);
1457                 if (IS_ERR(page))
1458                         goto set_status;
1459
1460                 err = -ENOENT;
1461                 if (!page)
1462                         goto set_status;
1463
1464                 pp->page = page;
1465                 err = page_to_nid(page);
1466
1467                 if (err == pp->node)
1468                         /*
1469                          * Node already in the right place
1470                          */
1471                         goto put_and_set;
1472
1473                 err = -EACCES;
1474                 if (page_mapcount(page) > 1 &&
1475                                 !migrate_all)
1476                         goto put_and_set;
1477
1478                 if (PageHuge(page)) {
1479                         if (PageHead(page))
1480                                 isolate_huge_page(page, &pagelist);
1481                         goto put_and_set;
1482                 }
1483
1484                 err = isolate_lru_page(page);
1485                 if (!err) {
1486                         list_add_tail(&page->lru, &pagelist);
1487                         inc_node_page_state(page, NR_ISOLATED_ANON +
1488                                             page_is_file_cache(page));
1489                 }
1490 put_and_set:
1491                 /*
1492                  * Either remove the duplicate refcount from
1493                  * isolate_lru_page() or drop the page ref if it was
1494                  * not isolated.
1495                  */
1496                 put_page(page);
1497 set_status:
1498                 pp->status = err;
1499         }
1500
1501         err = 0;
1502         if (!list_empty(&pagelist)) {
1503                 err = migrate_pages(&pagelist, new_page_node, NULL,
1504                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1505                 if (err)
1506                         putback_movable_pages(&pagelist);
1507         }
1508
1509         up_read(&mm->mmap_sem);
1510         return err;
1511 }
1512
1513 /*
1514  * Migrate an array of page address onto an array of nodes and fill
1515  * the corresponding array of status.
1516  */
1517 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1518                          unsigned long nr_pages,
1519                          const void __user * __user *pages,
1520                          const int __user *nodes,
1521                          int __user *status, int flags)
1522 {
1523         struct page_to_node *pm;
1524         unsigned long chunk_nr_pages;
1525         unsigned long chunk_start;
1526         int err;
1527
1528         err = -ENOMEM;
1529         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1530         if (!pm)
1531                 goto out;
1532
1533         migrate_prep();
1534
1535         /*
1536          * Store a chunk of page_to_node array in a page,
1537          * but keep the last one as a marker
1538          */
1539         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1540
1541         for (chunk_start = 0;
1542              chunk_start < nr_pages;
1543              chunk_start += chunk_nr_pages) {
1544                 int j;
1545
1546                 if (chunk_start + chunk_nr_pages > nr_pages)
1547                         chunk_nr_pages = nr_pages - chunk_start;
1548
1549                 /* fill the chunk pm with addrs and nodes from user-space */
1550                 for (j = 0; j < chunk_nr_pages; j++) {
1551                         const void __user *p;
1552                         int node;
1553
1554                         err = -EFAULT;
1555                         if (get_user(p, pages + j + chunk_start))
1556                                 goto out_pm;
1557                         pm[j].addr = (unsigned long) p;
1558
1559                         if (get_user(node, nodes + j + chunk_start))
1560                                 goto out_pm;
1561
1562                         err = -ENODEV;
1563                         if (node < 0 || node >= MAX_NUMNODES)
1564                                 goto out_pm;
1565
1566                         if (!node_state(node, N_MEMORY))
1567                                 goto out_pm;
1568
1569                         err = -EACCES;
1570                         if (!node_isset(node, task_nodes))
1571                                 goto out_pm;
1572
1573                         pm[j].node = node;
1574                 }
1575
1576                 /* End marker for this chunk */
1577                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1578
1579                 /* Migrate this chunk */
1580                 err = do_move_page_to_node_array(mm, pm,
1581                                                  flags & MPOL_MF_MOVE_ALL);
1582                 if (err < 0)
1583                         goto out_pm;
1584
1585                 /* Return status information */
1586                 for (j = 0; j < chunk_nr_pages; j++)
1587                         if (put_user(pm[j].status, status + j + chunk_start)) {
1588                                 err = -EFAULT;
1589                                 goto out_pm;
1590                         }
1591         }
1592         err = 0;
1593
1594 out_pm:
1595         free_page((unsigned long)pm);
1596 out:
1597         return err;
1598 }
1599
1600 /*
1601  * Determine the nodes of an array of pages and store it in an array of status.
