OSDN Git Service

Merge pull request #201 from Bytom/v0.1
[bytom/vapor.git] / vendor / gonum.org / v1 / gonum / blas / gonum / level2single.go
diff --git a/vendor/gonum.org/v1/gonum/blas/gonum/level2single.go b/vendor/gonum.org/v1/gonum/blas/gonum/level2single.go
deleted file mode 100644 (file)
index cc10667..0000000
+++ /dev/null
@@ -1,2261 +0,0 @@
-// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
-
-// Copyright ©2014 The Gonum Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package gonum
-
-import (
-       "gonum.org/v1/gonum/blas"
-       "gonum.org/v1/gonum/internal/asm/f32"
-)
-
-var _ blas.Float32Level2 = Implementation{}
-
-// Sgemv computes
-//  y = alpha * A * x + beta * y    if tA = blas.NoTrans
-//  y = alpha * A^T * x + beta * y  if tA = blas.Trans or blas.ConjTrans
-// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Sgemv(tA blas.Transpose, m, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if m < 0 {
-               panic(mLT0)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if lda < max(1, n) {
-               panic(badLdA)
-       }
-
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       // Set up indexes
-       lenX := m
-       lenY := n
-       if tA == blas.NoTrans {
-               lenX = n
-               lenY = m
-       }
-       if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
-               panic(badY)
-       }
-       if lda*(m-1)+n > len(a) || lda < max(1, n) {
-               panic(badLdA)
-       }
-
-       // Quick return if possible
-       if m == 0 || n == 0 || (alpha == 0 && beta == 1) {
-               return
-       }
-
-       var kx, ky int
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(lenX - 1) * incX
-       }
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(lenY - 1) * incY
-       }
-
-       // First form y = beta * y
-       if incY > 0 {
-               Implementation{}.Sscal(lenY, beta, y, incY)
-       } else {
-               Implementation{}.Sscal(lenY, beta, y, -incY)
-       }
-
-       if alpha == 0 {
-               return
-       }
-
-       // Form y = alpha * A * x + y
-       if tA == blas.NoTrans {
-               if incX == 1 && incY == 1 {
-                       for i := 0; i < m; i++ {
-                               y[i] += alpha * f32.DotUnitary(a[lda*i:lda*i+n], x)
-                       }
-                       return
-               }
-               iy := ky
-               for i := 0; i < m; i++ {
-                       y[iy] += alpha * f32.DotInc(x, a[lda*i:lda*i+n], uintptr(n), uintptr(incX), 1, uintptr(kx), 0)
-                       iy += incY
-               }
-               return
-       }
-       // Cases where a is transposed.
-       if incX == 1 && incY == 1 {
-               for i := 0; i < m; i++ {
-                       tmp := alpha * x[i]
-                       if tmp != 0 {
-                               f32.AxpyUnitaryTo(y, tmp, a[lda*i:lda*i+n], y)
-                       }
-               }
-               return
-       }
-       ix := kx
-       for i := 0; i < m; i++ {
-               tmp := alpha * x[ix]
-               if tmp != 0 {
-                       f32.AxpyInc(tmp, a[lda*i:lda*i+n], y, uintptr(n), 1, uintptr(incY), 0, uintptr(ky))
-               }
-               ix += incX
-       }
-}
-
-// Sger performs the rank-one operation
-//  A += alpha * x * y^T
-// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Sger(m, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int) {
-       // Check inputs
-       if m < 0 {
-               panic("m < 0")
-       }
-       if n < 0 {
-               panic(negativeN)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       if (incX > 0 && (m-1)*incX >= len(x)) || (incX < 0 && (1-m)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
-               panic(badY)
-       }
-       if lda*(m-1)+n > len(a) || lda < max(1, n) {
-               panic(badLdA)
-       }
-       if lda < max(1, n) {
-               panic(badLdA)
-       }
-
-       // Quick return if possible
-       if m == 0 || n == 0 || alpha == 0 {
-               return
-       }
-
-       var ky, kx int
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(n - 1) * incY
-       }
-
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(m - 1) * incX
-       }
-
-       if incX == 1 && incY == 1 {
-               x = x[:m]
-               y = y[:n]
-               for i, xv := range x {
-                       f32.AxpyUnitary(alpha*xv, y, a[i*lda:i*lda+n])
-               }
-               return
-       }
-
-       ix := kx
-       for i := 0; i < m; i++ {
-               f32.AxpyInc(alpha*x[ix], y, a[i*lda:i*lda+n], uintptr(n), uintptr(incY), 1, uintptr(ky), 0)
-               ix += incX
-       }
-}
-
-// Sgbmv computes
-//  y = alpha * A * x + beta * y if tA == blas.NoTrans
-//  y = alpha * A^T * x + beta * y if tA == blas.Trans or blas.ConjTrans
-// where a is an m×n band matrix kL subdiagonals and kU super-diagonals, and
-// m and n refer to the size of the full dense matrix it represents.
-// x and y are vectors, and alpha and beta are scalars.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Sgbmv(tA blas.Transpose, m, n, kL, kU int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if m < 0 {
-               panic(mLT0)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if kL < 0 {
-               panic(kLLT0)
-       }
-       if kL < 0 {
-               panic(kULT0)
-       }
-       if lda < kL+kU+1 {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       // Set up indexes
-       lenX := m
-       lenY := n
-       if tA == blas.NoTrans {
-               lenX = n
-               lenY = m
-       }
-       if (incX > 0 && (lenX-1)*incX >= len(x)) || (incX < 0 && (1-lenX)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (lenY-1)*incY >= len(y)) || (incY < 0 && (1-lenY)*incY >= len(y)) {
-               panic(badY)
-       }
-       if lda*(min(m, n+kL)-1)+kL+kU+1 > len(a) || lda < kL+kU+1 {
-               panic(badLdA)
-       }
-
-       // Quick return if possible
-       if m == 0 || n == 0 || (alpha == 0 && beta == 1) {
-               return
-       }
-
-       var kx, ky int
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(lenX - 1) * incX
-       }
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(lenY - 1) * incY
-       }
-
-       // First form y = beta * y
-       if incY > 0 {
-               Implementation{}.Sscal(lenY, beta, y, incY)
-       } else {
-               Implementation{}.Sscal(lenY, beta, y, -incY)
-       }
-
-       if alpha == 0 {
-               return
-       }
-
-       // i and j are indices of the compacted banded matrix.
