OSDN Git Service

Hulk did something
[bytom/vapor.git] / vendor / gonum.org / v1 / gonum / lapack / testlapack / dgeev.go
diff --git a/vendor/gonum.org/v1/gonum/lapack/testlapack/dgeev.go b/vendor/gonum.org/v1/gonum/lapack/testlapack/dgeev.go
new file mode 100644 (file)
index 0000000..dfaa283
--- /dev/null
@@ -0,0 +1,736 @@
+// Copyright ©2016 The Gonum Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package testlapack
+
+import (
+       "fmt"
+       "math"
+       "math/cmplx"
+       "strconv"
+       "testing"
+
+       "golang.org/x/exp/rand"
+
+       "gonum.org/v1/gonum/blas"
+       "gonum.org/v1/gonum/blas/blas64"
+       "gonum.org/v1/gonum/floats"
+       "gonum.org/v1/gonum/lapack"
+)
+
+type Dgeever interface {
+       Dgeev(jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, n int, a []float64, lda int,
+               wr, wi []float64, vl []float64, ldvl int, vr []float64, ldvr int, work []float64, lwork int) int
+}
+
+type dgeevTest struct {
+       a      blas64.General
+       evWant []complex128 // If nil, the eigenvalues are not known.
+       valTol float64      // Tolerance for eigenvalue checks.
+       vecTol float64      // Tolerance for eigenvector checks.
+}
+
+func DgeevTest(t *testing.T, impl Dgeever) {
+       rnd := rand.New(rand.NewSource(1))
+
+       for i, test := range []dgeevTest{
+               {
+                       a:      A123{}.Matrix(),
+                       evWant: A123{}.Eigenvalues(),
+               },
+
+               dgeevTestForAntisymRandom(10, rnd),
+               dgeevTestForAntisymRandom(11, rnd),
+               dgeevTestForAntisymRandom(50, rnd),
+               dgeevTestForAntisymRandom(51, rnd),
+               dgeevTestForAntisymRandom(100, rnd),
+               dgeevTestForAntisymRandom(101, rnd),
+
+               {
+                       a:      Circulant(2).Matrix(),
+                       evWant: Circulant(2).Eigenvalues(),
+               },
+               {
+                       a:      Circulant(3).Matrix(),
+                       evWant: Circulant(3).Eigenvalues(),
+               },
+               {
+                       a:      Circulant(4).Matrix(),
+                       evWant: Circulant(4).Eigenvalues(),
+               },
+               {
+                       a:      Circulant(5).Matrix(),
+                       evWant: Circulant(5).Eigenvalues(),
+               },
+               {
+                       a:      Circulant(10).Matrix(),
+                       evWant: Circulant(10).Eigenvalues(),
+               },
+               {
+                       a:      Circulant(15).Matrix(),
+                       evWant: Circulant(15).Eigenvalues(),
+                       valTol: 1e-12,
+               },
+               {
+                       a:      Circulant(30).Matrix(),
+                       evWant: Circulant(30).Eigenvalues(),
+                       valTol: 1e-11,
+                       vecTol: 1e-12,
+               },
+               {
+                       a:      Circulant(50).Matrix(),
+                       evWant: Circulant(50).Eigenvalues(),
+                       valTol: 1e-11,
+                       vecTol: 1e-12,
+               },
+               {
+                       a:      Circulant(101).Matrix(),
+                       evWant: Circulant(101).Eigenvalues(),
+                       valTol: 1e-10,
+                       vecTol: 1e-11,
+               },
+               {
+                       a:      Circulant(150).Matrix(),
+                       evWant: Circulant(150).Eigenvalues(),
+                       valTol: 1e-9,
+                       vecTol: 1e-10,
+               },
+
+               {
+                       a:      Clement(2).Matrix(),
+                       evWant: Clement(2).Eigenvalues(),
+               },
+               {
+                       a:      Clement(3).Matrix(),
+                       evWant: Clement(3).Eigenvalues(),
+               },
+               {
+                       a:      Clement(4).Matrix(),
+                       evWant: Clement(4).Eigenvalues(),
+               },
+               {
+                       a:      Clement(5).Matrix(),
+                       evWant: Clement(5).Eigenvalues(),
+               },
+               {
+                       a:      Clement(10).Matrix(),
+                       evWant: Clement(10).Eigenvalues(),
+               },
+               {
+                       a:      Clement(15).Matrix(),
+                       evWant: Clement(15).Eigenvalues(),
+               },
+               {
+                       a:      Clement(30).Matrix(),
+                       evWant: Clement(30).Eigenvalues(),
+                       valTol: 1e-11,
+               },
+               {
+                       a:      Clement(50).Matrix(),
+                       evWant: Clement(50).Eigenvalues(),
+                       valTol: 1e-7,
+                       vecTol: 1e-11,
+               },
+
+               {