1602  */
1603 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1604                                 const void __user **pages, int *status)
1605 {
1606         unsigned long i;
1607
1608         down_read(&mm->mmap_sem);
1609
1610         for (i = 0; i < nr_pages; i++) {
1611                 unsigned long addr = (unsigned long)(*pages);
1612                 struct vm_area_struct *vma;
1613                 struct page *page;
1614                 int err = -EFAULT;
1615
1616                 vma = find_vma(mm, addr);
1617                 if (!vma || addr < vma->vm_start)
1618                         goto set_status;
1619
1620                 /* FOLL_DUMP to ignore special (like zero) pages */
1621                 page = follow_page(vma, addr, FOLL_DUMP);
1622
1623                 err = PTR_ERR(page);
1624                 if (IS_ERR(page))
1625                         goto set_status;
1626
1627                 err = page ? page_to_nid(page) : -ENOENT;
1628 set_status:
1629                 *status = err;
1630
1631                 pages++;
1632                 status++;
1633         }
1634
1635         up_read(&mm->mmap_sem);
1636 }
1637
1638 /*
1639  * Determine the nodes of a user array of pages and store it in
1640  * a user array of status.
1641  */
1642 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1643                          const void __user * __user *pages,
1644                          int __user *status)
1645 {
1646 #define DO_PAGES_STAT_CHUNK_NR 16
1647         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1648         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1649
1650         while (nr_pages) {
1651                 unsigned long chunk_nr;
1652
1653                 chunk_nr = nr_pages;
1654                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1655                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1656
1657                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1658                         break;
1659
1660                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1661
1662                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1663                         break;
1664
1665                 pages += chunk_nr;
1666                 status += chunk_nr;
1667                 nr_pages -= chunk_nr;
1668         }
1669         return nr_pages ? -EFAULT : 0;
1670 }
1671
1672 /*
1673  * Move a list of pages in the address space of the currently executing
1674  * process.
1675  */
1676 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1677                 const void __user * __user *, pages,
1678                 const int __user *, nodes,
1679                 int __user *, status, int, flags)
1680 {
1681         struct task_struct *task;
1682         struct mm_struct *mm;
1683         int err;
1684         nodemask_t task_nodes;
1685
1686         /* Check flags */
1687         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1688                 return -EINVAL;
1689
1690         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1691                 return -EPERM;
1692
1693         /* Find the mm_struct */
1694         rcu_read_lock();
1695         task = pid ? find_task_by_vpid(pid) : current;
1696         if (!task) {
1697                 rcu_read_unlock();
1698                 return -ESRCH;
1699         }
1700         get_task_struct(task);
1701
1702         /*
1703          * Check if this process has the right to modify the specified
1704          * process. Use the regular "ptrace_may_access()" checks.
1705          */
1706         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1707                 rcu_read_unlock();
1708                 err = -EPERM;
1709                 goto out;
1710         }
1711         rcu_read_unlock();
1712
1713         err = security_task_movememory(task);
1714         if (err)
1715                 goto out;
1716
1717         task_nodes = cpuset_mems_allowed(task);
1718         mm = get_task_mm(task);
1719         put_task_struct(task);
1720
1721         if (!mm)
1722                 return -EINVAL;
1723
1724         if (nodes)
1725                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1726                                     nodes, status, flags);
1727         else
1728                 err = do_pages_stat(mm, nr_pages, pages, status);
1729
1730         mmput(mm);
1731         return err;
1732
1733 out:
1734         put_task_struct(task);
1735         return err;
1736 }
1737
1738 #ifdef CONFIG_NUMA_BALANCING
1739 /*
1740  * Returns true if this is a safe migration target node for misplaced NUMA
1741  * pages. Currently it only checks the watermarks which crude
1742  */
1743 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1744                                    unsigned long nr_migrate_pages)
1745 {
1746         int z;
1747
1748         if (!pgdat_reclaimable(pgdat))
1749                 return false;
1750
1751         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1752                 struct zone *zone = pgdat->node_zones + z;
1753
1754                 if (!populated_zone(zone))
1755                         continue;
1756
1757                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1758                 if (!zone_watermark_ok(zone, 0,
1759                                        high_wmark_pages(zone) +
1760                                        nr_migrate_pages,
1761                                        0, 0))
1762                         continue;
1763                 return true;
1764         }
1765         return false;
1766 }
1767
1768 static struct page *alloc_misplaced_dst_page(struct page *page,
1769                                            unsigned long data,
1770                                            int **result)
1771 {
1772         int nid = (int) data;
1773         struct page *newpage;
1774
1775         newpage = __alloc_pages_node(nid,
1776                                          (GFP_HIGHUSER_MOVABLE |
1777                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1778                                           __GFP_NORETRY | __GFP_NOWARN) &
1779                                          ~__GFP_RECLAIM, 0);
1780
1781         return newpage;
1782 }
1783
1784 /*
1785  * page migration rate limiting control.
1786  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1787  * window of time. Default here says do not migrate more than 1280M per second.