-       // off is the offset into the dense matrix (off + j = densej)
-       ld := min(m, n)
-       nCol := kU + 1 + kL
-       if tA == blas.NoTrans {
-               iy := ky
-               if incX == 1 {
-                       for i := 0; i < min(m, n+kL); i++ {
-                               l := max(0, kL-i)
-                               u := min(nCol, ld+kL-i)
-                               off := max(0, i-kL)
-                               atmp := a[i*lda+l : i*lda+u]
-                               xtmp := x[off : off+u-l]
-                               var sum float32
-                               for j, v := range atmp {
-                                       sum += xtmp[j] * v
-                               }
-                               y[iy] += sum * alpha
-                               iy += incY
-                       }
-                       return
-               }
-               for i := 0; i < min(m, n+kL); i++ {
-                       l := max(0, kL-i)
-                       u := min(nCol, ld+kL-i)
-                       off := max(0, i-kL)
-                       atmp := a[i*lda+l : i*lda+u]
-                       jx := kx
-                       var sum float32
-                       for _, v := range atmp {
-                               sum += x[off*incX+jx] * v
-                               jx += incX
-                       }
-                       y[iy] += sum * alpha
-                       iy += incY
-               }
-               return
-       }
-       if incX == 1 {
-               for i := 0; i < min(m, n+kL); i++ {
-                       l := max(0, kL-i)
-                       u := min(nCol, ld+kL-i)
-                       off := max(0, i-kL)
-                       atmp := a[i*lda+l : i*lda+u]
-                       tmp := alpha * x[i]
-                       jy := ky
-                       for _, v := range atmp {
-                               y[jy+off*incY] += tmp * v
-                               jy += incY
-                       }
-               }
-               return
-       }
-       ix := kx
-       for i := 0; i < min(m, n+kL); i++ {
-               l := max(0, kL-i)
-               u := min(nCol, ld+kL-i)
-               off := max(0, i-kL)
-               atmp := a[i*lda+l : i*lda+u]
-               tmp := alpha * x[ix]
-               jy := ky
-               for _, v := range atmp {
-                       y[jy+off*incY] += tmp * v
-                       jy += incY
-               }
-               ix += incX
-       }
-}
-
-// Strmv computes
-//  x = A * x if tA == blas.NoTrans
-//  x = A^T * x if tA == blas.Trans or blas.ConjTrans
-// A is an n×n Triangular matrix and x is a vector.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Strmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if d != blas.NonUnit && d != blas.Unit {
-               panic(badDiag)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if lda < n {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if lda*(n-1)+n > len(a) || lda < max(1, n) {
-               panic(badLdA)
-       }
-       if n == 0 {
-               return
-       }
-       nonUnit := d != blas.Unit
-       if n == 1 {
-               if nonUnit {
-                       x[0] *= a[0]
-               }
-               return
-       }
-       var kx int
-       if incX <= 0 {
-               kx = -(n - 1) * incX
-       }
-       if tA == blas.NoTrans {
-               if ul == blas.Upper {
-                       if incX == 1 {
-                               for i := 0; i < n; i++ {
-                                       ilda := i * lda
-                                       var tmp float32
-                                       if nonUnit {
-                                               tmp = a[ilda+i] * x[i]
-                                       } else {
-                                               tmp = x[i]
-                                       }
-                                       xtmp := x[i+1:]
-                                       x[i] = tmp + f32.DotUnitary(a[ilda+i+1:ilda+n], xtmp)
-                               }
-                               return
-                       }
-                       ix := kx
-                       for i := 0; i < n; i++ {
-                               ilda := i * lda
-                               var tmp float32
-                               if nonUnit {
-                                       tmp = a[ilda+i] * x[ix]
-                               } else {
-                                       tmp = x[ix]
-                               }
-                               x[ix] = tmp + f32.DotInc(x, a[ilda+i+1:ilda+n], uintptr(n-i-1), uintptr(incX), 1, uintptr(ix+incX), 0)
-                               ix += incX
-                       }
-                       return
-               }
-               if incX == 1 {
-                       for i := n - 1; i >= 0; i-- {
-                               ilda := i * lda
-                               var tmp float32
-                               if nonUnit {
-                                       tmp += a[ilda+i] * x[i]
-                               } else {
-                                       tmp = x[i]
-                               }
-                               x[i] = tmp + f32.DotUnitary(a[ilda:ilda+i], x)
-                       }
-                       return
-               }
-               ix := kx + (n-1)*incX
-               for i := n - 1; i >= 0; i-- {
-                       ilda := i * lda
-                       var tmp float32
-                       if nonUnit {
-                               tmp = a[ilda+i] * x[ix]
-                       } else {
-                               tmp = x[ix]
-                       }
-                       x[ix] = tmp + f32.DotInc(x, a[ilda:ilda+i], uintptr(i), uintptr(incX), 1, uintptr(kx), 0)
-                       ix -= incX
-               }
-               return
-       }
-       // Cases where a is transposed.
-       if ul == blas.Upper {
-               if incX == 1 {
-                       for i := n - 1; i >= 0; i-- {
-                               ilda := i * lda
-                               xi := x[i]
-                               f32.AxpyUnitary(xi, a[ilda+i+1:ilda+n], x[i+1:n])
-                               if nonUnit {
-                                       x[i] *= a[ilda+i]
-                               }
-                       }
-                       return
-               }
-               ix := kx + (n-1)*incX
-               for i := n - 1; i >= 0; i-- {
-                       ilda := i * lda
-                       xi := x[ix]
-                       f32.AxpyInc(xi, a[ilda+i+1:ilda+n], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(kx+(i+1)*incX))
-                       if nonUnit {
-                               x[ix] *= a[ilda+i]
-                       }
-                       ix -= incX
-               }
-               return
-       }
-       if incX == 1 {
-               for i := 0; i < n; i++ {
-                       ilda := i * lda
-                       xi := x[i]
-                       f32.AxpyUnitary(xi, a[ilda:ilda+i], x)
-                       if nonUnit {
-                               x[i] *= a[i*lda+i]
-                       }
-               }
-               return
-       }
-       ix := kx
-       for i := 0; i < n; i++ {
-               ilda := i * lda
-               xi := x[ix]
-               f32.AxpyInc(xi, a[ilda:ilda+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
-               if nonUnit {
-                       x[ix] *= a[ilda+i]
-               }
-               ix += incX
-       }
-}
-
-// Strsv solves
-//  A * x = b if tA == blas.NoTrans
-//  A^T * x = b if tA == blas.Trans or blas.ConjTrans
-// A is an n×n triangular matrix and x is a vector.
-// At entry to the function, x contains the values of b, and the result is
-// stored in place into x.
