OSDN Git Service

Hulk did something
[bytom/vapor.git] / vendor / gonum.org / v1 / gonum / mat / cholesky_test.go
diff --git a/vendor/gonum.org/v1/gonum/mat/cholesky_test.go b/vendor/gonum.org/v1/gonum/mat/cholesky_test.go
new file mode 100644 (file)
index 0000000..65eeed0
--- /dev/null
@@ -0,0 +1,575 @@
+// Copyright ©2013 The Gonum Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package mat
+
+import (
+       "math"
+       "testing"
+
+       "golang.org/x/exp/rand"
+
+       "gonum.org/v1/gonum/blas/testblas"
+       "gonum.org/v1/gonum/floats"
+)
+
+func TestCholesky(t *testing.T) {
+       for _, test := range []struct {
+               a *SymDense
+
+               cond   float64
+               want   *TriDense
+               posdef bool
+       }{
+               {
+                       a: NewSymDense(3, []float64{
+                               4, 1, 1,
+                               0, 2, 3,
+                               0, 0, 6,
+                       }),
+                       cond: 37,
+                       want: NewTriDense(3, true, []float64{
+                               2, 0.5, 0.5,
+                               0, 1.3228756555322954, 2.0788046015507495,
+                               0, 0, 1.195228609334394,
+                       }),
+                       posdef: true,
+               },
+       } {
+               _, n := test.a.Dims()
+               for _, chol := range []*Cholesky{
+                       {},
+                       {chol: NewTriDense(n-1, true, nil)},
+                       {chol: NewTriDense(n, true, nil)},
+                       {chol: NewTriDense(n+1, true, nil)},
+               } {
+                       ok := chol.Factorize(test.a)
+                       if ok != test.posdef {
+                               t.Errorf("unexpected return from Cholesky factorization: got: ok=%t want: ok=%t", ok, test.posdef)
+                       }
+                       fc := DenseCopyOf(chol.chol)
+                       if !Equal(fc, test.want) {
+                               t.Error("incorrect Cholesky factorization")
+                       }
+                       if math.Abs(test.cond-chol.cond) > 1e-13 {
+                               t.Errorf("Condition number mismatch: Want %v, got %v", test.cond, chol.cond)
+                       }
+                       U := chol.UTo(nil)
+                       aCopy := DenseCopyOf(test.a)
+                       var a Dense
+                       a.Mul(U.TTri(), U)
+                       if !EqualApprox(&a, aCopy, 1e-14) {
+                               t.Error("unexpected Cholesky factor product")
+                       }
+
+                       L := chol.LTo(nil)
+                       a.Mul(L, L.TTri())
+                       if !EqualApprox(&a, aCopy, 1e-14) {
+                               t.Error("unexpected Cholesky factor product")
+                       }
+               }
+       }
+}
+
+func TestCholeskySolve(t *testing.T) {
+       for _, test := range []struct {
+               a   *SymDense
+               b   *Dense
+               ans *Dense
+       }{
+               {
+                       a: NewSymDense(2, []float64{
+                               1, 0,
+                               0, 1,
+                       }),
+                       b:   NewDense(2, 1, []float64{5, 6}),
+                       ans: NewDense(2, 1, []float64{5, 6}),
+               },
+               {
+                       a: NewSymDense(3, []float64{
+                               53, 59, 37,
+                               0, 83, 71,
+                               37, 71, 101,
+                       }),
+                       b:   NewDense(3, 1, []float64{5, 6, 7}),
+                       ans: NewDense(3, 1, []float64{0.20745069393718094, -0.17421475529583694, 0.11577794010226464}),
+               },
+       } {
+               var chol Cholesky
+               ok := chol.Factorize(test.a)
+               if !ok {
+                       t.Fatal("unexpected Cholesky factorization failure: not positive definite")
+               }
+
+               var x Dense
+               chol.Solve(&x, test.b)
+               if !EqualApprox(&x, test.ans, 1e-12) {
+                       t.Error("incorrect Cholesky solve solution")
+               }
+
+               var ans Dense
+               ans.Mul(test.a, &x)
+               if !EqualApprox(&ans, test.b, 1e-12) {