+                       a:      Creation(2).Matrix(),
+                       evWant: Creation(2).Eigenvalues(),
+               },
+               {
+                       a:      Creation(3).Matrix(),
+                       evWant: Creation(3).Eigenvalues(),
+               },
+               {
+                       a:      Creation(4).Matrix(),
+                       evWant: Creation(4).Eigenvalues(),
+               },
+               {
+                       a:      Creation(5).Matrix(),
+                       evWant: Creation(5).Eigenvalues(),
+               },
+               {
+                       a:      Creation(10).Matrix(),
+                       evWant: Creation(10).Eigenvalues(),
+               },
+               {
+                       a:      Creation(15).Matrix(),
+                       evWant: Creation(15).Eigenvalues(),
+               },
+               {
+                       a:      Creation(30).Matrix(),
+                       evWant: Creation(30).Eigenvalues(),
+               },
+               {
+                       a:      Creation(50).Matrix(),
+                       evWant: Creation(50).Eigenvalues(),
+               },
+               {
+                       a:      Creation(101).Matrix(),
+                       evWant: Creation(101).Eigenvalues(),
+               },
+               {
+                       a:      Creation(150).Matrix(),
+                       evWant: Creation(150).Eigenvalues(),
+               },
+
+               {
+                       a:      Diagonal(0).Matrix(),
+                       evWant: Diagonal(0).Eigenvalues(),
+               },
+               {
+                       a:      Diagonal(10).Matrix(),
+                       evWant: Diagonal(10).Eigenvalues(),
+               },
+               {
+                       a:      Diagonal(50).Matrix(),
+                       evWant: Diagonal(50).Eigenvalues(),
+               },
+               {
+                       a:      Diagonal(151).Matrix(),
+                       evWant: Diagonal(151).Eigenvalues(),
+               },
+
+               {
+                       a:      Downshift(2).Matrix(),
+                       evWant: Downshift(2).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(3).Matrix(),
+                       evWant: Downshift(3).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(4).Matrix(),
+                       evWant: Downshift(4).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(5).Matrix(),
+                       evWant: Downshift(5).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(10).Matrix(),
+                       evWant: Downshift(10).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(15).Matrix(),
+                       evWant: Downshift(15).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(30).Matrix(),
+                       evWant: Downshift(30).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(50).Matrix(),
+                       evWant: Downshift(50).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(101).Matrix(),
+                       evWant: Downshift(101).Eigenvalues(),
+               },
+               {
+                       a:      Downshift(150).Matrix(),
+                       evWant: Downshift(150).Eigenvalues(),
+               },
+
+               {
+                       a:      Fibonacci(2).Matrix(),
+                       evWant: Fibonacci(2).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(3).Matrix(),
+                       evWant: Fibonacci(3).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(4).Matrix(),
+                       evWant: Fibonacci(4).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(5).Matrix(),
+                       evWant: Fibonacci(5).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(10).Matrix(),
+                       evWant: Fibonacci(10).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(15).Matrix(),
+                       evWant: Fibonacci(15).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(30).Matrix(),
+                       evWant: Fibonacci(30).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(50).Matrix(),
+                       evWant: Fibonacci(50).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(101).Matrix(),
+                       evWant: Fibonacci(101).Eigenvalues(),
+               },
+               {
+                       a:      Fibonacci(150).Matrix(),
+                       evWant: Fibonacci(150).Eigenvalues(),
+               },
+
+               {
+                       a:      Gear(2).Matrix(),
+                       evWant: Gear(2).Eigenvalues(),
+               },
+               {
+                       a:      Gear(3).Matrix(),
+                       evWant: Gear(3).Eigenvalues(),
+               },
+               {
+                       a:      Gear(4).Matrix(),
+                       evWant: Gear(4).Eigenvalues(),
+                       valTol: 1e-7,
+               },
+               {