1788  */
1789 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1790 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1791
1792 /* Returns true if the node is migrate rate-limited after the update */
1793 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1794                                         unsigned long nr_pages)
1795 {
1796         /*
1797          * Rate-limit the amount of data that is being migrated to a node.
1798          * Optimal placement is no good if the memory bus is saturated and
1799          * all the time is being spent migrating!
1800          */
1801         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1802                 spin_lock(&pgdat->numabalancing_migrate_lock);
1803                 pgdat->numabalancing_migrate_nr_pages = 0;
1804                 pgdat->numabalancing_migrate_next_window = jiffies +
1805                         msecs_to_jiffies(migrate_interval_millisecs);
1806                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1807         }
1808         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1809                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1810                                                                 nr_pages);
1811                 return true;
1812         }
1813
1814         /*
1815          * This is an unlocked non-atomic update so errors are possible.
1816          * The consequences are failing to migrate when we potentiall should
1817          * have which is not severe enough to warrant locking. If it is ever
1818          * a problem, it can be converted to a per-cpu counter.
1819          */
1820         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1821         return false;
1822 }
1823
1824 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1825 {
1826         int page_lru;
1827
1828         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1829
1830         /* Avoid migrating to a node that is nearly full */
1831         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1832                 return 0;
1833
1834         if (isolate_lru_page(page))
1835                 return 0;
1836
1837         /*
1838          * migrate_misplaced_transhuge_page() skips page migration's usual
1839          * check on page_count(), so we must do it here, now that the page
1840          * has been isolated: a GUP pin, or any other pin, prevents migration.
1841          * The expected page count is 3: 1 for page's mapcount and 1 for the
1842          * caller's pin and 1 for the reference taken by isolate_lru_page().
1843          */
1844         if (PageTransHuge(page) && page_count(page) != 3) {
1845                 putback_lru_page(page);
1846                 return 0;
1847         }
1848
1849         page_lru = page_is_file_cache(page);
1850         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1851                                 hpage_nr_pages(page));
1852
1853         /*
1854          * Isolating the page has taken another reference, so the
1855          * caller's reference can be safely dropped without the page
1856          * disappearing underneath us during migration.
1857          */
1858         put_page(page);
1859         return 1;
1860 }
1861
1862 bool pmd_trans_migrating(pmd_t pmd)
1863 {
1864         struct page *page = pmd_page(pmd);
1865         return PageLocked(page);
1866 }
1867
1868 /*
1869  * Attempt to migrate a misplaced page to the specified destination
1870  * node. Caller is expected to have an elevated reference count on
1871  * the page that will be dropped by this function before returning.
1872  */
1873 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1874                            int node)
1875 {
1876         pg_data_t *pgdat = NODE_DATA(node);
1877         int isolated;
1878         int nr_remaining;
1879         LIST_HEAD(migratepages);
1880
1881         /*
1882          * Don't migrate file pages that are mapped in multiple processes
1883          * with execute permissions as they are probably shared libraries.
1884          */
1885         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1886             (vma->vm_flags & VM_EXEC))
1887                 goto out;
1888
1889         /*
1890          * Rate-limit the amount of data that is being migrated to a node.
1891          * Optimal placement is no good if the memory bus is saturated and
1892          * all the time is being spent migrating!
1893          */
1894         if (numamigrate_update_ratelimit(pgdat, 1))
1895                 goto out;
1896
1897         isolated = numamigrate_isolate_page(pgdat, page);
1898         if (!isolated)
1899                 goto out;
1900
1901         list_add(&page->lru, &migratepages);
1902         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1903                                      NULL, node, MIGRATE_ASYNC,
1904                                      MR_NUMA_MISPLACED);
1905         if (nr_remaining) {
1906                 if (!list_empty(&migratepages)) {
1907                         list_del(&page->lru);
1908                         dec_node_page_state(page, NR_ISOLATED_ANON +
1909                                         page_is_file_cache(page));
1910                         putback_lru_page(page);
1911                 }
1912                 isolated = 0;
1913         } else
1914                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1915         BUG_ON(!list_empty(&migratepages));
1916         return isolated;
1917
1918 out:
1919         put_page(page);
1920         return 0;
1921 }
1922 #endif /* CONFIG_NUMA_BALANCING */
1923
1924 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1925 /*
1926  * Migrates a THP to a given target node. page must be locked and is unlocked
1927  * before returning.