+                       t.Error("incorrect Cholesky solve solution product")
+               }
+       }
+}
+
+func TestCholeskySolveChol(t *testing.T) {
+       for _, test := range []struct {
+               a, b *SymDense
+       }{
+               {
+                       a: NewSymDense(2, []float64{
+                               1, 0,
+                               0, 1,
+                       }),
+                       b: NewSymDense(2, []float64{
+                               1, 0,
+                               0, 1,
+                       }),
+               },
+               {
+                       a: NewSymDense(2, []float64{
+                               1, 0,
+                               0, 1,
+                       }),
+                       b: NewSymDense(2, []float64{
+                               2, 0,
+                               0, 2,
+                       }),
+               },
+               {
+                       a: NewSymDense(3, []float64{
+                               53, 59, 37,
+                               59, 83, 71,
+                               37, 71, 101,
+                       }),
+                       b: NewSymDense(3, []float64{
+                               2, -1, 0,
+                               -1, 2, -1,
+                               0, -1, 2,
+                       }),
+               },
+       } {
+               var chola, cholb Cholesky
+               ok := chola.Factorize(test.a)
+               if !ok {
+                       t.Fatal("unexpected Cholesky factorization failure for a: not positive definite")
+               }
+               ok = cholb.Factorize(test.b)
+               if !ok {
+                       t.Fatal("unexpected Cholesky factorization failure for b: not positive definite")
+               }
+
+               var x Dense
+               chola.SolveChol(&x, &cholb)
+
+               var ans Dense
+               ans.Mul(test.a, &x)
+               if !EqualApprox(&ans, test.b, 1e-12) {
+                       var y Dense
+                       y.Solve(test.a, test.b)
+                       t.Errorf("incorrect Cholesky solve solution product\ngot solution:\n%.4v\nwant solution\n%.4v",
+                               Formatted(&x), Formatted(&y))
+               }
+       }
+}
+
+func TestCholeskySolveVec(t *testing.T) {
+       for _, test := range []struct {
+               a   *SymDense
+               b   *VecDense
+               ans *VecDense
+       }{
+               {
+                       a: NewSymDense(2, []float64{
+                               1, 0,
+                               0, 1,
+                       }),
+                       b:   NewVecDense(2, []float64{5, 6}),
+                       ans: NewVecDense(2, []float64{5, 6}),
+               },
+               {
+                       a: NewSymDense(3, []float64{
+                               53, 59, 37,
+                               0, 83, 71,
+                               0, 0, 101,
+                       }),
+                       b:   NewVecDense(3, []float64{5, 6, 7}),
+                       ans: NewVecDense(3, []float64{0.20745069393718094, -0.17421475529583694, 0.11577794010226464}),
+               },
+       } {
+               var chol Cholesky
+               ok := chol.Factorize(test.a)
+               if !ok {
+                       t.Fatal("unexpected Cholesky factorization failure: not positive definite")
+               }
+
+               var x VecDense
+               chol.SolveVec(&x, test.b)
+               if !EqualApprox(&x, test.ans, 1e-12) {
+                       t.Error("incorrect Cholesky solve solution")
+               }
+
+               var ans VecDense
+               ans.MulVec(test.a, &x)
+               if !EqualApprox(&ans, test.b, 1e-12) {
+                       t.Error("incorrect Cholesky solve solution product")
+               }
+       }
+}
+
+func TestCholeskyToSym(t *testing.T) {
+       for _, test := range []*SymDense{
+               NewSymDense(3, []float64{
+                       53, 59, 37,
+                       0, 83, 71,
+                       0, 0, 101,
+               }),
+       } {
+               var chol Cholesky
+               ok := chol.Factorize(test)
+               if !ok {
+                       t.Fatal("unexpected Cholesky factorization failure: not positive definite")
+               }
+               s := chol.ToSym(nil)