+                       a:      Gear(5).Matrix(),
+                       evWant: Gear(5).Eigenvalues(),
+               },
+               {
+                       a:      Gear(10).Matrix(),
+                       evWant: Gear(10).Eigenvalues(),
+                       valTol: 1e-8,
+               },
+               {
+                       a:      Gear(15).Matrix(),
+                       evWant: Gear(15).Eigenvalues(),
+               },
+               {
+                       a:      Gear(30).Matrix(),
+                       evWant: Gear(30).Eigenvalues(),
+                       valTol: 1e-8,
+               },
+               {
+                       a:      Gear(50).Matrix(),
+                       evWant: Gear(50).Eigenvalues(),
+                       valTol: 1e-8,
+               },
+               {
+                       a:      Gear(101).Matrix(),
+                       evWant: Gear(101).Eigenvalues(),
+               },
+               {
+                       a:      Gear(150).Matrix(),
+                       evWant: Gear(150).Eigenvalues(),
+                       valTol: 1e-8,
+               },
+
+               {
+                       a:      Grcar{N: 10, K: 3}.Matrix(),
+                       evWant: Grcar{N: 10, K: 3}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 10, K: 7}.Matrix(),
+                       evWant: Grcar{N: 10, K: 7}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 11, K: 7}.Matrix(),
+                       evWant: Grcar{N: 11, K: 7}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 50, K: 3}.Matrix(),
+                       evWant: Grcar{N: 50, K: 3}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 51, K: 3}.Matrix(),
+                       evWant: Grcar{N: 51, K: 3}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 50, K: 10}.Matrix(),
+                       evWant: Grcar{N: 50, K: 10}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 51, K: 10}.Matrix(),
+                       evWant: Grcar{N: 51, K: 10}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 50, K: 30}.Matrix(),
+                       evWant: Grcar{N: 50, K: 30}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 150, K: 2}.Matrix(),
+                       evWant: Grcar{N: 150, K: 2}.Eigenvalues(),
+               },
+               {
+                       a:      Grcar{N: 150, K: 148}.Matrix(),
+                       evWant: Grcar{N: 150, K: 148}.Eigenvalues(),
+               },
+
+               {
+                       a:      Hanowa{N: 6, Alpha: 17}.Matrix(),
+                       evWant: Hanowa{N: 6, Alpha: 17}.Eigenvalues(),
+               },
+               {
+                       a:      Hanowa{N: 50, Alpha: -1}.Matrix(),
+                       evWant: Hanowa{N: 50, Alpha: -1}.Eigenvalues(),
+               },
+               {
+                       a:      Hanowa{N: 100, Alpha: -1}.Matrix(),
+                       evWant: Hanowa{N: 100, Alpha: -1}.Eigenvalues(),
+               },
+
+               {
+                       a:      Lesp(2).Matrix(),
+                       evWant: Lesp(2).Eigenvalues(),
+               },
+               {
+                       a:      Lesp(3).Matrix(),
+                       evWant: Lesp(3).Eigenvalues(),
+               },
+               {
+                       a:      Lesp(4).Matrix(),
+                       evWant: Lesp(4).Eigenvalues(),
+               },
+               {
+                       a:      Lesp(5).Matrix(),
+                       evWant: Lesp(5).Eigenvalues(),
+               },
+               {
+                       a:      Lesp(10).Matrix(),
+                       evWant: Lesp(10).Eigenvalues(),
+               },
+               {
+                       a:      Lesp(15).Matrix(),
+                       evWant: Lesp(15).Eigenvalues(),
+               },
+               {
+                       a:      Lesp(30).Matrix(),
+                       evWant: Lesp(30).Eigenvalues(),
+               },
+               {
+                       a:      Lesp(50).Matrix(),
+                       evWant: Lesp(50).Eigenvalues(),
+                       valTol: 1e-12,
+                       vecTol: 1e-12,
+               },
+               {
+                       a:      Lesp(101).Matrix(),
+                       evWant: Lesp(101).Eigenvalues(),
+                       valTol: 1e-12,
+                       vecTol: 1e-12,
+               },
+               {
+                       a:      Lesp(150).Matrix(),
+                       evWant: Lesp(150).Eigenvalues(),
+                       valTol: 1e-12,
+                       vecTol: 1e-12,
+               },
+
+               {
+                       a:      Rutis{}.Matrix(),
+                       evWant: Rutis{}.Eigenvalues(),
+               },
+
+               {
+                       a:      Tris{N: 74, X: 1, Y: -2, Z: 1}.Matrix(),
+                       evWant: Tris{N: 74, X: 1, Y: -2, Z: 1}.Eigenvalues(),
+               },
+               {