-//
-// No test for singularity or near-singularity is included in this
-// routine. Such tests must be performed before calling this routine.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Strsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int) {
-       // Test the input parameters
-       // Verify inputs
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if d != blas.NonUnit && d != blas.Unit {
-               panic(badDiag)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if lda*(n-1)+n > len(a) || lda < max(1, n) {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       // Quick return if possible
-       if n == 0 {
-               return
-       }
-       if n == 1 {
-               if d == blas.NonUnit {
-                       x[0] /= a[0]
-               }
-               return
-       }
-
-       var kx int
-       if incX < 0 {
-               kx = -(n - 1) * incX
-       }
-       nonUnit := d == blas.NonUnit
-       if tA == blas.NoTrans {
-               if ul == blas.Upper {
-                       if incX == 1 {
-                               for i := n - 1; i >= 0; i-- {
-                                       var sum float32
-                                       atmp := a[i*lda+i+1 : i*lda+n]
-                                       for j, v := range atmp {
-                                               jv := i + j + 1
-                                               sum += x[jv] * v
-                                       }
-                                       x[i] -= sum
-                                       if nonUnit {
-                                               x[i] /= a[i*lda+i]
-                                       }
-                               }
-                               return
-                       }
-                       ix := kx + (n-1)*incX
-                       for i := n - 1; i >= 0; i-- {
-                               var sum float32
-                               jx := ix + incX
-                               atmp := a[i*lda+i+1 : i*lda+n]
-                               for _, v := range atmp {
-                                       sum += x[jx] * v
-                                       jx += incX
-                               }
-                               x[ix] -= sum
-                               if nonUnit {
-                                       x[ix] /= a[i*lda+i]
-                               }
-                               ix -= incX
-                       }
-                       return
-               }
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               var sum float32
-                               atmp := a[i*lda : i*lda+i]
-                               for j, v := range atmp {
-                                       sum += x[j] * v
-                               }
-                               x[i] -= sum
-                               if nonUnit {
-                                       x[i] /= a[i*lda+i]
-                               }
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       jx := kx
-                       var sum float32
-                       atmp := a[i*lda : i*lda+i]
-                       for _, v := range atmp {
-                               sum += x[jx] * v
-                               jx += incX
-                       }
-                       x[ix] -= sum
-                       if nonUnit {
-                               x[ix] /= a[i*lda+i]
-                       }
-                       ix += incX
-               }
-               return
-       }
-       // Cases where a is transposed.
-       if ul == blas.Upper {
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               if nonUnit {
-                                       x[i] /= a[i*lda+i]
-                               }
-                               xi := x[i]
-                               atmp := a[i*lda+i+1 : i*lda+n]
-                               for j, v := range atmp {
-                                       jv := j + i + 1
-                                       x[jv] -= v * xi
-                               }
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       if nonUnit {
-                               x[ix] /= a[i*lda+i]
-                       }
-                       xi := x[ix]
-                       jx := kx + (i+1)*incX
-                       atmp := a[i*lda+i+1 : i*lda+n]
-                       for _, v := range atmp {
-                               x[jx] -= v * xi
-                               jx += incX
-                       }
-                       ix += incX
-               }
-               return
-       }
-       if incX == 1 {
-               for i := n - 1; i >= 0; i-- {
-                       if nonUnit {
-                               x[i] /= a[i*lda+i]
-                       }
-                       xi := x[i]
-                       atmp := a[i*lda : i*lda+i]
-                       for j, v := range atmp {
-                               x[j] -= v * xi
-                       }
-               }
-               return
-       }
-       ix := kx + (n-1)*incX
-       for i := n - 1; i >= 0; i-- {
-               if nonUnit {
-                       x[ix] /= a[i*lda+i]
-               }
-               xi := x[ix]
-               jx := kx
-               atmp := a[i*lda : i*lda+i]
-               for _, v := range atmp {
-                       x[jx] -= v * xi
-                       jx += incX
-               }
-               ix -= incX
-       }
-}
-
-// Ssymv computes
-//    y = alpha * A * x + beta * y,
-// where a is an n×n symmetric matrix, x and y are vectors, and alpha and
-// beta are scalars.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Ssymv(ul blas.Uplo, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
-       // Check inputs
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if n < 0 {
-               panic(negativeN)
-       }
-       if lda > 1 && lda < n {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
-               panic(badY)
-       }
-       if lda*(n-1)+n > len(a) || lda < max(1, n) {
-               panic(badLdA)
-       }
-       // Quick return if possible
-       if n == 0 || (alpha == 0 && beta == 1) {
-               return
-       }
-
-       // Set up start points
-       var kx, ky int
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(n - 1) * incX
-       }
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(n - 1) * incY
-       }
-
-       // Form y = beta * y
-       if beta != 1 {
-               if incY > 0 {
-                       Implementation{}.Sscal(n, beta, y, incY)
-               } else {
-                       Implementation{}.Sscal(n, beta, y, -incY)
-               }
-       }
-
-       if alpha == 0 {
-               return
-       }
-
-       if n == 1 {
-               y[0] += alpha * a[0] * x[0]
-               return
-       }
-
-       if ul == blas.Upper {
-               if incX == 1 {
-                       iy := ky
-                       for i := 0; i < n; i++ {
-                               xv := x[i] * alpha
-                               sum := x[i] * a[i*lda+i]
-                               jy := ky + (i+1)*incY
-                               atmp := a[i*lda+i+1 : i*lda+n]
-                               for j, v := range atmp {
-                                       jp := j + i + 1
-                                       sum += x[jp] * v
-                                       y[jy] += xv * v
-                                       jy += incY
-                               }
-                               y[iy] += alpha * sum
-                               iy += incY
-                       }
-                       return
-               }
-               ix := kx
-               iy := ky
-               for i := 0; i < n; i++ {
-                       xv := x[ix] * alpha
-                       sum := x[ix] * a[i*lda+i]
-                       jx := kx + (i+1)*incX
-                       jy := ky + (i+1)*incY
-                       atmp := a[i*lda+i+1 : i*lda+n]
-                       for _, v := range atmp {
-                               sum += x[jx] * v
-                               y[jy] += xv * v
-                               jx += incX
-                               jy += incY
-                       }
-                       y[iy] += alpha * sum
-                       ix += incX
-                       iy += incY
-               }
-               return
-       }
-       // Cases where a is lower triangular.
