OSDN Git Service

Thanos did someting
[bytom/vapor.git] / vendor / gonum.org / v1 / gonum / lapack / gonum / dlahqr.go
diff --git a/vendor/gonum.org/v1/gonum/lapack/gonum/dlahqr.go b/vendor/gonum.org/v1/gonum/lapack/gonum/dlahqr.go
deleted file mode 100644 (file)
index 66330ab..0000000
+++ /dev/null
@@ -1,423 +0,0 @@
-// Copyright ©2016 The Gonum Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package gonum
-
-import (
-       "math"
-
-       "gonum.org/v1/gonum/blas/blas64"
-)
-
-// Dlahqr computes the eigenvalues and Schur factorization of a block of an n×n
-// upper Hessenberg matrix H, using the double-shift/single-shift QR algorithm.
-//
-// h and ldh represent the matrix H. Dlahqr works primarily with the Hessenberg
-// submatrix H[ilo:ihi+1,ilo:ihi+1], but applies transformations to all of H if
-// wantt is true. It is assumed that H[ihi+1:n,ihi+1:n] is already upper
-// quasi-triangular, although this is not checked.
-//
-// It must hold that
-//  0 <= ilo <= max(0,ihi), and ihi < n,
-// and that
-//  H[ilo,ilo-1] == 0,  if ilo > 0,
-// otherwise Dlahqr will panic.
-//
-// If unconverged is zero on return, wr[ilo:ihi+1] and wi[ilo:ihi+1] will contain
-// respectively the real and imaginary parts of the computed eigenvalues ilo
-// to ihi. If two eigenvalues are computed as a complex conjugate pair, they are
-// stored in consecutive elements of wr and wi, say the i-th and (i+1)th, with
-// wi[i] > 0 and wi[i+1] < 0. If wantt is true, the eigenvalues are stored in
-// the same order as on the diagonal of the Schur form returned in H, with
-// wr[i] = H[i,i], and, if H[i:i+2,i:i+2] is a 2×2 diagonal block,
-// wi[i] = sqrt(abs(H[i+1,i]*H[i,i+1])) and wi[i+1] = -wi[i].
-//
-// wr and wi must have length ihi+1.
-//
-// z and ldz represent an n×n matrix Z. If wantz is true, the transformations
-// will be applied to the submatrix Z[iloz:ihiz+1,ilo:ihi+1] and it must hold that
-//  0 <= iloz <= ilo, and ihi <= ihiz < n.
-// If wantz is false, z is not referenced.
-//
-// unconverged indicates whether Dlahqr computed all the eigenvalues ilo to ihi
-// in a total of 30 iterations per eigenvalue.
-//
-// If unconverged is zero, all the eigenvalues ilo to ihi have been computed and
-// will be stored on return in wr[ilo:ihi+1] and wi[ilo:ihi+1].
-//
-// If unconverged is zero and wantt is true, H[ilo:ihi+1,ilo:ihi+1] will be
-// overwritten on return by upper quasi-triangular full Schur form with any
-// 2×2 diagonal blocks in standard form.
-//
-// If unconverged is zero and if wantt is false, the contents of h on return is
-// unspecified.
-//
-// If unconverged is positive, some eigenvalues have not converged, and
-// wr[unconverged:ihi+1] and wi[unconverged:ihi+1] contain those eigenvalues
-// which have been successfully computed.
-//
-// If unconverged is positive and wantt is true, then on return
-//  (initial H)*U = U*(final H),   (*)
-// where U is an orthogonal matrix. The final H is upper Hessenberg and
-// H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular.
-//
-// If unconverged is positive and wantt is false, on return the remaining
-// unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix
-// H[ilo:unconverged,ilo:unconverged].
-//
-// If unconverged is positive and wantz is true, then on return
-//  (final Z) = (initial Z)*U,
-// where U is the orthogonal matrix in (*) regardless of the value of wantt.
-//
-// Dlahqr is an internal routine. It is exported for testing purposes.
-func (impl Implementation) Dlahqr(wantt, wantz bool, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, iloz, ihiz int, z []float64, ldz int) (unconverged int) {
-       checkMatrix(n, n, h, ldh)
-       switch {
-       case ilo < 0 || max(0, ihi) < ilo:
-               panic(badIlo)
-       case n <= ihi:
-               panic(badIhi)
-       case len(wr) != ihi+1:
-               panic("lapack: bad length of wr")
-       case len(wi) != ihi+1:
-               panic("lapack: bad length of wi")
-       case ilo > 0 && h[ilo*ldh+ilo-1] != 0:
-               panic("lapack: block is not isolated")
-       }
-       if wantz {
-               checkMatrix(n, n, z, ldz)
-               switch {
-               case iloz < 0 || ilo < iloz:
-                       panic("lapack: iloz out of range")
-               case ihiz < ihi || n <= ihiz:
-                       panic("lapack: ihiz out of range")
-               }
-       }
-
-       // Quick return if possible.