+                       a:      Tris{N: 74, X: 1, Y: 2, Z: -3}.Matrix(),
+                       evWant: Tris{N: 74, X: 1, Y: 2, Z: -3}.Eigenvalues(),
+               },
+               {
+                       a:      Tris{N: 75, X: 1, Y: 2, Z: -3}.Matrix(),
+                       evWant: Tris{N: 75, X: 1, Y: 2, Z: -3}.Eigenvalues(),
+               },
+
+               {
+                       a:      Wilk4{}.Matrix(),
+                       evWant: Wilk4{}.Eigenvalues(),
+               },
+               {
+                       a:      Wilk12{}.Matrix(),
+                       evWant: Wilk12{}.Eigenvalues(),
+                       valTol: 1e-7,
+               },
+               {
+                       a:      Wilk20(0).Matrix(),
+                       evWant: Wilk20(0).Eigenvalues(),
+               },
+               {
+                       a:      Wilk20(1e-10).Matrix(),
+                       evWant: Wilk20(1e-10).Eigenvalues(),
+                       valTol: 1e-12,
+                       vecTol: 1e-12,
+               },
+
+               {
+                       a:      Zero(1).Matrix(),
+                       evWant: Zero(1).Eigenvalues(),
+               },
+               {
+                       a:      Zero(10).Matrix(),
+                       evWant: Zero(10).Eigenvalues(),
+               },
+               {
+                       a:      Zero(50).Matrix(),
+                       evWant: Zero(50).Eigenvalues(),
+               },
+               {
+                       a:      Zero(100).Matrix(),
+                       evWant: Zero(100).Eigenvalues(),
+               },
+       } {
+               for _, jobvl := range []lapack.LeftEVJob{lapack.ComputeLeftEV, lapack.None} {
+                       for _, jobvr := range []lapack.RightEVJob{lapack.ComputeRightEV, lapack.None} {
+                               for _, extra := range []int{0, 11} {
+                                       for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
+                                               testDgeev(t, impl, strconv.Itoa(i), test, jobvl, jobvr, extra, wl)
+                                       }
+                               }
+                       }
+               }
+       }
+
+       for _, n := range []int{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 50, 51, 100, 101} {
+               for _, jobvl := range []lapack.LeftEVJob{lapack.ComputeLeftEV, lapack.None} {
+                       for _, jobvr := range []lapack.RightEVJob{lapack.ComputeRightEV, lapack.None} {
+                               for cas := 0; cas < 10; cas++ {
+                                       // Create a block diagonal matrix with
+                                       // random eigenvalues of random multiplicity.
+                                       ev := make([]complex128, n)
+                                       tmat := zeros(n, n, n)
+                                       for i := 0; i < n; {
+                                               re := rnd.NormFloat64()
+                                               if i == n-1 || rnd.Float64() < 0.5 {
+                                                       // Real eigenvalue.
+                                                       nb := rnd.Intn(min(4, n-i)) + 1
+                                                       for k := 0; k < nb; k++ {
+                                                               tmat.Data[i*tmat.Stride+i] = re
+                                                               ev[i] = complex(re, 0)
+                                                               i++
+                                                       }
+                                                       continue
+                                               }
+                                               // Complex eigenvalue.
+                                               im := rnd.NormFloat64()
+                                               nb := rnd.Intn(min(4, (n-i)/2)) + 1
+                                               for k := 0; k < nb; k++ {
+                                                       // 2×2 block for the complex eigenvalue.
+                                                       tmat.Data[i*tmat.Stride+i] = re
+                                                       tmat.Data[(i+1)*tmat.Stride+i+1] = re
+                                                       tmat.Data[(i+1)*tmat.Stride+i] = -im
+                                                       tmat.Data[i*tmat.Stride+i+1] = im
+                                                       ev[i] = complex(re, im)
+                                                       ev[i+1] = complex(re, -im)
+                                                       i += 2
+                                               }
+                                       }
+
+                                       // Compute A = Q T Q^T where Q is an
+                                       // orthogonal matrix.