-       if incX == 1 {
-               iy := ky
-               for i := 0; i < n; i++ {
-                       jy := ky
-                       xv := alpha * x[i]
-                       atmp := a[i*lda : i*lda+i]
-                       var sum float32
-                       for j, v := range atmp {
-                               sum += x[j] * v
-                               y[jy] += xv * v
-                               jy += incY
-                       }
-                       sum += x[i] * a[i*lda+i]
-                       sum *= alpha
-                       y[iy] += sum
-                       iy += incY
-               }
-               return
-       }
-       ix := kx
-       iy := ky
-       for i := 0; i < n; i++ {
-               jx := kx
-               jy := ky
-               xv := alpha * x[ix]
-               atmp := a[i*lda : i*lda+i]
-               var sum float32
-               for _, v := range atmp {
-                       sum += x[jx] * v
-                       y[jy] += xv * v
-                       jx += incX
-                       jy += incY
-               }
-               sum += x[ix] * a[i*lda+i]
-               sum *= alpha
-               y[iy] += sum
-               ix += incX
-               iy += incY
-       }
-}
-
-// Stbmv computes
-//  x = A * x if tA == blas.NoTrans
-//  x = A^T * x if tA == blas.Trans or blas.ConjTrans
-// where A is an n×n triangular banded matrix with k diagonals, and x is a vector.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Stbmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if d != blas.NonUnit && d != blas.Unit {
-               panic(badDiag)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if k < 0 {
-               panic(kLT0)
-       }
-       if lda*(n-1)+k+1 > len(a) || lda < k+1 {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if n == 0 {
-               return
-       }
-       var kx int
-       if incX <= 0 {
-               kx = -(n - 1) * incX
-       } else if incX != 1 {
-               kx = 0
-       }
-
-       nonunit := d != blas.Unit
-
-       if tA == blas.NoTrans {
-               if ul == blas.Upper {
-                       if incX == 1 {
-                               for i := 0; i < n; i++ {
-                                       u := min(1+k, n-i)
-                                       var sum float32
-                                       atmp := a[i*lda:]
-                                       xtmp := x[i:]
-                                       for j := 1; j < u; j++ {
-                                               sum += xtmp[j] * atmp[j]
-                                       }
-                                       if nonunit {
-                                               sum += xtmp[0] * atmp[0]
-                                       } else {
-                                               sum += xtmp[0]
-                                       }
-                                       x[i] = sum
-                               }
-                               return
-                       }
-                       ix := kx
-                       for i := 0; i < n; i++ {
-                               u := min(1+k, n-i)
-                               var sum float32
-                               atmp := a[i*lda:]
-                               jx := incX
-                               for j := 1; j < u; j++ {
-                                       sum += x[ix+jx] * atmp[j]
-                                       jx += incX
-                               }
-                               if nonunit {
-                                       sum += x[ix] * atmp[0]
-                               } else {
-                                       sum += x[ix]
-                               }
-                               x[ix] = sum
-                               ix += incX
-                       }
-                       return
-               }
-               if incX == 1 {
-                       for i := n - 1; i >= 0; i-- {
-                               l := max(0, k-i)
-                               atmp := a[i*lda:]
-                               var sum float32
-                               for j := l; j < k; j++ {
-                                       sum += x[i-k+j] * atmp[j]
-                               }
-                               if nonunit {
-                                       sum += x[i] * atmp[k]
-                               } else {
-                                       sum += x[i]
-                               }
-                               x[i] = sum
-                       }
-                       return
-               }
-               ix := kx + (n-1)*incX
-               for i := n - 1; i >= 0; i-- {
-                       l := max(0, k-i)
-                       atmp := a[i*lda:]
-                       var sum float32
-                       jx := l * incX
-                       for j := l; j < k; j++ {
-                               sum += x[ix-k*incX+jx] * atmp[j]
-                               jx += incX
-                       }
-                       if nonunit {
-                               sum += x[ix] * atmp[k]
-                       } else {
-                               sum += x[ix]
-                       }
-                       x[ix] = sum
-                       ix -= incX
-               }
-               return
-       }
-       if ul == blas.Upper {
-               if incX == 1 {
-                       for i := n - 1; i >= 0; i-- {
-                               u := k + 1
-                               if i < u {
-                                       u = i + 1
-                               }
-                               var sum float32
-                               for j := 1; j < u; j++ {
-                                       sum += x[i-j] * a[(i-j)*lda+j]
-                               }
-                               if nonunit {
-                                       sum += x[i] * a[i*lda]
-                               } else {
-                                       sum += x[i]
-                               }
-                               x[i] = sum
-                       }
-                       return
-               }
-               ix := kx + (n-1)*incX
-               for i := n - 1; i >= 0; i-- {
-                       u := k + 1
-                       if i < u {
-                               u = i + 1
-                       }
-                       var sum float32
-                       jx := incX
-                       for j := 1; j < u; j++ {
-                               sum += x[ix-jx] * a[(i-j)*lda+j]
-                               jx += incX
-                       }
-                       if nonunit {
-                               sum += x[ix] * a[i*lda]
-                       } else {
-                               sum += x[ix]
-                       }
-                       x[ix] = sum
-                       ix -= incX
-               }
-               return
-       }
-       if incX == 1 {
-               for i := 0; i < n; i++ {
-                       u := k
-                       if i+k >= n {
-                               u = n - i - 1
-                       }
-                       var sum float32
-                       for j := 0; j < u; j++ {
-                               sum += x[i+j+1] * a[(i+j+1)*lda+k-j-1]
-                       }
-                       if nonunit {
-                               sum += x[i] * a[i*lda+k]
-                       } else {
-                               sum += x[i]
-                       }
-                       x[i] = sum
-               }
-               return
-       }
-       ix := kx
-       for i := 0; i < n; i++ {
-               u := k
-               if i+k >= n {
-                       u = n - i - 1
-               }
-               var (
-                       sum float32
-                       jx  int
-               )
-               for j := 0; j < u; j++ {
-                       sum += x[ix+jx+incX] * a[(i+j+1)*lda+k-j-1]
-                       jx += incX
-               }
-               if nonunit {
-                       sum += x[ix] * a[i*lda+k]
-               } else {
-                       sum += x[ix]
-               }
-               x[ix] = sum
-               ix += incX
-       }
-}
-
-// Stpmv computes
-//  x = A * x if tA == blas.NoTrans
-//  x = A^T * x if tA == blas.Trans or blas.ConjTrans
-// where A is an n×n unit triangular matrix in packed format, and x is a vector.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Stpmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int) {
-       // Verify inputs
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if d != blas.NonUnit && d != blas.Unit {
-               panic(badDiag)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if len(ap) < (n*(n+1))/2 {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if n == 0 {
-               return
-       }
-       var kx int
-       if incX <= 0 {
-               kx = -(n - 1) * incX
-       }
-
-       nonUnit := d == blas.NonUnit
-       var offset int // Offset is the index of (i,i)
-       if tA == blas.NoTrans {
-               if ul == blas.Upper {
-                       if incX == 1 {
-                               for i := 0; i < n; i++ {
-                                       xi := x[i]
-                                       if nonUnit {
-                                               xi *= ap[offset]
-                                       }
-                                       atmp := ap[offset+1 : offset+n-i]
-                                       xtmp := x[i+1:]
-                                       for j, v := range atmp {
-                                               xi += v * xtmp[j]
-                                       }
-                                       x[i] = xi
-                                       offset += n - i
-                               }
-                               return
-                       }
-                       ix := kx
-                       for i := 0; i < n; i++ {
-                               xix := x[ix]
-                               if nonUnit {
-                                       xix *= ap[offset]
-                               }
-                               atmp := ap[offset+1 : offset+n-i]
-                               jx := kx + (i+1)*incX
-                               for _, v := range atmp {
-                                       xix += v * x[jx]
-                                       jx += incX
-                               }
-                               x[ix] = xix
-                               offset += n - i
-                               ix += incX
-                       }
-                       return
-               }
-               if incX == 1 {
-                       offset = n*(n+1)/2 - 1
-                       for i := n - 1; i >= 0; i-- {
-                               xi := x[i]
-                               if nonUnit {
-                                       xi *= ap[offset]
-                               }
-                               atmp := ap[offset-i : offset]
-                               for j, v := range atmp {
-                                       xi += v * x[j]
-                               }
-                               x[i] = xi
-                               offset -= i + 1
-                       }
-                       return
-               }
-               ix := kx + (n-1)*incX
-               offset = n*(n+1)/2 - 1
-               for i := n - 1; i >= 0; i-- {
-                       xix := x[ix]
-                       if nonUnit {
-                               xix *= ap[offset]
-                       }
-                       atmp := ap[offset-i : offset]
-                       jx := kx
-                       for _, v := range atmp {
-                               xix += v * x[jx]
-                               jx += incX
-                       }
-                       x[ix] = xix
-                       offset -= i + 1
-                       ix -= incX
-               }
-               return
-       }
-       // Cases where ap is transposed.