-       if n == 0 {
-               return 0
-       }
-       if ilo == ihi {
-               wr[ilo] = h[ilo*ldh+ilo]
-               wi[ilo] = 0
-               return 0
-       }
-
-       // Clear out the trash.
-       for j := ilo; j < ihi-2; j++ {
-               h[(j+2)*ldh+j] = 0
-               h[(j+3)*ldh+j] = 0
-       }
-       if ilo <= ihi-2 {
-               h[ihi*ldh+ihi-2] = 0
-       }
-
-       nh := ihi - ilo + 1
-       nz := ihiz - iloz + 1
-
-       // Set machine-dependent constants for the stopping criterion.
-       ulp := dlamchP
-       smlnum := float64(nh) / ulp * dlamchS
-
-       // i1 and i2 are the indices of the first row and last column of H to
-       // which transformations must be applied. If eigenvalues only are being
-       // computed, i1 and i2 are set inside the main loop.
-       var i1, i2 int
-       if wantt {
-               i1 = 0
-               i2 = n - 1
-       }
-
-       itmax := 30 * max(10, nh) // Total number of QR iterations allowed.
-
-       // The main loop begins here. i is the loop index and decreases from ihi
-       // to ilo in steps of 1 or 2. Each iteration of the loop works with the
-       // active submatrix in rows and columns l to i. Eigenvalues i+1 to ihi
-       // have already converged. Either l = ilo or H[l,l-1] is negligible so
-       // that the matrix splits.
-       bi := blas64.Implementation()
-       i := ihi
-       for i >= ilo {
-               l := ilo
-
-               // Perform QR iterations on rows and columns ilo to i until a
-               // submatrix of order 1 or 2 splits off at the bottom because a
-               // subdiagonal element has become negligible.
-               converged := false
-               for its := 0; its <= itmax; its++ {
-                       // Look for a single small subdiagonal element.
-                       var k int
-                       for k = i; k > l; k-- {
-                               if math.Abs(h[k*ldh+k-1]) <= smlnum {
-                                       break
-                               }
-                               tst := math.Abs(h[(k-1)*ldh+k-1]) + math.Abs(h[k*ldh+k])
-                               if tst == 0 {
-                                       if k-2 >= ilo {
-                                               tst += math.Abs(h[(k-1)*ldh+k-2])
-                                       }
-                                       if k+1 <= ihi {
-                                               tst += math.Abs(h[(k+1)*ldh+k])
-                                       }
-                               }
-                               // The following is a conservative small
-                               // subdiagonal deflation criterion due to Ahues
-                               // & Tisseur (LAWN 122, 1997). It has better
-                               // mathematical foundation and improves accuracy
-                               // in some cases.
-                               if math.Abs(h[k*ldh+k-1]) <= ulp*tst {
-                                       ab := math.Max(math.Abs(h[k*ldh+k-1]), math.Abs(h[(k-1)*ldh+k]))
-                                       ba := math.Min(math.Abs(h[k*ldh+k-1]), math.Abs(h[(k-1)*ldh+k]))
-                                       aa := math.Max(math.Abs(h[k*ldh+k]), math.Abs(h[(k-1)*ldh+k-1]-h[k*ldh+k]))
-                                       bb := math.Min(math.Abs(h[k*ldh+k]), math.Abs(h[(k-1)*ldh+k-1]-h[k*ldh+k]))
-                                       s := aa + ab
-                                       if ab/s*ba <= math.Max(smlnum, aa/s*bb*ulp) {
-                                               break
-                                       }
-                               }
-                       }
-                       l = k
-                       if l > ilo {
-                               // H[l,l-1] is negligible.
-                               h[l*ldh+l-1] = 0
-                       }
-                       if l >= i-1 {
-                               // Break the loop because a submatrix of order 1
-                               // or 2 has split off.
-                               converged = true
-                               break
-                       }
-
-                       // Now the active submatrix is in rows and columns l to
-                       // i. If eigenvalues only are being computed, only the
-                       // active submatrix need be transformed.
-                       if !wantt {
-                               i1 = l
-                               i2 = i
-                       }
-
-                       const (
-                               dat1 = 3.0
-                               dat2 = -0.4375
-                       )
-                       var h11, h21, h12, h22 float64
-                       switch its {
-                       case 10: // Exceptional shift.
-                               s := math.Abs(h[(l+1)*ldh+l]) + math.Abs(h[(l+2)*ldh+l+1])
-                               h11 = dat1*s + h[l*ldh+l]
-                               h12 = dat2 * s
-                               h21 = s
-                               h22 = h11
-                       case 20: // Exceptional shift.