+                                       q := randomOrthogonal(n, rnd)
+                                       tq := zeros(n, n, n)
+                                       blas64.Gemm(blas.NoTrans, blas.Trans, 1, tmat, q, 0, tq)
+                                       a := zeros(n, n, n)
+                                       blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, tq, 0, a)
+
+                                       test := dgeevTest{
+                                               a:      a,
+                                               evWant: ev,
+                                               valTol: 1e-12,
+                                               vecTol: 1e-7,
+                                       }
+                                       testDgeev(t, impl, "random", test, jobvl, jobvr, 0, optimumWork)
+                               }
+                       }
+               }
+       }
+}
+
+func testDgeev(t *testing.T, impl Dgeever, tc string, test dgeevTest, jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, extra int, wl worklen) {
+       const defaultTol = 1e-12
+       valTol := test.valTol
+       if valTol == 0 {
+               valTol = defaultTol
+       }
+       vecTol := test.vecTol
+       if vecTol == 0 {
+               vecTol = defaultTol
+       }
+
+       a := cloneGeneral(test.a)
+       n := a.Rows
+
+       var vl blas64.General
+       if jobvl == lapack.ComputeLeftEV {
+               vl = nanGeneral(n, n, n)
+       }
+
+       var vr blas64.General
+       if jobvr == lapack.ComputeRightEV {
+               vr = nanGeneral(n, n, n)
+       }
+
+       wr := make([]float64, n)
+       wi := make([]float64, n)
+
+       var lwork int
+       switch wl {
+       case minimumWork:
+               if jobvl == lapack.ComputeLeftEV || jobvr == lapack.ComputeRightEV {
+                       lwork = max(1, 4*n)
+               } else {
+                       lwork = max(1, 3*n)
+               }
+       case mediumWork:
+               work := make([]float64, 1)
+               impl.Dgeev(jobvl, jobvr, n, nil, 1, nil, nil, nil, 1, nil, 1, work, -1)
+               if jobvl == lapack.ComputeLeftEV || jobvr == lapack.ComputeRightEV {
+                       lwork = (int(work[0]) + 4*n) / 2
+               } else {
+                       lwork = (int(work[0]) + 3*n) / 2
+               }
+               lwork = max(1, lwork)
+       case optimumWork:
+               work := make([]float64, 1)
+               impl.Dgeev(jobvl, jobvr, n, nil, 1, nil, nil, nil, 1, nil, 1, work, -1)
+               lwork = int(work[0])
+       }
+       work := make([]float64, lwork)
+
+       first := impl.Dgeev(jobvl, jobvr, n, a.Data, a.Stride, wr, wi,
+               vl.Data, vl.Stride, vr.Data, vr.Stride, work, len(work))
+
+       prefix := fmt.Sprintf("Case #%v: n=%v, jobvl=%v, jobvr=%v, extra=%v, work=%v",
+               tc, n, jobvl, jobvr, extra, wl)
+
+       if !generalOutsideAllNaN(vl) {
+               t.Errorf("%v: out-of-range write to VL", prefix)
+       }
+       if !generalOutsideAllNaN(vr) {
+               t.Errorf("%v: out-of-range write to VR", prefix)
+       }
+
+       if first > 0 {
+               t.Logf("%v: all eigenvalues haven't been computed, first=%v", prefix, first)
+       }
+
+       // Check that conjugate pair eigevalues are ordered correctly.
+       for i := first; i < n; {
+               if wi[i] == 0 {
+                       i++
+                       continue
+               }
+               if wr[i] != wr[i+1] {
+                       t.Errorf("%v: real parts of %vth conjugate pair not equal", prefix, i)
+               }
+               if wi[i] < 0 || wi[i+1] > 0 {
+                       t.Errorf("%v: unexpected ordering of %vth conjugate pair", prefix, i)
+               }
+               i += 2
+       }
+
+       // Check the computed eigenvalues against provided known eigenvalues.
+       if test.evWant != nil {
+               used := make([]bool, n)
+               for i := first; i < n; i++ {
+                       evGot := complex(wr[i], wi[i])
+                       idx := -1
+                       for k, evWant := range test.evWant {
+                               if !used[k] && cmplx.Abs(evWant-evGot) < valTol {
+                                       idx = k
+                                       used[k] = true
+                                       break
+                               }
+                       }
+                       if idx == -1 {
+                               t.Errorf("%v: unexpected eigenvalue %v", prefix, evGot)
+                       }
+               }
+       }
+
+       if first > 0 || (jobvl == lapack.None && jobvr == lapack.None) {
+               // No eigenvectors have been computed.