-       if ul == blas.Upper {
-               if incX == 1 {
-                       offset = n*(n+1)/2 - 1
-                       for i := n - 1; i >= 0; i-- {
-                               xi := x[i]
-                               atmp := ap[offset+1 : offset+n-i]
-                               xtmp := x[i+1:]
-                               for j, v := range atmp {
-                                       xtmp[j] += v * xi
-                               }
-                               if nonUnit {
-                                       x[i] *= ap[offset]
-                               }
-                               offset -= n - i + 1
-                       }
-                       return
-               }
-               ix := kx + (n-1)*incX
-               offset = n*(n+1)/2 - 1
-               for i := n - 1; i >= 0; i-- {
-                       xix := x[ix]
-                       jx := kx + (i+1)*incX
-                       atmp := ap[offset+1 : offset+n-i]
-                       for _, v := range atmp {
-                               x[jx] += v * xix
-                               jx += incX
-                       }
-                       if nonUnit {
-                               x[ix] *= ap[offset]
-                       }
-                       offset -= n - i + 1
-                       ix -= incX
-               }
-               return
-       }
-       if incX == 1 {
-               for i := 0; i < n; i++ {
-                       xi := x[i]
-                       atmp := ap[offset-i : offset]
-                       for j, v := range atmp {
-                               x[j] += v * xi
-                       }
-                       if nonUnit {
-                               x[i] *= ap[offset]
-                       }
-                       offset += i + 2
-               }
-               return
-       }
-       ix := kx
-       for i := 0; i < n; i++ {
-               xix := x[ix]
-               jx := kx
-               atmp := ap[offset-i : offset]
-               for _, v := range atmp {
-                       x[jx] += v * xix
-                       jx += incX
-               }
-               if nonUnit {
-                       x[ix] *= ap[offset]
-               }
-               ix += incX
-               offset += i + 2
-       }
-}
-
-// Stbsv solves
-//  A * x = b
-// where A is an n×n triangular banded matrix with k diagonals in packed format,
-// and x is a vector.
-// At entry to the function, x contains the values of b, and the result is
-// stored in place into x.
-//
-// No test for singularity or near-singularity is included in this
-// routine. Such tests must be performed before calling this routine.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Stbsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if d != blas.NonUnit && d != blas.Unit {
-               panic(badDiag)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if lda*(n-1)+k+1 > len(a) || lda < k+1 {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if n == 0 {
-               return
-       }
-       var kx int
-       if incX < 0 {
-               kx = -(n - 1) * incX
-       } else {
-               kx = 0
-       }
-       nonUnit := d == blas.NonUnit
-       // Form x = A^-1 x.
-       // Several cases below use subslices for speed improvement.
-       // The incX != 1 cases usually do not because incX may be negative.
-       if tA == blas.NoTrans {
-               if ul == blas.Upper {
-                       if incX == 1 {
-                               for i := n - 1; i >= 0; i-- {
-                                       bands := k
-                                       if i+bands >= n {
-                                               bands = n - i - 1
-                                       }
-                                       atmp := a[i*lda+1:]
-                                       xtmp := x[i+1 : i+bands+1]
-                                       var sum float32
-                                       for j, v := range xtmp {
-                                               sum += v * atmp[j]
-                                       }
-                                       x[i] -= sum
-                                       if nonUnit {
-                                               x[i] /= a[i*lda]
-                                       }
-                               }
-                               return
-                       }
-                       ix := kx + (n-1)*incX
-                       for i := n - 1; i >= 0; i-- {
-                               max := k + 1
-                               if i+max > n {
-                                       max = n - i
-                               }
-                               atmp := a[i*lda:]
-                               var (
-                                       jx  int
-                                       sum float32
-                               )
-                               for j := 1; j < max; j++ {
-                                       jx += incX
-                                       sum += x[ix+jx] * atmp[j]
-                               }
-                               x[ix] -= sum
-                               if nonUnit {
-                                       x[ix] /= atmp[0]
-                               }
-                               ix -= incX
-                       }
-                       return
-               }
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               bands := k
-                               if i-k < 0 {
-                                       bands = i
-                               }
-                               atmp := a[i*lda+k-bands:]
-                               xtmp := x[i-bands : i]
-                               var sum float32
-                               for j, v := range xtmp {
-                                       sum += v * atmp[j]
-                               }
-                               x[i] -= sum
-                               if nonUnit {
-                                       x[i] /= atmp[bands]
-                               }
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       bands := k
-                       if i-k < 0 {
-                               bands = i
-                       }
-                       atmp := a[i*lda+k-bands:]
-                       var (
-                               sum float32
-                               jx  int
-                       )
-                       for j := 0; j < bands; j++ {
-                               sum += x[ix-bands*incX+jx] * atmp[j]
-                               jx += incX
-                       }
-                       x[ix] -= sum
-                       if nonUnit {
-                               x[ix] /= atmp[bands]
-                       }
-                       ix += incX
-               }
-               return
-       }
-       // Cases where a is transposed.