-                               s := math.Abs(h[i*ldh+i-1]) + math.Abs(h[(i-1)*ldh+i-2])
-                               h11 = dat1*s + h[i*ldh+i]
-                               h12 = dat2 * s
-                               h21 = s
-                               h22 = h11
-                       default: // Prepare to use Francis' double shift (i.e.,
-                               // 2nd degree generalized Rayleigh quotient).
-                               h11 = h[(i-1)*ldh+i-1]
-                               h21 = h[i*ldh+i-1]
-                               h12 = h[(i-1)*ldh+i]
-                               h22 = h[i*ldh+i]
-                       }
-                       s := math.Abs(h11) + math.Abs(h12) + math.Abs(h21) + math.Abs(h22)
-                       var (
-                               rt1r, rt1i float64
-                               rt2r, rt2i float64
-                       )
-                       if s != 0 {
-                               h11 /= s
-                               h21 /= s
-                               h12 /= s
-                               h22 /= s
-                               tr := (h11 + h22) / 2
-                               det := (h11-tr)*(h22-tr) - h12*h21
-                               rtdisc := math.Sqrt(math.Abs(det))
-                               if det >= 0 {
-                                       // Complex conjugate shifts.
-                                       rt1r = tr * s
-                                       rt2r = rt1r
-                                       rt1i = rtdisc * s
-                                       rt2i = -rt1i
-                               } else {
-                                       // Real shifts (use only one of them).
-                                       rt1r = tr + rtdisc
-                                       rt2r = tr - rtdisc
-                                       if math.Abs(rt1r-h22) <= math.Abs(rt2r-h22) {
-                                               rt1r *= s
-                                               rt2r = rt1r
-                                       } else {
-                                               rt2r *= s
-                                               rt1r = rt2r
-                                       }
-                                       rt1i = 0
-                                       rt2i = 0
-                               }
-                       }
-
-                       // Look for two consecutive small subdiagonal elements.
-                       var m int
-                       var v [3]float64
-                       for m = i - 2; m >= l; m-- {
-                               // Determine the effect of starting the
-                               // double-shift QR iteration at row m, and see
-                               // if this would make H[m,m-1] negligible. The
-                               // following uses scaling to avoid overflows and
-                               // most underflows.
-                               h21s := h[(m+1)*ldh+m]
-                               s := math.Abs(h[m*ldh+m]-rt2r) + math.Abs(rt2i) + math.Abs(h21s)
-                               h21s /= s
-                               v[0] = h21s*h[m*ldh+m+1] + (h[m*ldh+m]-rt1r)*((h[m*ldh+m]-rt2r)/s) - rt2i/s*rt1i
-                               v[1] = h21s * (h[m*ldh+m] + h[(m+1)*ldh+m+1] - rt1r - rt2r)
-                               v[2] = h21s * h[(m+2)*ldh+m+1]
-                               s = math.Abs(v[0]) + math.Abs(v[1]) + math.Abs(v[2])
-                               v[0] /= s
-                               v[1] /= s
-                               v[2] /= s
-                               if m == l {
-                                       break
-                               }
-                               dsum := math.Abs(h[(m-1)*ldh+m-1]) + math.Abs(h[m*ldh+m]) + math.Abs(h[(m+1)*ldh+m+1])
-                               if math.Abs(h[m*ldh+m-1])*(math.Abs(v[1])+math.Abs(v[2])) <= ulp*math.Abs(v[0])*dsum {
-                                       break
-                               }
-                       }
-
-                       // Double-shift QR step.
-                       for k := m; k < i; k++ {
-                               // The first iteration of this loop determines a
-                               // reflection G from the vector V and applies it
-                               // from left and right to H, thus creating a
-                               // non-zero bulge below the subdiagonal.
-                               //
-                               // Each subsequent iteration determines a
-                               // reflection G to restore the Hessenberg form
-                               // in the (k-1)th column, and thus chases the
-                               // bulge one step toward the bottom of the
-                               // active submatrix. nr is the order of G.
-
-                               nr := min(3, i-k+1)
-                               if k > m {
-                                       bi.Dcopy(nr, h[k*ldh+k-1:], ldh, v[:], 1)
-                               }
-                               var t0 float64
-                               v[0], t0 = impl.Dlarfg(nr, v[0], v[1:], 1)
-                               if k > m {
-                                       h[k*ldh+k-1] = v[0]
-                                       h[(k+1)*ldh+k-1] = 0
-                                       if k < i-1 {
-                                               h[(k+2)*ldh+k-1] = 0
-                                       }
-                               } else if m > l {
-                                       // Use the following instead of H[k,k-1] = -H[k,k-1]
-                                       // to avoid a bug when v[1] and v[2] underflow.