+               return
+       }
+
+       // Check that the columns of VL and VR are eigenvectors that correspond
+       // to the computed eigenvalues.
+       for k := 0; k < n; {
+               if wi[k] == 0 {
+                       if jobvl == lapack.ComputeLeftEV {
+                               ev := columnOf(vl, k)
+                               if !isLeftEigenvectorOf(test.a, ev, nil, complex(wr[k], 0), vecTol) {
+                                       t.Errorf("%v: VL[:,%v] is not left real eigenvector",
+                                               prefix, k)
+                               }
+
+                               norm := floats.Norm(ev, 2)
+                               if math.Abs(norm-1) >= defaultTol {
+                                       t.Errorf("%v: norm of left real eigenvector %v not equal to 1: got %v",
+                                               prefix, k, norm)
+                               }
+                       }
+                       if jobvr == lapack.ComputeRightEV {
+                               ev := columnOf(vr, k)
+                               if !isRightEigenvectorOf(test.a, ev, nil, complex(wr[k], 0), vecTol) {
+                                       t.Errorf("%v: VR[:,%v] is not right real eigenvector",
+                                               prefix, k)
+                               }
+
+                               norm := floats.Norm(ev, 2)
+                               if math.Abs(norm-1) >= defaultTol {
+                                       t.Errorf("%v: norm of right real eigenvector %v not equal to 1: got %v",
+                                               prefix, k, norm)
+                               }
+                       }
+                       k++
+               } else {
+                       if jobvl == lapack.ComputeLeftEV {
+                               evre := columnOf(vl, k)
+                               evim := columnOf(vl, k+1)
+                               if !isLeftEigenvectorOf(test.a, evre, evim, complex(wr[k], wi[k]), vecTol) {
+                                       t.Errorf("%v: VL[:,%v:%v] is not left complex eigenvector",
+                                               prefix, k, k+1)
+                               }
+                               floats.Scale(-1, evim)
+                               if !isLeftEigenvectorOf(test.a, evre, evim, complex(wr[k+1], wi[k+1]), vecTol) {
+                                       t.Errorf("%v: VL[:,%v:%v] is not left complex eigenvector",
+                                               prefix, k, k+1)
+                               }
+
+                               norm := math.Hypot(floats.Norm(evre, 2), floats.Norm(evim, 2))
+                               if math.Abs(norm-1) > defaultTol {
+                                       t.Errorf("%v: norm of left complex eigenvector %v not equal to 1: got %v",
+                                               prefix, k, norm)
+                               }
+                       }
+                       if jobvr == lapack.ComputeRightEV {
+                               evre := columnOf(vr, k)
+                               evim := columnOf(vr, k+1)
+                               if !isRightEigenvectorOf(test.a, evre, evim, complex(wr[k], wi[k]), vecTol) {
+                                       t.Errorf("%v: VR[:,%v:%v] is not right complex eigenvector",
+                                               prefix, k, k+1)
+                               }
+                               floats.Scale(-1, evim)
+                               if !isRightEigenvectorOf(test.a, evre, evim, complex(wr[k+1], wi[k+1]), vecTol) {
+                                       t.Errorf("%v: VR[:,%v:%v] is not right complex eigenvector",
+                                               prefix, k, k+1)
+                               }
+
+                               norm := math.Hypot(floats.Norm(evre, 2), floats.Norm(evim, 2))
+                               if math.Abs(norm-1) > defaultTol {
+                                       t.Errorf("%v: norm of right complex eigenvector %v not equal to 1: got %v",
+                                               prefix, k, norm)
+                               }
+                       }
+                       // We don't test whether the largest component is real
+                       // because checking it is flaky due to rounding errors.
+
+                       k += 2
+               }
+       }
+}
+
+func dgeevTestForAntisymRandom(n int, rnd *rand.Rand) dgeevTest {
+       a := NewAntisymRandom(n, rnd)
+       return dgeevTest{
+               a:      a.Matrix(),
+               evWant: a.Eigenvalues(),
+       }
+}