-       if ul == blas.Upper {
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               bands := k
-                               if i-k < 0 {
-                                       bands = i
-                               }
-                               var sum float32
-                               for j := 0; j < bands; j++ {
-                                       sum += x[i-bands+j] * a[(i-bands+j)*lda+bands-j]
-                               }
-                               x[i] -= sum
-                               if nonUnit {
-                                       x[i] /= a[i*lda]
-                               }
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       bands := k
-                       if i-k < 0 {
-                               bands = i
-                       }
-                       var (
-                               sum float32
-                               jx  int
-                       )
-                       for j := 0; j < bands; j++ {
-                               sum += x[ix-bands*incX+jx] * a[(i-bands+j)*lda+bands-j]
-                               jx += incX
-                       }
-                       x[ix] -= sum
-                       if nonUnit {
-                               x[ix] /= a[i*lda]
-                       }
-                       ix += incX
-               }
-               return
-       }
-       if incX == 1 {
-               for i := n - 1; i >= 0; i-- {
-                       bands := k
-                       if i+bands >= n {
-                               bands = n - i - 1
-                       }
-                       var sum float32
-                       xtmp := x[i+1 : i+1+bands]
-                       for j, v := range xtmp {
-                               sum += v * a[(i+j+1)*lda+k-j-1]
-                       }
-                       x[i] -= sum
-                       if nonUnit {
-                               x[i] /= a[i*lda+k]
-                       }
-               }
-               return
-       }
-       ix := kx + (n-1)*incX
-       for i := n - 1; i >= 0; i-- {
-               bands := k
-               if i+bands >= n {
-                       bands = n - i - 1
-               }
-               var (
-                       sum float32
-                       jx  int
-               )
-               for j := 0; j < bands; j++ {
-                       sum += x[ix+jx+incX] * a[(i+j+1)*lda+k-j-1]
-                       jx += incX
-               }
-               x[ix] -= sum
-               if nonUnit {
-                       x[ix] /= a[i*lda+k]
-               }
-               ix -= incX
-       }
-}
-
-// Ssbmv performs
-//  y = alpha * A * x + beta * y
-// where A is an n×n symmetric banded matrix, x and y are vectors, and alpha
-// and beta are scalars.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Ssbmv(ul blas.Uplo, n, k int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
-               panic(badY)
-       }
-       if lda*(n-1)+k+1 > len(a) || lda < k+1 {
-               panic(badLdA)
-       }
-
-       // Quick return if possible
-       if n == 0 || (alpha == 0 && beta == 1) {
-               return
-       }
-
-       // Set up indexes
-       lenX := n
-       lenY := n
-       var kx, ky int
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(lenX - 1) * incX
-       }
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(lenY - 1) * incY
-       }
-
-       // First form y = beta * y
-       if incY > 0 {
-               Implementation{}.Sscal(lenY, beta, y, incY)
-       } else {
-               Implementation{}.Sscal(lenY, beta, y, -incY)
-       }
-
-       if alpha == 0 {
-               return
-       }
-
-       if ul == blas.Upper {
-               if incX == 1 {
-                       iy := ky
-                       for i := 0; i < n; i++ {
-                               atmp := a[i*lda:]
-                               tmp := alpha * x[i]
-                               sum := tmp * atmp[0]
-                               u := min(k, n-i-1)
-                               jy := incY
-                               for j := 1; j <= u; j++ {
-                                       v := atmp[j]
-                                       sum += alpha * x[i+j] * v
-                                       y[iy+jy] += tmp * v
-                                       jy += incY
-                               }
-                               y[iy] += sum
-                               iy += incY
-                       }
-                       return
-               }
-               ix := kx
-               iy := ky
-               for i := 0; i < n; i++ {
-                       atmp := a[i*lda:]
-                       tmp := alpha * x[ix]
-                       sum := tmp * atmp[0]
-                       u := min(k, n-i-1)
-                       jx := incX
-                       jy := incY
-                       for j := 1; j <= u; j++ {
-                               v := atmp[j]
-                               sum += alpha * x[ix+jx] * v
-                               y[iy+jy] += tmp * v
-                               jx += incX
-                               jy += incY
-                       }
-                       y[iy] += sum
-                       ix += incX
-                       iy += incY
-               }
-               return
-       }
-
-       // Casses where a has bands below the diagonal.
-       if incX == 1 {
-               iy := ky
-               for i := 0; i < n; i++ {
-                       l := max(0, k-i)
-                       tmp := alpha * x[i]
-                       jy := l * incY
-                       atmp := a[i*lda:]
-                       for j := l; j < k; j++ {
-                               v := atmp[j]
-                               y[iy] += alpha * v * x[i-k+j]
-                               y[iy-k*incY+jy] += tmp * v
-                               jy += incY
-                       }
-                       y[iy] += tmp * atmp[k]
-                       iy += incY
-               }
-               return
-       }
-       ix := kx
-       iy := ky
-       for i := 0; i < n; i++ {
-               l := max(0, k-i)
-               tmp := alpha * x[ix]
-               jx := l * incX
-               jy := l * incY
-               atmp := a[i*lda:]
-               for j := l; j < k; j++ {
-                       v := atmp[j]
-                       y[iy] += alpha * v * x[ix-k*incX+jx]
-                       y[iy-k*incY+jy] += tmp * v
-                       jx += incX
-                       jy += incY
-               }
-               y[iy] += tmp * atmp[k]
-               ix += incX
-               iy += incY
-       }
-}
-
-// Ssyr performs the rank-one update
-//  a += alpha * x * x^T
-// where a is an n×n symmetric matrix, and x is a vector.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Ssyr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32, lda int) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if lda*(n-1)+n > len(a) || lda < max(1, n) {
-               panic(badLdA)
-       }
-       if alpha == 0 || n == 0 {
-               return
-       }
-
-       lenX := n
-       var kx int
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(lenX - 1) * incX
-       }
-       if ul == blas.Upper {
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               tmp := x[i] * alpha
-                               if tmp != 0 {
-                                       atmp := a[i*lda+i : i*lda+n]
-                                       xtmp := x[i:n]
-                                       for j, v := range xtmp {
-                                               atmp[j] += v * tmp
-                                       }
-                               }
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       tmp := x[ix] * alpha
-                       if tmp != 0 {
-                               jx := ix
-                               atmp := a[i*lda:]
-                               for j := i; j < n; j++ {
-                                       atmp[j] += x[jx] * tmp
-                                       jx += incX
-                               }
-                       }
-                       ix += incX
-               }
-               return
-       }
-       // Cases where a is lower triangular.
-       if incX == 1 {
-               for i := 0; i < n; i++ {
-                       tmp := x[i] * alpha
-                       if tmp != 0 {
-                               atmp := a[i*lda:]
-                               xtmp := x[:i+1]
-                               for j, v := range xtmp {
-                                       atmp[j] += tmp * v
-                               }
-                       }
-               }
-               return
-       }
-       ix := kx
-       for i := 0; i < n; i++ {
-               tmp := x[ix] * alpha
-               if tmp != 0 {
-                       atmp := a[i*lda:]
-                       jx := kx
-                       for j := 0; j < i+1; j++ {
-                               atmp[j] += tmp * x[jx]
-                               jx += incX
-                       }
-               }
-               ix += incX
-       }
-}
-
-// Ssyr2 performs the symmetric rank-two update
-//  A += alpha * x * y^T + alpha * y * x^T
-// where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Ssyr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
-               panic(badY)
-       }
-       if lda*(n-1)+n > len(a) || lda < max(1, n) {
-               panic(badLdA)
-       }
-       if alpha == 0 {
-               return
-       }
-
-       var ky, kx int
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(n - 1) * incY
-       }
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(n - 1) * incX
-       }
-       if ul == blas.Upper {
-               if incX == 1 && incY == 1 {
-                       for i := 0; i < n; i++ {
-                               xi := x[i]
-                               yi := y[i]
-                               atmp := a[i*lda:]
-                               for j := i; j < n; j++ {
-                                       atmp[j] += alpha * (xi*y[j] + x[j]*yi)
-                               }
-                       }
-                       return
-               }
-               ix := kx
-               iy := ky
-               for i := 0; i < n; i++ {
-                       jx := kx + i*incX
-                       jy := ky + i*incY
-                       xi := x[ix]
-                       yi := y[iy]
-                       atmp := a[i*lda:]
-                       for j := i; j < n; j++ {
-                               atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
-                               jx += incX
-                               jy += incY
-                       }
-                       ix += incX
-                       iy += incY
-               }
-               return
-       }
-       if incX == 1 && incY == 1 {
-               for i := 0; i < n; i++ {
-                       xi := x[i]
-                       yi := y[i]
-                       atmp := a[i*lda:]
-                       for j := 0; j <= i; j++ {
-                               atmp[j] += alpha * (xi*y[j] + x[j]*yi)
-                       }
-               }
-               return
-       }
-       ix := kx
-       iy := ky
-       for i := 0; i < n; i++ {
-               jx := kx
-               jy := ky
-               xi := x[ix]
-               yi := y[iy]
-               atmp := a[i*lda:]
-               for j := 0; j <= i; j++ {
-                       atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
-                       jx += incX
-                       jy += incY
-               }
-               ix += incX
-               iy += incY
-       }
-}
-
-// Stpsv solves
-//  A * x = b if tA == blas.NoTrans
-//  A^T * x = b if tA == blas.Trans or blas.ConjTrans
-// where A is an n×n triangular matrix in packed format and x is a vector.