1928  */
1929 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1930                                 struct vm_area_struct *vma,
1931                                 pmd_t *pmd, pmd_t entry,
1932                                 unsigned long address,
1933                                 struct page *page, int node)
1934 {
1935         spinlock_t *ptl;
1936         pg_data_t *pgdat = NODE_DATA(node);
1937         int isolated = 0;
1938         struct page *new_page = NULL;
1939         int page_lru = page_is_file_cache(page);
1940         unsigned long mmun_start = address & HPAGE_PMD_MASK;
1941         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1942         pmd_t orig_entry;
1943
1944         /*
1945          * Rate-limit the amount of data that is being migrated to a node.
1946          * Optimal placement is no good if the memory bus is saturated and
1947          * all the time is being spent migrating!
1948          */
1949         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1950                 goto out_dropref;
1951
1952         new_page = alloc_pages_node(node,
1953                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1954                 HPAGE_PMD_ORDER);
1955         if (!new_page)
1956                 goto out_fail;
1957         prep_transhuge_page(new_page);
1958
1959         isolated = numamigrate_isolate_page(pgdat, page);
1960         if (!isolated) {
1961                 put_page(new_page);
1962                 goto out_fail;
1963         }
1964         /*
1965          * We are not sure a pending tlb flush here is for a huge page
1966          * mapping or not. Hence use the tlb range variant
1967          */
1968         if (mm_tlb_flush_pending(mm))
1969                 flush_tlb_range(vma, mmun_start, mmun_end);
1970
1971         /* Prepare a page as a migration target */
1972         __SetPageLocked(new_page);
1973         __SetPageSwapBacked(new_page);
1974
1975         /* anon mapping, we can simply copy page->mapping to the new page: */
1976         new_page->mapping = page->mapping;
1977         new_page->index = page->index;
1978         migrate_page_copy(new_page, page);
1979         WARN_ON(PageLRU(new_page));
1980
1981         /* Recheck the target PMD */
1982         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1983         ptl = pmd_lock(mm, pmd);
1984         if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1985 fail_putback:
1986                 spin_unlock(ptl);
1987                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1988
1989                 /* Reverse changes made by migrate_page_copy() */
1990                 if (TestClearPageActive(new_page))
1991                         SetPageActive(page);
1992                 if (TestClearPageUnevictable(new_page))
1993                         SetPageUnevictable(page);
1994
1995                 unlock_page(new_page);
1996                 put_page(new_page);             /* Free it */
1997
1998                 /* Retake the callers reference and putback on LRU */
1999                 get_page(page);
2000                 putback_lru_page(page);
2001                 mod_node_page_state(page_pgdat(page),
2002                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2003
2004                 goto out_unlock;
2005         }
2006
2007         orig_entry = *pmd;
2008         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2009         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2010
2011         /*
2012          * Clear the old entry under pagetable lock and establish the new PTE.
2013          * Any parallel GUP will either observe the old page blocking on the
2014          * page lock, block on the page table lock or observe the new page.
2015          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2016          * guarantee the copy is visible before the pagetable update.
2017          */
2018         flush_cache_range(vma, mmun_start, mmun_end);
2019         page_add_anon_rmap(new_page, vma, mmun_start, true);
2020         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2021         set_pmd_at(mm, mmun_start, pmd, entry);
2022         update_mmu_cache_pmd(vma, address, &entry);
2023
2024         if (page_count(page) != 2) {
2025                 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2026                 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2027                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2028                 update_mmu_cache_pmd(vma, address, &entry);
2029                 page_remove_rmap(new_page, true);
2030                 goto fail_putback;
2031         }
2032
2033         mlock_migrate_page(new_page, page);
2034         page_remove_rmap(page, true);
2035         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2036
2037         spin_unlock(ptl);
2038         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2039
2040         /* Take an "isolate" reference and put new page on the LRU. */
2041         get_page(new_page);
2042         putback_lru_page(new_page);
2043
2044         unlock_page(new_page);
2045         unlock_page(page);
2046         put_page(page);                 /* Drop the rmap reference */
2047         put_page(page);                 /* Drop the LRU isolation reference */
2048
2049         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2050         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2051
2052         mod_node_page_state(page_pgdat(page),
2053                         NR_ISOLATED_ANON + page_lru,
2054                         -HPAGE_PMD_NR);
2055         return isolated;
2056
2057 out_fail:
2058         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2059 out_dropref:
2060         ptl = pmd_lock(mm, pmd);
2061         if (pmd_same(*pmd, entry)) {
2062                 entry = pmd_modify(entry, vma->vm_page_prot);
2063                 set_pmd_at(mm, mmun_start, pmd, entry);
2064                 update_mmu_cache_pmd(vma, address, &entry);
2065         }
2066         spin_unlock(ptl);
2067
2068 out_unlock:
2069         unlock_page(page);
2070         put_page(page);
2071         return 0;
2072 }
2073 #endif /* CONFIG_NUMA_BALANCING */
2074
2075 #endif /* CONFIG_NUMA */