+
+               if !EqualApprox(s, test, 1e-12) {
+                       t.Errorf("Cholesky reconstruction not equal to original matrix.\nWant:\n% v\nGot:\n% v\n", Formatted(test), Formatted(s))
+               }
+       }
+}
+
+func TestCloneCholesky(t *testing.T) {
+       for _, test := range []*SymDense{
+               NewSymDense(3, []float64{
+                       53, 59, 37,
+                       0, 83, 71,
+                       0, 0, 101,
+               }),
+       } {
+               var chol Cholesky
+               ok := chol.Factorize(test)
+               if !ok {
+                       panic("bad test")
+               }
+               var chol2 Cholesky
+               chol2.Clone(&chol)
+
+               if chol.cond != chol2.cond {
+                       t.Errorf("condition number mismatch from zero")
+               }
+               if !Equal(chol.chol, chol2.chol) {
+                       t.Errorf("chol mismatch from zero")
+               }
+
+               // Corrupt chol2 and try again
+               chol2.cond = math.NaN()
+               chol2.chol = NewTriDense(2, Upper, nil)
+               chol2.Clone(&chol)
+               if chol.cond != chol2.cond {
+                       t.Errorf("condition number mismatch from non-zero")
+               }
+               if !Equal(chol.chol, chol2.chol) {
+                       t.Errorf("chol mismatch from non-zero")
+               }
+       }
+}
+
+func TestCholeskyInverseTo(t *testing.T) {
+       for _, n := range []int{1, 3, 5, 9} {
+               data := make([]float64, n*n)
+               for i := range data {
+                       data[i] = rand.NormFloat64()
+               }
+               var s SymDense
+               s.SymOuterK(1, NewDense(n, n, data))
+
+               var chol Cholesky
+               ok := chol.Factorize(&s)
+               if !ok {
+                       t.Errorf("Bad test, cholesky decomposition failed")
+               }
+
+               var sInv SymDense
+               chol.InverseTo(&sInv)
+
+               var ans Dense
+               ans.Mul(&sInv, &s)
+               if !equalApprox(eye(n), &ans, 1e-8, false) {
+                       var diff Dense
+                       diff.Sub(eye(n), &ans)
+                       t.Errorf("SymDense times Cholesky inverse not identity. Norm diff = %v", Norm(&diff, 2))
+               }
+       }
+}
+
+func TestCholeskySymRankOne(t *testing.T) {
+       rand.Seed(1)
+       for _, n := range []int{1, 2, 3, 4, 5, 7, 10, 20, 50, 100} {
+               for k := 0; k < 10; k++ {
+                       data := make([]float64, n*n)
+                       for i := range data {
+                               data[i] = rand.NormFloat64()
+                       }
+
+                       var a SymDense
+                       a.SymOuterK(1, NewDense(n, n, data))
+
+                       xdata := make([]float64, n)
+                       for i := range xdata {
+                               xdata[i] = rand.NormFloat64()
+                       }
+                       x := NewVecDense(n, xdata)
+
+                       var chol Cholesky
+                       ok := chol.Factorize(&a)
+                       if !ok {
+                               t.Errorf("Bad random test, Cholesky factorization failed")
+                               continue
+                       }
+
+                       alpha := rand.Float64()
+                       ok = chol.SymRankOne(&chol, alpha, x)
+                       if !ok {
+                               t.Errorf("n=%v, alpha=%v: unexpected failure", n, alpha)
+                               continue
+                       }
+                       a.SymRankOne(&a, alpha, x)
+
+                       var achol SymDense
+                       chol.ToSym(&achol)
+                       if !EqualApprox(&achol, &a, 1e-13) {
+                               t.Errorf("n=%v, alpha=%v: mismatch between updated matrix and from Cholesky:\nupdated:\n%v\nfrom Cholesky:\n%v",
+                                       n, alpha, Formatted(&a), Formatted(&achol))
+                       }
+               }
+       }
+
+       for i, test := range []struct {
+               a     *SymDense
+               alpha float64
+               x     []float64
+
+               wantOk bool
+       }{
+               {
+                       // Update (to positive definite matrix).