-// At entry to the function, x contains the values of b, and the result is
-// stored in place into x.
-//
-// No test for singularity or near-singularity is included in this
-// routine. Such tests must be performed before calling this routine.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Stpsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int) {
-       // Verify inputs
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
-               panic(badTranspose)
-       }
-       if d != blas.NonUnit && d != blas.Unit {
-               panic(badDiag)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if len(ap) < (n*(n+1))/2 {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if n == 0 {
-               return
-       }
-       var kx int
-       if incX <= 0 {
-               kx = -(n - 1) * incX
-       }
-
-       nonUnit := d == blas.NonUnit
-       var offset int // Offset is the index of (i,i)
-       if tA == blas.NoTrans {
-               if ul == blas.Upper {
-                       offset = n*(n+1)/2 - 1
-                       if incX == 1 {
-                               for i := n - 1; i >= 0; i-- {
-                                       atmp := ap[offset+1 : offset+n-i]
-                                       xtmp := x[i+1:]
-                                       var sum float32
-                                       for j, v := range atmp {
-                                               sum += v * xtmp[j]
-                                       }
-                                       x[i] -= sum
-                                       if nonUnit {
-                                               x[i] /= ap[offset]
-                                       }
-                                       offset -= n - i + 1
-                               }
-                               return
-                       }
-                       ix := kx + (n-1)*incX
-                       for i := n - 1; i >= 0; i-- {
-                               atmp := ap[offset+1 : offset+n-i]
-                               jx := kx + (i+1)*incX
-                               var sum float32
-                               for _, v := range atmp {
-                                       sum += v * x[jx]
-                                       jx += incX
-                               }
-                               x[ix] -= sum
-                               if nonUnit {
-                                       x[ix] /= ap[offset]
-                               }
-                               ix -= incX
-                               offset -= n - i + 1
-                       }
-                       return
-               }
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               atmp := ap[offset-i : offset]
-                               var sum float32
-                               for j, v := range atmp {
-                                       sum += v * x[j]
-                               }
-                               x[i] -= sum
-                               if nonUnit {
-                                       x[i] /= ap[offset]
-                               }
-                               offset += i + 2
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       jx := kx
-                       atmp := ap[offset-i : offset]
-                       var sum float32
-                       for _, v := range atmp {
-                               sum += v * x[jx]
-                               jx += incX
-                       }
-                       x[ix] -= sum
-                       if nonUnit {
-                               x[ix] /= ap[offset]
-                       }
-                       ix += incX
-                       offset += i + 2
-               }
-               return
-       }
-       // Cases where ap is transposed.
-       if ul == blas.Upper {
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               if nonUnit {
-                                       x[i] /= ap[offset]
-                               }
-                               xi := x[i]
-                               atmp := ap[offset+1 : offset+n-i]
-                               xtmp := x[i+1:]
-                               for j, v := range atmp {
-                                       xtmp[j] -= v * xi
-                               }
-                               offset += n - i
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       if nonUnit {
-                               x[ix] /= ap[offset]
-                       }
-                       xix := x[ix]
-                       atmp := ap[offset+1 : offset+n-i]
-                       jx := kx + (i+1)*incX
-                       for _, v := range atmp {
-                               x[jx] -= v * xix
-                               jx += incX
-                       }
-                       ix += incX
-                       offset += n - i
-               }
-               return
-       }
-       if incX == 1 {
-               offset = n*(n+1)/2 - 1
-               for i := n - 1; i >= 0; i-- {
-                       if nonUnit {
-                               x[i] /= ap[offset]
-                       }
-                       xi := x[i]
-                       atmp := ap[offset-i : offset]
-                       for j, v := range atmp {
-                               x[j] -= v * xi
-                       }
-                       offset -= i + 1
-               }
-               return
-       }
-       ix := kx + (n-1)*incX
-       offset = n*(n+1)/2 - 1
-       for i := n - 1; i >= 0; i-- {
-               if nonUnit {
-                       x[ix] /= ap[offset]
-               }
-               xix := x[ix]
-               atmp := ap[offset-i : offset]
-               jx := kx
-               for _, v := range atmp {
-                       x[jx] -= v * xix
-                       jx += incX
-               }
-               ix -= incX
-               offset -= i + 1
-       }
-}
-
-// Sspmv performs
-//    y = alpha * A * x + beta * y,
-// where A is an n×n symmetric matrix in packed format, x and y are vectors
-// and alpha and beta are scalars.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Sspmv(ul blas.Uplo, n int, alpha float32, a []float32, x []float32, incX int, beta float32, y []float32, incY int) {
-       // Verify inputs
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if len(a) < (n*(n+1))/2 {
-               panic(badLdA)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
-               panic(badY)
-       }
-       // Quick return if possible
-       if n == 0 || (alpha == 0 && beta == 1) {
-               return
-       }
-
-       // Set up start points
-       var kx, ky int
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(n - 1) * incX
-       }
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(n - 1) * incY
-       }
-
-       // Form y = beta * y
-       if beta != 1 {
-               if incY > 0 {
-                       Implementation{}.Sscal(n, beta, y, incY)
-               } else {
-                       Implementation{}.Sscal(n, beta, y, -incY)
-               }
-       }
-
-       if alpha == 0 {
-               return
-       }
-
-       if n == 1 {
-               y[0] += alpha * a[0] * x[0]
-               return
-       }
-       var offset int // Offset is the index of (i,i).