-                                       h[k*ldh+k-1] *= 1 - t0
-                               }
-                               t1 := t0 * v[1]
-                               if nr == 3 {
-                                       t2 := t0 * v[2]
-
-                                       // Apply G from the left to transform
-                                       // the rows of the matrix in columns k
-                                       // to i2.
-                                       for j := k; j <= i2; j++ {
-                                               sum := h[k*ldh+j] + v[1]*h[(k+1)*ldh+j] + v[2]*h[(k+2)*ldh+j]
-                                               h[k*ldh+j] -= sum * t0
-                                               h[(k+1)*ldh+j] -= sum * t1
-                                               h[(k+2)*ldh+j] -= sum * t2
-                                       }
-
-                                       // Apply G from the right to transform
-                                       // the columns of the matrix in rows i1
-                                       // to min(k+3,i).
-                                       for j := i1; j <= min(k+3, i); j++ {
-                                               sum := h[j*ldh+k] + v[1]*h[j*ldh+k+1] + v[2]*h[j*ldh+k+2]
-                                               h[j*ldh+k] -= sum * t0
-                                               h[j*ldh+k+1] -= sum * t1
-                                               h[j*ldh+k+2] -= sum * t2
-                                       }
-
-                                       if wantz {
-                                               // Accumulate transformations in the matrix Z.
-                                               for j := iloz; j <= ihiz; j++ {
-                                                       sum := z[j*ldz+k] + v[1]*z[j*ldz+k+1] + v[2]*z[j*ldz+k+2]
-                                                       z[j*ldz+k] -= sum * t0
-                                                       z[j*ldz+k+1] -= sum * t1
-                                                       z[j*ldz+k+2] -= sum * t2
-                                               }
-                                       }
-                               } else if nr == 2 {
-                                       // Apply G from the left to transform
-                                       // the rows of the matrix in columns k
-                                       // to i2.
-                                       for j := k; j <= i2; j++ {
-                                               sum := h[k*ldh+j] + v[1]*h[(k+1)*ldh+j]
-                                               h[k*ldh+j] -= sum * t0
-                                               h[(k+1)*ldh+j] -= sum * t1
-                                       }
-
-                                       // Apply G from the right to transform
-                                       // the columns of the matrix in rows i1
-                                       // to min(k+3,i).
-                                       for j := i1; j <= i; j++ {
-                                               sum := h[j*ldh+k] + v[1]*h[j*ldh+k+1]
-                                               h[j*ldh+k] -= sum * t0
-                                               h[j*ldh+k+1] -= sum * t1
-                                       }
-
-                                       if wantz {
-                                               // Accumulate transformations in the matrix Z.
-                                               for j := iloz; j <= ihiz; j++ {
-                                                       sum := z[j*ldz+k] + v[1]*z[j*ldz+k+1]
-                                                       z[j*ldz+k] -= sum * t0
-                                                       z[j*ldz+k+1] -= sum * t1
-                                               }
-                                       }
-                               }
-                       }
-               }
-
-               if !converged {
-                       // The QR iteration finished without splitting off a
-                       // submatrix of order 1 or 2.
-                       return i + 1
-               }
-
-               if l == i {
-                       // H[i,i-1] is negligible: one eigenvalue has converged.
-                       wr[i] = h[i*ldh+i]
-                       wi[i] = 0
-               } else if l == i-1 {
-                       // H[i-1,i-2] is negligible: a pair of eigenvalues have converged.
-
-                       // Transform the 2×2 submatrix to standard Schur form,
-                       // and compute and store the eigenvalues.
-                       var cs, sn float64
-                       a, b := h[(i-1)*ldh+i-1], h[(i-1)*ldh+i]
-                       c, d := h[i*ldh+i-1], h[i*ldh+i]
-                       a, b, c, d, wr[i-1], wi[i-1], wr[i], wi[i], cs, sn = impl.Dlanv2(a, b, c, d)
-                       h[(i-1)*ldh+i-1], h[(i-1)*ldh+i] = a, b
-                       h[i*ldh+i-1], h[i*ldh+i] = c, d
-
-                       if wantt {
-                               // Apply the transformation to the rest of H.
-                               if i2 > i {
-                                       bi.Drot(i2-i, h[(i-1)*ldh+i+1:], 1, h[i*ldh+i+1:], 1, cs, sn)
-                               }
-                               bi.Drot(i-i1-1, h[i1*ldh+i-1:], ldh, h[i1*ldh+i:], ldh, cs, sn)
-                       }
-
-                       if wantz {
-                               // Apply the transformation to Z.
-                               bi.Drot(nz, z[iloz*ldz+i-1:], ldz, z[iloz*ldz+i:], ldz, cs, sn)
-                       }
-               }
-
-               // Return to start of the main loop with new value of i.
-               i = l - 1
-       }
-       return 0
-}