+                       a: NewSymDense(4, []float64{
+                               1, 1, 1, 1,
+                               0, 2, 3, 4,
+                               0, 0, 6, 10,
+                               0, 0, 0, 20,
+                       }),
+                       alpha:  1,
+                       x:      []float64{0, 0, 0, 1},
+                       wantOk: true,
+               },
+               {
+                       // Downdate to singular matrix.
+                       a: NewSymDense(4, []float64{
+                               1, 1, 1, 1,
+                               0, 2, 3, 4,
+                               0, 0, 6, 10,
+                               0, 0, 0, 20,
+                       }),
+                       alpha:  -1,
+                       x:      []float64{0, 0, 0, 1},
+                       wantOk: false,
+               },
+               {
+                       // Downdate to positive definite matrix.
+                       a: NewSymDense(4, []float64{
+                               1, 1, 1, 1,
+                               0, 2, 3, 4,
+                               0, 0, 6, 10,
+                               0, 0, 0, 20,
+                       }),
+                       alpha:  -1 / 2,
+                       x:      []float64{0, 0, 0, 1},
+                       wantOk: true,
+               },
+       } {
+               var chol Cholesky
+               ok := chol.Factorize(test.a)
+               if !ok {
+                       t.Errorf("Case %v: bad test, Cholesky factorization failed", i)
+                       continue
+               }
+
+               x := NewVecDense(len(test.x), test.x)
+               ok = chol.SymRankOne(&chol, test.alpha, x)
+               if !ok {
+                       if test.wantOk {
+                               t.Errorf("Case %v: unexpected failure from SymRankOne", i)
+                       }
+                       continue
+               }
+               if ok && !test.wantOk {
+                       t.Errorf("Case %v: expected a failure from SymRankOne", i)
+               }
+
+               a := test.a
+               a.SymRankOne(a, test.alpha, x)
+
+               var achol SymDense
+               chol.ToSym(&achol)
+               if !EqualApprox(&achol, a, 1e-13) {
+                       t.Errorf("Case %v: mismatch between updated matrix and from Cholesky:\nupdated:\n%v\nfrom Cholesky:\n%v",
+                               i, Formatted(a), Formatted(&achol))
+               }
+       }
+}
+
+func TestCholeskyExtendVecSym(t *testing.T) {
+       for cas, test := range []struct {
+               a *SymDense
+       }{
+               {
+                       a: NewSymDense(3, []float64{
+                               4, 1, 1,
+                               0, 2, 3,
+                               0, 0, 6,
+                       }),
+               },
+       } {
+               n := test.a.Symmetric()
+               as := test.a.SliceSquare(0, n-1).(*SymDense)
+
+               // Compute the full factorization to use later (do the full factorization
+               // first to ensure the matrix is positive definite).
+               var cholFull Cholesky
+               ok := cholFull.Factorize(test.a)
+               if !ok {
+                       panic("mat: bad test, matrix not positive definite")
+               }
+
+               var chol Cholesky
+               ok = chol.Factorize(as)
+               if !ok {
+                       panic("mat: bad test, subset is not positive definite")
+               }
+               row := NewVecDense(n, nil)
+               for i := 0; i < n; i++ {
+                       row.SetVec(i, test.a.At(n-1, i))
+               }
+
+               var cholNew Cholesky
+               ok = cholNew.ExtendVecSym(&chol, row)
+               if !ok {
+                       t.Errorf("cas %v: update not positive definite", cas)
+               }
+               a := cholNew.ToSym(nil)
+               if !EqualApprox(a, test.a, 1e-12) {
+                       t.Errorf("cas %v: mismatch", cas)
+               }
+
+               // test in-place
+               ok = chol.ExtendVecSym(&chol, row)
+               if !ok {
+                       t.Errorf("cas %v: in-place update not positive definite", cas)
+               }
+               if !equalChol(&chol, &cholNew) {
+                       t.Errorf("cas %v: Cholesky different in-place vs. new", cas)
+               }
+
+               // Test that the factorization is about right compared with the direct
+               // full factorization. Use a high tolerance on the condition number
+               // since the condition number with the updated rule is approximate.