-       if ul == blas.Upper {
-               if incX == 1 {
-                       iy := ky
-                       for i := 0; i < n; i++ {
-                               xv := x[i] * alpha
-                               sum := a[offset] * x[i]
-                               atmp := a[offset+1 : offset+n-i]
-                               xtmp := x[i+1:]
-                               jy := ky + (i+1)*incY
-                               for j, v := range atmp {
-                                       sum += v * xtmp[j]
-                                       y[jy] += v * xv
-                                       jy += incY
-                               }
-                               y[iy] += alpha * sum
-                               iy += incY
-                               offset += n - i
-                       }
-                       return
-               }
-               ix := kx
-               iy := ky
-               for i := 0; i < n; i++ {
-                       xv := x[ix] * alpha
-                       sum := a[offset] * x[ix]
-                       atmp := a[offset+1 : offset+n-i]
-                       jx := kx + (i+1)*incX
-                       jy := ky + (i+1)*incY
-                       for _, v := range atmp {
-                               sum += v * x[jx]
-                               y[jy] += v * xv
-                               jx += incX
-                               jy += incY
-                       }
-                       y[iy] += alpha * sum
-                       ix += incX
-                       iy += incY
-                       offset += n - i
-               }
-               return
-       }
-       if incX == 1 {
-               iy := ky
-               for i := 0; i < n; i++ {
-                       xv := x[i] * alpha
-                       atmp := a[offset-i : offset]
-                       jy := ky
-                       var sum float32
-                       for j, v := range atmp {
-                               sum += v * x[j]
-                               y[jy] += v * xv
-                               jy += incY
-                       }
-                       sum += a[offset] * x[i]
-                       y[iy] += alpha * sum
-                       iy += incY
-                       offset += i + 2
-               }
-               return
-       }
-       ix := kx
-       iy := ky
-       for i := 0; i < n; i++ {
-               xv := x[ix] * alpha
-               atmp := a[offset-i : offset]
-               jx := kx
-               jy := ky
-               var sum float32
-               for _, v := range atmp {
-                       sum += v * x[jx]
-                       y[jy] += v * xv
-                       jx += incX
-                       jy += incY
-               }
-
-               sum += a[offset] * x[ix]
-               y[iy] += alpha * sum
-               ix += incX
-               iy += incY
-               offset += i + 2
-       }
-}
-
-// Sspr computes the rank-one operation
-//  a += alpha * x * x^T
-// where a is an n×n symmetric matrix in packed format, x is a vector, and
-// alpha is a scalar.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Sspr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if len(a) < (n*(n+1))/2 {
-               panic(badLdA)
-       }
-       if alpha == 0 || n == 0 {
-               return
-       }
-       lenX := n
-       var kx int
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(lenX - 1) * incX
-       }
-       var offset int // Offset is the index of (i,i).
-       if ul == blas.Upper {
-               if incX == 1 {
-                       for i := 0; i < n; i++ {
-                               atmp := a[offset:]
-                               xv := alpha * x[i]
-                               xtmp := x[i:n]
-                               for j, v := range xtmp {
-                                       atmp[j] += xv * v
-                               }
-                               offset += n - i
-                       }
-                       return
-               }
-               ix := kx
-               for i := 0; i < n; i++ {
-                       jx := kx + i*incX
-                       atmp := a[offset:]
-                       xv := alpha * x[ix]
-                       for j := 0; j < n-i; j++ {
-                               atmp[j] += xv * x[jx]
-                               jx += incX
-                       }
-                       ix += incX
-                       offset += n - i
-               }
-               return
-       }
-       if incX == 1 {
-               for i := 0; i < n; i++ {
-                       atmp := a[offset-i:]
-                       xv := alpha * x[i]
-                       xtmp := x[:i+1]
-                       for j, v := range xtmp {
-                               atmp[j] += xv * v
-                       }
-                       offset += i + 2
-               }
-               return
-       }
-       ix := kx
-       for i := 0; i < n; i++ {
-               jx := kx
-               atmp := a[offset-i:]
-               xv := alpha * x[ix]
-               for j := 0; j <= i; j++ {
-                       atmp[j] += xv * x[jx]
-                       jx += incX
-               }
-               ix += incX
-               offset += i + 2
-       }
-}
-
-// Sspr2 performs the symmetric rank-2 update
-//  A += alpha * x * y^T + alpha * y * x^T,
-// where A is an n×n symmetric matrix in packed format, x and y are vectors,
-// and alpha is a scalar.
-//
-// Float32 implementations are autogenerated and not directly tested.
-func (Implementation) Sspr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, ap []float32) {
-       if ul != blas.Lower && ul != blas.Upper {
-               panic(badUplo)
-       }
-       if n < 0 {
-               panic(nLT0)
-       }
-       if incX == 0 {
-               panic(zeroIncX)
-       }
-       if incY == 0 {
-               panic(zeroIncY)
-       }
-       if (incX > 0 && (n-1)*incX >= len(x)) || (incX < 0 && (1-n)*incX >= len(x)) {
-               panic(badX)
-       }
-       if (incY > 0 && (n-1)*incY >= len(y)) || (incY < 0 && (1-n)*incY >= len(y)) {
-               panic(badY)
-       }
-       if len(ap) < (n*(n+1))/2 {
-               panic(badLdA)
-       }
-       if alpha == 0 {
-               return
-       }
-       var ky, kx int
-       if incY > 0 {
-               ky = 0
-       } else {
-               ky = -(n - 1) * incY
-       }
-       if incX > 0 {
-               kx = 0
-       } else {
-               kx = -(n - 1) * incX
-       }
-       var offset int // Offset is the index of (i,i).
-       if ul == blas.Upper {
-               if incX == 1 && incY == 1 {
-                       for i := 0; i < n; i++ {
-                               atmp := ap[offset:]
-                               xi := x[i]
-                               yi := y[i]
-                               xtmp := x[i:n]
-                               ytmp := y[i:n]
-                               for j, v := range xtmp {
-                                       atmp[j] += alpha * (xi*ytmp[j] + v*yi)
-                               }
-                               offset += n - i
-                       }
-                       return
-               }
-               ix := kx
-               iy := ky
-               for i := 0; i < n; i++ {
-                       jx := kx + i*incX
-                       jy := ky + i*incY
-                       atmp := ap[offset:]
-                       xi := x[ix]
-                       yi := y[iy]
-                       for j := 0; j < n-i; j++ {
-                               atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
-                               jx += incX
-                               jy += incY
-                       }
-                       ix += incX
-                       iy += incY
-                       offset += n - i
-               }
-               return
-       }
-       if incX == 1 && incY == 1 {
-               for i := 0; i < n; i++ {
-                       atmp := ap[offset-i:]
-                       xi := x[i]
-                       yi := y[i]
-                       xtmp := x[:i+1]
-                       for j, v := range xtmp {
-                               atmp[j] += alpha * (xi*y[j] + v*yi)
-                       }
-                       offset += i + 2
-               }
-               return
-       }
-       ix := kx
-       iy := ky
-       for i := 0; i < n; i++ {
-               jx := kx
-               jy := ky
-               atmp := ap[offset-i:]
-               for j := 0; j <= i; j++ {
-                       atmp[j] += alpha * (x[ix]*y[jy] + x[jx]*y[iy])
-                       jx += incX
-                       jy += incY
-               }
-               ix += incX
-               iy += incY
-               offset += i + 2
-       }
-}