+               if !equalApproxChol(&chol, &cholFull, 1e-12, 0.3) {
+                       t.Errorf("cas %v: updated Cholesky does not match full", cas)
+               }
+       }
+}
+
+func TestCholeskyScale(t *testing.T) {
+       for cas, test := range []struct {
+               a *SymDense
+               f float64
+       }{
+               {
+                       a: NewSymDense(3, []float64{
+                               4, 1, 1,
+                               0, 2, 3,
+                               0, 0, 6,
+                       }),
+                       f: 0.5,
+               },
+       } {
+               var chol Cholesky
+               ok := chol.Factorize(test.a)
+               if !ok {
+                       t.Errorf("Case %v: bad test, Cholesky factorization failed", cas)
+                       continue
+               }
+
+               // Compare the update to a new Cholesky to an update in-place.
+               var cholUpdate Cholesky
+               cholUpdate.Scale(test.f, &chol)
+               chol.Scale(test.f, &chol)
+               if !equalChol(&chol, &cholUpdate) {
+                       t.Errorf("Case %d: cholesky mismatch new receiver", cas)
+               }
+               var sym SymDense
+               chol.ToSym(&sym)
+               var comp SymDense
+               comp.ScaleSym(test.f, test.a)
+               if !EqualApprox(&comp, &sym, 1e-14) {
+                       t.Errorf("Case %d: cholesky reconstruction doesn't match scaled matrix", cas)
+               }
+
+               var cholTest Cholesky
+               cholTest.Factorize(&comp)
+               if !equalApproxChol(&cholTest, &chol, 1e-12, 1e-12) {
+                       t.Errorf("Case %d: cholesky mismatch with scaled matrix. %v, %v", cas, cholTest.cond, chol.cond)
+               }
+       }
+}
+
+// equalApproxChol checks that the two Cholesky decompositions are equal.
+func equalChol(a, b *Cholesky) bool {
+       return Equal(a.chol, b.chol) && a.cond == b.cond
+}
+
+// equalApproxChol checks that the two Cholesky decompositions are approximately
+// the same with the given tolerance on equality for the Triangular component and
+// condition.
+func equalApproxChol(a, b *Cholesky, matTol, condTol float64) bool {
+       if !EqualApprox(a.chol, b.chol, matTol) {
+               return false
+       }
+       return floats.EqualWithinAbsOrRel(a.cond, b.cond, condTol, condTol)
+}
+
+func BenchmarkCholeskySmall(b *testing.B) {
+       benchmarkCholesky(b, 2)
+}
+
+func BenchmarkCholeskyMedium(b *testing.B) {
+       benchmarkCholesky(b, testblas.MediumMat)
+}
+
+func BenchmarkCholeskyLarge(b *testing.B) {
+       benchmarkCholesky(b, testblas.LargeMat)
+}
+
+func benchmarkCholesky(b *testing.B, n int) {
+       base := make([]float64, n*n)
+       for i := range base {
+               base[i] = rand.Float64()
+       }
+       bm := NewDense(n, n, base)
+       bm.Mul(bm.T(), bm)
+       am := NewSymDense(n, bm.mat.Data)
+
+       var chol Cholesky
+       b.ResetTimer()
+       for i := 0; i < b.N; i++ {
+               ok := chol.Factorize(am)
+               if !ok {
+                       panic("not pos def")
+               }
+       }
+}